JP2014118593A - Soft nitriding treatment method - Google Patents

Soft nitriding treatment method Download PDF

Info

Publication number
JP2014118593A
JP2014118593A JP2012273573A JP2012273573A JP2014118593A JP 2014118593 A JP2014118593 A JP 2014118593A JP 2012273573 A JP2012273573 A JP 2012273573A JP 2012273573 A JP2012273573 A JP 2012273573A JP 2014118593 A JP2014118593 A JP 2014118593A
Authority
JP
Japan
Prior art keywords
soft nitriding
nitriding
soft
temperature
nitriding treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012273573A
Other languages
Japanese (ja)
Other versions
JP6072530B2 (en
Inventor
Motohiro Suzuki
基裕 鈴木
Kazushi Tanaka
和士 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2012273573A priority Critical patent/JP6072530B2/en
Publication of JP2014118593A publication Critical patent/JP2014118593A/en
Application granted granted Critical
Publication of JP6072530B2 publication Critical patent/JP6072530B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soft nitriding treatment method which allows a soft nitriding treatment without a special pretreatment of the surface of a steel material prior to the soft nitriding treatment and retains or improves properties of the steel material, e.g. corrosion resistance.SOLUTION: A soft nitriding treatment method is based on heating urea in a nitriding treatment vessel 11 to decompose thermally and carrying out a soft nitriding treatment of a steel material with the decomposition gas of a soft nitriding treatment temperature. The lower limit of the soft nitriding treatment temperature is 400°C, and the upper limit of the soft nitriding treatment temperature is set to be decreased gradually from 440°C to 400°C. The upper limit of the soft nitriding treatment temperature is set to be decreased from 440°C to 400°C through at least two stages. For example, the lower limit of the soft nitriding treatment temperature is 400°C independent of the soft nitriding treatment time, and the upper limit of the soft nitriding treatment temperature is set to be 440°C for a total soft nitriding treatment time of 3-5 h and then set to be 420°C for a total soft nitriding treatment time of 6-10 h.

Description

本発明は、ステンレス鋼等の鉄鋼材料の表面に軟窒化処理を施して表面を強化するとともに、耐食性を始め、表面硬さ、耐摩耗性、耐疲労性等の物性の向上を図ることができる軟窒化処理方法に関する。   The present invention reinforces the surface of a steel material such as stainless steel by soft nitriding, and can improve physical properties such as corrosion resistance, surface hardness, wear resistance, and fatigue resistance. The present invention relates to a soft nitriding method.

一般に、窒化処理方法としては、アンモニアガスを作用させて窒化を行うガス窒化処理方法、シアン酸ナトリウム又はシアン酸カリウムを含む塩浴中に浸漬して窒化を行う塩浴窒化処理方法、窒素と水素の混合ガスを用いてプラズマ状態で窒化を行うプラズマ窒化処理方法等が実用化されている。   In general, as a nitriding treatment method, a gas nitriding treatment method in which ammonia gas is used for nitriding, a salt bath nitriding treatment method in which nitriding is performed by immersion in a salt bath containing sodium cyanate or potassium cyanate, nitrogen and hydrogen A plasma nitriding method for performing nitriding in a plasma state using a mixed gas has been put into practical use.

一方、ステンレス鋼は耐食性に優れていることから、化学プラント、原子力施設などの構造部材として広く使用されているが、材質的に軟らかいことから焼付きを生じやすく、疲労に対しても弱いので、これらの特性を強化することが望まれている。そのため、ステンレス鋼の表面に窒化処理を施す技術が適用される。   On the other hand, because stainless steel is excellent in corrosion resistance, it is widely used as a structural member for chemical plants, nuclear facilities, etc., but because it is soft in material, it tends to seize and is resistant to fatigue. It is desirable to enhance these properties. Therefore, a technique for performing nitriding treatment on the surface of stainless steel is applied.

