JP2014122860A - Crystal orientation measurement jig for monocrystal wafer - Google Patents

Crystal orientation measurement jig for monocrystal wafer Download PDF

Info

Publication number
JP2014122860A
JP2014122860A JP2012280163A JP2012280163A JP2014122860A JP 2014122860 A JP2014122860 A JP 2014122860A JP 2012280163 A JP2012280163 A JP 2012280163A JP 2012280163 A JP2012280163 A JP 2012280163A JP 2014122860 A JP2014122860 A JP 2014122860A
Authority
JP
Japan
Prior art keywords
single crystal
crystal wafer
orientation
ray
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012280163A
Other languages
Japanese (ja)
Inventor
Takayuki Koike
孝幸 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012280163A priority Critical patent/JP2014122860A/en
Publication of JP2014122860A publication Critical patent/JP2014122860A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crystal orientation measurement jig that is able to easily measure the crystal orientation of even a monocrystal wafer that has an off-angle.SOLUTION: A crystal orientation measurement jig for a monocrystal wafer 50 fitted in an X-ray diffraction device that measures the crystal orientation of the monocrystal wafer 50 comprises: a rotation mechanism that uses, as a center point 61, an X-ray incident part of a target measurement surface present on a flat surface including an incidence X-ray 51, which is incident on the target measurement surface of the monocrystal wafer 50, and a diffraction X ray 52, which is diffracted by the monocrystal wafer 50, and that rotates and displaces the monocrystal wafer 50 having, as a rotation axis, a straight line passing through the center point 61 and intersecting the flat surface in perpendicular; and an inclination mechanism (gonio stage 56) that uses the center point 61 as its fulcrum and inclines the target measurement surface of the monocrystal wafer 50 with respect to the flat surface, thereby displacing the target measurement surface so that a diffraction surface 60 of the monocrystal wafer 50 has a perpendicular position relation with the flat surface.

Description

本発明は、単結晶ウェハの結晶方位を測定するX線回折装置に組み込まれ、測定用の単結晶ウェハを固定する単結晶ウェハの結晶方位測定用治具に係り、特に、オフ角を持つ単結晶ウェハに対してもその結晶方位を簡便に測定できる結晶方位測定用治具の改良に関するものである。   The present invention relates to a single crystal wafer crystal orientation measuring jig incorporated in an X-ray diffraction apparatus for measuring the crystal orientation of a single crystal wafer and fixing a single crystal wafer for measurement. The present invention relates to an improvement in a crystal orientation measuring jig that can easily measure the crystal orientation of a crystal wafer.

集積回路や発光ダイオード、レーザーダイオード、SAWフィルタ等の電子デバイスに用いられるシリコン、ガリウム砒素、ガリウム燐といった半導体単結晶や、タンタル酸リチウム、ニオブ酸リチウム、サファイアといった酸化物単結晶の結晶方位は、デバイス特性に大きな影響を与えるため、X線回折装置による方位測定は重要な作業である。   Crystal orientations of semiconductor single crystals such as silicon, gallium arsenide, and gallium phosphide used in electronic devices such as integrated circuits, light emitting diodes, laser diodes, SAW filters, and oxide single crystals such as lithium tantalate, lithium niobate, and sapphire are Orientation measurement by an X-ray diffractometer is an important task because it greatly affects device characteristics.

単結晶ウェハの方位測定にはX線回折が広く用いられ、主に、主面方位とオリエンテーションフラット(以下O.F.と略称する)方位の測定に分けられる。主面方位は、その名の通り単結晶ウェハ平面における結晶方位の向きを示す。また、O.F.方位は、単結晶ウェハ側面を直線状に切欠いて形成された平坦部における結晶方位の向きを示し、ウェハをデバイス片状に切り出す際の位置決め用基準として使用される。   X-ray diffraction is widely used for measuring the orientation of a single crystal wafer, and is mainly divided into measuring the orientation of the principal plane and the orientation flat (hereinafter abbreviated as OF). The principal plane orientation indicates the direction of the crystal orientation in the single crystal wafer plane as the name suggests. Further, the OF orientation indicates the orientation of the crystal orientation in a flat portion formed by cutting the side surface of the single crystal wafer into a straight line, and is used as a positioning reference when the wafer is cut into a device piece.

例えば、ガリウムヒ素単結晶ウェハであれば、主面方位が(100)面、O.F.方位は{110}劈開面が有名であり、タンタル酸リチウム単結晶ウェハであれば、主面方位が36°RY面、O.F.方位は+X面が有名である。総じて、面方位の規格は、±0.5度以内が一般的であるが、近年、照明用白色ダイオード用途で需要が著しいサファイア等の面方位は、±0.1度未満を要求される場合もある。   For example, a gallium arsenide single crystal wafer is famous for the (100) plane principal plane orientation, and the OF orientation is a {110} cleaved plane. For a lithium tantalate single crystal wafer, the major plane orientation is The 36 ° RY plane and the OF orientation are famous for the + X plane. In general, the standard of surface orientation is generally within ± 0.5 degrees, but in recent years, the surface orientation of sapphire and the like, which is in great demand for lighting white diode applications, is required to be less than ± 0.1 degrees. There is also.

