JPS62223656A - Crystal orientation determining device - Google Patents

Crystal orientation determining device

Info

Publication number
JPS62223656A
JPS62223656A JP61065882A JP6588286A JPS62223656A JP S62223656 A JPS62223656 A JP S62223656A JP 61065882 A JP61065882 A JP 61065882A JP 6588286 A JP6588286 A JP 6588286A JP S62223656 A JPS62223656 A JP S62223656A
Authority
JP
Japan
Prior art keywords
center
sample
detector
goniometer
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61065882A
Other languages
Japanese (ja)
Other versions
JP2567840B2 (en
Inventor
Hiroshi Matsushita
央 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61065882A priority Critical patent/JP2567840B2/en
Publication of JPS62223656A publication Critical patent/JPS62223656A/en
Application granted granted Critical
Publication of JP2567840B2 publication Critical patent/JP2567840B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To simplify the entire part of a device and to reduce the size and cost thereof by aligning the center of a sample to the center of a goniometer and constituting the device in such a manner that either an X-ray tube or detector can be rotated at a prescribed angle with the center of the goniometer by a rotating mechanism. CONSTITUTION:The rotating mechanism 14 is so provided that the X-ray detector 12 rotates at the desired angle around the center P of the goniometer 13. An X-ray tube angle setting mechanism 15 for rotating the X-ray tube 11 at the prescribed angle around the center Q of the incident X-ray flux on a meter 13 and a detector angle setting mechanism 16 for rotating the detector 12 at the prescribed angle around the center R thereof are provided. The sample rotating mechanism 18 is provided to a sample base 17 having the central axis common with the central axis of the meter 13. The sample 1 is rotated at the prescribed angle by the mechanism 18. A collimator 20 determines the direction where the incident X-ray flux of the X-ray tube 11 progresses. The max. quantity of the diffracted X-rays is thus detected by the detector 12, by which the crystal lattice plane of the sample 19 is determined. The device is simplified and reduced in size in the above-mentioned annex.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えばシリコンや水晶等の単結晶試料の結
晶方位をX線回折を利用して決定する結晶方位決定装置
に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a crystal orientation determination device that determines the crystal orientation of a single crystal sample such as silicon or quartz using X-ray diffraction. .

(従来の技術) シリコンや水晶等の単結晶を半導体や発振体等の工業製
品として使用するためには、その表面が結晶格子面に対
して特定の角度になるように切断する必要がある。その
ために、試料の結晶格子面を知る必要があるが、最も一
般に用いられている結晶の格子面決定方法は、X線回折
を利用するものである。このX線回折を利用した試料の
結晶格子面の決定方法は、第3図に示されている。つま
り、試料1に対しX線を入射させる時、X線の入射角が
ある角度θになると、そのX線が原子Aにより回折され
る。この時の角度を回折角度と称し、その角度θは次の
(1)で求められる。
(Prior Art) In order to use a single crystal such as silicon or quartz as an industrial product such as a semiconductor or an oscillator, it is necessary to cut the surface so that it forms a specific angle with respect to the crystal lattice plane. For this purpose, it is necessary to know the crystal lattice plane of the sample, and the most commonly used method for determining the crystal lattice plane uses X-ray diffraction. The method for determining the crystal lattice plane of a sample using this X-ray diffraction is shown in FIG. That is, when X-rays are incident on the sample 1, when the incident angle of the X-rays reaches a certain angle θ, the X-rays are diffracted by the atoms A. The angle at this time is called a diffraction angle, and the angle θ is determined by the following (1).

nλ−26sinθ        −<+)n=1.
2.3.・・・の整数 λ=X線の波長(入) d=格子面間隔(入) θ=回折角(度) そこで一般に、半導体基板のためのシリコン等は種結晶
を成長させてインゴット状の単結晶を作るが、そのイン
ゴットの長手方向の結晶格子面の測定には従来、このX
線回折を利用した第4図に示すゴニオメータが使用され
ている。
nλ−26sinθ −<+)n=1.
2.3. Integer λ = X-ray wavelength (included) d = lattice spacing (included) θ = diffraction angle (degrees) Therefore, silicon for semiconductor substrates is generally grown into ingot-shaped monoliths by growing seed crystals. Conventionally, this X
A goniometer shown in FIG. 4 that utilizes line diffraction is used.