例えば、オーステナイト系ステンレス鋼表面の窒化処理方法が特許文献1に開示されている。すなわち、この窒化処理方法は、オーステナイト系ステンレス鋼の表面に、ショットピーニング加工による加工変質層を形成し、かつその粗面の表面粗さを5.0〜40.0μmとし、次いでアンモニアガスの雰囲気中において400〜650℃に加熱して窒化処理を行うものである。この窒化処理方法によれば、オーステナイト系ステンレス鋼表面の窒化処理を簡単に行うことができるとともに、表面に十分な厚さと硬さを有する窒化層を形成することができる。   For example, Patent Document 1 discloses a method for nitriding austenitic stainless steel surface. That is, in this nitriding method, a work-affected layer is formed by shot peening on the surface of austenitic stainless steel, the surface roughness of the rough surface is 5.0 to 40.0 μm, and then the atmosphere of ammonia gas The nitriding treatment is performed by heating to 400 to 650 ° C. According to this nitriding method, the surface of the austenitic stainless steel can be easily nitrided, and a nitride layer having a sufficient thickness and hardness can be formed on the surface.

特開平9−78224号公報JP-A-9-78224

しかしながら、特許文献1に記載されている従来構成の窒化処理方法においては、窒化処理に先立ってステンレス鋼の表面に加工変質層を形成するショットピーニング加工という特殊な前処理を施さなければならなかった。しかも、その前処理によるステンレス鋼表面の表面粗さが5.0〜40.0μmという特定範囲に設定されている。このため、ステンレス鋼の表面に予め特定範囲の表面粗さを有する加工変質層を形成する前処理は煩雑であるとともに、加工変質層が窒化処理に及ぼす影響についても検討しなければならないという問題があった。   However, in the conventional nitriding method described in Patent Document 1, a special pretreatment called shot peening for forming a work-affected layer on the surface of stainless steel had to be performed prior to nitriding. . Moreover, the surface roughness of the stainless steel surface by the pretreatment is set to a specific range of 5.0 to 40.0 μm. For this reason, the pretreatment for forming a work-affected layer having a surface roughness in a specific range on the surface of stainless steel is complicated, and the influence of the work-affected layer on the nitriding treatment must be studied. there were.

オーステナイト系ステンレス鋼のその他の窒化処理方法として、ハロゲン化物による表面活性化を行う手法がある。しかし、この手法では、環境負荷物質であるハロゲン化物供給設備の管理負担や、軟窒化処理のための浸炭ガスを供給するための変成炉などの付属設備も必要となり、排ガス処理装置もエネルギー消費量が多い燃焼式の除外方法が使用されるなど、環境負荷物質の管理やエネルギー消費量が多い付属設備が必要となるなどの課題があった。   As another nitriding treatment method for austenitic stainless steel, there is a method of performing surface activation with a halide. However, this method also requires the burden of managing the supply of halides, which are environmentally hazardous substances, and additional equipment such as a shift furnace for supplying carburizing gas for nitrocarburizing treatment. There are problems such as the need for ancillary equipment management and energy consumption, such as the use of many combustion-type exclusion methods.

本発明はこのような従来技術に存在する問題点に着目してなされたものであり、その目的とするところは、軟窒化処理に先立って鉄鋼材料の表面に特別な前処理を施すことなく軟窒化処理を行うことができるとともに、鉄鋼材料の耐食性等の物性を維持又は向上させることができる軟窒化処理方法を提供することにある。   The present invention has been made by paying attention to such problems existing in the prior art, and the object of the present invention is to soften the surface of the steel material prior to the soft nitriding without any special pretreatment. An object of the present invention is to provide a soft nitriding method capable of performing nitriding treatment and maintaining or improving physical properties such as corrosion resistance of the steel material.