但し、主面方位が絶対的な面を表すのに対し、O.F.方位は絶対的な面を示すものとは限らない。主面方位が回折面に対し角度を持つ場合がある。これを一般に、オフ角を持つウェハと言う。例えば、ガリウムヒ素単結晶ウェハで、主面方位が(100)から任意の方向へ2度オフしている場合、(100)と{110}は90度で交わる面であるから、O.F.を垂直に見た面としては、{110}に平行な面にならない。この場合、O.F.は、絶対的な面である(100)の2度オフ面を垂直に見て、{110}方向と指示される場合が多い。   However, while the principal plane orientation represents an absolute plane, the OF orientation does not necessarily indicate an absolute plane. The principal plane orientation may have an angle with respect to the diffraction plane. This is generally called a wafer having an off angle. For example, in the case of a gallium arsenide single crystal wafer, when the principal plane orientation is turned off twice from (100) in an arbitrary direction, (100) and {110} are planes that intersect at 90 degrees, so that O.F. As a surface obtained by vertically viewing, is not a surface parallel to {110}. In this case, OF is often indicated as the {110} direction when the two-off surface (100), which is an absolute surface, is viewed vertically.

ところで、単結晶ウェハを製造する場合、以下のような工程が一般的である。   By the way, when manufacturing a single crystal wafer, the following processes are common.

図1に示すように、まず、チョクラルスキー法等で育成された単結晶インゴット103をインゴット105のように成形した後、このインゴット105をマルチワイヤソー106で切断して一度に単結晶ウェハ107を得る。単結晶ウェハ107は、このままではエッジが欠け易いため、面取り機を用い外周を面取り加工して面取り済ウェハ108とする。面取り加工は単結晶ウェハ107の外周形状に倣って機械的に行われる。尚、図1中、符号101は引上げ軸、符号102は種結晶、符号104は原料を示す。   As shown in FIG. 1, first, after a single crystal ingot 103 grown by the Czochralski method or the like is formed like an ingot 105, the ingot 105 is cut by a multi-wire saw 106, and a single crystal wafer 107 is formed at a time. obtain. Since the single crystal wafer 107 is easily chipped as it is, the outer periphery is chamfered using a chamfering machine to obtain a chamfered wafer 108. The chamfering is mechanically performed following the outer peripheral shape of the single crystal wafer 107. In FIG. 1, reference numeral 101 denotes a pulling shaft, reference numeral 102 denotes a seed crystal, and reference numeral 104 denotes a raw material.

上記インゴット105には、マルチワイヤソー106の基準となる面105a、および、O.F.105bが予め設けられているから、単結晶ウェハ107の主面方位107a、O.F.方位107bは、1次的にはインゴット105の成形時に決定される。そして、予め設けられるインゴット105における面105aの方位、O.F.105bの方位も、またX線回折装置による測定で決定される。   Since the ingot 105 is provided with a surface 105a and an OF 105b serving as a reference for the multi-wire saw 106 in advance, the main surface orientation 107a and the OF orientation 107b of the single crystal wafer 107 are 1 Next, it is determined when the ingot 105 is formed. The orientation of the surface 105a and the orientation of the OF 105b in the ingot 105 provided in advance are also determined by measurement with an X-ray diffractometer.

しかし、単結晶ウェハ107の主面方位107aは、ワイヤソー106における機械的精度の問題で、また、O.F.方位107bは、面取り加工における機械的精度の問題で、ずれてしまう可能性があるため、上記主面方位107aはワイヤソー切断後、O.F.方位107bは面取り加工後に、再度、X線回折装置により測定し確認しなくてはならない。   However, the main surface orientation 107a of the single crystal wafer 107 may be displaced due to a mechanical accuracy problem in the wire saw 106, and the OF orientation 107b may be displaced due to a mechanical accuracy problem in chamfering. Therefore, the main surface orientation 107a must be measured and confirmed again with an X-ray diffractometer after wire saw cutting and the OF orientation 107b after chamfering.

以下、X線回折装置による上記主面方位の測定について、図2を用いて具体的に説明する。   Hereinafter, the measurement of the principal plane orientation by the X-ray diffractometer will be specifically described with reference to FIG.

図2(A)(B)は、単結晶ウェハ20における主面方位(100)の測定状態を示す説明図である。図2(A)(B)に示すように、単結晶ウェハ20は試料台23に積載されるが、簡便で使い勝手のよい真空吸着により単結晶ウェハ20を固定する方法が一般的である。そして、単結晶ウェハ20の被測定面に対し、図2(A)(B)に示すように入射X線21を入射し、単結晶ウェハ20で回折される回折X線22が検出器24にて観測される。更に、試料台23を回転させ、検出器24によりX線量のピークがカウントされる試料台23の位置を探す。当該結晶の面間隔、所望の回折面、ブラッグの式から、検出器24の位置を2θとしたときのθ角度は決まっているため、試料台23がどの程度ずれたかを読むことにより、回折面からのズレとして測定される。   2A and 2B are explanatory views showing the measurement state of the principal plane orientation (100) in the single crystal wafer 20. FIG. As shown in FIGS. 2 (A) and 2 (B), the single crystal wafer 20 is loaded on the sample stage 23, and a method of fixing the single crystal wafer 20 by vacuum suction that is simple and easy to use is common. Then, incident X-rays 21 are incident on the surface to be measured of the single crystal wafer 20 as shown in FIGS. 2A and 2B, and the diffracted X-rays 22 diffracted by the single crystal wafer 20 enter the detector 24. Observed. Further, the sample stage 23 is rotated, and the position of the sample stage 23 where the peak of the X-ray dose is counted by the detector 24 is searched. Since the θ angle when the position of the detector 24 is set to 2θ is determined from the interplanar spacing of the crystal, the desired diffraction surface, and the Bragg equation, the diffraction surface can be determined by reading how much the sample stage 23 has shifted. Measured as deviation from.

