JP2014119170A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2014119170A
JP2014119170A JP2012274189A JP2012274189A JP2014119170A JP 2014119170 A JP2014119170 A JP 2014119170A JP 2012274189 A JP2012274189 A JP 2012274189A JP 2012274189 A JP2012274189 A JP 2012274189A JP 2014119170 A JP2014119170 A JP 2014119170A
Authority
JP
Japan
Prior art keywords
door
temperature
partition
refrigerator
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012274189A
Other languages
Japanese (ja)
Inventor
Shinya Iwabuchi
真也 岩渕
Masaru Itakura
大 板倉
Ryoji Kawai
良二 河井
Shinichiro Okadome
慎一郎 岡留
Akiyoshi Ohira
昭義 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012274189A priority Critical patent/JP2014119170A/en
Publication of JP2014119170A publication Critical patent/JP2014119170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve energy-saving performance of a refrigerator including heating means in a partition part.SOLUTION: A refrigerator includes: a heat insulation box body in which an opening is formed forward; a first door opening and closing the opening; and a second door adjacent to the first door and, opening and closing the opening; a partition part provided in one of the first door and the second door, and positioned at the boundary part between the first door and the second door; heating means heating the partition part to suppress the occurrence of dew condensation; detection means detecting the temperature and humidity of the ambient air of the heat insulation box body; and control means controlling the heating amount of the heating means. The heating means is controlled so that the time average value of the surface temperature of the rotary partition part becomes a dew point temperature or less.

Description

本発明は、冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として、特許4945395号公報(特許文献1)がある。   As a background art of this technical field, there is Japanese Patent No. 4945395 (Patent Document 1).

特許文献1には、結露の発生を抑える防露ヒータと、冷蔵庫周辺の外気温を検出する外気温センサと、前記防露ヒータの発熱量を制御する制御手段と、を備えた冷蔵庫において、前記制御手段が、前記外気温に応じて前記防露ヒータの発熱量を調整する通常発熱モードと、前記通常発熱モードより低い発熱量であって所定外気温及び所定湿度の雰囲気において結露が発生する発熱量を設定する低発熱モードと、を有し、操作手段により前記通常発熱モードと前記低発熱モードとを切り替えることができるとともに、前記低発熱モード実行中に所定時間以上継続して所定温度以上の外気温度を検出すると、前記低発熱モードから前記通常発熱モードに移行する技術が開示されている。   Patent Document 1 includes a dew-proof heater that suppresses the occurrence of condensation, an outside air temperature sensor that detects an outside air temperature around the refrigerator, and a control unit that controls the amount of heat generated by the dew-proof heater. The control means adjusts the heat generation amount of the dew-proof heater according to the outside air temperature, and the heat generation has a heat generation amount lower than that of the normal heat generation mode and condensation occurs in an atmosphere of a predetermined outside air temperature and a predetermined humidity. A low heat generation mode for setting an amount, and the operation means can switch between the normal heat generation mode and the low heat generation mode, and continues for a predetermined time or more during the execution of the low heat generation mode. A technique for shifting from the low heat generation mode to the normal heat generation mode when an outside air temperature is detected is disclosed.

特許4945395号公報Japanese Patent No. 4945395

しかしながら、特許文献1に記載の技術では、結露が発生する発熱量を設定する低発熱モードを有し、前記低発熱モードは、ある復帰条件を満たすことにより、通常発熱モードに移行するが、復帰条件を満たさない場合、前記低発熱モードを維持し続けるため、結露の発生に至ってしまう。   However, the technique described in Patent Document 1 has a low heat generation mode for setting a heat generation amount at which condensation occurs, and the low heat generation mode shifts to a normal heat generation mode by satisfying a certain return condition. When the condition is not satisfied, the low heat generation mode is continuously maintained, so that condensation occurs.

本発明は上記課題に鑑みてなされたものであり、仕切部内に加熱手段を備えた冷蔵庫の省エネルギー性能をより向上させることを目的とする。   This invention is made | formed in view of the said subject, and it aims at improving the energy-saving performance of the refrigerator provided with the heating means in the partition part more.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、前方に開口が形成された断熱箱体と、前記開口を開閉する第一の扉と、該第一の扉と隣り合い前記開口を開閉する第二の扉と、前記第一の扉又は前記第二の扉の一方に設けられて該第一の扉と該第二の扉の境界部に位置する仕切部と、前記仕切部を加熱して結露の発生を抑える加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段と、前記加熱手段の加熱量を制御する制御手段と、を備え、前記回転仕切部の表面温度の時間平均値が露点温度以下となるように前記加熱手段を制御する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. To give an example, a heat insulating box having an opening formed in the front, a first door for opening and closing the opening, and the first door And a second door that opens and closes the opening, and a partition that is provided at one of the first door and the second door and is located at the boundary between the first door and the second door Heating means for heating the partition portion to suppress the occurrence of condensation, detection means for detecting the temperature and humidity of the ambient air around the heat insulating box, and control means for controlling the heating amount of the heating means. And the heating means is controlled so that the time average value of the surface temperature of the rotating partition is equal to or lower than the dew point temperature.

本発明によれば、仕切部内に加熱手段を備えた冷蔵庫の省エネルギー性能をより向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the energy saving performance of the refrigerator provided with the heating means in the partition part can be improved more.

本発明の実施形態に係る冷蔵庫の正面外形図。The front external view of the refrigerator which concerns on embodiment of this invention. 図1に示す冷蔵庫のA−A断面図。AA sectional drawing of the refrigerator shown in FIG. 図1に示す冷蔵庫のB−B断面図。BB sectional drawing of the refrigerator shown in FIG. 図1に示す冷蔵庫の要部拡大説明図。The principal part expansion explanatory drawing of the refrigerator shown in FIG. 図4に示す冷蔵庫のC−C断面図。CC sectional drawing of the refrigerator shown in FIG. 本発明の実施形態に係る冷蔵庫の制御を表すフローチャート。The flowchart showing control of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の制御と温度変化を表すタイムチャート。The time chart showing the control and temperature change of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の扉間隙間の水蒸気移動を表す模式図。The schematic diagram showing the water vapor | steam movement between the door gaps of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の仕切部の温度変化を表す図。The figure showing the temperature change of the partition part of the refrigerator which concerns on embodiment of this invention. 本発明の実施形態に係る冷蔵庫の回転仕切表面の最低到達温度及び防露ヒータOFF時間と結露状態の関係を表す図。The figure showing the relationship between the minimum attainment temperature of the rotation partition surface of the refrigerator which concerns on embodiment of this invention, dew-proof heater OFF time, and a dew condensation state.

本発明に係る冷蔵庫の実施形態を、図1〜図10を参照しながら説明する。   An embodiment of a refrigerator according to the present invention will be described with reference to FIGS.

図1は本実施形態の冷蔵庫の正面外形図である。図2は図1に示す冷蔵庫のA−A断面図である。図3は図1に示す冷蔵庫のB−B断面図である。   FIG. 1 is a front outline view of the refrigerator of the present embodiment. FIG. 2 is a cross-sectional view of the refrigerator shown in FIG. FIG. 3 is a BB cross-sectional view of the refrigerator shown in FIG.

図2に示すように本実施形態の冷蔵庫1は上方から、冷蔵室2、上段冷凍室3、下段冷凍室4、野菜室5を備えている。冷蔵室2及び野菜室5は、およそ3〜5℃の冷蔵温度帯の貯蔵室である。また、上段冷凍室3及び下段冷凍室4は、およそ−18℃の冷凍温度帯の貯蔵室である。   As shown in FIG. 2, the refrigerator 1 of the present embodiment includes a refrigerator compartment 2, an upper freezer compartment 3, a lower freezer compartment 4, and a vegetable compartment 5 from above. The refrigerated room 2 and the vegetable room 5 are storage rooms in a refrigerated temperature zone of about 3 to 5 ° C. The upper freezer compartment 3 and the lower freezer compartment 4 are storage rooms in a freezing temperature zone of approximately −18 ° C.

冷蔵室2は、前方側に左右に分割された観音開き型の冷蔵室扉6、7を備えている。上段冷凍室3、下段冷凍室4、野菜室5は、それぞれ引き出し式の上段冷凍室扉8、下段冷凍室扉9、野菜室扉10を備えている。また、各扉の貯蔵室側の面には、各扉の外縁に沿うようにパッキング17、18(シール部材)(図3参照)を設けており、各扉の閉鎖時、貯蔵室内への外気の侵入、及び貯蔵室からの冷気漏れを抑制する。   The refrigerator compartment 2 is provided with double door-type refrigerator compartment doors 6 and 7 divided into left and right on the front side. The upper freezer compartment 3, the lower freezer compartment 4, and the vegetable compartment 5 are each provided with a drawer-type upper freezer compartment door 8, a lower freezer compartment door 9, and a vegetable compartment door 10. Further, packings 17 and 18 (seal members) (see FIG. 3) are provided on the surface of each door on the storage chamber side along the outer edge of each door. When each door is closed, the outside air into the storage chamber is provided. Intrusion of air and cold air leakage from the storage room are suppressed.