上記の目的を達成するために、請求項1に記載の発明の軟窒化処理方法は、尿素を含む窒化剤を加熱して熱分解し、その分解ガスにより軟窒化処理温度で鉄鋼材料の軟窒化処理を行う軟窒化処理方法において、前記軟窒化処理温度の下限は400℃であり、軟窒化処理温度の上限は440℃から400℃の範囲で段階的に低下するように設定されていることを特徴とする。   In order to achieve the above object, the soft nitriding method of the invention described in claim 1 heats and thermally decomposes a nitriding agent containing urea, and soft nitriding of the steel material at the soft nitriding temperature by the decomposition gas. In the soft nitriding method for performing the treatment, the lower limit of the soft nitriding temperature is 400 ° C., and the upper limit of the soft nitriding temperature is set to gradually decrease in the range of 440 ° C. to 400 ° C. Features.

請求項2に記載の発明の軟窒化処理方法は、請求項1に係る発明において、前記軟窒化処理温度の上限は440℃から400℃に亘って少なくとも2段階で低下するように設定されていることを特徴とする。   The soft nitriding treatment method according to a second aspect of the present invention is the invention according to the first aspect, wherein the upper limit of the soft nitriding temperature is set to decrease in at least two stages from 440 ° C. to 400 ° C. It is characterized by that.

請求項3に記載の発明の軟窒化処理方法は、請求項1又は請求項2に係る発明において、前記軟窒化処理温度の下限は軟窒化処理時間に拘らず400℃であり、軟窒化処理温度の上限は総軟窒化処理時間が3〜5時間までは440℃、その後総軟窒化処理時間が6〜10時間までは420℃であることを特徴とする。   The soft nitriding method of the invention according to claim 3 is the invention according to claim 1 or claim 2, wherein the lower limit of the soft nitriding temperature is 400 ° C. regardless of the soft nitriding time. Is characterized in that the total soft nitriding time is 440 ° C. until 3 to 5 hours, and then the total soft nitriding time is 420 ° C. until 6 to 10 hours.

請求項4に記載の発明の軟窒化処理方法は、請求項1から請求項3のいずれか一項に係る発明において、前記窒化剤は尿素のみにより構成されていることを特徴とする。
請求項5に記載の発明の軟窒化処理方法は、請求項1から請求項4のいずれか一項に係る発明において、前記鉄鋼材料はステンレス鋼であることを特徴とする。
According to a fourth aspect of the present invention, there is provided the soft nitriding method according to any one of the first to third aspects, wherein the nitriding agent is composed only of urea.
The soft nitriding method of the invention according to claim 5 is the invention according to any one of claims 1 to 4, characterized in that the steel material is stainless steel.

請求項6に記載の発明の軟窒化処理方法は、請求項5に係る発明において、前記ステンレス鋼はオーステナイト系ステンレス鋼であることを特徴とする。   The soft nitriding method of the invention described in claim 6 is the invention according to claim 5, wherein the stainless steel is an austenitic stainless steel.

本発明によれば、次のような効果を発揮することができる。
本発明の軟窒化処理方法では、尿素を含む窒化剤を加熱して熱分解し、その分解ガスにより軟窒化処理温度で鉄鋼材料の軟窒化処理を行うに際し、軟窒化処理温度の下限は400℃であり、軟窒化処理温度の上限は440℃から400℃の範囲で段階的に低下するように設定されている。このため、尿素が軟窒化処理温度で熱分解されてアンモニアガス、シアン化水素ガス、浸炭性ガス(一酸化炭素)等の分解ガスが生成し、その分解ガスの存在下に鉄鋼材料の軟窒化処理が行われる。
According to the present invention, the following effects can be exhibited.
In the soft nitriding method of the present invention, the lower limit of the soft nitriding temperature is 400 ° C. when the nitriding agent containing urea is thermally decomposed by heating and the soft nitriding treatment of the steel material is performed with the decomposition gas at the soft nitriding temperature. The upper limit of the soft nitriding temperature is set so as to decrease stepwise in the range of 440 ° C to 400 ° C. For this reason, urea is thermally decomposed at the soft nitriding temperature to generate a decomposition gas such as ammonia gas, hydrogen cyanide gas, carburizing gas (carbon monoxide), and the soft nitriding treatment of the steel material is performed in the presence of the decomposition gas. Done.