また、図3(A)(B)は、単結晶ウェハ30におけるO.F.方位の測定状態を示す説明図であり、単結晶ウェハ30の積載向きが変更されている以外、図2(A)(B)と略同一である。尚、図3(A)(B)中、符号31は入射X線、符号32は回折X線、符号33は試料台、および、符号34は検出器である。   3 (A) and 3 (B) are explanatory views showing the measurement state of the OF orientation in the single crystal wafer 30, except that the stacking direction of the single crystal wafer 30 is changed. ) And (B). In FIGS. 3A and 3B, reference numeral 31 denotes incident X-rays, reference numeral 32 denotes diffracted X-rays, reference numeral 33 denotes a sample stage, and reference numeral 34 denotes a detector.

ところで、図2と図3に示された試料台は、単結晶ウェハの被測定面に入射される入射X線と単結晶ウェハで回折される回折X線が含まれる平面に対し単結晶ウェハの回折面が垂直な位置関係にあることを前提としたものである。しかし、上記平面に対し、測定される単結晶ウェハの回折面が斜めに角度を持つ場合があり、これに起因して回折X線に角度が付いて検出器から外れ、測定不能に陥ることがある。X線回折装置は、入射X線と、回折X線を検知する検出器が同一平面上に存在することを前提にして配置されているためである。この現象は、単結晶ウェハの主面方位が回折面から大きくずれている場合に起こる。つまり、上記オフ角を持つ単結晶ウェハを測定対象とした場合に起こる。   By the way, the sample stage shown in FIG. 2 and FIG. 3 has a single crystal wafer with respect to a plane including incident X-rays incident on the surface to be measured of the single crystal wafer and diffracted X-rays diffracted by the single crystal wafer. This is based on the premise that the diffractive surfaces are perpendicular to each other. However, the diffractive surface of the single crystal wafer to be measured may have an oblique angle with respect to the above plane, and as a result, the diffracted X-ray is angled and deviated from the detector, making it impossible to measure. is there. This is because the X-ray diffractometer is arranged on the assumption that the incident X-ray and the detector for detecting the diffracted X-ray exist on the same plane. This phenomenon occurs when the principal plane orientation of the single crystal wafer is greatly deviated from the diffraction plane. That is, it occurs when the single crystal wafer having the off-angle is set as a measurement target.

上記現象を、図4(A)〜(C)を用いて具体的に説明する。   The above phenomenon will be specifically described with reference to FIGS.

単結晶ウェハ40はガリウム砒素で、主面方位が(100)から15°のオフ角を持ち、O.F.方向は{110}とする。このウェハで、O.F.方位を測定する場合、単結晶ウェハ40の回折面{110}は、図4(B)に示す回折面43に相当する。これは、図4(B)に示すように(100)と{110}が直角に交わる面であるからである。この状態で、入射X線41が{110}回折面43に対し斜めに照射される(入射X線41と単結晶ウェハ40で回折される回折X線42が含まれる平面に対し上記回折面43が垂直な位置関係にある条件を満たさない)ため、単結晶ウェハ40で回折される回折X線42は見かけ上、跳ね上がり、検出器44を外れてしまう。   The single crystal wafer 40 is made of gallium arsenide, has a main surface orientation with an off angle of (100) to 15 °, and the OF direction is {110}. When the OF orientation is measured with this wafer, the diffractive surface {110} of the single crystal wafer 40 corresponds to the diffractive surface 43 shown in FIG. This is because (100) and {110} intersect at right angles as shown in FIG. In this state, the incident X-ray 41 is irradiated obliquely to the {110} diffraction surface 43 (the diffraction surface 43 with respect to a plane including the incident X-ray 41 and the diffraction X-ray 42 diffracted by the single crystal wafer 40). Therefore, the diffracted X-ray 42 diffracted by the single crystal wafer 40 jumps up apparently and deviates from the detector 44.

この問題を回避するため、単結晶ウェハの被測定面に入射される入射X線と単結晶ウェハで回折される回折X線が含まれる平面に対し単結晶ウェハの回折面が垂直な位置関係となるように調整する必要があり、例えば、特許文献1に記載された発明では、様々な角度を持つ複数種類の試料台を予め用意し、複数種類の試料台を随時交換し用いる方法が紹介されている。試料台を部分的に交換する機構により作業は簡便となってはいるが、様々な角度を持つ複数種類の試料台を予め用意する必要がある上、予め用意していないものには対応できない、また、試料台を部分的に交換する作業を行なうことで、摩耗によるガタツキが生じ、誤差が発生する恐れがある等、依然として問題を有している。   In order to avoid this problem, the diffraction plane of the single crystal wafer is perpendicular to the plane containing the incident X-rays incident on the measured surface of the single crystal wafer and the diffracted X-rays diffracted by the single crystal wafer. For example, in the invention described in Patent Document 1, a method of preparing a plurality of types of sample tables having various angles in advance and replacing the plurality of types of sample tables at any time is introduced. ing. Although the work is simplified by a mechanism that partially replaces the sample stage, it is necessary to prepare a plurality of types of sample stages with various angles in advance, and it is not possible to deal with those not prepared in advance. In addition, there is still a problem that the work for partially exchanging the sample stage may cause backlash due to wear and an error may occur.