また、本実施形態の冷蔵庫1は、各貯蔵室に設けた扉の開閉状態をそれぞれ検知する扉センサ(図示せず)と、各扉が開放していると判定された状態が所定時間、例えば、1分間以上継続された場合に、使用者に報知するアラーム(図示せず)と、冷蔵室2の温度設定や上段冷凍室3や下段冷凍室4の温度設定をする温度設定器等(図示せず)を備えている。   Moreover, the refrigerator 1 of this embodiment has a door sensor (not shown) that detects the open / closed state of the door provided in each storage room, and a state in which each door is determined to be open for a predetermined time, for example, An alarm (not shown) for notifying the user when the operation is continued for one minute or more, a temperature setting device for setting the temperature of the refrigerator compartment 2, the temperature of the upper freezer compartment 3 and the lower freezer compartment 4, etc. Not shown).

11は冷却器室で、冷却器室11には冷凍サイクルを構成する冷却器12、及び冷却器12で冷却された冷気を冷蔵室2、冷凍室3、4等に強制循環する冷却ファン13等が設けられている。   Reference numeral 11 denotes a cooler chamber. The cooler chamber 11 includes a cooler 12 that constitutes a refrigeration cycle, a cooling fan 13 that forcibly circulates cold air cooled by the cooler 12 to the refrigerator compartment 2, the freezer compartments 3, 4, and the like. Is provided.

14、15は固定仕切であり、本実施形態の冷蔵庫1は、上側断熱仕切壁14により冷蔵室2と、上段冷凍室3(図2参照)とが断熱壁を介して隔てられ、下側断熱仕切壁15により、下段冷凍室4と野菜室5とが断熱的に隔てられている。これにより、上記各室は所定の温度に維持される。   Reference numerals 14 and 15 denote fixed partitions. In the refrigerator 1 of the present embodiment, the refrigerator compartment 2 and the upper freezer compartment 3 (see FIG. 2) are separated by the upper heat insulating partition wall 14 through the heat insulating wall, and the lower heat insulating wall. The partition wall 15 separates the lower freezer compartment 4 and the vegetable compartment 5 from each other in an adiabatic manner. Thereby, each chamber is maintained at a predetermined temperature.

16は回転仕切(仕切部)である。回転仕切16は、冷蔵室2の前面開口部を閉塞すべく設けられた観音開き式扉(右冷蔵室扉6、左冷蔵室扉7)のパッキング受面を構成する。また、この回転仕切16は、左冷蔵室扉7に取り付けられている。そして、回転仕切7は冷蔵室2を構成する冷蔵庫本体1側に設けられたガイド部材(図示せず)により、図3の通り、実線の位置から破線の位置まで回動する。これにより、回転仕切16は、右冷蔵室扉6、左冷蔵室扉7にそれぞれ設けられたパッキング17、18(シール部材)の受面を構成する。また、この回転仕切16は、固定仕切と異なり、図3にも示す如く断熱壁厚を薄く形成している。これは回転仕切16の前方の扉、すなわち右冷蔵室扉6、左冷蔵室扉7の隙間幅寸法(図3におけるW)を小さくするためでもあり、本実施形態の冷蔵庫1においては、回転仕切部の前方の扉間の隙間幅寸法W=6mmである。また、扉前縁から回転仕切部表面に至る隙間奥行き寸法(図3におけるD)はWの3倍以上としており、本実施形態の冷蔵庫1はD=60mmである。   16 is a rotation partition (partition part). The rotary partition 16 constitutes a packing receiving surface for a double door (right refrigerator door 6 and left refrigerator door 7) provided to close the front opening of the refrigerator compartment 2. Further, the rotary partition 16 is attached to the left refrigerator compartment door 7. And the rotation partition 7 rotates from the position of a continuous line to the position of a broken line as FIG. 3 by the guide member (not shown) provided in the refrigerator main body 1 side which comprises the refrigerator compartment 2. As shown in FIG. Thereby, the rotation partition 16 comprises the receiving surface of the packings 17 and 18 (seal member) provided in the right refrigerator compartment door 6 and the left refrigerator compartment door 7, respectively. Further, unlike the fixed partition, the rotary partition 16 is formed with a thin heat insulating wall as shown in FIG. This is also for reducing the gap width dimension (W in FIG. 3) of the front door of the rotary partition 16, that is, the right refrigerator door 6 and the left refrigerator door 7, and in the refrigerator 1 of the present embodiment, the rotary partition. The gap width dimension W = 6 mm between the doors in front of the part. Moreover, the clearance depth dimension (D in FIG. 3) from the door front edge to the surface of the rotating partition is set to be three times or more of W, and the refrigerator 1 of the present embodiment has D = 60 mm.

更に、回転仕切16のL1寸法(図4参照)は、冷蔵室2内で回動する構造のため、冷蔵室2の高さ寸法L2より短く構成されている。このため、回転仕切16と冷蔵室2を構成する内箱30との間には、上下でL2−L1分の隙間21ができる。19、20はパッキング17、18の上下端に一体に形成されたヒレパッキング(ヒレ状シール部材)である。このヒレパッキング19、20は、図4に示す如く、L2−L1でできる隙間21を塞ぐために設けられている。   Furthermore, L1 dimension (refer FIG. 4) of the rotation partition 16 is comprised shorter than the height dimension L2 of the refrigerator compartment 2 for the structure rotated within the refrigerator compartment 2. As shown in FIG. For this reason, between the rotation partition 16 and the inner box 30 which comprises the refrigerator compartment 2, the clearance gap 21 for L2-L1 is made up and down. 19 and 20 are fin packings (fin-like seal members) integrally formed at the upper and lower ends of the packings 17 and 18. As shown in FIG. 4, the fin packings 19 and 20 are provided to close a gap 21 formed by L 2 -L 1.

次に図5において、回転仕切16について、さらに詳細に説明する。図において、16は回転仕切であり、この回転仕切16は、樹脂で形成された箱体22、仕切鉄板23(シール部材受面鉄板)、断熱材24、防露ヒータ25等により構成されている。そして、回転仕切16の厚み(T寸法)は20mm〜30mm前後となるよう箱体22、仕切鉄板23が作られている。   Next, referring to FIG. 5, the rotary partition 16 will be described in more detail. In the figure, 16 is a rotation partition, and this rotation partition 16 is comprised by the box 22 formed with resin, the partition iron plate 23 (seal member receiving surface iron plate), the heat insulating material 24, the dew-proof heater 25, etc. FIG. . And the box 22 and the partition iron plate 23 are made so that the thickness (T dimension) of the rotation partition 16 may be 20 mm-about 30 mm.

また、仕切鉄板23は、板厚0.4〜1.0mm位の薄板鉄板で作られている。通常この仕切鉄板23は、プレス加工機等をもって構成した後塗装を施して作られている。この仕切鉄板23が鉄板で作られる理由は、永久磁石を内蔵したパッキング17、18の受面となるためである。   Moreover, the partition iron plate 23 is made of a thin steel plate having a thickness of about 0.4 to 1.0 mm. Usually, this partitioning iron plate 23 is made by applying a coating after it is configured with a press machine or the like. The reason why the partition iron plate 23 is made of an iron plate is that it serves as a receiving surface for the packings 17 and 18 incorporating a permanent magnet.

この仕切鉄板23の裏側には、コードヒータ25aとアルミ箔25b等とで構成される、防露ヒータ25(加熱手段)が配設されており、この防露ヒータ25の加熱により、仕切鉄板23の表面が結露するのを防いでいる。   On the back side of the partition iron plate 23, a dew proof heater 25 (heating means) composed of a cord heater 25a and an aluminum foil 25b is disposed. This prevents the surface of the product from condensing.

冷蔵庫1は、設置された周囲環境の温度及び湿度(外気温度、外気湿度)を検知する検知手段である外気温度センサ26と外気湿度センサ27を備えている。   The refrigerator 1 includes an outside air temperature sensor 26 and an outside air humidity sensor 27 which are detection means for detecting the temperature and humidity (outside air temperature, outside air humidity) of the installed ambient environment.

制御装置として、冷蔵庫1の天井壁上面側にはCPU、ROMやRAM等のメモリ、インターフェース回路等を搭載した制御基板28が配置されている(図2参照)。制御基板28は、前記した外気温度センサ26、外気湿度センサ27、各貯蔵室扉の開閉状態をそれぞれ検知する扉センサ、左冷蔵室扉7に設けられた温度設定器、省電力モード設定器等と接続する。前記ROMに予め搭載されたプログラムにより、防露ヒータON/OFF制御等を行う。   As a control device, a control board 28 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, and the like are mounted is arranged on the upper surface side of the refrigerator 1 (see FIG. 2). The control board 28 includes the outside temperature sensor 26, the outside humidity sensor 27, a door sensor that detects the open / closed state of each storage compartment door, a temperature setter provided in the left refrigerator door 7, a power saving mode setter, etc. Connect with. The dew-proof heater ON / OFF control and the like are performed by a program previously installed in the ROM.