この軟窒化処理においては、分解ガスとして窒化性のアンモニアガス、還元性のシアン化水素ガス、浸炭性の一酸化炭素ガスなどが生成し、これらのガスはさらに分解して活性化窒素や活性化炭素を生じ、鉄鋼材料の表面から内部へ拡散して軟窒化層が形成される。同時に、シアン化水素などは鉄鋼材料表面の酸化膜を活性化することにより軟(浸炭)窒化反応が進行する。これらの軟窒化反応が、クロムを含む複合窒化物による化合物層の形成を抑えた状態で優先的に進行することから、鉄鋼材料の耐食性の低下が抑制される。   In this soft nitriding treatment, nitriding ammonia gas, reducing hydrogen cyanide gas, carburizing carbon monoxide gas, and the like are generated as decomposition gases, and these gases are further decomposed to produce activated nitrogen and activated carbon. It is generated and diffused from the surface of the steel material to the inside to form a soft nitrided layer. At the same time, hydrogen cyanide or the like activates an oxide film on the surface of the steel material to cause a soft (carburizing) nitriding reaction. Since these soft nitriding reactions proceed preferentially in a state where the formation of the compound layer by the composite nitride containing chromium is suppressed, a decrease in the corrosion resistance of the steel material is suppressed.

従って、本発明の軟窒化処理方法によれば、軟窒化処理に先立って鉄鋼材料の表面に特別な前処理を施すことなく軟窒化処理を行うことができるとともに、鉄鋼材料の耐食性等の物性を維持又は向上させることができるという効果を奏する。   Therefore, according to the soft nitriding method of the present invention, soft nitriding can be performed without special pretreatment on the surface of the steel material prior to the soft nitriding treatment, and physical properties such as corrosion resistance of the steel material can be obtained. There exists an effect that it can maintain or improve.

本発明を具体化した実施形態における窒化処理装置の概略を示す断面図。BRIEF DESCRIPTION OF THE DRAWINGS Sectional drawing which shows the outline of the nitriding apparatus in embodiment which actualized this invention. 実施形態における軟窒化処理時間と軟窒化処理温度との関係を示すグラフ。The graph which shows the relationship between the soft nitriding processing time and soft nitriding processing temperature in embodiment. 実施例1における軟窒化処理時間と軟窒化処理温度との関係を示すグラフ。3 is a graph showing the relationship between soft nitriding time and soft nitriding temperature in Example 1. FIG. 実施例1で得られた母材表面の軟窒化層を示す断面図。2 is a cross-sectional view showing a soft nitrided layer on the surface of a base material obtained in Example 1. FIG.

以下、本発明を具体化した実施形態に関し、図1及び図2に基づいて詳細に説明する。
まず、本実施形態の軟窒化処理方法を実施するための窒化処理装置について説明する。図1に示すように、窒化処理槽11は有底筒状に形成され、その内側下部には支持板12が架設され、被窒化処理物としての鉄鋼材料を収容するカゴ13が支持されている。被窒化処理物としては、ステンレス鋼のほか、軟鋼、金型鋼等が使用される。これらの鉄鋼材料のうちステンレス鋼は耐食性に優れているため化学装置、原子力設備等の構造材料として好適に用いられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to FIGS.
First, a nitriding apparatus for carrying out the soft nitriding method of this embodiment will be described. As shown in FIG. 1, the nitriding tank 11 is formed in a bottomed cylindrical shape, and a support plate 12 is erected on the inner lower part thereof, and a basket 13 that stores a steel material as a nitriding object is supported. . As the material to be nitrided, in addition to stainless steel, mild steel, mold steel, and the like are used. Of these steel materials, stainless steel is excellent in corrosion resistance and is therefore suitably used as a structural material for chemical equipment, nuclear facilities, and the like.