特開2001−324457号公報JP 2001-324457 A

本発明はこのような問題点に着目してなされたもので、その課題とするところは、オフ角を持つ単結晶ウェハに対してもその結晶方位を簡便に測定できる結晶方位測定用治具を提供することにある。   The present invention has been made paying attention to such problems, and the object of the present invention is to provide a crystal orientation measuring jig capable of easily measuring the crystal orientation of a single crystal wafer having an off angle. It is to provide.

すなわち、請求項1に係る発明は、
単結晶ウェハの結晶方位を測定するX線回折装置に組み込まれ、測定用の単結晶ウェハを固定する単結晶ウェハの結晶方位測定用治具において、
固定された単結晶ウェハの被測定面に入射される入射X線と単結晶ウェハで回折される回折X線が含まれる平面上に存在する上記被測定面のX線入射部位を中心点とし、この中心点を通りかつ上記平面に対し垂直に交わる直線を回転軸にして単結晶ウェハを回転変位させる回転機構と、上記中心点を支点としかつ上記平面に対し単結晶ウェハの被測定面を傾かせて単結晶ウェハの回折面が上記平面に対し垂直な位置関係となるように変位させる傾き機構を具備することを特徴とする。
That is, the invention according to claim 1
In a jig for measuring crystal orientation of a single crystal wafer, which is incorporated in an X-ray diffractometer that measures the crystal orientation of a single crystal wafer and fixes the single crystal wafer for measurement,
With the X-ray incident part of the measurement surface existing on the plane including the incident X-ray incident on the measurement surface of the fixed single crystal wafer and the diffraction X-ray diffracted by the single crystal wafer as a center point, A rotation mechanism that rotates and displaces the single crystal wafer around a straight line passing through the center point and perpendicular to the plane as a rotation axis, and tilting the measurement surface of the single crystal wafer with the center point as a fulcrum and the plane. And a tilt mechanism that displaces the diffraction plane of the single crystal wafer so as to be in a positional relationship perpendicular to the plane.

また、請求項2に係る発明は、
請求項1に記載の単結晶ウェハの結晶方位測定用治具において、
上記回転軸を中心にして回転する回転面を備える試料台と、試料台の上記回転面上に載置されかつ表面側に断面円弧状の凹面を有する凹面部材と上記凹面に嵌合する断面円弧状の凸面を裏面側に有する凸面部材から成るゴニオ台と、ゴニオ台における上記凸面部材の表面側に搭載されかつ測定用の単結晶ウェハを固定するウェハ固定部材とで構成されることを特徴とする。
The invention according to claim 2
In the jig for measuring a crystal orientation of a single crystal wafer according to claim 1,
A sample stage having a rotation surface that rotates about the rotation axis, a concave member that is placed on the rotation surface of the sample stage and has a concave surface with a circular arc cross section on the surface side, and a cross-sectional circle that fits the concave surface A goniometer comprising a convex member having an arc-shaped convex surface on the back surface side, and a wafer fixing member mounted on the surface side of the convex member on the goniometer and fixing a single crystal wafer for measurement. To do.

本発明に係る単結晶ウェハの結晶方位測定用治具は、
固定された単結晶ウェハの被測定面に入射される入射X線と単結晶ウェハで回折される回折X線が含まれる平面上に存在する上記被測定面のX線入射部位を中心点とし、この中心点を通りかつ上記平面に対し垂直に交わる直線を回転軸にして単結晶ウェハを回転変位させる回転機構と、上記中心点を支点としかつ上記平面に対し単結晶ウェハの被測定面を傾かせて単結晶ウェハの回折面が上記平面に対し垂直な位置関係となるように変位させる傾き機構を具備することを特徴としている。
A jig for measuring crystal orientation of a single crystal wafer according to the present invention,
With the X-ray incident part of the measurement surface existing on the plane including the incident X-ray incident on the measurement surface of the fixed single crystal wafer and the diffraction X-ray diffracted by the single crystal wafer as a center point, A rotation mechanism that rotates and displaces the single crystal wafer around a straight line passing through the center point and perpendicular to the plane as a rotation axis, and tilting the measurement surface of the single crystal wafer with the center point as a fulcrum and the plane. And a tilt mechanism for displacing the diffractive surface of the single crystal wafer so as to be in a positional relationship perpendicular to the plane.

このため、特許文献1に記載された発明と比較し、複数種類の試料台を予め用意する必要がない。そして、試料台の交換作業自体が不要となり、結晶方位測定用治具の回転機構と傾き機構を作用させるだけでよいため、より迅速に面方位の測定が可能となる。   For this reason, compared with the invention described in Patent Document 1, it is not necessary to prepare a plurality of types of sample stands in advance. Further, since the work for exchanging the sample stage itself is not necessary, it is only necessary to actuate the rotation mechanism and the tilt mechanism of the crystal orientation measuring jig, so that the plane orientation can be measured more quickly.

更に、オフ角が不明な単結晶ウェハの方位測定を行う際にオフ角を探りながら方位測定するような場面では、本発明に係る結晶方位測定用治具は、従来技術と比較し、圧倒的に作業が容易でかつ効率的である効果を有する。   Furthermore, the crystal orientation measurement jig according to the present invention is overwhelming in comparison with the prior art in situations where the orientation measurement is performed while searching for the off angle when measuring the orientation of a single crystal wafer with an unknown off angle. In addition, the operation is easy and efficient.

