JP2014120365A - Process of manufacturing positive electrode active material for lithium ion battery - Google Patents

Process of manufacturing positive electrode active material for lithium ion battery Download PDF

Info

Publication number
JP2014120365A
JP2014120365A JP2012275448A JP2012275448A JP2014120365A JP 2014120365 A JP2014120365 A JP 2014120365A JP 2012275448 A JP2012275448 A JP 2012275448A JP 2012275448 A JP2012275448 A JP 2012275448A JP 2014120365 A JP2014120365 A JP 2014120365A
Authority
JP
Japan
Prior art keywords
solvent
positive electrode
compound
organic compound
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275448A
Other languages
Japanese (ja)
Other versions
JP5901019B2 (en
Inventor
Shiho Ishihara
四穂 石原
Norihiko Misaki
紀彦 三崎
Mitsuji Nakamura
充志 中村
Tsutomu Suzuki
務 鈴木
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan Public University Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012275448A priority Critical patent/JP5901019B2/en
Publication of JP2014120365A publication Critical patent/JP2014120365A/en
Application granted granted Critical
Publication of JP5901019B2 publication Critical patent/JP5901019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new process of manufacturing a positive electrode active material containing carbon coated lithium iron silicate.SOLUTION: The process of manufacturing a positive electrode active material for a lithium ion battery includes: mixing by using a ball mill, olivine silicate compound fine particles containing a transition metal (M) (M represents Fe, Ni, Co, Al, Zn, V, Zr, or Mn. However, not containing lithium iron silicate.), a conductive carbon material, and a dispersion liquid containing a solvent soluble organic compound and a solvent; drying; and then calcinating.

Description

本発明は、リチウムイオン電池用正極活物質の製造法に関する。   The present invention relates to a method for producing a positive electrode active material for a lithium ion battery.

リチウムイオン電池は、非水電解質電池の1種であり、携帯電話、デジタルカメラ、ノートPC、ハイブリッド自動車、電気自動車等広い分野に利用されている。リチウムイオン電池は、正極材料としてリチウム金属酸化物を用い、負極材料としてグラファイトなどの炭素材を用いるものが主流となっている。   Lithium ion batteries are a type of non-aqueous electrolyte battery and are used in a wide range of fields such as mobile phones, digital cameras, notebook PCs, hybrid cars, and electric cars. Lithium ion batteries mainly use lithium metal oxide as a positive electrode material and a carbon material such as graphite as a negative electrode material.

この正極材料としては、コバルト酸リチウム(LiCoO2)、マンガン酸リチウム(LiMnO2)、リン酸鉄リチウム(LiFePO4)、ケイ酸鉄リチウム(Li2FeSiO4)等が知られている。このうち、Li2FeSiO4等は、オリビン構造を有し、高容量のリチウムイオン電池用正極材料として有用なオリビンシリケート化合物である。 As this positive electrode material, lithium cobaltate (LiCoO 2 ), lithium manganate (LiMnO 2 ), lithium iron phosphate (LiFePO 4 ), lithium iron silicate (Li 2 FeSiO 4 ) and the like are known. Among these, Li 2 FeSiO 4 and the like are olivine silicate compounds having an olivine structure and useful as a positive electrode material for a high capacity lithium ion battery.

Li2FeSiO4等のオリビンシリケート化合物系正極材料の製造法としては、Li源、遷移金属(M)源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成するという固相法が一般的である(特許文献1、2)。しかし、固相法では、不活性ガス雰囲気での焼成と粉砕を行う必要があり、複雑な操作が必要であるとともに、粒径や結晶度を制御することが困難である。
これに対し、非特許文献1及び2には、Li2Mn1-yFeySiO4(y=0〜1)を水熱合成で得られる旨の記載がある。
As a method for producing an olivine silicate compound positive electrode material such as Li 2 FeSiO 4, a solid phase method is generally used in which a mixture of a Li source, a transition metal (M) source and a silicate source is pulverized and fired at 500 to 900 ° C. (Patent Documents 1 and 2). However, in the solid phase method, it is necessary to perform firing and pulverization in an inert gas atmosphere, which requires complicated operations and it is difficult to control the particle size and crystallinity.
In contrast, Non-Patent Documents 1 and 2 have a description that Li 2 Mn 1-y Fe y SiO 4 (y = 0 to 1) can be obtained by hydrothermal synthesis.

特開2001−266882号公報JP 2001-266882 A 特開2002−198050号公報JP 2002-198050 A

GS Yuasa Technical Report 2009年6月、第6巻、第1号、p21−26GS Yuasa Technical Report June 2009, Vol. 6, No. 1, p21-26 R.Dominiko et al,Journal of Power Sources 184(2008),p462−468R. Dominiko et al, Journal of Power Sources 184 (2008), p462-468.

水熱合成で得られるケイ酸鉄リチウム等のオリビンシリケート化合物は、粒径が小さく、かつ均一であることから、正極材料として極めて有用である。しかし、正極活物質とするには、これらの化合物をカーボンブラック等の導電性材料で被覆する必要があるものの、ケイ酸鉄リチウムは水熱合成反応系に炭素源を添加すると、副生成物が生成するという問題が発生することが判明した。
従って、本発明の課題は、炭素被覆されたオリビンシリケート化合物を含有する正極活物質の新たな製造法を提供することにある。
An olivine silicate compound such as lithium iron silicate obtained by hydrothermal synthesis is extremely useful as a positive electrode material because of its small particle size and uniformity. However, in order to make a positive electrode active material, these compounds need to be coated with a conductive material such as carbon black. However, when a carbon source is added to a hydrothermal synthesis reaction system, lithium iron silicate is a by-product. It turns out that the problem of generating.
Therefore, an object of the present invention is to provide a new method for producing a positive electrode active material containing a carbon-coated olivine silicate compound.