次に、本実施形態の冷蔵庫1の制御について、図6、図7を参照しながら説明する。
図6は本実施形態の冷蔵庫1の防露ヒータのON/OFF制御の制御フローチャート、図7は本実施形態の冷蔵庫1の防露ヒータのON/OFF制御を実施した際の回転仕切部表面温度の変化と制御状態を表すタイムチャートである。なお、制御は制御装置、すなわち制御基板28(図2参照)のCPUがROMに格納されたプログラムを実行することによって行われる。
Next, control of the refrigerator 1 of this embodiment is demonstrated, referring FIG. 6, FIG.
FIG. 6 is a control flowchart of ON / OFF control of the dew proof heater of the refrigerator 1 according to the present embodiment. FIG. 7 is a surface temperature of the rotating partition when the dew proof heater ON / OFF control of the refrigerator 1 according to the present embodiment is performed. It is a time chart showing the change of and a control state. The control is performed by the control device, that is, the CPU of the control board 28 (see FIG. 2) executing a program stored in the ROM.

左冷蔵室扉7に設けられた省電力モード設定器、外気温度センサ36、外気湿度センサ37検知情報に基づいて、防露ヒータのON/OFF制御のモードおよびヒータON/OFF時間を決定する。本実施形態の冷蔵庫1は「省電力モードOFF」、または「省電力モードON」且つ「外気湿度が所定の湿度以上」の場合には、防露ヒータON/OFF制御のモードiの条件が成立する。なお、省電力モードのON/OFFは、左冷蔵室扉7に設けられた省電力モード設定器によって設定される。一方、「省電力モードON」且つ「外気湿度が所定の湿度以下」の場合には、防露ヒータON/OFF制御のモードiiの条件が成立する。   Based on information detected by the power-saving mode setting unit, the outside air temperature sensor 36, and the outside air humidity sensor 37 provided in the left refrigerator compartment door 7, the ON / OFF control mode and heater ON / OFF time of the dew-proof heater are determined. In the refrigerator 1 of the present embodiment, when the “power saving mode is OFF” or “the power saving mode is ON” and “the outside air humidity is equal to or higher than the predetermined humidity”, the condition of the mode i of the dew-proof heater ON / OFF control is satisfied. To do. Note that ON / OFF of the power saving mode is set by a power saving mode setting device provided in the left refrigerator compartment door 7. On the other hand, when the “power saving mode is ON” and “the outside air humidity is equal to or lower than the predetermined humidity”, the condition of the mode ii of the dew-proof heater ON / OFF control is satisfied.

なお、モードiは、安定運転時の回転仕切部表面の時間平均温度を露点温度以上とする制御モードであり、モードiiは、安定運転時の回転仕切部表面の時間平均温度を露点温度以下とする制御モードであり、使用者が省電力モード設定器によって設定可能である。詳細は後述する。   Mode i is a control mode in which the time average temperature on the surface of the rotating partition during stable operation is equal to or higher than the dew point temperature, and mode ii is the time average temperature on the surface of the rotating partition during stable operation equal to or lower than the dew point temperature. The user can set the control mode using the power saving mode setting device. Details will be described later.

モードiの制御に移行する条件は「省電力モードOFF」、または「省電力モードON」且つ「外気湿度が所定の湿度以上」であるため、使用者が省電力モードを設定しない場合、または使用者が省電力モードを設定し、且つ外気湿度センサ37で検知した湿度が所定の湿度以上の場合にはモードiとなる。本実施形態の冷蔵庫1においては、使用者が左冷蔵室扉7に設けられた省電力モード設定器によって省電力モードに設定しない場合、または省電力モードに設定し、外気湿度センサ37で検知した湿度が80%以上の場合にはモードiとなる。   The condition for shifting to the control of mode i is “power saving mode OFF” or “power saving mode ON” and “the outside air humidity is equal to or higher than the predetermined humidity”. When the person sets the power saving mode and the humidity detected by the outside air humidity sensor 37 is equal to or higher than the predetermined humidity, the mode i is set. In the refrigerator 1 of the present embodiment, when the user does not set the power saving mode by the power saving mode setting device provided in the left refrigerator compartment door 7 or is set to the power saving mode and detected by the outside air humidity sensor 37. Mode i is selected when the humidity is 80% or more.

一方、モードiiの制御に移行する条件は「省電力モードON」且つ「外気湿度が所定の湿度以下」であるため、使用者が省電力モードを設定し、且つ外気湿度センサ37で検知した湿度が所定の湿度以下の場合には、モードiiとなる。本実施形態の冷蔵庫1においては、使用者が左冷蔵室扉7に設けられた省電力モード設定器によって省電力モードに設定し、外気湿度センサ37で検知した湿度が80%以下の場合にはモードiiとなる。   On the other hand, the conditions for shifting to the control of mode ii are “power saving mode ON” and “the outside air humidity is equal to or lower than the predetermined humidity”, so the humidity set by the user and detected by the outside air humidity sensor 37 is set. When is below a predetermined humidity, mode ii is entered. In the refrigerator 1 of the present embodiment, when the user sets the power saving mode with the power saving mode setting device provided on the left refrigerator compartment door 7 and the humidity detected by the outside air humidity sensor 37 is 80% or less. Mode ii is entered.

なお、モードi中のt1は防露ヒータ25をONさせてヒータを加熱させる時間、t2は防露ヒータ25をOFFさせて、ヒータを加熱させない時間である。t1、t2は外気温度センサ36及び外気湿度センサ37が検知する温度及び湿度に基づいて算出され、低温低湿であるほど、前述のt1に対して相対的にt2の比率が長くなる。例えば、本実施形態の冷蔵庫1は、外気温度30℃、外気湿度70%でモードiの場合には、t1=21分でt2=9分とし、外気温度15℃で外気湿度55%の場合、t1=9分でt2=21分としている。   In the mode i, t1 is a time for turning on the dew-proof heater 25 and heating the heater, and t2 is a time for turning off the dew-proof heater 25 and not heating the heater. t1 and t2 are calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. The lower the temperature and humidity, the longer the ratio of t2 relative to the aforementioned t1. For example, in the refrigerator 1 of the present embodiment, in the case of mode i at an outside air temperature of 30 ° C. and an outside air humidity of 70%, t1 = 21 minutes and t2 = 9 minutes, and when the outside air temperature is 15 ° C. and the outside air humidity is 55%, t1 = 9 minutes and t2 = 21 minutes.

一方、モードii中のt3はt1と同じく、防露ヒータ25をONさせてヒータを加熱させる時間、t4はt2と同じく、防露ヒータ25をOFFさせて、ヒータを加熱させない時間である。t3、t4も外気温度センサ36及び外気湿度センサ37が検知する温度及び湿度に基づいて算出され、低温低湿であるほど、前述のt3に対して相対的にt4の比率が長くなる。また同温度、同湿度の条件のもとでは、モードiのON率はモードiiのON率よりも大きくなるような設定としている。すなわち、t1/(t1+t2)>t3/(t3+t4)を成立させている。例えば、本実施形態の冷蔵庫1は、外気温度30℃、外気湿度70%でモードiiの場合には、t1=18分でt2=12分とし、外気温度15℃で外気湿度55%の場合、t1=2分でt2=28分としている。   On the other hand, t3 in mode ii is the time for heating the heater by turning on the dew-proof heater 25, similarly to t1, and t4 is the time for turning off the dew-proof heater 25 and not heating the heater, similar to t2. t3 and t4 are also calculated based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. The lower the temperature and humidity, the longer the ratio of t4 to the above-mentioned t3. In addition, under the conditions of the same temperature and the same humidity, the ON rate of mode i is set to be larger than the ON rate of mode ii. That is, t1 / (t1 + t2)> t3 / (t3 + t4) is established. For example, in the refrigerator 1 of this embodiment, when the outside air temperature is 30 ° C. and the outside air humidity is 70% and the mode ii, t1 = 18 minutes and t2 = 12 minutes, and when the outside air temperature is 15 ° C. and the outside air humidity is 55%, t1 = 2 minutes and t2 = 28 minutes.

本実施形態の冷蔵庫1を温度30℃、相対湿度70%の環境に設置して、安定運転状態となった場合(詳細はJISC9801:2006に準拠)の、回転仕切部16表面(仕切鉄板23表面)の温度変化と、防露ヒータの制御状態について、図7を参照しながら説明する。なお、安定運転状態とは、外気温変動や扉開閉といった負荷変動要因がなく、安定的に貯蔵室内をほぼ一定の温度範囲に冷却している状態を指す。   When the refrigerator 1 of the present embodiment is installed in an environment with a temperature of 30 ° C. and a relative humidity of 70% and is in a stable operation state (details conform to JIS C9801: 2006), the surface of the rotating partition 16 (the surface of the partition iron plate 23) ) And the control state of the dew proof heater will be described with reference to FIG. The stable operation state refers to a state in which there is no load fluctuation factor such as outside temperature fluctuation or door opening / closing, and the storage chamber is stably cooled to a substantially constant temperature range.