この従来のゴニオメータでは、X線管1の入射X線束の
中心が試料インゴット2の表面にあたる点をゴニオメー
タの中心Pとし、入射X線束中心とゴニオメータ中心P
とを結ぶ線をX軸に取り、点Pを通り、このX軸に垂直
な軸をy軸としてする。またインゴット2の半径をrと
すると、ゴニオメータ中心PからX[=rsinθ] 
、 Y (rsinθ)の点がインゴット中心Oとなる
。そしてこのインゴット中心を軸として試料回転機構3
によりインゴット2を回転するようにしている。さらに
、ゴニオメータでは、その回転中心Pの周りにX線検出
器4が所定の角度回転できるように配置されている。
In this conventional goniometer, the point where the center of the incident X-ray flux of the X-ray tube 1 is on the surface of the sample ingot 2 is defined as the goniometer center P, and the incident X-ray flux center and the goniometer center P
The line connecting these lines is taken as the X-axis, passes through point P, and the axis perpendicular to this X-axis is taken as the y-axis. Also, if the radius of the ingot 2 is r, then from the goniometer center P to X [=rsinθ]
, Y (rsinθ) becomes the ingot center O. Then, the sample rotation mechanism 3 is centered around this ingot center.
The ingot 2 is rotated by this. Further, in the goniometer, the X-ray detector 4 is arranged so as to be rotatable by a predetermined angle around the rotation center P thereof.

このような従来の結晶方位決定装置においては、X線検
出器4をまず回折角(θ)に対し、2θの位置に設置し
、X線管1から入射X線ビームを試料2の表面に照射さ
せながら、試料2はインゴット中心Oの周りに回転させ
る。そこで試料インゴット2の結晶格子面がX軸に対し
てθ度になると、ゴニオメータ中心Pに向()て2θ度
の位置に設置された検出器4は、回折X線を検出して最
大のX線強度を示す。そこで、この最大X線強度を示す
ときのインゴット2の回転位置が結晶格子面であると決
定される。
In such a conventional crystal orientation determination device, the X-ray detector 4 is first installed at a position of 2θ with respect to the diffraction angle (θ), and the incident X-ray beam is irradiated from the X-ray tube 1 onto the surface of the sample 2. While rotating, the sample 2 is rotated around the ingot center O. Therefore, when the crystal lattice plane of the sample ingot 2 becomes θ degrees with respect to the X axis, the detector 4 installed at a position 2θ degrees toward the goniometer center P detects the diffracted Indicates line strength. Therefore, the rotational position of the ingot 2 at which this maximum X-ray intensity is exhibited is determined to be the crystal lattice plane.

ところがこのような従来の結晶方位決定装置にあっては
、試料インゴットの回転中心0がゴニオメータの回転中
心Pとは別の位置にあるため、入射X線束中心とゴニオ
メータ中心に加えて、ゴニオメータ中心と試料の回転中
心との位置関係も精度よく設定しなれけばならない。さ
らに、試料の回転中心は、第3図に示したようにXYの
2要素で決定されるため、このようなXYITI11位
首決定曙構として通常XYテーブルを使用するが、X軸
とY軸の直角度が完全でないならば、X、Yを独立に設
定できない。ところが、例えば8インチ×650mmの
シリコンインゴットを試料とする場合、その申出は約5
0k(+にもなる。
However, in such a conventional crystal orientation determination device, since the rotation center 0 of the sample ingot is located at a different position from the rotation center P of the goniometer, there is a difference between the incident X-ray flux center and the goniometer center as well as the goniometer center. The positional relationship with the center of rotation of the sample must also be set accurately. Furthermore, since the center of rotation of the sample is determined by two elements, XY and Y, as shown in Figure 3, an XY table is normally used to determine the top 11 of the XYITI. If the squareness is not perfect, X and Y cannot be set independently. However, for example, when using a silicon ingot of 8 inches x 650 mm as a sample, the offer is approximately 5
0k (also becomes +).