そこで本発明者は、ケイ酸鉄リチウム以外のオリビンシリケート化合物の炭素被覆手段について種々検討した結果、オリビンシリケート化合物と導電性炭素材料等の炭素源とを混合粉砕処理する方法では十分な放電容量を有する正極活物質が得られないにもかかわらず、全く意外にも、オリビンシリケート化合物と導電性炭素材料と溶媒可溶性有機化合物とを溶媒中に分散させた液をボールミルを用いて混合した後、乾燥し焼成することにより、高い放電容量を有する正極活物質が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies on carbon coating means of olivine silicate compounds other than lithium iron silicate, the present inventor has obtained a sufficient discharge capacity in the method of mixing and grinding the olivine silicate compound and a carbon source such as a conductive carbon material. Despite the fact that the positive electrode active material can not be obtained, it is quite surprising that a liquid in which an olivine silicate compound, a conductive carbon material and a solvent-soluble organic compound are dispersed in a solvent is mixed using a ball mill, and then dried. Then, the inventors have found that a positive electrode active material having a high discharge capacity can be obtained by firing, and the present invention has been completed.

すなわち、本発明は、遷移金属(M)を含むオリビンシリケート化合物微粒子(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す。ただし、ケイ酸鉄リチウムを含まない。)、導電性炭素材料、溶媒可溶性有機化合物及び溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥後焼成することを特徴とするリチウムイオン電池用正極活物質の製造法を提供するものである。
また、本発明は、上記の製造法により得られた正極活物質を含む正極を有するリチウムイオン電池を提供するものである。
That is, the present invention provides olivine silicate compound fine particles containing transition metal (M) (M represents Fe, Ni, Co, Al, Zn, V, Zr or Mn, but does not contain lithium iron silicate). A method for producing a positive electrode active material for a lithium ion battery, comprising mixing a dispersion containing a conductive carbon material, a solvent-soluble organic compound and a solvent using a ball mill, drying and firing. is there.
Moreover, this invention provides the lithium ion battery which has a positive electrode containing the positive electrode active material obtained by said manufacturing method.

本発明方法により得られる正極活物質は、高い放電容量を有し、リチウムイオン電池用正極活物質として有用である。また、少ない炭素源量で高い放電容量を示す正極活物質が得られるためリチウムイオン電池のコスト削減も可能となる。   The positive electrode active material obtained by the method of the present invention has a high discharge capacity and is useful as a positive electrode active material for lithium ion batteries. In addition, since a positive electrode active material having a high discharge capacity can be obtained with a small amount of carbon source, the cost of the lithium ion battery can be reduced.

実施例1で得られた粉末のX線回折図を示す。The X-ray diffraction pattern of the powder obtained in Example 1 is shown. 実施例2で得られた粉末のX線回折図を示す。The X-ray diffraction pattern of the powder obtained in Example 2 is shown. 実施例3で得られた粉末のX線回折図を示す。The X-ray diffraction pattern of the powder obtained in Example 3 is shown.

本発明のリチウムイオン電池用正極活物質の製造法は、遷移金属(M)を含むオリビンシリケート化合物微粒子(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す。ただし、ケイ酸鉄リチウムを含まない。)、導電性炭素材料、溶媒可溶性有機化合物及び溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥し、次に焼成することを特徴とする。   The manufacturing method of the positive electrode active material for lithium ion batteries of this invention shows the olivine silicate compound microparticles | fine-particles (M is Fe, Ni, Co, Al, Zn, V, Zr, or Mn containing a transition metal (M). However, It is characterized in that it does not contain lithium iron silicate), a conductive carbon material, a solvent-soluble organic compound and a dispersion containing a solvent are mixed using a ball mill, dried, and then fired.

遷移金属(M)を含むオリビンシリケート化合物微粒子としては、具体的には下記式(1)〜(5)のいずれかで表わされるオリビンシリケート化合物からなる微粒子である。なお、かかる化合物にLi2FeSiO4は含まれない。
Li2M'SiO4 ・・・(1)
(式中、M'はNi、Co及びMnから選ばれる1種又は2種以上を示す。)
Lia'FexMnyAlzSiO4 ・・・(2)
(式中、a'、x、y及びzは、1<a'≦2、0≦x<1、0≦y<1、0<z<2/3、a'+2x+2y+3z=4、及びx+y≠0を満たす数を示す。)
Lia"FexMnyz'SiO4 ・・・(3)
(式中、a"、x、y及びz'は、1<a"≦2、0≦x<1、0≦y<1、0<z'<1、a"+2x+2y+(2〜5)z'=4、及びx+y≠0を満たす数を示す。)
Lia"FexMnyZrz"SiO4 ・・・(4)
(式中、a"、x、y及びz"は、1<a"≦2、0≦x<1、0≦y<1、0<z"<0.5、a"+2x+2y+4z"=4、及びx+y≠0を満たす数を示す。)
Li2FexMnyZnqSiO4 ・・・(5)
(式中、x、y及びqは、0≦x<1、0≦y<1、0<q<1、x+y+q=1、及びx+y≠0を満たす数を示す。)
Specifically, the olivine silicate compound fine particles containing the transition metal (M) are fine particles comprising an olivine silicate compound represented by any one of the following formulas (1) to (5). Such a compound does not include Li 2 FeSiO 4 .
Li 2 M'SiO 4 (1)
(In the formula, M ′ represents one or more selected from Ni, Co and Mn.)
Li a 'Fe x Mn y Al z SiO 4 ··· (2)
(Where, a ′, x, y and z are 1 <a ′ ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <2/3, a ′ + 2x + 2y + 3z = 4, and x + y ≠ Indicates a number satisfying 0.)
Li a "Fe x Mn y V z 'SiO 4 ··· (3)
(Where a " , x, y and z 'are 1 <a " ≤2, 0≤x <1, 0≤y <1, 0 <z'<1, a " + 2x + 2y + (2-5) z '= 4 and a number satisfying x + y ≠ 0.)
Li a "Fe x Mn y Zr z" SiO 4 ··· (4)
(Where a " , x, y and z " are 1 <a " ≤2, 0≤x <1, 0≤y <1, 0 <z " <0.5, a " + 2x + 2y + 4z " = 4, And a number satisfying x + y ≠ 0.)
Li 2 Fe x Mn y Zn q SiO 4 ··· (5)
(In the formula, x, y, and q represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <q <1, x + y + q = 1, and x + y ≠ 0.)