図7に示すように、モードi中は経過時間taにおいて、防露ヒータ25はOFFとなっており、回転仕切鉄板23の温度は低下し、外気温湿度に基づく露点温度(ここでは23.9℃が露点温度)を下回った状態となっている。   As shown in FIG. 7, during mode i, the dew proof heater 25 is OFF at the elapsed time ta, the temperature of the rotating partition iron plate 23 decreases, and the dew point temperature based on the outside air temperature humidity (23.9 here). ℃ is below the dew point temperature).

経過時間taにおいて、防露ヒータ25はOFFからONに切り替わるので、回転仕切鉄板23表面は加熱され、回転仕切鉄板表面温度は上昇し、経過時間tbにおいて露点温度に達している。モードiにおいては、ヒータON時間が所定時間t1(=21分)に到達した場合にヒータはONからOFFに切り替わる。ここでは経過時間tcでONからOFFに切り替わっている。   Since the dew proof heater 25 is switched from OFF to ON at the elapsed time ta, the surface of the rotating partition iron plate 23 is heated, the surface temperature of the rotating partition iron plate rises, and reaches the dew point temperature at the elapsed time tb. In mode i, the heater is switched from ON to OFF when the heater ON time reaches a predetermined time t1 (= 21 minutes). Here, it switches from ON to OFF at the elapsed time tc.

ヒータがONからOFFに切り替わったことで、回転仕切鉄板23表面は加熱されず、回転仕切鉄板表面温度は下降し、経過時間tdにおいて露点温度に達している。モードiにおいては、ヒータOFF時間が所定時間t2(=9分)に到達した場合にヒータはOFFからONに切り替わる。ここでは経過時間teでOFFからONに切り替わっている。以後安定状態では同様の制御が行われる。なお、図7中に示すとおりモードiにおいては、安定運転状態における回転仕切表面温度(時間平均)は露点温度以上で、本実施形態の冷蔵庫1では25℃(露点温度23.9℃)に制御されている。   When the heater is switched from ON to OFF, the surface of the rotating partition iron plate 23 is not heated, the surface temperature of the rotating partition iron plate decreases, and reaches the dew point temperature at the elapsed time td. In mode i, when the heater OFF time reaches a predetermined time t2 (= 9 minutes), the heater is switched from OFF to ON. Here, the switch is made from OFF to ON at the elapsed time te. Thereafter, the same control is performed in the stable state. As shown in FIG. 7, in mode i, the rotating partition surface temperature (time average) in the stable operation state is equal to or higher than the dew point temperature, and is controlled to 25 ° C. (dew point temperature 23.9 ° C.) in the refrigerator 1 of the present embodiment. Has been.

一方、図7に示すように、モードii中は経過時間tfにおいて、防露ヒータ25はOFFとなっており、回転仕切鉄板23の温度は低下し、外気温湿度に基づく露点温度(ここでは23.9℃が露点温度)を下回った状態となっている。   On the other hand, as shown in FIG. 7, during mode ii, at the elapsed time tf, the dew proof heater 25 is OFF, the temperature of the rotating partition iron plate 23 decreases, and the dew point temperature based on the outside air temperature humidity (here, 23 It is in a state where .9 ° C is lower than the dew point temperature.

経過時間tfにおいて、防露ヒータ25はOFFからONに切り替わるので、回転仕切鉄板23表面は加熱され、回転仕切鉄板表面温度は上昇し、経過時間tgにおいて露点温度に達している。モードiiにおいては、ヒータON時間が所定時間t3(=18分)に到達した場合にヒータはONからOFFに切り替わる。ここでは経過時間thでONからOFFに切り替わっている。   Since the dewproof heater 25 is switched from OFF to ON at the elapsed time tf, the surface of the rotating partition iron plate 23 is heated, the surface temperature of the rotating partition iron plate rises, and reaches the dew point temperature at the elapsed time tg. In mode ii, when the heater ON time reaches a predetermined time t3 (= 18 minutes), the heater is switched from ON to OFF. Here, it is switched from ON to OFF at the elapsed time th.

ヒータがONからOFFに切り替わったことで、回転仕切鉄板23表面は加熱されず、回転仕切鉄板表面温度は下降し、経過時間tiにおいて露点温度に達している。モードiiにおいては、ヒータOFF時間が所定時間t4(=12分)に到達した場合にヒータはOFFからONに切り替わる。ここでは経過時間tjでOFFからONに切り替わっている。以後安定状態では同様の制御が行われる。なお、図7中に示すとおりモードiiにおいては、安定運転状態における回転仕切表面温度(時間平均)は露点温度以下で、本実施形態の冷蔵庫1では23℃(露点温度23.9℃)に制御されている。   When the heater is switched from ON to OFF, the surface of the rotating partition iron plate 23 is not heated, the surface temperature of the rotating partition iron plate decreases, and reaches the dew point temperature at the elapsed time ti. In mode ii, when the heater OFF time reaches a predetermined time t4 (= 12 minutes), the heater is switched from OFF to ON. Here, it switches from OFF to ON at the elapsed time tj. Thereafter, the same control is performed in the stable state. As shown in FIG. 7, in mode ii, the surface temperature (time average) of the rotating partition in the stable operation state is below the dew point temperature, and is controlled to 23 ° C. (dew point temperature of 23.9 ° C.) in the refrigerator 1 of the present embodiment. Has been.

以上で、本実施形態の冷蔵庫の構造と、制御方法の説明をしたが、次に、本実施形態の冷蔵庫の奏する効果について説明する。   Although the structure of the refrigerator of this embodiment and the control method were demonstrated above, the effect which the refrigerator of this embodiment shows next is demonstrated.

本実施形態の冷蔵庫1は、冷蔵室2の前方側に左右に分割された観音開き型の右冷蔵室扉6、左冷蔵室扉7を備え、左冷蔵室扉には回転仕切16が配設され、前記回転仕切内に仕切鉄板23表面を加熱する防露ヒータ25を備えており、前記防露ヒータの加熱量を制御することで、安定運転状態における回転仕切部表面温度の時間平均値を外気温湿度に対する露点温度以下にしている。すなわち、前方に開口が形成された断熱箱体と、貯蔵室を開閉する第一の扉と、該第一の扉と隣り合い前記貯蔵室を開閉する第二の扉と、前記2つの扉の内一方の扉に設けた回転仕切を本体側に設けたガイド部材に依って回動し、他方扉のパッキング受面を形成するようにした観音開き式扉を備えた冷蔵庫において、前記回転仕切部内に結露の発生を抑える防露ヒータと、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段とを備え、前記防露ヒータの加熱量を制御する制御手段とを備え、前記回転仕切部表面温度の時間平均値が露点温度以下となるように前記防露ヒータを制御する。これにより、回転仕切部表面から庫内に流入する熱量を抑制でき、冷蔵庫の省エネルギー性能をより向上させることができる。   The refrigerator 1 according to the present embodiment includes a double door type right refrigerator compartment door 6 and a left refrigerator compartment door 7 which are divided into left and right on the front side of the refrigerator compartment 2, and a rotating partition 16 is disposed on the left refrigerator compartment door. A dew-proof heater 25 for heating the surface of the partition iron plate 23 is provided in the rotating partition, and the time average value of the surface temperature of the rotating partition portion in a stable operation state is controlled by controlling the heating amount of the dew-proof heater. The dew point is below the temperature and humidity. That is, a heat insulating box having an opening formed in the front, a first door for opening and closing the storage chamber, a second door for opening and closing the storage chamber adjacent to the first door, and the two doors In the refrigerator equipped with a double door that is rotated by a guide member provided on the main body side of the rotary partition provided on one of the doors and forms a packing receiving surface of the other door, A dew-proof heater that suppresses the occurrence of dew condensation; and a detection unit that detects the temperature and humidity of the ambient air around the heat insulation box; and a control unit that controls a heating amount of the dew-proof heater; The dew proof heater is controlled such that the time average value of the surface temperature is equal to or lower than the dew point temperature. Thereby, the calorie | heat amount which flows in in a store | warehouse | chamber from the rotation partition part surface can be suppressed, and the energy saving performance of a refrigerator can be improved more.