しかし、ステンレス鋼は材質的に軟らかいことから焼付きを生じやすく、疲労に対しても弱いことから、これらの特性を向上させるために表面に浸炭処理や窒化処理が施される。ステンレス鋼としては、例えばオーステナイト系ステンレス鋼(SUS304、SUS316等)が挙げられる。窒化処理槽11には、窒化剤としての尿素を窒化処理槽11内の底部に導く導入流路14が導入用バルブ15を介して接続されている。   However, since stainless steel is soft in material, it tends to cause seizure and is vulnerable to fatigue, so that the surface is subjected to carburizing or nitriding in order to improve these characteristics. Examples of the stainless steel include austenitic stainless steel (SUS304, SUS316, etc.). An introduction flow path 14 that leads urea as a nitriding agent to the bottom of the nitriding treatment tank 11 is connected to the nitriding treatment tank 11 via an introduction valve 15.

該導入流路14の上流部にはスクリューコンベア16が配設され、その入口側に設けられた投入口17から前記尿素が投入され、スクリューコンベア16により尿素が導入流路14に供給されるように構成されている。窒化剤は、尿素〔CO(NH〕を含むものであり、尿素のほか、尿素樹脂、メラミン、メラミン樹脂等が含まれていてもよい。尿素としては、入手の容易性や安価な点で粒状尿素を用いることが好ましい。前記スクリューコンベア16には置換ガス導入口18が接続され、窒素ガス等の置換ガスが導入流路14に導入されるようになっている。 A screw conveyor 16 is disposed upstream of the introduction channel 14, and the urea is introduced from an inlet 17 provided on the inlet side thereof, so that urea is supplied to the introduction channel 14 by the screw conveyor 16. It is configured. The nitriding agent contains urea [CO (NH 2 ) 2 ], and may contain urea resin, melamine, melamine resin and the like in addition to urea. As urea, it is preferable to use granular urea in terms of availability and low cost. A replacement gas introduction port 18 is connected to the screw conveyor 16, and a replacement gas such as nitrogen gas is introduced into the introduction flow path 14.

前記窒化処理槽11の周囲には加熱装置19が配置されている。この加熱装置19によって窒化処理槽11内を加熱することにより、尿素を分解して軟窒化処理用のガスすなわちアンモニアガス(NH)、シアン化水素ガス(HCN)、一酸化炭素ガス(CO)等の分解ガスを発生させるとともに、その分解ガスに基づく軟窒化反応により鉄鋼材料の軟窒化処理を行うようになっている。 A heating device 19 is disposed around the nitriding tank 11. By heating the inside of the nitriding tank 11 by the heating device 19, urea is decomposed and a soft nitriding gas such as ammonia gas (NH 3 ), hydrogen cyanide gas (HCN), carbon monoxide gas (CO), etc. A cracking gas is generated, and a soft nitriding treatment of a steel material is performed by a soft nitriding reaction based on the cracked gas.

窒化処理槽11の頂壁には置換ガス導入管20が連結され、窒化処理槽11内に置換ガスを導入できるように構成されている。また、窒化処理槽11の頂壁には撹拌機21が取付けられ、窒化処理槽11内において軟窒化処理用の分解ガスを撹拌して鉄鋼材料に均一に供給するようになっている。   A substitution gas introduction pipe 20 is connected to the top wall of the nitriding treatment tank 11 so that the substitution gas can be introduced into the nitriding treatment tank 11. In addition, a stirrer 21 is attached to the top wall of the nitriding tank 11 so that the cracking gas for soft nitriding treatment is stirred in the nitriding tank 11 and supplied uniformly to the steel material.

前記加熱装置19によって窒化処理槽11内の温度(軟窒化処理温度)が400〜440℃に設定され、鉄鋼材料表面に軟窒化処理が施されるように構成されている。軟窒化処理温度の下限は400℃であり、軟窒化処理温度の上限は440℃から400℃に亘って段階的に低下するように設定される。軟窒化処理温度の上限は440℃から400℃に亘って少なくとも2段階で低下するように設定されることが好ましい。   The temperature in the nitriding tank 11 (soft nitriding temperature) is set to 400 to 440 ° C. by the heating device 19 so that the surface of the steel material is subjected to soft nitriding. The lower limit of the soft nitriding temperature is 400 ° C., and the upper limit of the soft nitriding temperature is set so as to decrease stepwise from 440 ° C. to 400 ° C. The upper limit of the soft nitriding temperature is preferably set so as to decrease in at least two stages from 440 ° C. to 400 ° C.