そこで、前述したようにゴニオメータ回転機構の他に高
精度のインゴット回転及びX、Y方向移動機構が必要と
されるが、インゴット回転機構は偏心が小さく、しかも
回転中心軸がゴニオメータの回転中心軸と高い平行度を
保たせなければならず、ざらにXYテーブルについても
そのX軸、Y軸の直角精度を高く保ち、しかもX、Yの
寸法を高精度で設定しなければならない。そこで、約5
0koに及ぶ宙吊の試料の位置を上記のように高精度で
決定するための機械構成を実現することは極めて困難で
あり、誤差が生ずる問題があった。また誤差を最小に抑
えるために努力する時には、機構が複雑、大型となる問
題もあった。
Therefore, as mentioned above, in addition to the goniometer rotation mechanism, a high-precision ingot rotation and X, Y direction movement mechanism is required, but the ingot rotation mechanism has small eccentricity and the rotation center axis is the same as the rotation center axis of the goniometer. High parallelism must be maintained, and the XY table must also maintain high perpendicular accuracy of the X and Y axes, and the X and Y dimensions must be set with high accuracy. So, about 5
It is extremely difficult to realize a mechanical configuration for determining the position of a suspended sample up to 0 ko with high precision as described above, and there is a problem that errors occur. In addition, when efforts were made to minimize errors, there was also the problem that the mechanism became complicated and large.

(発明が解決しようとする問題点) 上記のように従来の結晶方位決定装置にあっては、試料
の回転中心がゴニオメータの回転中心とは別の位置にあ
るために、入射X線束中心とゴニオメータ中心とに加え
て、ゴニオメータ中心と試料中心との位置関係を精度よ
く設定しなければならず、この試料中心の位置決定a横
に複雑なX。
(Problems to be Solved by the Invention) As described above, in the conventional crystal orientation determining apparatus, the center of rotation of the sample is located at a different position from the center of rotation of the goniometer. In addition to the center of the goniometer, the positional relationship between the center of the goniometer and the center of the sample must be set with high precision.

Y軸移動テーブルを使用し、機構が複雑で大型化する問
題があった。
Since a Y-axis moving table is used, there is a problem that the mechanism becomes complicated and large.

この発明はこのような従来の問題に鑑みて成されたもの
であって、各構成機器の位置関係の設定のための機構を
簡略化し、小型化できるようにした結晶方位決定装置を
提供することを目的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a crystal orientation determination device that can simplify and downsize the mechanism for setting the positional relationship of each component. With the goal.

[発明の構成1 (問題点を解決するための千1) この発明の結晶方位決定装置では、ゴニオメータの回転
中心を試料回転中心と一致さけ、このゴニオメータの中
心の周りにX線管とX線検出鼎との少なくとも一方を所
定角度回転させる回転線描を設け、さらにX線管に対し
て入射X線束中心の周りに所定の角度回転させるXm管
角度設定機構を設け、検出器に対してその検出器中心の
周りに所定角度回転させる検出器角度設定機構を設け、
さらにゴニオメータとに対して試料を相対的に回転させ
るようにしている。
[Configuration 1 of the Invention (1,100 to Solve the Problems) In the crystal orientation determination device of the present invention, the rotation center of the goniometer is made to coincide with the sample rotation center, and an X-ray tube and an X-ray tube are placed around the center of the goniometer. A rotation line is provided to rotate at least one of the detection tubes by a predetermined angle, and an Xm tube angle setting mechanism is provided to rotate the X-ray tube by a predetermined angle around the center of the incident X-ray flux. A detector angle setting mechanism is provided to rotate the detector by a predetermined angle around the center of the detector.
Furthermore, the sample is rotated relative to the goniometer.