本実施形態の冷蔵庫1は、冷蔵室2の前方側に左右に分割された観音開き型の右冷蔵室扉6、左冷蔵室扉7を備え、左冷蔵室扉には回転仕切16が配設され、前記回転仕切内に仕切鉄板23表面を加熱する防露ヒータ25を備えており、前記防露ヒータの加熱量を制御することで、安定運転状態における回転仕切部表面温度の時間平均値を外気温湿度に対する露点温度以下にしている。すなわち、前方に開口が形成された断熱箱体と、貯蔵室を開閉する第一の扉と、該第一の扉と隣り合い前記貯蔵室を開閉する第二の扉と、前記2つの扉の内一方の扉に設けた回転仕切を本体側に設けたガイド部材に依って回動し、他方扉のパッキング受面を形成するようにした観音開き式扉を備えた冷蔵庫において、前記回転仕切部内に結露の発生を抑える防露ヒータと、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段とを備え、前記防露ヒータの加熱量を制御する制御手段とを備え、前記回転仕切部表面温度が露点温度以上となる時間より露点温度以下となる時間を長くするように、前記加熱手段を制御する。これにより、回転仕切部表面から庫内に流入する熱量を抑制でき、冷蔵庫の省エネルギー性能をより向上させることができる。   The refrigerator 1 according to the present embodiment includes a double door type right refrigerator compartment door 6 and a left refrigerator compartment door 7 which are divided into left and right on the front side of the refrigerator compartment 2, and a rotating partition 16 is disposed on the left refrigerator compartment door. A dew-proof heater 25 for heating the surface of the partition iron plate 23 is provided in the rotating partition, and the time average value of the surface temperature of the rotating partition portion in a stable operation state is controlled by controlling the heating amount of the dew-proof heater. The dew point is below the temperature and humidity. That is, a heat insulating box having an opening formed in the front, a first door for opening and closing the storage chamber, a second door for opening and closing the storage chamber adjacent to the first door, and the two doors In the refrigerator equipped with a double door that is rotated by a guide member provided on the main body side of the rotary partition provided on one of the doors and forms a packing receiving surface of the other door, A dew-proof heater that suppresses the occurrence of dew condensation; and a detection unit that detects the temperature and humidity of the ambient air around the heat insulation box; and a control unit that controls a heating amount of the dew-proof heater; The heating means is controlled so that the time during which the surface temperature becomes the dew point temperature or less is longer than the time when the surface temperature becomes the dew point temperature or more. Thereby, the calorie | heat amount which flows in in a store | warehouse | chamber from the rotation partition part surface can be suppressed, and the energy saving performance of a refrigerator can be improved more.

本実施形態の冷蔵庫1は、回転仕切部の前方の扉間の隙間幅寸法(図3におけるW)より、扉前縁から回転仕切部表面に至る隙間奥行き寸法(図3におけるD)の方が大きくなるようにしている。これにより、回転仕切部を露点温度以下として省エネルギー性能を高めつつ、結露が成長し難い冷蔵庫とすることができる。理由を以下で説明する。   In the refrigerator 1 of the present embodiment, the gap depth dimension (D in FIG. 3) from the front edge of the door to the surface of the rotary partition is larger than the gap width dimension (W in FIG. 3) between the doors in front of the rotary partition. I try to get bigger. Thereby, it can be set as the refrigerator in which dew condensation does not grow easily, improving energy-saving performance by making a rotation partition part below dew point temperature. The reason will be explained below.

結露は、外気中の水蒸気が、露点温度以下の壁面に向けて対流と拡散によって移動して凝縮する現象(物質移動現象)であるが、特に対流が露点温度以下の壁面近傍で生じると、壁面近傍の水蒸気濃度の勾配(水蒸気分圧の勾配)が急勾配になり、物質移動が積極的に生じるようになる。そのために、対流が生じると、露点温度を下回る壁面上には短時間で結露が成長し、流下するレベルに至ってしまう。密度差により生じる自然対流は物質移動の促進度合いは比較的小さいが、例えば、冷蔵庫の前を人が通過した場合などには強制対流、つまり扉間隙間の前方で生じた強制対流が誘起する流れが隙間内部に生じた場合は、物質移動が促進され、短時間で結露が成長してしまう場合がある。   Condensation is a phenomenon in which water vapor in the outside air condenses by moving to the wall surface below the dew point temperature by convection and diffusion (mass transfer phenomenon), but especially when convection occurs near the wall surface below the dew point temperature, The nearby water vapor concentration gradient (water vapor partial pressure gradient) becomes steep, and mass transfer occurs actively. Therefore, when convection occurs, condensation grows on the wall surface below the dew point temperature in a short time and reaches a level where it flows down. Natural convection caused by density difference has a relatively small degree of mass transfer promotion.For example, when a person passes in front of a refrigerator, forced convection, that is, a flow induced by forced convection in front of the door gap. If this occurs in the gap, mass transfer is promoted, and condensation may grow in a short time.

そこで、本実施形態の冷蔵庫1では、扉間の隙間幅寸法より、扉前縁から回転仕切部表面に至る隙間奥行き寸法の方が大きくなるようにして、回転仕切部温度を露点温度以下としていても、扉の前方で生じた強制対流の影響を十分小さく抑えることができるようにしている。これにより、結露が成長し難い状態を保つことができる。   Therefore, in the refrigerator 1 of the present embodiment, the rotation partition portion temperature is set to be equal to or lower than the dew point temperature so that the gap depth dimension from the door front edge to the surface of the rotation partition portion is larger than the gap width dimension between the doors. However, the influence of forced convection generated in front of the door can be suppressed sufficiently small. As a result, it is possible to maintain a state in which condensation does not easily grow.

本実施形態の冷蔵庫1は、回転仕切16の前方の扉間の隙間幅寸法(図3におけるW)を10mm以下として、扉前縁から回転仕切部表面に至る隙間奥行き寸法(図3におけるD)を隙間幅寸法の3倍以上確保している。強制対流に比べて影響の度合いは小さくなるが、自然対流も物質移動促進に寄与する。自然対流は狭空間で生じ難いので、扉間の隙間幅寸法を10mm以下とすることで、十分小さく抑えることができ、さらに、隙間幅寸法の3倍以上の隙間奥行き寸法を確保することで、扉の前方で生じた強制対流の影響も十分小さく抑えることができる。これにより、水蒸気の移動は主として拡散による移動となり、対流が生じている場合に比べて物質移動が十分小さく抑えられる。したがって、回転仕切部を露点温度以下としても、より結露が成長し難い冷蔵庫とすることができる。   The refrigerator 1 of this embodiment sets the gap width dimension (W in FIG. 3) between the doors in front of the rotary partition 16 to 10 mm or less, and the gap depth dimension from the door front edge to the rotary partition surface (D in FIG. 3). Is secured at least three times the gap width dimension. Natural convection also contributes to the promotion of mass transfer, although the degree of influence is small compared to forced convection. Since natural convection hardly occurs in a narrow space, by setting the gap width dimension between the doors to 10 mm or less, it can be suppressed to a sufficiently small size, and further, by ensuring a gap depth dimension that is three times or more the gap width dimension, The influence of forced convection generated in front of the door can also be suppressed sufficiently small. Thereby, the movement of water vapor is mainly due to diffusion, and the mass movement is suppressed to be sufficiently smaller than that in the case where convection occurs. Therefore, even if the rotating partition is set to a dew point temperature or lower, a refrigerator in which condensation is less likely to grow can be obtained.

本実施形態の冷蔵庫1は、回転仕切部に配設した防露ヒータの加熱量を制御して、回転仕切部表面温度を外気温湿度の露点温度以上の状態と、露点温度以下の状態を交互に繰り返すようにして、回転仕切部の時間平均温度を露点温度以下に制御している。これにより、回転仕切部を露点温度以下としても、結露が成長し難い冷蔵庫とすることができる。図8を参照しながら以下で理由を説明する。   The refrigerator 1 of the present embodiment controls the heating amount of the dew proof heater disposed in the rotating partition, and alternately turns the surface temperature of the rotating partition portion above the dew point temperature of the outside air temperature humidity and below the dew point temperature. As described above, the time average temperature of the rotating partition is controlled to be equal to or lower than the dew point temperature. Thereby, even if it makes a rotation partition part below dew point temperature, it can be set as the refrigerator with which condensation does not grow easily. The reason will be described below with reference to FIG.

図8(a)は、回転仕切部表面温度が露点温度以下となっている場合に扉間の隙間を水蒸気が拡散する様子を表す模式図、図8(b)は、回転仕切部表面温度が露点温度以上となっている場合に扉間隙間を水蒸気が拡散する様子を表す模式図である。図8(a)に示すように、回転仕切部の表面温度が露点温度以下に低下した場合、回転仕切部表面の極近傍の水蒸気は凝縮して回転仕切部表面に微小水滴が生じる。このとき、回転仕切部表面近傍は回転仕切部表面の温度に基づく飽和の水蒸気分圧Pwとなり、外気湿度に基づく水蒸気分圧に対する勾配が形成される。この水蒸気分圧Pwの差が水蒸気分子の拡散の駆動力となる。一方で、扉間の隙間内の全圧P(=Pw+Pa)は一定に保たれるので、空気の分圧Paは水蒸気分圧Pwが低下する分だけ上昇する。   FIG. 8A is a schematic diagram showing a state in which water vapor diffuses through the gap between the doors when the surface temperature of the rotating partition is equal to or lower than the dew point temperature, and FIG. It is a schematic diagram showing a mode that water vapor | steam spread | diffuses the clearance gap between doors when it becomes more than dew point temperature. As shown in FIG. 8A, when the surface temperature of the rotating partition is lowered to the dew point temperature or less, the water vapor in the vicinity of the surface of the rotating partition is condensed and minute water droplets are generated on the surface of the rotating partition. At this time, the vicinity of the surface of the rotating partition becomes the saturated water vapor partial pressure Pw based on the temperature of the surface of the rotating partition, and a gradient with respect to the water vapor partial pressure based on the outside air humidity is formed. The difference in the water vapor partial pressure Pw becomes the driving force for the diffusion of water vapor molecules. On the other hand, since the total pressure P (= Pw + Pa) in the gap between the doors is kept constant, the partial pressure Pa of air increases by the amount by which the water vapor partial pressure Pw decreases.