単結晶ウェハを製造する工程を示す説明図。Explanatory drawing which shows the process of manufacturing a single crystal wafer. 従来技術に係る単結晶ウェハ20における主面方位(100)の測定状態を示し、図2(A)は図2(B)の矢視Aからの側面図、図2(B)は上記主面方位(100)の測定状態を示す平面図。FIG. 2A shows a measurement state of the principal plane orientation (100) in the single crystal wafer 20 according to the prior art, FIG. 2A is a side view from the arrow A in FIG. 2B, and FIG. The top view which shows the measurement state of direction (100). 従来技術に係る単結晶ウェハ30におけるO.F.方位の測定状態を示し、図3(A)は図3(B)の矢視Aからの側面図、図3(B)は上記O.F.方位の測定状態を示す平面図。FIG. 3A shows a state of measurement of the OF orientation in the single crystal wafer 30 according to the prior art, FIG. 3A is a side view from an arrow A in FIG. 3B, and FIG. FIG. 6 is a plan view showing a measurement state of an orientation. 主面方位が(100)から15°のオフ角を持ち、O.F.方向は{110}とした単結晶ウェハ40の従来技術に係るO.F.方位の測定方法を示し、図4(A)は単結晶ウェハ40の平面図、図4(B)は単結晶ウェハ40における回折面43の説明図、図4(C)は従来技術に係るO.F.方位の上記測定方法の弊害を示す説明図。FIG. 4 shows a method for measuring the OF orientation according to the prior art of a single crystal wafer 40 in which the principal plane orientation has an off angle of (100) to 15 ° and the OF direction is {110}. A) is a plan view of the single crystal wafer 40, FIG. 4B is an explanatory view of the diffractive surface 43 of the single crystal wafer 40, and FIG. 4C is an adverse effect of the above-described measuring method of the OF orientation according to the prior art. FIG. 本発明に係る単結晶ウェハの結晶方位測定用治具を用いたO.F.方位の測定方法を示し、図5(A)は図5(C)の矢視Aからの側面図、図5(B)は図5(C)の矢視Bからの側面図、図5(C)は本発明に係る単結晶ウェハの結晶方位測定用治具を用いたO.F.方位の測定状態を示す平面図。FIG. 5A shows a method for measuring the OF orientation using a crystal orientation measuring jig for a single crystal wafer according to the present invention, and FIG. 5A is a side view from the arrow A in FIG. (B) is a side view from arrow B of FIG. 5 (C), and FIG. 5 (C) is a measurement state of the OF orientation using the crystal orientation measuring jig of the single crystal wafer according to the present invention. FIG.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

まず、本発明に係る単結晶ウェハの結晶方位測定用治具は、図5(A)(B)に示すように、回転面(図示せず)を有する試料台55と、試料台55の上記回転面上に載置されかつ表面側に断面円弧状の凹面を有する凹面部材57aと上記凹面に嵌合する断面円弧状の凸面を裏面側に有する凸面部材57bから成るゴニオ台56と、ゴニオ台56における上記凸面部材57bの表面側に搭載されかつ測定用の単結晶ウェハ50を真空吸着により固定するウェハ固定部材59とでその主要部が構成されており、上記ウェハ固定部材59には角度計58が付設され、上記ゴニオ台56には固定螺子56aが付設されている。   First, as shown in FIGS. 5A and 5B, the jig for measuring crystal orientation of a single crystal wafer according to the present invention includes a sample stage 55 having a rotating surface (not shown), and the above-described sample stage 55. A goniometer 56 comprising a concave member 57a having a concave surface with an arcuate cross section on the surface side and a convex member 57b having a convex surface with an arcuate cross section that fits the concave surface on the back surface side; 56 is mounted on the surface side of the convex member 57b, and a main part is constituted by a wafer fixing member 59 for fixing the measurement single crystal wafer 50 by vacuum suction. The wafer fixing member 59 includes an angle meter. 58 is provided, and the goniometer 56 is provided with a fixing screw 56a.

また、この結晶方位測定用治具は、図5(A)(C)に示すように、単結晶ウェハ50の被測定面に入射される入射X線51と単結晶ウェハ50で回折される回折X線52が含まれる平面上に存在する上記被測定面のX線入射部位を中心点61(図5B参照)とし、この中心点61を通りかつ上記平面に対し垂直に交わる直線を回転軸にして単結晶ウェハ50を回転変位させる回転機構(上記回転軸を中心にして回転する試料台55の回転面により構成される)と、上記中心点61を支点としかつ上記平面に対し単結晶ウェハ50の被測定面を傾かせて単結晶ウェハ50の回折面60が上記平面(すなわち、単結晶ウェハ50の被測定面に入射される入射X線51と単結晶ウェハ50で回折される回折X線52が含まれる平面)に対し垂直な位置関係となるように変位させる傾き機構(表面側に断面円弧状の凹面を有する凹面部材57aと上記凹面に嵌合する断面円弧状の凸面を裏面側に有する凸面部材57bから成る上記ゴニオ台56により構成される)を具備している。   In addition, as shown in FIGS. 5A and 5C, this crystal orientation measuring jig has incident X-rays 51 incident on the surface to be measured of the single crystal wafer 50 and diffraction diffracted by the single crystal wafer 50. The X-ray incident part of the surface to be measured existing on the plane including the X-ray 52 is set as a center point 61 (see FIG. 5B), and a straight line passing through the center point 61 and perpendicular to the plane is used as a rotation axis. A rotation mechanism for rotating and displacing the single crystal wafer 50 (consisting of a rotation surface of the sample stage 55 rotating around the rotation axis), and the single crystal wafer 50 with the center point 61 as a fulcrum and with respect to the plane. The diffracting surface 60 of the single crystal wafer 50 is tilted with respect to the measured surface of the single crystal wafer 50, and the incident X-ray 51 incident on the measured surface of the single crystal wafer 50 and the diffracted X-ray diffracted by the single crystal wafer 50. Perpendicular to the plane containing 52) The goniometer 56 is composed of a tilting mechanism (a concave member 57a having a concave surface having a circular arc section on the front surface side and a convex member 57b having a convex surface having a circular arc shape to be fitted to the concave surface on the back surface side. Comprising).