図2の実線及び二点鎖線に示すように、具体的には、軟窒化処理温度の下限は軟窒化処理時間に拘らず400℃であり、軟窒化処理温度の上限は総軟窒化処理時間が3〜5時間までは440℃、その後総軟窒化処理時間が15〜17時間までは420℃、その後は軟窒化処理温度の下限と同じ400℃であることが好ましい。すなわち、軟窒化処理時間に対して軟窒化処理温度は、図2の斜線で示す低温の温度領域R内で推移するように設定することが望ましい。軟窒化処理温度がこの温度領域R内で推移すれば軟窒化処理時間は制限されず、いずれの軟窒化処理時間に軟窒化処理を停止しても差し支えない。   Specifically, as indicated by the solid line and the two-dot chain line in FIG. 2, the lower limit of the soft nitriding temperature is 400 ° C. regardless of the soft nitriding time, and the upper limit of the soft nitriding temperature is the total soft nitriding time. It is preferable that the temperature is 440 ° C. for 3 to 5 hours, then the total soft nitriding time is 420 ° C. for 15 to 17 hours, and then 400 ° C., which is the same as the lower limit of the nitrocarburizing temperature. That is, it is desirable to set the soft nitriding temperature with respect to the soft nitriding time so as to change in the low temperature range R indicated by the oblique lines in FIG. If the nitrocarburizing temperature changes within this temperature region R, the nitrocarburizing time is not limited, and the nitrocarburizing treatment may be stopped at any soft nitriding time.

前記加熱時の温度が温度領域Rの下限を外れて400℃より低い場合には、軟窒化処理において窒素原子による軟窒化層(拡散層)の形成が十分に行われなくなる。その一方、温度領域Rの上限を外れて440℃より高い場合には、鉄鋼材料の表面に窒化物に基づく化合物層が形成され、鉄鋼材料の耐食性が低下し、非磁性材料であるオーステナイト系ステンレス鋼が磁性材料となる傾向を示す。上記軟窒化層(化合物層のない拡散層のみの軟窒化層)は8時間程度の処理で鉄鋼材料の表面から通常15μmを超える深さに形成される。   When the temperature at the time of heating exceeds the lower limit of the temperature region R and is lower than 400 ° C., a soft nitriding layer (diffusion layer) is not sufficiently formed by nitrogen atoms in the soft nitriding treatment. On the other hand, when the temperature range R exceeds the upper limit of 440 ° C., a compound layer based on nitride is formed on the surface of the steel material, the corrosion resistance of the steel material is lowered, and austenitic stainless steel that is a nonmagnetic material. Steel tends to be a magnetic material. The soft nitriding layer (soft nitriding layer having only a diffusion layer without a compound layer) is formed to a depth of usually more than 15 μm from the surface of the steel material by treatment for about 8 hours.

前記尿素は、400〜440℃に加熱することにより熱分解し、アンモニア(NH)ガス、シアン化水素(HCN)ガス等の分解ガスを発生する。この分解ガスを利用して軟窒化反応を行い、鉄鋼材料の軟窒化処理を実施することができる。 The urea is thermally decomposed by heating to 400 to 440 ° C. to generate a decomposition gas such as ammonia (NH 3 ) gas or hydrogen cyanide (HCN) gas. A soft nitriding reaction can be performed using this decomposition gas to carry out a soft nitriding treatment of the steel material.

前記窒化処理槽11の上部において、導入流路14と反対側には導出流路22が接続され、該導出流路22には導出用バルブ23と並列し、軟窒化処理中の圧力調整を行うリリーフ機構25が設けられている。この導出流路22の端部には、排ガス処理装置24が配置され、窒化処理槽11内の排ガスを燃焼又は触媒処理させて脱臭、無害化するように構成されている。   In the upper part of the nitriding tank 11, an outlet channel 22 is connected to the opposite side of the inlet channel 14, and the outlet channel 22 is parallel to the outlet valve 23 to adjust the pressure during the soft nitriding process. A relief mechanism 25 is provided. An exhaust gas treatment device 24 is disposed at the end of the lead-out flow path 22 and is configured to deodorize and detoxify the exhaust gas in the nitriding tank 11 by burning or catalytic treatment.