(作用) この発明の結晶方位決定装置では、ゴニオメータ中心に
対し試料の中心を一致させて設置し、ゴニオメータ中心
に対しXla管又は検出器を所定角度回転させ、さらに
X線管角度設定機構によりX線管を所定角度回転さぼ、
検出器角度設定機構により検出器を所定角度回転させ、
X線管からの入射X線束が所定の回折角度で試料の表面
に入射し、その回折X線が検出器に入射するように設定
し、この状態でゴニオメータ若しくは試料をその回転中
心に対して回転させ、検出器が回折X19の最大量を検
出することにより試料の結晶格子面を決定する。
(Function) In the crystal orientation determination device of the present invention, the center of the sample is set to coincide with the center of the goniometer, the Xla tube or detector is rotated by a predetermined angle with respect to the center of the goniometer, and the Rotate the wire tube at a specified angle,
The detector angle setting mechanism rotates the detector by a predetermined angle,
The incident X-ray flux from the X-ray tube is set to enter the surface of the sample at a predetermined diffraction angle, and the diffracted X-rays are set to enter the detector, and in this state, the goniometer or the sample is rotated about its rotation center. and the detector determines the crystal lattice plane of the sample by detecting the maximum amount of diffraction X19.

(実施例) 以下、この発明を図に示す実施例に基づいて詳説する。(Example) Hereinafter, this invention will be explained in detail based on embodiments shown in the drawings.

第1図は一実施例を示すものであり、XIQ管11とX
線検出器12とを備えたゴニオメータ13にあっては、
X線検出器12がゴニオメータ中心Pの周りに所望角度
回転するように回転機構14が備えられている。
FIG. 1 shows one embodiment, in which the XIQ tube 11 and
In the goniometer 13 equipped with the line detector 12,
A rotation mechanism 14 is provided so that the X-ray detector 12 can be rotated by a desired angle around the goniometer center P.

またゴニオメータ13上において、X線管11を、入射
X線束中心Qの周りに所定角度回転させるためのX線管
角度設定傭構15、X線検出器12をその検出器中心R
の周りに所定角度回転させるための検出器角度設定機構
16が設けられている。
Further, on the goniometer 13, an X-ray tube angle setting mechanism 15 for rotating the X-ray tube 11 by a predetermined angle around the incident X-ray flux center Q, and an X-ray tube angle setting mechanism 15 for rotating the X-ray tube 11 by a predetermined angle around the incident X-ray flux center Q;
A detector angle setting mechanism 16 is provided for rotating the detector by a predetermined angle around the detector.

またゴニオメータ13と中心軸を共通にする試料台17
には、試料回転機構18が備えられており、この試料回
転機構18により試料台17上の試F119が所定角度
回転される。
In addition, the sample stage 17 shares the same central axis as the goniometer 13.
is equipped with a sample rotation mechanism 18, and the sample F119 on the sample stage 17 is rotated by a predetermined angle by this sample rotation mechanism 18.

前記xMJ管11の入射X線束は、コリメータ20によ
りその進行方向が決定され、前記X線管角度設定機構1
5は、X線管11の回転とともにコリメータ20をも回
転させ、入04X線束の進行方向をこのX線管角度設定
機構15により決定する。
The traveling direction of the incident X-ray flux of the xMJ tube 11 is determined by the collimator 20, and the X-ray tube angle setting mechanism 1
5 rotates the collimator 20 as well as the rotation of the X-ray tube 11, and determines the traveling direction of the incoming X-ray flux by this X-ray tube angle setting mechanism 15.