尚、上記単結晶ウェハ50はガリウム砒素で、主面方位が(100)から15°のオフ角を持ち、O.F.方向は{110}とする。   The single crystal wafer 50 is made of gallium arsenide, has a main surface orientation with an off angle of (100) to 15 °, and the OF direction is {110}.

そして、上記単結晶ウェハ50は、ウェハ固定部材59により吸着固定されかつゴニオ台56上に積載される。また、ゴニオ台56は、上述したように表面側に断面円弧状の凹面を有する凹面部材57aと、上記凹面に嵌合する断面円弧状の凸面を裏面側に有する凸面部材57bとで構成されており、上記凹面部材57aの凹面上を、凸面部材57bを摺動させることにより、単結晶ウェハ50の被測定面に入射される入射X線51と単結晶ウェハ50で回折される回折X線52が含まれる平面に対し、上記被測定面のX線入射部位(中心点61)を支点として単結晶ウェハ50の被測定面を傾かせることが可能となる。尚、上記平面に対する単結晶ウェハ50の傾き角度は、ウェハ固定部材59に付設された角度計58により容易に決定することができ、かつ、上記ゴニオ台56に付設された固定螺子56aにより任意の角度で固定することができる。この際、上記平面上に存在する被測定面のX線入射部位を中心点61とし、この中心点61を支点として傾かせることが肝要である。上記中心点61は、被測定面に入射される入射X線51と単結晶ウェハ50で回折される回折X線52が含まれる平面上にあって、ゴニオ台56に角度を付けた場合でも、確実に、単結晶ウェハ50の被測定面にX線を照射することができる。   The single crystal wafer 50 is sucked and fixed by the wafer fixing member 59 and loaded on the gonio table 56. Moreover, the gonio stand 56 is comprised by the concave surface member 57a which has a concave surface of circular arc shape on the surface side as mentioned above, and the convex surface member 57b which has the convex surface of circular arc shape which fits the said concave surface on the back surface side. In addition, by sliding the convex member 57b on the concave surface of the concave member 57a, the incident X-ray 51 incident on the surface to be measured of the single crystal wafer 50 and the diffracted X-ray 52 diffracted by the single crystal wafer 50 are obtained. It is possible to tilt the surface to be measured of the single crystal wafer 50 with the X-ray incident part (center point 61) of the surface to be measured as a fulcrum with respect to a plane including The inclination angle of the single crystal wafer 50 with respect to the plane can be easily determined by an angle meter 58 attached to the wafer fixing member 59, and can be arbitrarily determined by a fixing screw 56a attached to the gonio table 56. Can be fixed at an angle. At this time, it is important that the X-ray incident part of the surface to be measured existing on the plane is the central point 61 and the central point 61 is inclined as a fulcrum. The center point 61 is on a plane including the incident X-ray 51 incident on the surface to be measured and the diffracted X-ray 52 diffracted by the single crystal wafer 50, and even when the goniometer 56 is angled, It is possible to reliably irradiate the surface to be measured of the single crystal wafer 50 with X-rays.

上記ゴニオ台56と角度計58の作用によりにより単結晶ウェハ50が持つ15°のオフ角が補正され、O.F.方向{110}の回折面60は、上記平面(単結晶ウェハ50の被測定面に入射される入射X線51と単結晶ウェハ50で回折される回折X線52が含まれる平面)に対し垂直な位置関係にある条件を満たすことになる。これにより、上記平面上に存在する入射X線51は、O.F.方向{110}の回折面60に対し垂直な位置関係を満たした条件で照射されることから、図4にみられるような回折X線の跳ね上がりは起こらず、検出器54で確実に捕えられ、方位測定を行うことができる。   The 15 ° off-angle of the single crystal wafer 50 is corrected by the action of the goniometer 56 and the goniometer 58, and the diffraction surface 60 in the OF direction {110} A condition that is perpendicular to the incident X-ray 51 incident on the measurement surface and the plane containing the diffracted X-ray 52 diffracted by the single crystal wafer 50 is satisfied. As a result, the incident X-rays 51 existing on the plane are irradiated under the condition satisfying the positional relationship perpendicular to the diffraction surface 60 in the OF direction {110}, as shown in FIG. As a result, the diffracted X-rays do not jump up and are reliably captured by the detector 54, and the azimuth can be measured.