上記オリビンシリケート化合物は、Li源、遷移金属(M)源及びケイ酸源の混合物を粉砕し、500〜900℃で焼成する固相法で得られるものでもよいが、ケイ酸源、遷移金属(M)源及びリチウム源の混合物を水熱反応させて得られるものを用いるのが、粒径が小さく、かつ均一なものが得られる点で好ましい。   The olivine silicate compound may be obtained by a solid phase method in which a mixture of a Li source, a transition metal (M) source and a silicate source is pulverized and fired at 500 to 900 ° C., but the silicate source, the transition metal ( It is preferable to use a product obtained by hydrothermal reaction of a mixture of M) source and lithium source in that a uniform particle size can be obtained.

オリビンシリケート化合物微粒子の製造法としては、(A)リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液と、遷移金属(M)硫酸塩とを混合し、得られた混合物を水熱反応させる方法;又は(B)リチウム化合物、ケイ酸化合物及び遷移金属(M)有機酸塩を含有する塩基性水分散液を水熱反応させる方法が好ましい。   As a method for producing olivine silicate compound fine particles, (A) a basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant, and a transition metal (M) sulfate are mixed, and the resulting mixture is obtained. A method of hydrothermal reaction; or (B) a method of hydrothermal reaction of a basic aqueous dispersion containing a lithium compound, a silicate compound and a transition metal (M) organic acid salt is preferred.

まず、(A)法について説明する。   First, the method (A) will be described.

(A)法においては、副反応を抑制する点から、遷移金属(M)硫酸塩とは別に、リチウム化合物、ケイ酸化合物及び酸化防止剤を含有する塩基性水分散液を調製しておくのが好ましい。リチウム化合物としては、水酸化リチウム(例えばLiOH・H2O)、炭酸リチウム(Li2CO3)、硫酸リチウム、酢酸リチウムが挙げられるが、水酸化リチウム、炭酸リチウムが特に好ましい。 In the method (A), a basic aqueous dispersion containing a lithium compound, a silicate compound and an antioxidant is prepared separately from the transition metal (M) sulfate from the viewpoint of suppressing side reactions. Is preferred. Examples of the lithium compound include lithium hydroxide (for example, LiOH.H 2 O), lithium carbonate (Li 2 CO 3 ), lithium sulfate, and lithium acetate, and lithium hydroxide and lithium carbonate are particularly preferable.

ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)が好ましい。このうちNa4SiO4を用いた場合、水分散液が塩基性になるので、より好ましい。 The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica and Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) are preferable. Of these, the use of Na 4 SiO 4 is more preferable because the aqueous dispersion becomes basic.

酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビンシリケート化合物の生成を抑制してしまうため、遷移金属(M)に対して等モル量以下が好ましく、遷移金属(M)に対してモル比で0.5以下がさらに好ましい。 As the antioxidant, sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the transition metal (M) because the formation of the olivine silicate compound is suppressed when added in a large amount. The molar ratio is more preferably 0.5 or less.

リチウム化合物、ケイ酸化合物及び酸化防止剤は、遷移金属(M)硫酸塩とは別に、塩基性水分散液とするのが、副反応を防止し、ケイ酸化合物を溶解するうえで好ましい。水分散液のpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(遷移金属酸化物の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 It is preferable that the lithium compound, the silicate compound and the antioxidant be a basic aqueous dispersion, separately from the transition metal (M) sulfate, in order to prevent side reactions and dissolve the silicate compound. The pH of the aqueous dispersion may be basic, but it is 12.0 to 13.5 to prevent side reactions (generation of transition metal oxides), solubility of silicic acid compounds and progress of the reaction. Particularly preferred in terms. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

該水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。また、ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。該水分散液の調製にあたって、リチウム化合物、ケイ酸化合物及び酸化防止剤の添加順序は特に限定されず、これらの3成分を水に添加してもよい。   The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l. The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l. In preparing the aqueous dispersion, the order of addition of the lithium compound, the silicate compound and the antioxidant is not particularly limited, and these three components may be added to water.

遷移金属(M)硫酸塩の添加量は、反応混合液中0.15〜1.50mol/lとなる量が好ましく、さらに0.50〜0.75mol/lとなる量が好ましい。   The amount of transition metal (M) sulfate added is preferably 0.15 to 1.50 mol / l in the reaction mixture, and more preferably 0.50 to 0.75 mol / l.

また、反応混合液中のSi及びLiの含有量は、遷移金属(M)に対して2モル以上が好ましい。   Moreover, as for content of Si and Li in a reaction liquid mixture, 2 mol or more is preferable with respect to a transition metal (M).

(A)法においては、次に前記水分散液と遷移金属(M)硫酸塩とを混合し、水熱反応に付す。水熱反応は、100℃以上であればよく、130〜180℃が好ましく、さらに140〜1
60℃が好ましい。水熱反応は耐圧容器中で行うのが好ましく、130〜180℃で反応を行う場合この時の圧力は0.3〜0.9MPaとなり、140〜160℃で反応を行う場合の圧力は0.3〜0.4MPaとなる。水熱反応時間は1〜24時間が好ましく、さらに3〜12時間が好ましい。
In the method (A), the aqueous dispersion and the transition metal (M) sulfate are mixed and subjected to a hydrothermal reaction. Hydrothermal reaction should just be 100 degreeC or more, 130-180 degreeC is preferable, Furthermore 140-1
60 ° C. is preferred. The hydrothermal reaction is preferably performed in a pressure vessel. When the reaction is performed at 130 to 180 ° C, the pressure at this time is 0.3 to 0.9 MPa, and the pressure when the reaction is performed at 140 to 160 ° C is 0. 3 to 0.4 MPa. The hydrothermal reaction time is preferably 1 to 24 hours, more preferably 3 to 12 hours.