上記構成の結晶方位決定装置の動作について次に説明す
る。第2図に示ずように、試料台17上に円柱状の試料
インゴット19をその中心がゴニオメータ13の回転中
心Pと一致するように設置する。そして、試料19の回
折角度が上記式(1)で示される値θであり、回転中心
Pがら入射X線束中心Qまでの距離又で、回転中心Pか
ら検出器12の中心Rまでの距離IL2、試料19の半
径rとする時、X線管11を入mxa束中心Qを軸とし
てX線管角度設定機構15によりβ1度回転さ往る。ま
た、検出器12を、ゴニオメータ13の回転中心Pから
、β2度だけ検出器角度設定機構16により回転させる
。この回転角度β1.β2は次の(2)、 <3)式に
よって決定されるものである。
The operation of the crystal orientation determination device having the above configuration will be described next. As shown in FIG. 2, a cylindrical sample ingot 19 is placed on a sample stage 17 so that its center coincides with the rotation center P of the goniometer 13. The diffraction angle of the sample 19 is the value θ shown by the above formula (1), and the distance from the rotation center P to the incident X-ray flux center Q is the distance IL2 from the rotation center P to the center R of the detector 12. , when the radius of the sample 19 is r, the X-ray tube 11 is rotated by β1 degree by the X-ray tube angle setting mechanism 15 about the input mxa bundle center Q as an axis. Further, the detector 12 is rotated by β2 degrees from the rotation center P of the goniometer 13 by the detector angle setting mechanism 16. This rotation angle β1. β2 is determined by the following equation (2), <3).

また、X線検出器12を、回転機構14によりゴニオメ
ータ13の中心Pに対し、(2θ+β1+β2)度X軸
から時計周りに回転させ、第2図に示す位置に設定する
Further, the X-ray detector 12 is rotated clockwise from the X-axis by (2θ+β1+β2) degrees with respect to the center P of the goniometer 13 by the rotation mechanism 14, and set to the position shown in FIG.

このようにしてX線管11、検出2J12、試料1つの
位置関係を設定するとき、X線管11がらの入射X線束
はコリメータ2oにより試料19の表面に、試料19の
回折角度θで入DAすることになる。
When setting the positional relationship between the X-ray tube 11, the detector 2J12, and the sample in this way, the incident X-ray flux from the X-ray tube 11 is incident on the surface of the sample 19 by the collimator 2o at the diffraction angle θ of the sample 19. I will do it.

そこで試料回転機構18を駆動させることにより試料1
9を回転させると、結晶格子面が入DAX線束に対し第
3図に示す位置関係に来たとき、回折X線が検出器12
に最大量入射することになる。
Therefore, by driving the sample rotation mechanism 18, the sample 1
9, when the crystal lattice plane comes to the positional relationship shown in FIG. 3 with respect to the incoming DAX ray flux, the diffracted
The maximum amount will be incident on .

従って、検出器12により、入射するxI9mを検出し
ながら試料19を回転させるとき、検出器12が示すX
線団が最大値となるとき、試料の結晶格子面を決定する
ことができる。
Therefore, when the sample 19 is rotated while the detector 12 detects the incident xI9m, the detector 12 indicates the
When the line group reaches its maximum value, the crystal lattice plane of the sample can be determined.

なお、上記実施例では、試料インゴット19を試料回転
機構18により回転させ、X線検出器12に入射する回
折X線mの最大値を測定するようにしたが、これとは逆
に、試料インゴットがff1ffi物であり、その回転
制御が難しい場合を考え、試料19は固定して置き、X
線管11及び検出器12を第2図に示した配置関係にお
いてゴニオメータ13の中心Pの周りに回転するような
回転機構を設けることも可能である。そしてこのように
、X線管及び検出器を回転させる場合、これらの機器は
、シリコンや水晶のインゴットに比べ軽aな物であるた
め、回転機構が簡素化できる。
In the above embodiment, the sample ingot 19 was rotated by the sample rotation mechanism 18 and the maximum value of the diffracted X-rays m incident on the X-ray detector 12 was measured. Considering the case where the sample 19 is a ff1ffi product and it is difficult to control its rotation, the sample 19 is fixed and
It is also possible to provide a rotation mechanism that rotates the wire tube 11 and the detector 12 around the center P of the goniometer 13 in the arrangement shown in FIG. When rotating the X-ray tube and detector in this manner, the rotation mechanism can be simplified because these devices are lighter than silicon or crystal ingots.