尚、図5では、O.F.方位の測定について説明しているが、単結晶ウェハの主面方位を測定する場合も、単結晶ウェハの積載向きが異なるだけで効果は同様である。   Note that FIG. 5 illustrates the measurement of the OF orientation, but the effect is the same when the principal plane orientation of a single crystal wafer is measured, except that the orientation of the single crystal wafer is different.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

図5に示す結晶方位測定用治具を適用して、オフ角を持つ単結晶ウェハの方位測定作業を行ったが、オフ角を調整するために必要な時間は10秒であった。   The crystal orientation measurement jig shown in FIG. 5 was applied to perform the orientation measurement operation of the single crystal wafer having an off angle. The time required for adjusting the off angle was 10 seconds.

他方、特許文献1に記載された治具を用いた場合、オフ角の調整に30秒を要しており、実施例に係る結晶方位測定用治具の優位は明らかであった。   On the other hand, when the jig described in Patent Document 1 was used, it took 30 seconds to adjust the off angle, and the superiority of the crystal orientation measuring jig according to the example was clear.

回転機構と傾き機構を有する本発明の結晶方位測定用治具は、従来技術と異なり複数種類の試料台を予め用意する必要がないため、オフ角が不明な単結晶ウェハの方位測定を行うような場合に利用される産業上の利用可能性を有している。   Unlike the prior art, the crystal orientation measuring jig of the present invention having a rotation mechanism and an inclination mechanism does not need to prepare a plurality of types of sample tables in advance, so that the orientation measurement of a single crystal wafer with an unknown off angle is performed. It has industrial applicability to be used in such cases.

20 単結晶ウェハ
21 入射X線
22 回折X線
23 試料台
30 単結晶ウェハ
31 入射X線
32 回折X線
33 試料台
34 検出器
40 単結晶ウェハ
41 入射X線
42 回折X線
43 回折面
44 検出器
50 単結晶ウェハ
51 入射X線
52 回折X線
54 検出器
55 試料台
56 ゴニオ台
56a 固定螺子
57a 凹面部材
57b 凸面部材
58 角度計
59 ウェハ固定部材
60 回折面
61 中心点
101 引上げ軸
102 種結晶
103 単結晶インゴット
104 原料
105 インゴット
105a 基準となる面
105b オリエンテーションフラット(O.F.)
106 ワイヤソー
107 単結晶ウェハ
107a 主面方位
107b O.F.方位
108 面取り済ウェハ
20 single crystal wafer 21 incident X-ray 22 diffracted X-ray 23 sample stage 30 single crystal wafer 31 incident X-ray 32 diffracted X-ray 33 sample stage 34 detector 40 single crystal wafer 41 incident X-ray 42 diffracted X-ray 43 diffraction surface 44 detection Instrument 50 Single crystal wafer 51 Incident X-ray 52 Diffraction X-ray 54 Detector 55 Sample stage 56 Goniometer 56a Fixing screw 57a Concave member 57b Convex member 58 Angle meter 59 Wafer fixing member 60 Diffraction surface 61 Center point 101 Pulling shaft 102 Seed crystal 103 Single Crystal Ingot 104 Raw Material 105 Ingot 105a Reference Surface 105b Orientation Flat (O.F.)
106 Wire saw 107 Single crystal wafer 107a Main surface orientation 107b OF orientation 108 Chamfered wafer

Claims (2)

単結晶ウェハの結晶方位を測定するX線回折装置に組み込まれ、測定用の単結晶ウェハを固定する単結晶ウェハの結晶方位測定用治具において、
固定された単結晶ウェハの被測定面に入射される入射X線と単結晶ウェハで回折される回折X線が含まれる平面上に存在する上記被測定面のX線入射部位を中心点とし、この中心点を通りかつ上記平面に対し垂直に交わる直線を回転軸にして単結晶ウェハを回転変位させる回転機構と、上記中心点を支点としかつ上記平面に対し単結晶ウェハの被測定面を傾かせて単結晶ウェハの回折面が上記平面に対し垂直な位置関係となるように変位させる傾き機構を具備することを特徴とする単結晶ウェハの結晶方位測定用治具。
In a jig for measuring crystal orientation of a single crystal wafer, which is incorporated in an X-ray diffractometer that measures the crystal orientation of a single crystal wafer and fixes the single crystal wafer for measurement,
With the X-ray incident part of the measurement surface existing on the plane including the incident X-ray incident on the measurement surface of the fixed single crystal wafer and the diffraction X-ray diffracted by the single crystal wafer as a center point, A rotation mechanism that rotates and displaces the single crystal wafer around a straight line passing through the center point and perpendicular to the plane as a rotation axis, and tilting the measurement surface of the single crystal wafer with the center point as a fulcrum and the plane. A jig for measuring a crystal orientation of a single crystal wafer, comprising a tilt mechanism for displacing the diffraction plane of the single crystal wafer so as to be in a positional relationship perpendicular to the plane.
上記回転軸を中心にして回転する回転面を備える試料台と、試料台の上記回転面上に載置されかつ表面側に断面円弧状の凹面を有する凹面部材と上記凹面に嵌合する断面円弧状の凸面を裏面側に有する凸面部材から成るゴニオ台と、ゴニオ台における上記凸面部材の表面側に搭載されかつ測定用の単結晶ウェハを固定するウェハ固定部材とで構成されることを特徴とする請求項1に記載の単結晶ウェハの結晶方位測定用治具。   A sample stage having a rotation surface that rotates about the rotation axis, a concave member that is placed on the rotation surface of the sample stage and has a concave surface with a circular arc cross section on the surface side, and a cross-sectional circle that fits the concave surface A goniometer comprising a convex member having an arc-shaped convex surface on the back surface side, and a wafer fixing member mounted on the surface side of the convex member on the goniometer and fixing a single crystal wafer for measurement. The jig for measuring a crystal orientation of a single crystal wafer according to claim 1.
JP2012280163A 2012-12-21 2012-12-21 Crystal orientation measurement jig for monocrystal wafer Pending JP2014122860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012280163A JP2014122860A (en) 2012-12-21 2012-12-21 Crystal orientation measurement jig for monocrystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280163A JP2014122860A (en) 2012-12-21 2012-12-21 Crystal orientation measurement jig for monocrystal wafer