当該水熱反応により、オリビンシリケート化合物が高収率で得られる。また、得られたオリビンシリケート化合物の平均粒径は10〜100nmとなり、その結晶度も高い。   By the hydrothermal reaction, an olivine silicate compound is obtained in high yield. Moreover, the average particle diameter of the obtained olivine silicate compound becomes 10-100 nm, and the crystallinity is also high.

得られたオリビンシリケート化合物は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。   The obtained olivine silicate compound can be isolated by drying after filtration. As the drying means, freeze drying or vacuum drying is used.

次に(B)法について説明する。リチウム化合物及びケイ酸化合物としては、(A)法と同様のものが用いられる。   Next, the method (B) will be described. As the lithium compound and silicic acid compound, those similar to the method (A) are used.

(B)法においては、遷移金属(M)源として、遷移金属(M)有機酸塩を用いて水熱反応を行う点に特徴がある。通常、遷移金属(M)有機酸塩は固相法に用いられる原料であり、水熱反応に用いることにより副反応が抑制できることは全く予想外であった。用いられる有機酸としては、炭素数1〜20の有機酸が好ましく、炭素数2〜12の有機酸がより好ましい。より具体的な有機酸としては、シュウ酸、フマル酸等のジカルボン酸、乳酸等のヒドロキシカルボン酸、酢酸等の脂肪酸が挙げられる。   The method (B) is characterized in that a hydrothermal reaction is performed using a transition metal (M) organic acid salt as a transition metal (M) source. Usually, transition metal (M) organic acid salts are raw materials used in the solid phase method, and it was completely unexpected that side reactions can be suppressed by using them in hydrothermal reactions. As an organic acid used, a C1-C20 organic acid is preferable and a C2-C12 organic acid is more preferable. More specific organic acids include dicarboxylic acids such as oxalic acid and fumaric acid, hydroxycarboxylic acids such as lactic acid, and fatty acids such as acetic acid.

(B)法におけるSi及びLiは、遷移金属(M)に対してモル比で2倍以上用いることが好ましく、Si:Li:遷移金属(M)が1:1:2.5〜1:1:3程度がより好ましい。   In the method (B), Si and Li are preferably used in a molar ratio of 2 times or more with respect to the transition metal (M), and Si: Li: transition metal (M) is 1: 1: 2.5 to 1: 1. : About 3 is more preferable.

水分散液中のリチウム化合物の濃度は、0.30〜3.00mol/lが好ましく、さらに1.00〜1.50mol/lが好ましい。また、ケイ酸化合物の濃度は、0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。また遷移金属(M)有機酸塩の濃度は0.15〜1.50mol/lが好ましく、さらに0.50〜0.75mol/lが好ましい。   The concentration of the lithium compound in the aqueous dispersion is preferably 0.30 to 3.00 mol / l, more preferably 1.00 to 1.50 mol / l. The concentration of the silicate compound is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l. The concentration of the transition metal (M) organic acid salt is preferably 0.15 to 1.50 mol / l, more preferably 0.50 to 0.75 mol / l.

また、水分散液中には、必要により酸化防止剤を添加してもよく、酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加するとオリビンシリケート化合物の生成を抑制してしまうため、遷移金属(M)に対して等モル量以下が好ましく、遷移金属(M)に対してモル比で0.5以下がさらに好ましい。 In addition, an antioxidant may be added to the aqueous dispersion as necessary. As the antioxidant, sodium hydrosulfite (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the transition metal (M) because the formation of the olivine silicate compound is suppressed when added in a large amount. The molar ratio is more preferably 0.5 or less.

これらの成分の水分散液は、塩基性とするのが副反応を防止し、ケイ酸化合物を溶解するうえで好ましい。水分散液のpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(遷移金属酸化物の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該水分散液のpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 The aqueous dispersion of these components is preferably basic in order to prevent side reactions and dissolve the silicate compound. The pH of the aqueous dispersion may be basic, but it is 12.0 to 13.5 to prevent side reactions (generation of transition metal oxides), solubility of silicic acid compounds and progress of the reaction. Particularly preferred in terms. The pH of the aqueous dispersion may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

前記リチウム化合物、ケイ酸化合物及び遷移金属(M)有機酸塩の添加順序は特に限定されない。また、大気条件下でもよい。   The addition order of the lithium compound, silicate compound, and transition metal (M) organic acid salt is not particularly limited. Moreover, atmospheric conditions may be sufficient.

(B)法においては、次に前記水分散液を水熱反応に付す。水熱反応は、(A)法と同様とするのが好ましい。   In the method (B), the aqueous dispersion is then subjected to a hydrothermal reaction. The hydrothermal reaction is preferably the same as in the method (A).

当該水熱反応により、オリビンシリケート化合物が高収率で得られる。また、得られたオリビンシリケート化合物の平均粒径は10〜100nmとなり、その結晶度も高い。   By the hydrothermal reaction, an olivine silicate compound is obtained in high yield. Moreover, the average particle diameter of the obtained olivine silicate compound becomes 10-100 nm, and the crystallinity is also high.

得られたオリビンシリケート化合物は、ろ過後、乾燥することにより単離できる。乾燥手段は、凍結乾燥、真空乾燥が用いられる。   The obtained olivine silicate compound can be isolated by drying after filtration. As the drying means, freeze drying or vacuum drying is used.

本発明に用いられるオリビンシリケート化合物微粒子の平均粒径は10〜1000nmであるのが、リチウムイオン電池としたときの放電容量の点から好ましい。   The average particle size of the olivine silicate compound fine particles used in the present invention is preferably 10 to 1000 nm from the viewpoint of the discharge capacity when a lithium ion battery is used.

本発明に用いられる導電性炭素材料としては、カーボンブラックが好ましく、そのうちアセチレンブラック、ケッチェンブラックがより好ましい。導電性炭素材料の使用量は、良好な放電容量と経済性の点から、オリビンシリケート化合物微粒子100質量部に対し、0.01〜20質量部が好ましく、さらに0.1〜10質量部が好ましい。   The conductive carbon material used in the present invention is preferably carbon black, more preferably acetylene black or ketjen black. The amount of the conductive carbon material used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the olivine silicate compound fine particles from the viewpoint of good discharge capacity and economy. .