したがって、空気は水蒸気と圧力勾配が逆向きになり庫外に向けて拡散しようするために、回転仕切部表面に向かおうとする水蒸気の拡散を妨げるように作用する。この作用により、初期段階で微小水滴が生じたとしても、その後の水蒸気の移動が空気によって妨げられ水蒸気の拡散抵抗が大きくなるので、回転仕切部表面温度が露点温度以下であっても結露は成長し難い状態となる。   Therefore, the air acts so as to prevent the diffusion of water vapor toward the surface of the rotating partition portion because the pressure gradient is opposite to that of the water vapor and diffuses outward. As a result, even if minute water droplets are generated at the initial stage, the subsequent movement of water vapor is hindered by air and the diffusion resistance of water vapor increases, so that condensation grows even if the surface temperature of the rotating partition is below the dew point temperature. It becomes difficult to do.

次に、図8(a)の状態から、図8(b)に示す露点温度以上の状態に加熱した場合、回転仕切部表面には微小水滴があるため飽和しており、回転仕切部表面の水蒸気分圧Pwは、回転仕切部表面温度に基づく圧力となる。表面温度が露点温度をわずかに上回る程度であっても、外気の水蒸気分圧Pwに対して高く、さらに、空気の拡散方向と、水蒸気の拡散方向が一致するため、水蒸気の拡散が促進される(水蒸気の拡散抵抗が小さくなる)。   Next, when heated from the state of FIG. 8 (a) to a temperature equal to or higher than the dew point temperature shown in FIG. 8 (b), the surface of the rotating partition is saturated because there are minute water droplets. The water vapor partial pressure Pw is a pressure based on the surface temperature of the rotating partition portion. Even if the surface temperature is slightly higher than the dew point temperature, it is higher than the partial pressure Pw of the outside air, and furthermore, the diffusion direction of the water vapor is promoted because the air diffusion direction and the water vapor diffusion direction coincide. (The diffusion resistance of water vapor is reduced).

したがって、回転仕切部に配設した防露ヒータの加熱量を制御して、回転仕切部表面温度を外気温湿度の露点温度以上の状態と、露点温度以下の状態を交互に繰り返すようにして、回転仕切部の時間平均温度を露点温度以下に制御すると、露点温度を下回った場合には、拡散抵抗が大きくなることで結露が成長し難くなり、露点温度を上回った場合には、拡散抵抗が小さくなることで、庫外への水蒸気の排出が積極的に行われるようになるため、回転仕切部の時間平均温度を露点温度以下に制御して省エネルギー性能を十分高めているにも関わらず、実質的にはほぼ結露の成長がない冷蔵庫とすることができる。   Therefore, by controlling the heating amount of the dew proof heater arranged in the rotating partition, the rotating partition surface temperature is alternately repeated between a state above the dew point temperature of the outside air temperature humidity and a state below the dew point temperature, If the time average temperature of the rotating partition is controlled below the dew point temperature, if the temperature falls below the dew point temperature, the diffusion resistance increases, making it difficult for condensation to grow.If the temperature exceeds the dew point temperature, the diffusion resistance is reduced. By reducing the water vapor to the outside of the warehouse will be actively performed, even though the time average temperature of the rotating partition is controlled below the dew point temperature, energy saving performance is sufficiently enhanced, The refrigerator can be substantially free from the growth of condensation.

なお、本実施形態の冷蔵庫1では、安定運転状態における回転仕切部表面温度の時間平均値を外気温湿度に対する露点温度以下にするための切換制御のタイミングを、時間によって定めている。   In addition, in the refrigerator 1 of this embodiment, the timing of the switching control for making the time average value of the rotation partition part surface temperature in a stable operation state below the dew point temperature with respect to external temperature humidity is determined by time.

本実施形態の冷蔵庫1は、加熱量の調節が可能な回転仕切部表面の防露ヒータを備え、防露ヒータの背面側には断熱材を配設し、加熱量が大きい状態、つまりヒータON時間が長い状態、加熱量が小さい状態、つまりヒータON時間が短い状態をそれぞれ定常状態に至る前に交互に切換制御するようにして、回転仕切部表面の温度を制御している。これにより、防露ヒータの加熱によって庫内に流入する熱量を抑制できる。理由を図9と適宜図3を参照しながら説明する。   The refrigerator 1 of the present embodiment includes a dew-proof heater on the surface of the rotating partition that can adjust the heating amount, and a heat insulating material is disposed on the back side of the dew-proof heater so that the heating amount is large, that is, the heater is turned on. The temperature of the surface of the rotating partition is controlled by alternately switching the state where the time is long and the state where the heating amount is small, that is, the state where the heater ON time is short, before reaching the steady state. Thereby, the calorie | heat amount which flows in in a store | warehouse | chamber by the heating of a dewproof heater can be suppressed. The reason will be described with reference to FIG. 9 and FIG. 3 as appropriate.

図9は回転仕切部の表面と庫内に接する面(面の位置は図3参照)の温度変化を表す図である。図9のtAにおいては、回転仕切部の表面と庫内に接する面の何れも温度が低い状態にある。続いて加熱手段である防露ヒータ25によって加熱状態とすることで、回転仕切部の表面温度は素早く温度上昇している。このとき回転仕切部の庫内に接する面の温度は、背面側に配設した断熱材24の熱容量のために緩やかに温度が上昇する。次に、tBにおいて、回転仕切部の庫内に接する面の温度が定常状態に至る前に防露ヒータ25を通電させず、非加熱状態に切り換えている。これにより、断熱材24の防露ヒータ25に近い部分の温度は上昇しても、回転仕切部の庫内に接する面近傍は十分に温度上昇していない状態となる。tBからtCまでは非加熱状態であり、非加熱状態では回転仕切部の庫内に接する面から断熱材24が冷却されて温度が低下し、次第に回転仕切部の表面の温度も低下する。以上のように、回転仕切部の庫内に接する面の温度が定常状態に至る前に加熱状態から非加熱状態に切り換えることで、回転仕切部の庫内に接する面は比較的低温に保たれ、回転仕切部の表面を加熱する際に庫内に流入する熱量を抑制することができ、省エネルギー性能の高い冷蔵庫とすることができる。また、断熱材24により、回転仕切部表面の温度降下が緩やかになるため、非加熱状態を加熱状態より長くしても結露が生じ難い冷蔵庫となる。 FIG. 9 is a diagram showing the temperature change of the surface of the rotating partition and the surface in contact with the interior (see FIG. 3 for the surface position). At t A in FIG. 9, the temperature of both the surface of the rotary partition and the surface in contact with the interior is low. Subsequently, the surface temperature of the rotating partition is quickly increased by setting the heating state by the dew proof heater 25 which is a heating means. At this time, the temperature of the surface in contact with the inside of the rotary partition is gradually increased due to the heat capacity of the heat insulating material 24 disposed on the back side. Next, at t B , the dew-proof heater 25 is not energized and switched to the non-heated state before the temperature of the surface in contact with the interior of the rotating partition reaches the steady state. Thereby, even if the temperature of the part near the dew-proof heater 25 of the heat insulating material 24 is increased, the vicinity of the surface in contact with the inside of the rotary partition is not sufficiently increased. From t B to t C is a non-heated state, and in the non-heated state, the heat insulating material 24 is cooled from the surface in contact with the inside of the rotary partition, and the temperature of the rotary partition is gradually lowered. . As described above, by switching from the heated state to the non-heated state before the temperature of the surface contacting the inside of the rotating partition reaches the steady state, the surface contacting the inside of the rotating partition is kept at a relatively low temperature. When the surface of the rotating partition is heated, the amount of heat flowing into the cabinet can be suppressed, and a refrigerator with high energy saving performance can be obtained. Moreover, since the temperature drop on the surface of the rotating partition is moderated by the heat insulating material 24, the refrigerator is less likely to cause dew condensation even if the non-heated state is longer than the heated state.