Publications (1)

Publication Number Publication Date
JP2014122860A true JP2014122860A (en) 2014-07-03

Family

ID=51403459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280163A Pending JP2014122860A (en) 2012-12-21 2012-12-21 Crystal orientation measurement jig for monocrystal wafer

Country Status (1)

Country Link
JP (1) JP2014122860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152852A (en) * 2017-12-12 2018-06-12 中国计量科学研究院 A kind of adjustable monocrystalline monochromator
JP2019219326A (en) * 2018-06-21 2019-12-26 株式会社ディスコ Crystal orientation detection device, and crystal orientation detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249803A (en) * 1993-02-26 1994-09-09 Sharp Corp X-ray device and evaluating analyzing method using this device
JPH10111399A (en) * 1996-10-04 1998-04-28 Ricoh Co Ltd X-ray diffraction device
JPH10253553A (en) * 1997-03-14 1998-09-25 Toshiba Corp Method for regulating angle of inclination of crystal of single-crystal sample in measurement of x-ray diffraction
JP2004294136A (en) * 2003-03-26 2004-10-21 Rigaku Corp X-ray diffraction device
JP2006329821A (en) * 2005-05-26 2006-12-07 Sony Corp X-ray diffraction apparatus and measuring method of x-ray diffraction pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249803A (en) * 1993-02-26 1994-09-09 Sharp Corp X-ray device and evaluating analyzing method using this device
JPH10111399A (en) * 1996-10-04 1998-04-28 Ricoh Co Ltd X-ray diffraction device
JPH10253553A (en) * 1997-03-14 1998-09-25 Toshiba Corp Method for regulating angle of inclination of crystal of single-crystal sample in measurement of x-ray diffraction
JP2004294136A (en) * 2003-03-26 2004-10-21 Rigaku Corp X-ray diffraction device
JP2006329821A (en) * 2005-05-26 2006-12-07 Sony Corp X-ray diffraction apparatus and measuring method of x-ray diffraction pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152852A (en) * 2017-12-12 2018-06-12 中国计量科学研究院 A kind of adjustable monocrystalline monochromator
JP2019219326A (en) * 2018-06-21 2019-12-26 株式会社ディスコ Crystal orientation detection device, and crystal orientation detection method
JP7166713B2 (en) 2018-06-21 2022-11-08 株式会社ディスコ CRYSTAL ORIENTATION DETECTION DEVICE AND CRYSTAL ORIENTATION DETECTION METHOD

Similar Documents

Publication Publication Date Title
KR101360906B1 (en) Accurate determination of surface orientation of single crystal wafers using high resolution x-ray rocking curve measurements
TWI672492B (en) Inspection method and inspection device for hexagonal crystal single crystal substrate
TWI548504B (en) Slicing method of semiconductor single crystal ingot
KR100291047B1 (en) Process and device for producing a cylindrical single crystal and process for cutting semiconductor wafers
JP4500744B2 (en) Method and apparatus for measuring, orienting and fixing at least one single crystal
JP2007073761A (en) Nitride semiconductor substrate and processing method thereof
JP2014122860A (en) Crystal orientation measurement jig for monocrystal wafer
JP6610026B2 (en) Scribing equipment
JP2013258243A (en) Manufacturing method and manufacturing device of compound semiconductor substrate
JP2016211916A (en) Apparatus and method for measuring x ray crystal orientation
TW201936350A (en) Semiconductor single crystal ingot slicing method
JP6127649B2 (en) Method for measuring plane orientation of single crystal substrate made of uniaxial crystal
CN1381707A (en) Method for measuring thickness of measured article and its device
JP2021096091A (en) Control device, system, method and program
JP5276851B2 (en) Crystal orientation measuring device, crystal processing device, and crystal processing method
KR100526215B1 (en) A Manufacturing Method And Device For Silicon Single Crystal Wafer
JP2001272359A (en) Monocrystal ingot processing device and its method
JPH10119032A (en) Matching method for crystal orientation in cutting of single crystal ingot having cleavability
JP6349290B2 (en) Single crystal wafer front / back judgment method
JP7146988B1 (en) GaAs wafer manufacturing method and GaAs wafer group
JP2011216819A (en) Method of manufacturing silicon carbide monocrystalline substrate
JP2002331518A (en) Method for cutting single crystal ingot
JP2005077271A (en) Apparatus for determining two sides of crystal and apparatus for determining crystal slope orientation
JP4525061B2 (en) Quartz lumbard ore, method for producing quartz plate, and quartz lumbard ore
JP2022161941A (en) gallium nitride crystal substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160315