溶媒可溶性有機化合物としては、水溶性有機化合物又は有機溶媒可溶性有機化合物のいずれでもよく、より好ましくは水溶性有機化合物であり、特に好ましくは水溶性アルコール性有機化合物、水溶性脂肪酸である。具体例としては、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等が挙げられ、グルコース、フルクトース、サッカロース、デキストリン等の糖類がより好ましい。溶媒可溶性有機化合物の使用量は、良好な放電容量及び経済性の点からオリビンシリケート化合物微粒子100質量部に対し0.01〜20質量部が好ましく、さらに0.1〜10質量部が好ましい。   The solvent-soluble organic compound may be either a water-soluble organic compound or an organic solvent-soluble organic compound, more preferably a water-soluble organic compound, and particularly preferably a water-soluble alcoholic organic compound or a water-soluble fatty acid. Specific examples include glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, citric acid and the like, and sugars such as glucose, fructose, saccharose, dextrin are more preferred. The amount of the solvent-soluble organic compound used is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the olivine silicate compound fine particles from the viewpoint of good discharge capacity and economy.

また、本発明においては、導電性炭素材料と溶媒可溶性有機化合物の質量比は、これらの成分の併用による相乗効果を得る点から、1:10〜10:1が好ましく、1:5〜5:1がより好ましく、1:3〜3:1がさらに好ましい。また、導電性炭素材料と溶媒可溶性有機化合物の合計量は、放電容量と経済性の点から、オリビンシリケート化合物微粒子100質量部に対して0.02〜30質量部が好ましく、さらに0.2〜20質量部が好ましく、特に0.2〜15質量部が好ましい。   In the present invention, the mass ratio of the conductive carbon material and the solvent-soluble organic compound is preferably 1:10 to 10: 1, and preferably 1: 5 to 5: from the viewpoint of obtaining a synergistic effect by the combined use of these components. 1 is more preferable, and 1: 3 to 3: 1 is more preferable. The total amount of the conductive carbon material and the solvent-soluble organic compound is preferably 0.02 to 30 parts by mass, more preferably 0.2 to 30 parts by mass with respect to 100 parts by mass of the olivine silicate compound fine particles, from the viewpoint of discharge capacity and economy. 20 parts by mass is preferable, and 0.2 to 15 parts by mass is particularly preferable.

溶媒としては、水及び有機溶媒のいずれでもよいが水が好ましい。   The solvent may be either water or an organic solvent, but water is preferred.

オリビンシリケート化合物微粒子、導電性炭素材料及び溶媒可溶性有機化合物を溶媒に分散させるが、溶媒の使用量は、オリビンシリケート化合物微粒子100質量部に対し200〜500質量部が好ましく、さらに200〜300質量部が好ましい。   The olivine silicate compound fine particles, the conductive carbon material and the solvent-soluble organic compound are dispersed in a solvent. The amount of the solvent used is preferably 200 to 500 parts by mass, more preferably 200 to 300 parts by mass with respect to 100 parts by mass of the olivine silicate compound fine particles. Is preferred.

得られた分散液の混合に用いるボールミル装置は、通常のボールミル粉砕に用いられる装置であればよい。用いられる容器としては、鋼、ステンレス、ナイロン製が挙げられ、内壁はアルミナ煉瓦、磁気質、天然ケイ石、ゴム、ウレタン等が挙げられる。ボールとしては、アルミナ球石、天然ケイ石、鉄球、ジルコニアボール等が用いられる。ボールの大きさは、3mm〜20mmが好ましく、ボールの使用量は、容器容量に対して、0.5〜1.0g/cm3が好ましい。 The ball mill apparatus used for mixing the obtained dispersion liquid may be an apparatus used for ordinary ball milling. Examples of the container used include steel, stainless steel, and nylon, and examples of the inner wall include alumina brick, magnetic material, natural silica, rubber, and urethane. As the ball, alumina sphere, natural silica, iron ball, zirconia ball or the like is used. The size of the ball is preferably 3 mm to 20 mm, and the amount of the ball used is preferably 0.5 to 1.0 g / cm 3 with respect to the container capacity.

ボールミル混合は、10〜100回転/分の条件で、好ましくは1分以上、より好ましくは3時間以上、さらに好ましくは6時間以上行う。また経済性の点から、24時間以下が好ましい。   Ball mill mixing is preferably performed for 10 minutes or more, more preferably for 3 hours or more, and even more preferably for 6 hours or more under the condition of 10 to 100 revolutions / minute. Further, from the viewpoint of economy, it is preferably 24 hours or less.

得られた混合物は、必要によりろ過後、乾燥する。乾燥手段は凍結乾燥、真空乾燥が用いられる。次に焼成するが、焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理によりオリビンシリケート化合物表面にカーボンが担持された正極活物質とすることができる。   The obtained mixture is dried after filtration if necessary. As the drying means, freeze drying or vacuum drying is used. Next, the firing is performed under an inert gas atmosphere or a reducing condition at 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours. preferable. By this treatment, a positive electrode active material in which carbon is supported on the surface of the olivine silicate compound can be obtained.

得られた正極活物質は、放電容量の点で優れており、リチウムイオン電池の正極材料として有用である。本発明の正極活物質を適用できるリチウムイオン電池としては、リチウムイオン二次電池であればよく、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The obtained positive electrode active material is excellent in terms of discharge capacity, and is useful as a positive electrode material for lithium ion batteries. The lithium ion battery to which the positive electrode active material of the present invention can be applied is not particularly limited as long as it is a lithium ion secondary battery and has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウム二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones, An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて本発明を詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated in detail.