本実施形態の冷蔵庫1は、安定運転状態における回転仕切部表面の時間平均温度を露点温度以上とする制御モード(モードi)と、露点温度以下とする制御モード(モードii)を備えており、モード設定手段によって、モードを選択できるようにしている。これにより、同じ温湿度環境下であっても一段と省エネルギー性能を向上させる制御を選択可能となるので、例えば、電力供給量の不足が懸念される時間帯においては、消費電力を低減して省エネルギー性能を向上させたモードを選択するといったことが可能となる。さらに、ユーザーの設定が可能とすることによって、省エネルギー性能が高いモードである本実施形態の冷蔵庫1のモードiiの効果と、結露というリスクを正しく理解した上で、省エネルギー性能の向上を望む場合に使用することができるようになる。   The refrigerator 1 of the present embodiment includes a control mode (mode i) in which the time average temperature on the surface of the rotating partition in a stable operation state is equal to or higher than the dew point temperature, and a control mode (mode ii) that is equal to or lower than the dew point temperature. The mode can be selected by mode setting means. As a result, it is possible to select control that further improves energy saving performance even under the same temperature and humidity environment.For example, during times when there is a concern about shortage of power supply, energy consumption can be reduced by reducing power consumption. It is possible to select a mode with improved performance. Furthermore, when it is desired to improve the energy saving performance after correctly understanding the effects of the mode ii of the refrigerator 1 of the present embodiment, which is a mode with high energy saving performance, and the risk of condensation, by enabling the user to set Will be able to use.

本実施形態の冷蔵庫1は、モードi及びモードiiにおける防露ヒータOFF時間をそれぞれ9分と12分としている。これにより、露点温度以下となった場合に、回転仕切部表面に結露が生じるものの流下に至る事態が避けられ、省エネルギー性能と信頼性を両立できるようにしている。理由を図10と適宜図3を参照しながら説明する。   In the refrigerator 1 of the present embodiment, the dew-proof heater OFF time in mode i and mode ii is 9 minutes and 12 minutes, respectively. As a result, when the temperature is lower than the dew point temperature, a situation in which condensation occurs on the surface of the rotating partition portion, but a flow down is avoided, so that both energy saving performance and reliability can be achieved. The reason will be described with reference to FIG. 10 and FIG. 3 as appropriate.

図10は、回転仕切表面の最低到達温度及び防露ヒータOFF時間と結露状態の関係を表す図である。図10の縦軸が回転仕切表面(仕切鉄板23の表面)の最低到達温度であり、横軸が防露ヒータ25のOFF時間となる。   FIG. 10 is a diagram illustrating the relationship between the minimum temperature reached on the surface of the rotating partition, the dew-proof heater OFF time, and the dew condensation state. The vertical axis in FIG. 10 is the lowest temperature reached on the rotating partition surface (the surface of the partition iron plate 23), and the horizontal axis is the OFF time of the dew-proof heater 25.

図10中の(A)は、回転仕切表面の最低到達温度が露点温度以上であり、防露ヒータ25のOFF時間に因らず回転仕切表面に結露は発生しない範囲を表す。次に図10中に(B)で示す範囲は、回転仕切表面の最低到達温度が露点温度を下回るために結露が発生するが、回転仕切表面に結露が保持され流下には至らない範囲を表す。さらに図10中に(C)で示す範囲は、回転仕切表面の最低到達温度が露点温度以下であり、結露が流下する範囲を表す。図10に示すように、回転仕切表面の最低到達温度が低いほど短時間で結露の流下に至り易く、回転仕切表面の最低到達温度が露点を下回る度合いが少なくても、防露ヒータ25のOFF時間が長いほど結露の流下に至り易くなることがわかる。したがって、回転仕切表面の最低到達温度と防露ヒータ25のOFF時間の関係が図10の(B)で示す範囲に入るようにすることで、回転仕切部表面に結露が生じるものの流下に至る事態が避けられ、省エネルギー性能と信頼性を両立できるようになる。本実施形態の冷蔵庫1では、モードi及びモードiiにおける防露ヒータOFF時間をそれぞれ9分と12分とすることで、図10の(B)で示す範囲に入るようにしているので、省エネルギー性能と信頼性を両立できる冷蔵庫となっている。   (A) in FIG. 10 represents a range in which the minimum temperature reached on the surface of the rotating partition is equal to or higher than the dew point temperature, and no condensation occurs on the surface of the rotating partition regardless of the OFF time of the dew prevention heater 25. Next, the range indicated by (B) in FIG. 10 represents a range in which condensation occurs because the lowest temperature reached on the surface of the rotating partition is lower than the dew point temperature, but condensation is retained on the surface of the rotating partition and does not flow down. . Further, a range indicated by (C) in FIG. 10 represents a range in which the lowest temperature reached on the surface of the rotating partition is equal to or lower than the dew point temperature and dew condensation flows down. As shown in FIG. 10, the lower the minimum temperature reached on the surface of the rotating partition, the easier it is for the condensation to flow down in a shorter time, and even if the minimum reached temperature on the surface of the rotating partition is less than the dew point, the dew prevention heater 25 is turned off. It can be seen that the longer the time, the easier it is for the condensation to flow down. Therefore, by causing the relationship between the minimum temperature reached on the surface of the rotating partition and the OFF time of the dew-proof heater 25 to fall within the range shown in FIG. Can be avoided, and both energy saving performance and reliability can be achieved. In the refrigerator 1 of the present embodiment, the dew prevention heater OFF time in the mode i and the mode ii is set to 9 minutes and 12 minutes, respectively, so that it falls within the range shown in FIG. It is a refrigerator that can achieve both reliability and reliability.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、外気温度センサ26、外気湿度センサ27は、外気温湿度を検知することができる配設位置であればどこに設置しても良い。また、本実施形態の冷蔵庫では、外気温度センサ36及び外気湿度センサ37が検知する温度及び湿度に基づいて、回転仕切表面温度が所定の平均温度となる防露ヒータ25のON時間(t1,t3)とOFF時間(t2,t4)を算出しているが、冷蔵室2の温度を検知する冷蔵室温度センサの検知情報も参照するようにしても良い。例えば、冷蔵室温度センサの検知温度が低い場合には回転仕切表面温度がより低温になり易いことを考慮して、防露ヒータ25のON率を上げることで、回転仕切表面温度の平均値をより精度良く所定値に維持することができる。また、本実施形態の冷蔵庫では、回転仕切表面温度が所定の平均温度となるように防露ヒータ25のON時間とOFF時間を定めて制御しているが、より精確に回転仕切表面温度を制御するために、例えば、回転仕切表面温度を検知する回転仕切温度センサを仕切鉄板23に接するように設けて、回転仕切温度センサの検知温度に基づいて、防露ヒータ25をON/OFFして、防露ヒータ25のON率を制御しても良い。さらに、本実施形態の冷蔵庫では、防露ヒータ25のON/OFFを切り替えているが、図7に示すような温度変動が実現できれば、必ずしも防露ヒータ25をOFF状態にする必要はなく、防露ヒータ25の加熱量の強/弱を切り替える制御としても良い。また、回転仕切に限らず、その他防露ヒータを備えた仕切部においても本発明を適用することは可能である。すなわち、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to each above-mentioned Example, Various modifications are included. For example, the outside air temperature sensor 26 and the outside air humidity sensor 27 may be installed anywhere as long as the outside air temperature and humidity can be detected. In the refrigerator of the present embodiment, the ON time (t1, t3) of the dew proof heater 25 at which the rotating partition surface temperature becomes a predetermined average temperature based on the temperature and humidity detected by the outside air temperature sensor 36 and the outside air humidity sensor 37. ) And OFF time (t2, t4) are calculated, but the detection information of the cold room temperature sensor for detecting the temperature of the cold room 2 may also be referred to. For example, in consideration of the fact that the surface temperature of the rotating partition is likely to be lower when the temperature detected by the cold room temperature sensor is low, the average value of the surface temperature of the rotating partition is increased by increasing the ON rate of the dew prevention heater 25. The predetermined value can be maintained with higher accuracy. In the refrigerator of the present embodiment, the ON time and OFF time of the dew proof heater 25 are determined and controlled so that the rotating partition surface temperature becomes a predetermined average temperature, but the rotating partition surface temperature is controlled more accurately. In order to do this, for example, a rotating partition temperature sensor for detecting the surface temperature of the rotating partition is provided in contact with the partition iron plate 23, and the dew proof heater 25 is turned on / off based on the detected temperature of the rotating partition temperature sensor, The ON rate of the dew proof heater 25 may be controlled. Furthermore, in the refrigerator of the present embodiment, the dew proof heater 25 is switched on / off. However, if the temperature fluctuation as shown in FIG. It is good also as control which switches the heating amount of the dew heater 25 strong / weak. In addition, the present invention can be applied not only to the rotary partition but also to a partition portion including a dew proof heater. That is, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 冷蔵庫
2 冷蔵室(冷蔵温度帯室)
3 上段冷凍室(冷凍温度帯室)
4 下段冷凍室(冷凍温度帯室)
5 野菜室(冷蔵温度帯室)
6 右冷蔵室扉
7 左冷蔵室扉
8 上段冷凍室扉
9 下段冷凍室扉
10 野菜室扉
11 冷却器室
12 冷却器
13 冷却ファン
14、15 固定仕切
16 回転仕切
17、18 パッキング(シール部材)
19、20 ヒレパッキング(ヒレ状シール部材)
21 隙間
22 箱体
23 仕切鉄板
24 断熱材
25 防露ヒータ(加熱手段)
25a コードヒータ
25b アルミ箔
26 外気温度センサ(検知手段)
27 外気湿度センサ(検知手段)
28 制御基板
30 内箱
1 Refrigerator 2 Refrigerated room (refrigerated temperature zone)
3 Upper freezer room (freezing temperature room)
4 Lower freezer compartment (freezer temperature room)
5 Vegetable room (refrigerated temperature room)
6 Right refrigerator compartment door 7 Left refrigerator compartment door 8 Upper freezer compartment door 9 Lower freezer compartment door 10 Vegetable compartment door 11 Cooler compartment 12 Cooler 13 Cooling fans 14, 15 Fixed partition 16 Rotating partition 17, 18 Packing (seal member)
19, 20 Fin packing (fin seal member)
21 gap 22 box 23 partition iron plate 24 heat insulating material 25 dew-proof heater (heating means)
25a Code heater 25b Aluminum foil 26 Outside temperature sensor (detection means)
27 Outside air humidity sensor (detection means)
28 Control board 30 Inner box