また、X線検出器12の角度設定はさほど厳密なものと
する必要がなく、入射X線mの最大値を知るに十分なも
のであれば良く、従って検出器角度設定機構16の角度
精度は比較的ラフなもので済む。
Further, the angle setting of the X-ray detector 12 does not need to be very strict, as long as it is sufficient to know the maximum value of the incident X-ray m, and therefore the angular accuracy of the detector angle setting mechanism 16 is It will be relatively rough.

[発明の効果〕 この発明、は、ゴニオメータ中心に試料中心を一致させ
、回転線描によりX線管または検出器の一方をゴニオメ
ータ中心に対し所定角度回転できるようにし、XSS管
に対してはその入射X線束中心の周りに所定角度回転で
きるようにし、X線検出器については検出器中心の周り
に所定角度回転できるようにし、Xm管からの入射Xa
束が試料表面に入射するように設定し、その試料表面か
らの回折X線が検出器に入射するようにし、さらにこれ
らX線管及び検出器と試料との一方が他方に対して相対
的にゴニオメータ中心の周りに回転できるようにしたも
のである。
[Effects of the Invention] This invention aligns the center of the sample with the center of the goniometer, rotates either the X-ray tube or the detector by a predetermined angle with respect to the center of the goniometer by rotational line drawing, and The X-ray detector can be rotated by a predetermined angle around the center of the X-ray flux, and the X-ray detector can be rotated by a predetermined angle around the center of the detector.
The beam is set to be incident on the sample surface, the diffracted X-rays from the sample surface are incident on the detector, and one of the X-ray tubes, the detector, and the sample is set relative to the other. It is designed to be able to rotate around the center of the goniometer.

従って、従来のようにゴニオメータ中心と試料回転中心
とがずれているため、試料の半径により試料中心とゴニ
オメータ中心との位置関係を設定するためのXY2軸平
行移e機構を必要としない。
Therefore, since the goniometer center and the sample rotation center are shifted from each other as in the prior art, there is no need for an XY two-axis parallel translation e mechanism for setting the positional relationship between the sample center and the goniometer center based on the radius of the sample.

イのため、重量物の試料のXY2軸移動のために必要で
あった高精度のXY2’ld制御′l1機構が省略でき
、装置全体の簡素化ができ、小型化、低コスト化が可能
である。
Because of this, the high-precision XY2'ld control mechanism that was necessary for moving heavy samples in the two axes of XY can be omitted, simplifying the entire device, making it possible to downsize and reduce costs. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の別構図、第2図は上記実
施例の動作説明図、第3図は試料のX線の回折現象説明
図、第4図は従来例の機構図である。 11・・・X線管 12・・・X線検出器13・・・ゴ
ニオメータ 14・・・回転機構15・・・X線管角度
設定機構 16・・・検出器角度設定機構
Fig. 1 is a different composition of an embodiment of the present invention, Fig. 2 is an explanatory diagram of the operation of the above embodiment, Fig. 3 is an explanatory diagram of the diffraction phenomenon of X-rays in a sample, and Fig. 4 is a mechanical diagram of a conventional example. be. 11... X-ray tube 12... X-ray detector 13... Goniometer 14... Rotation mechanism 15... X-ray tube angle setting mechanism 16... Detector angle setting mechanism

Claims (1)