[参考例1]
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 1.40g(0.05mol)にイオン交換水75cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水3.00g(0.05mol)にイオン交換水75cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 6.26g(0.0225mol)、MnSO4・5H2O 5.42g(0.0225mol)及びZr(SO42・4H2O 0.71g(0.0025mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液をオートクレーブに投入し、150℃で12時間水熱反応を行った。オートクレーブ内の圧力は、0.48MPaであった。生成した結晶をろ過し、次いで水により洗浄した後、結晶を約12時間凍結乾燥し、Li2Fe0.45Mn0.45Zr0.05SiO4の粉末を4.2g得た。
[Reference Example 1]
Ion-exchanged water (75 cm 3 ) was added to LiOH · H 2 O 4.20 g (0.1 mol) and Na 4 SiO 4 · nH 2 O 1.40 g (0.05 mol), and the mixture was stirred for 12 hours. Obtained. Also, 75 cm 3 of ion exchange water was added to 3.00 g (0.05 mol) of 28% ammonia water, and after bubbling nitrogen gas, 6.26 g (0.0225 mol) of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O 5.42 g (0.0225 mol) and Zr (SO 4 ) 2 .4H 2 O 0.71 g (0.0025 mol) were added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the autoclave and hydrothermal reaction was performed at 150 degreeC for 12 hours. The pressure in the autoclave was 0.48 MPa. The produced crystals were filtered and then washed with water, and then the crystals were lyophilized for about 12 hours to obtain 4.2 g of Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 powder.

[参考例2]
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 1.40g(0.05mol)にイオン交換水75cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水3.00g(0.05mol)にイオン交換水75cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 6.26g(0.0225mol)、MnSO4・5H2O 5.42g(0.0225mol)及びZnSO4・7H2O 1.31g(0.005mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液をオートクレーブに投入し、150℃で12時間水熱反応を行った。オートクレーブ内の圧力は、0.48MPaであった。生成した結晶をろ過し、次いで水により洗浄した後、結晶を約12時間凍結乾燥し、Li2Fe0.45Mn0.45Zn0.05SiO4の粉末を4.1g得た。
[Reference Example 2]
Ion-exchanged water (75 cm 3 ) was added to LiOH · H 2 O 4.20 g (0.1 mol) and Na 4 SiO 4 · nH 2 O 1.40 g (0.05 mol), and the mixture was stirred for 12 hours. Obtained. Also, 75 cm 3 of ion exchange water was added to 3.00 g (0.05 mol) of 28% ammonia water, and after bubbling nitrogen gas, 6.26 g (0.0225 mol) of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O 5.42 g (0.0225 mol) and ZnSO 4 .7H 2 O 1.31 g (0.005 mol) were added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the autoclave and hydrothermal reaction was performed at 150 degreeC for 12 hours. The pressure in the autoclave was 0.48 MPa. The produced crystals were filtered and then washed with water, and then the crystals were freeze-dried for about 12 hours to obtain 4.1 g of Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 powder.

[参考例3]
LiOH・H2O 4.20g(0.1mol)、Na4SiO4・nH2O 1.40g(0.05mol)及びAl(OH)3 0.257g(0.0033mol)にイオン交換水75cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水3.00g(0.05mol)にイオン交換水75cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 6.26g(0.0225mol)、MnSO4・5H2O 5.42g(0.0225mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液をオートクレーブに投入し、170℃で9時間水熱反応を行った。オートクレーブ内の圧力は、0.48MPaであった。生成した結晶をろ過し、次いで水により洗浄した後、結晶を約12時間凍結乾燥し、Li2Fe0.3Mn0.7Al0.066SiO4の粉末を4.3g得た。
[Reference Example 3]
LiOH.H 2 O 4.20 g (0.1 mol), Na 4 SiO 4 .nH 2 O 1.40 g (0.05 mol) and Al (OH) 3 0.257 g (0.0033 mol) were added to ion-exchanged water 75 cm 3. And stirred for 12 hours to obtain a dispersion (A). Also, 75 cm 3 of ion exchange water was added to 3.00 g (0.05 mol) of 28% ammonia water, and after bubbling nitrogen gas, 6.26 g (0.0225 mol) of FeSO 4 .7H 2 O, MnSO 4 .5H 2 O 5.42 g (0.0225 mol) was added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the autoclave and hydrothermal reaction was performed at 170 degreeC for 9 hours. The pressure in the autoclave was 0.48 MPa. The produced crystals were filtered and then washed with water, and then the crystals were lyophilized for about 12 hours to obtain 4.3 g of Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 powder.