Claims (5)

前方に開口が形成された断熱箱体と、前記開口を開閉する第一の扉と、該第一の扉と隣り合い前記開口を開閉する第二の扉と、前記第一の扉又は前記第二の扉の一方に設けられて該第一の扉と該第二の扉の境界部に位置する仕切部と、前記仕切部を加熱して結露の発生を抑える加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段と、前記加熱手段の加熱量を制御する制御手段と、を備え、
前記回転仕切部の表面温度の時間平均値が露点温度以下となるように前記加熱手段を制御することを特徴とする冷蔵庫。
A heat insulating box having an opening formed in the front; a first door that opens and closes the opening; a second door that opens and closes the opening adjacent to the first door; and the first door or the first door A partition provided at one of the two doors and positioned at a boundary between the first door and the second door; heating means for heating the partition to suppress the formation of condensation; and the heat insulating box Detecting means for detecting the temperature and humidity of the ambient air, and a control means for controlling the heating amount of the heating means,
The refrigerator characterized by controlling the said heating means so that the time average value of the surface temperature of the said rotation partition part may become below a dew point temperature.
前方に開口が形成された断熱箱体と、前記開口を開閉する第一の扉と、該第一の扉と隣り合い前記開口を開閉する第二の扉と、前記第一の扉又は前記第二の扉の一方に設けられて該第一の扉と該第二の扉の境界部に位置する仕切部と、前記仕切部を加熱して結露の発生を抑える加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段と、前記加熱手段の加熱量を制御する制御手段と、を備え、
前記仕切部の表面温度が露点温度以上となる時間より露点温度以下となる時間を長くするように、前記加熱手段を制御することを特徴とする冷蔵庫。
A heat insulating box having an opening formed in the front; a first door that opens and closes the opening; a second door that opens and closes the opening adjacent to the first door; and the first door or the first door A partition provided at one of the two doors and positioned at a boundary between the first door and the second door; heating means for heating the partition to suppress the formation of condensation; and the heat insulating box Detecting means for detecting the temperature and humidity of the ambient air, and a control means for controlling the heating amount of the heating means,
The refrigerator is characterized in that the heating means is controlled so that the time during which the surface temperature of the partitioning portion is below the dew point temperature is longer than the time when the surface temperature is above the dew point temperature.
前記第一の扉と前記第二の扉との隙間寸法を、前記第一の扉と前記第二の扉の前縁から前記仕切部に至る奥行き寸法以下としたことを特徴とする、請求項1又は2に記載の冷蔵庫。   The gap dimension between the first door and the second door is set to be not more than a depth dimension from a front edge of the first door and the second door to the partition part. The refrigerator according to 1 or 2. 前記仕切部の表面温度が、露点温度以上の状態と露点温度以下の状態を交互に繰り返すように、前記加熱手段を制御することを特徴とする、請求項3に記載の冷蔵庫。   The refrigerator according to claim 3, wherein the heating means is controlled so that a surface temperature of the partitioning portion alternately repeats a state above the dew point temperature and a state below the dew point temperature. 前方に開口が形成された断熱箱体と、前記開口を開閉する第一の扉と、該第一の扉と隣り合い前記開口を開閉する第二の扉と、前記第一の扉又は前記第二の扉の一方に設けられて該第一の扉と該第二の扉の境界部に位置する仕切部と、前記仕切部を加熱して結露の発生を抑える加熱手段と、前記断熱箱体の周囲空気の温度及び湿度を検知する検知手段と、前記加熱手段の加熱量を制御する制御手段と、を備え、
前記仕切部の表面温度の時間平均値を露点温度以上となるように、前記加熱手段を制御する第一の加熱モードと、前記仕切部の表面温度の時間平均値を露点温度以下となるように、前記加熱手段を制御する第二の加熱モードと、を備え、前記第一の加熱モードと前記第二の加熱モードの何れかを選択可能としたことを特徴とする冷蔵庫。
A heat insulating box having an opening formed in the front; a first door that opens and closes the opening; a second door that opens and closes the opening adjacent to the first door; and the first door or the first door A partition provided at one of the two doors and positioned at a boundary between the first door and the second door; heating means for heating the partition to suppress the formation of condensation; and the heat insulating box Detecting means for detecting the temperature and humidity of the ambient air, and a control means for controlling the heating amount of the heating means,
The first heating mode for controlling the heating means so that the time average value of the surface temperature of the partition is equal to or higher than the dew point temperature, and the time average value of the surface temperature of the partition is equal to or lower than the dew point temperature. And a second heating mode for controlling the heating means, wherein either the first heating mode or the second heating mode can be selected.
JP2012274189A 2012-12-17 2012-12-17 Refrigerator Pending JP2014119170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274189A JP2014119170A (en) 2012-12-17 2012-12-17 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274189A JP2014119170A (en) 2012-12-17 2012-12-17 Refrigerator

Publications (1)

Publication Number Publication Date
JP2014119170A true JP2014119170A (en) 2014-06-30

Family

ID=51174156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274189A Pending JP2014119170A (en) 2012-12-17 2012-12-17 Refrigerator

Country Status (1)

Country Link
JP (1) JP2014119170A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964504A (en) * 2015-05-26 2015-10-07 青岛海尔股份有限公司 Refrigeration and freezing apparatus, anti-condensation method thereof, and anti-condensation system
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
JP2016161231A (en) * 2015-03-03 2016-09-05 東芝ライフスタイル株式会社 Refrigerator
CN106016893A (en) * 2016-05-27 2016-10-12 海信容声(广东)冷柜有限公司 Refrigerator capable of preventing upper surface of middle beam from being frozen
CN112344624A (en) * 2020-11-06 2021-02-09 长虹美菱股份有限公司 Heating wire control method for glass door of refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020796A (en) * 2014-07-16 2016-02-04 日立アプライアンス株式会社 refrigerator
JP2016161231A (en) * 2015-03-03 2016-09-05 東芝ライフスタイル株式会社 Refrigerator
CN104964504A (en) * 2015-05-26 2015-10-07 青岛海尔股份有限公司 Refrigeration and freezing apparatus, anti-condensation method thereof, and anti-condensation system
CN104964504B (en) * 2015-05-26 2018-02-02 青岛海尔股份有限公司 Refrigerating equipment and its dewing-proof method and anti-condensation system
CN106016893A (en) * 2016-05-27 2016-10-12 海信容声(广东)冷柜有限公司 Refrigerator capable of preventing upper surface of middle beam from being frozen
CN106016893B (en) * 2016-05-27 2018-06-15 海信容声(广东)冷柜有限公司 A kind of refrigerator for preventing central sill upper surface from freezing
CN112344624A (en) * 2020-11-06 2021-02-09 长虹美菱股份有限公司 Heating wire control method for glass door of refrigerator
CN112344624B (en) * 2020-11-06 2021-11-23 长虹美菱股份有限公司 Heating wire control method for glass door of refrigerator

Similar Documents

Publication Publication Date Title
JP5391250B2 (en) Refrigerator and freezer
JP2013061089A (en) Refrigerator
JP5507511B2 (en) refrigerator
JP2014119170A (en) Refrigerator
JP4969674B2 (en) refrigerator
JP2007163002A (en) Refrigerator
AU2018202121B2 (en) Refrigerator and method for controlling the same
WO2005038365A1 (en) Cooling storage
AU2018202123B2 (en) Refrigerator and method for controlling the same
JP2008057919A (en) Refrigerator
JP5838238B2 (en) refrigerator
JP2013044438A (en) Refrigerator
JP2019138513A (en) refrigerator
JP2016095060A (en) refrigerator
JP2014077615A (en) Refrigerator
JPWO2017056212A1 (en) refrigerator
JP5743867B2 (en) Cooling storage
JP2016044875A (en) refrigerator
JP6017886B2 (en) refrigerator
JP6099423B2 (en) Freezer refrigerator
JP6282255B2 (en) refrigerator
JP6035506B2 (en) refrigerator
JP6744731B2 (en) refrigerator
JP2015007510A (en) Refrigerator
JP2008138981A (en) Refrigerator