【特許請求の範囲】[Claims] (1)X線管と、X線検出器と、これらX線管とX線検
出器との少なくとも一方を中心軸の周りに所定角度回転
させる回転機構とを備えたゴニオメータと、 前記X線管をその入射X線束中心を軸として所定角度回
転させるX線管角度設定機構と、 前記X線検出器をその検出器中心を軸に所定角度回転さ
せる検出器角度設定機構と、 試料インゴットをその中心を前記ゴニオメータの回転軸
と一致させて載置する試料台と、 前記ゴニオメータの回転軸を中心にして、ゴニオメータ
に対して試料台を相対的に回転させる試料回転機構とを
備えて成る結晶方位決定装置。
(1) A goniometer comprising an X-ray tube, an X-ray detector, and a rotation mechanism that rotates at least one of the X-ray tube and the X-ray detector by a predetermined angle around a central axis; and the X-ray tube. an X-ray tube angle setting mechanism that rotates the X-ray detector by a predetermined angle about the center of the incident X-ray flux; a detector angle setting mechanism that rotates the X-ray detector by a predetermined angle about the center of the detector; crystal orientation determination comprising: a sample stage on which a specimen is placed so as to align with the rotation axis of the goniometer; and a sample rotation mechanism that rotates the sample stage relative to the goniometer around the rotation axis of the goniometer. Device.
JP61065882A 1986-03-26 1986-03-26 Crystal orientation determination device Expired - Lifetime JP2567840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065882A JP2567840B2 (en) 1986-03-26 1986-03-26 Crystal orientation determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065882A JP2567840B2 (en) 1986-03-26 1986-03-26 Crystal orientation determination device

Publications (2)

Publication Number Publication Date
JPS62223656A true JPS62223656A (en) 1987-10-01
JP2567840B2 JP2567840B2 (en) 1996-12-25

Family

ID=13299792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065882A Expired - Lifetime JP2567840B2 (en) 1986-03-26 1986-03-26 Crystal orientation determination device

Country Status (1)

Country Link
JP (1) JP2567840B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117368A (en) * 2010-02-18 2010-05-27 Shimadzu Corp X-ray diffraction apparatus and x-ray adjusting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117368A (en) * 2010-02-18 2010-05-27 Shimadzu Corp X-ray diffraction apparatus and x-ray adjusting method

Also Published As

Publication number Publication date
JP2567840B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
Batchelder et al. X‐ray lattice constants of crystals by a rotating‐camera method: Al, Ar, Au, CaF2, Cu, Ge, Ne, Si
US5509043A (en) Asymmetrical 4-crystal monochromator
JP6871629B2 (en) X-ray analyzer and its optical axis adjustment method
JP2003532866A (en) Method and apparatus for aligning a crystalline substrate
US4364122A (en) X-Ray diffraction method and apparatus
JPH0689887A (en) Crystal orientation deciding method
JPS62223656A (en) Crystal orientation determining device
US5459770A (en) X-ray diffractometer
US4961210A (en) High resolution technique and instrument for measuring lattice parameters in single crystals
Berger et al. Omega-Scan: An X-ray tool for the characterization of crystal properties
CN114571619A (en) Monochromator crystal orientation method
JPH0933456A (en) Method for measuring orientation of ingot of single crystal
JPH112614A (en) X-ray measuring method of single crystal axial orientation and device
JP2001267235A (en) Exposure system and method of aligning photomask in the same
Denne A new concept in goniometer head design
JP4227706B2 (en) Crystal orientation measuring apparatus and crystal orientation measuring method
GB2228167A (en) X-ray diffractometer
JPH05288616A (en) X-ray residual stress measuring method
JPH0762720B2 (en) Double crystal X-ray spectrometer
Lal et al. New and accurate technique for determination of orientation of the straight edges of single‐crystal wafers
JPS62223655A (en) Measuring instrument for grating constant
SU1141321A1 (en) X-ray spectrometer
JP2620106B2 (en) X-ray diffraction pole figure observation device for thin film samples
Berger X-ray orientation determination of single crystals by means of the $\Omega $-Scan Method
JP2732311B2 (en) X-ray topography equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term