[実施例1]
参考例1で得たLi2Fe0.45Mn0.45Zr0.05SiO4の粉末3.34g、ケッチェンブラック0.19g、グルコース0.45gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Example 1]
10 g of water was added to 3.34 g of the Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 powder obtained in Reference Example 1, 0.19 g of ketjen black, and 0.45 g of glucose. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例1]
参考例1で得たLi2Fe0.45Mn0.45Zr0.05SiO4の粉末3.34g、およびグルコース0.9gを容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 1]
The Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 powder 3.34 g obtained in Reference Example 1 and 0.9 g of glucose were put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) were put therein. The mixture was mixed for 12 hours at 60 rpm. The obtained mixture was baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例2]
参考例1で得たLi2Fe0.45Mn0.45Zr0.05SiO4の粉末3.34g、ケッチェンブラック0.38gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 2]
10 g of water was added to 3.34 g of the Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 powder obtained in Reference Example 1 and 0.38 g of Ketjen Black. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[実施例2]
参考例2で得たLi2Fe0.45Mn0.45Zn0.05SiO4の粉末3.34g、ケッチェンブラック0.19g、グルコース0.45gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Example 2]
10 g of water was added to 3.34 g of the Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 powder obtained in Reference Example 2, 0.19 g of ketjen black, and 0.45 g of glucose. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例3]
参考例2で得たLi2Fe0.45Mn0.45Zn0.05SiO4の粉末3.34g、およびグルコース0.9gを、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 3]
3.34 g of Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 powder obtained in Reference Example 2 and 0.9 g of glucose were put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) were put into this. And mixed for 12 hours under the condition of 60 rpm. The obtained mixture was baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例4]
参考例2で得たLi2Fe0.45Mn0.45Zn0.05SiO4の粉末3.34g、ケッチェンブラック0.38gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 4]
10 g of water was added to 3.34 g of Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 powder obtained in Reference Example 2 and 0.38 g of Ketjen Black. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[実施例3]
参考例3で得たLi2Fe0.3Mn0.7Al0.066SiO4の粉末3.34g、ケッチェンブラック0.19g、グルコース0.45gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Example 3]
10 g of water was added to 3.34 g of Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 powder obtained in Reference Example 3, 0.19 g of ketjen black, and 0.45 g of glucose. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例5]
参考例3で得たLi2Fe0.3Mn0.7Al0.066SiO4の粉末3.34g、およびグルコース0.9gを、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 5]
3.34 g of Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 powder obtained in Reference Example 3 and 0.9 g of glucose were put into a ball mill pulverizer with a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) were put therein. And mixed for 12 hours under the condition of 60 rpm. The obtained mixture was baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[比較例6]
参考例3で得たLi2Fe0.3Mn0.7Al0.066SiO4の粉末3.34g、ケッチェンブラック0.38gに水10gを添加した。得られた分散液を、容量400cm3のボールミル粉砕機に投入し、これにジルコニアボール(φ5mm)を320g入れ、60回転/分の条件で12時間混合した。得られた混合物を、80℃で真空乾燥し、還元雰囲気条件下600℃で1時間焼成を行った。
[Comparative Example 6]
10 g of water was added to 3.34 g of the Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 powder obtained in Reference Example 3 and 0.38 g of Ketjen Black. The obtained dispersion was put into a ball mill pulverizer having a capacity of 400 cm 3 , and 320 g of zirconia balls (φ5 mm) was added thereto and mixed for 12 hours under the condition of 60 rpm. The obtained mixture was vacuum-dried at 80 ° C. and baked at 600 ° C. for 1 hour under a reducing atmosphere condition.

[試験例1]
実施例1〜3で得られた焼成物のX線回折を行った。得られたX線回折図を各々図1〜3に示す。
[試験例2]
実施例1〜3、および比較例1〜6で得られた焼成物を用い、リチウムイオン二次電池の正極を作製した。実施例1〜3、および比較例1〜6で得られた焼成物(活物質)、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電試験を行った。このときの充電条件は電流0.1CA(33mA/g)、電圧4.5Vの定電流充電とし、放電条件は電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
得られた放電容量を表1に示す。
[Test Example 1]
X-ray diffraction of the fired products obtained in Examples 1 to 3 was performed. The obtained X-ray diffraction patterns are shown in FIGS.
[Test Example 2]
Using the fired products obtained in Examples 1 to 3 and Comparative Examples 1 to 6, positive electrodes of lithium ion secondary batteries were produced. The fired product (active material), ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) obtained in Examples 1 to 3 and Comparative Examples 1 to 6 were mixed at a weight ratio of 75:15:10. And N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
A charge / discharge test at a constant current density was performed using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current charging with a current of 0.1 CA (33 mA / g) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The obtained discharge capacity is shown in Table 1.

Figure 2014120365
Figure 2014120365

表1より、本発明の正極材料である実施例1〜3を用いたリチウムイオン電池は、炭素量が少ないにもかかわらず優れた電池特性を有することがわかる。   From Table 1, it can be seen that the lithium ion batteries using Examples 1 to 3 which are the positive electrode materials of the present invention have excellent battery characteristics even though the amount of carbon is small.

Claims (9)

遷移金属(M)を含むオリビンシリケート化合物微粒子(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す。ただし、ケイ酸鉄リチウムを含まない。)、導電性炭素材料、溶媒可溶性有機化合物及び溶媒を含有する分散液を、ボールミルを用いて混合し、乾燥後焼成することを特徴とするリチウムイオン電池用正極活物質の製造法。   Olivine silicate compound fine particles containing transition metal (M) (M represents Fe, Ni, Co, Al, Zn, V, Zr or Mn, but does not contain lithium iron silicate), conductive carbon material, A method for producing a positive electrode active material for a lithium ion battery, wherein a dispersion containing a solvent-soluble organic compound and a solvent is mixed using a ball mill, dried and then fired. 導電性炭素材料が、カーボンブラックである請求項1記載の製造法。   The method according to claim 1, wherein the conductive carbon material is carbon black. 溶媒可溶性有機化合物が、水溶性アルコール性有機化合物、及び水溶性脂肪酸から選ばれる化合物である請求項1又は2記載の製造法。   The process according to claim 1 or 2, wherein the solvent-soluble organic compound is a compound selected from a water-soluble alcoholic organic compound and a water-soluble fatty acid. 導電性炭素材料がカーボンブラックであり、溶媒可溶性有機化合物が水溶性アルコール性有機化合物であり、溶媒が水である請求項1〜3のいずれか1項記載の製造法。   The method according to any one of claims 1 to 3, wherein the conductive carbon material is carbon black, the solvent-soluble organic compound is a water-soluble alcoholic organic compound, and the solvent is water. 導電性炭素材料と溶媒可溶性有機化合物の質量比が1:10〜10:1である請求項1〜4のいずれか1項記載の製造法。   The manufacturing method according to any one of claims 1 to 4, wherein the mass ratio of the conductive carbon material and the solvent-soluble organic compound is 1:10 to 10: 1. 導電性炭素材料及び溶媒可溶性有機化合物の合計量が、ケイ酸鉄リチウム微粒子100質量部に対し0.1〜20質量部である請求項1〜5のいずれか1項記載の製造法。   The manufacturing method according to any one of claims 1 to 5, wherein the total amount of the conductive carbon material and the solvent-soluble organic compound is 0.1 to 20 parts by mass with respect to 100 parts by mass of the lithium iron silicate fine particles. 遷移金属(M)を含むオリビンシリケート化合物微粒子が、ケイ酸源、遷移金属(M)源及びリチウム源の混合物を水熱反応させて得られるものである請求項1〜6のいずれか1項記載の製造法。   The olivine silicate compound fine particles containing a transition metal (M) are obtained by hydrothermal reaction of a mixture of a silicate source, a transition metal (M) source, and a lithium source. Manufacturing method. 焼成条件が不活性ガス雰囲気下又は還元条件下に400℃以上で10分〜3時間である請求項1〜7のいずれか1項記載の製造法。   The production method according to any one of claims 1 to 7, wherein the firing conditions are 400 ° C or higher and 10 minutes to 3 hours under an inert gas atmosphere or reducing conditions. 請求項1〜8のいずれか1項記載の製造法により得られた正極活物質を含む正極を有するリチウムイオン電池。   The lithium ion battery which has a positive electrode containing the positive electrode active material obtained by the manufacturing method of any one of Claims 1-8.
JP2012275448A 2012-12-18 2012-12-18 Method for producing positive electrode active material for lithium ion battery Active JP5901019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275448A JP5901019B2 (en) 2012-12-18 2012-12-18 Method for producing positive electrode active material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275448A JP5901019B2 (en) 2012-12-18 2012-12-18 Method for producing positive electrode active material for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2014120365A true JP2014120365A (en) 2014-06-30
JP5901019B2 JP5901019B2 (en) 2016-04-06

Family

ID=51175031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275448A Active JP5901019B2 (en) 2012-12-18 2012-12-18 Method for producing positive electrode active material for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5901019B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191873A (en) * 2013-03-26 2014-10-06 Taiheiyo Cement Corp Method of manufacturing positive electrode material for secondary battery
CN104124436A (en) * 2014-07-22 2014-10-29 清华大学深圳研究生院 Mixed polyanion positive electrode material for lithium ion battery and preparation method
JP2016081634A (en) * 2014-10-14 2016-05-16 古河電気工業株式会社 Positive electrode active material for lithium ion secondary batteries
CN105914368A (en) * 2016-05-10 2016-08-31 苏州大学 Preparation method of silicate composite positive electrode material
CN109616652A (en) * 2018-12-11 2019-04-12 欣旺达电子股份有限公司 Modified complex ternary material and preparation method thereof
CN110993923A (en) * 2019-12-26 2020-04-10 惠州亿纬锂能股份有限公司 Carbon-coated auxiliary sodium-titanium double-doped lithium iron silicate positive electrode material and preparation method and application thereof
CN111634959A (en) * 2020-06-02 2020-09-08 惠州亿纬锂能股份有限公司 Ternary material, preparation method thereof and application of ternary material in lithium ion battery
CN112259716A (en) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 High-specific-capacity carbon-coated lithium iron silicate material and preparation method thereof
CN115571889A (en) * 2022-11-10 2023-01-06 宜宾锂宝新材料有限公司 Lithium iron silicate cathode material, preparation method thereof and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195134A (en) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The Positive electrode active material substance based on lithium transition metal silicate, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
WO2012137703A1 (en) * 2011-04-07 2012-10-11 古河電気工業株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery, and process for producing positive electrode active material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195134A (en) * 2011-03-16 2012-10-11 Furukawa Electric Co Ltd:The Positive electrode active material substance based on lithium transition metal silicate, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
WO2012137703A1 (en) * 2011-04-07 2012-10-11 古河電気工業株式会社 Positive electrode active material, non-aqueous electrolyte secondary battery, and process for producing positive electrode active material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014191873A (en) * 2013-03-26 2014-10-06 Taiheiyo Cement Corp Method of manufacturing positive electrode material for secondary battery
CN104124436A (en) * 2014-07-22 2014-10-29 清华大学深圳研究生院 Mixed polyanion positive electrode material for lithium ion battery and preparation method
CN104124436B (en) * 2014-07-22 2016-08-17 清华大学深圳研究生院 Mixing polyanion positive electrode and preparation method for lithium ion battery
JP2016081634A (en) * 2014-10-14 2016-05-16 古河電気工業株式会社 Positive electrode active material for lithium ion secondary batteries
CN105914368A (en) * 2016-05-10 2016-08-31 苏州大学 Preparation method of silicate composite positive electrode material
CN109616652A (en) * 2018-12-11 2019-04-12 欣旺达电子股份有限公司 Modified complex ternary material and preparation method thereof
CN110993923A (en) * 2019-12-26 2020-04-10 惠州亿纬锂能股份有限公司 Carbon-coated auxiliary sodium-titanium double-doped lithium iron silicate positive electrode material and preparation method and application thereof
CN111634959A (en) * 2020-06-02 2020-09-08 惠州亿纬锂能股份有限公司 Ternary material, preparation method thereof and application of ternary material in lithium ion battery
CN112259716A (en) * 2020-10-14 2021-01-22 安徽益佳通电池有限公司 High-specific-capacity carbon-coated lithium iron silicate material and preparation method thereof
CN115571889A (en) * 2022-11-10 2023-01-06 宜宾锂宝新材料有限公司 Lithium iron silicate cathode material, preparation method thereof and lithium ion battery
CN115571889B (en) * 2022-11-10 2023-03-24 宜宾锂宝新材料有限公司 Lithium iron silicate cathode material, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP5901019B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5901019B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5804419B2 (en) Cathode active material for lithium ion battery and lithium ion battery
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5709134B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP2013225471A (en) Cathode active material for secondary battery and method for producing the same
JP5804422B2 (en) Method for producing secondary battery positive electrode active material
JP5842792B2 (en) Method for producing secondary battery positive electrode active material precursor
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP5927449B2 (en) Positive electrode for secondary battery and secondary battery using the same
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP2014191873A (en) Method of manufacturing positive electrode material for secondary battery
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5744827B2 (en) Method for producing secondary battery positive electrode active material
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5836254B2 (en) Conductive composite particles, positive electrode active material, and secondary battery using the same
JP5688128B2 (en) Lithium manganese phosphate positive electrode active material and method for producing the same
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5557220B2 (en) Method for producing positive electrode material for secondary battery
JP5822197B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5754808B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP5886923B1 (en) Method for producing lithium silicate compound having amorphous structure
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150729

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5901019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250