前記排ガス処理装置24は筒状に形成され、その内部の下流側には触媒反応温度が300℃程度の白金触媒やアンモニア用触媒等による触媒層26が設けられている。排ガス処理装置24の上流部にはヒータ27が埋設され、排ガス処理装置24内を加熱できるようになっている。また、排ガス処理装置24の上流部には燃焼用空気導入管28が接続されるとともに、排ガス処理装置24の中央部には希釈空気導入管29が接続されている。   The exhaust gas treatment device 24 is formed in a cylindrical shape, and a catalyst layer 26 made of a platinum catalyst having a catalytic reaction temperature of about 300 ° C. or an ammonia catalyst is provided on the downstream side. A heater 27 is embedded in the upstream portion of the exhaust gas treatment device 24 so that the inside of the exhaust gas treatment device 24 can be heated. A combustion air introduction pipe 28 is connected to the upstream portion of the exhaust gas treatment device 24, and a dilution air introduction pipe 29 is connected to the center portion of the exhaust gas treatment device 24.

そして、軟窒化処理時には、リリーフ機構25から漏れた400℃程度の排ガスの排熱温度を活用し、希釈空気導入管29から導入される少量の希釈空気で希釈し、触媒反応温度が300℃程度である触媒層26を活用して触媒処理が行われる。軟窒化処理の終了後には、導出用バルブ23を開けることにより、排ガスが排ガス処理装置24内に導かれ、ヒータ27で加熱されるとともに、燃焼用空気導入管28から燃焼用空気が導入されて燃焼処理が行われる。従って、このような触媒処理と燃焼処理とを行う排ガス処理装置24は、省エネタイプの排ガス処理機構である。   At the time of soft nitriding, the exhaust heat temperature of the exhaust gas of about 400 ° C. leaked from the relief mechanism 25 is utilized, diluted with a small amount of diluted air introduced from the diluted air introduction pipe 29, and the catalytic reaction temperature is about 300 ° C. The catalyst treatment is performed by utilizing the catalyst layer 26. After the nitrocarburizing process is completed, the exhaust valve 23 is opened to introduce the exhaust gas into the exhaust gas treatment device 24, where it is heated by the heater 27, and combustion air is introduced from the combustion air introduction pipe 28. A combustion process is performed. Therefore, the exhaust gas treatment device 24 that performs such catalyst treatment and combustion treatment is an energy-saving exhaust gas treatment mechanism.

次に、上記のように構成された窒化処理槽11を用いた軟窒化処理方法を作用とともに説明する。
さて、図1に示すように、ステンレス鋼等の鉄鋼材料の軟窒化処理を行う場合には、窒化処理槽11内の支持板12上のカゴ13内に鉄鋼材料を配置するとともに、スクリューコンベア16の投入口17に所定量の尿素を投入し、スクリューコンベア16を回転させ、導入流路14を介して窒化処理槽11内に供給する。次いで、導入流路14の導入用バルブ15を閉じるとともに、導出流路22の導出用バルブ23を閉じる。その状態で、加熱装置19により窒化処理槽11内を加熱する。
Next, the soft nitriding method using the nitriding tank 11 configured as described above will be described together with its function.
As shown in FIG. 1, when soft nitriding of a steel material such as stainless steel is performed, the steel material is disposed in the cage 13 on the support plate 12 in the nitriding tank 11 and the screw conveyor 16. A predetermined amount of urea is charged into the charging port 17, the screw conveyor 16 is rotated, and is supplied into the nitriding treatment tank 11 through the introduction channel 14. Next, the introduction valve 15 of the introduction channel 14 is closed, and the derivation valve 23 of the derivation channel 22 is closed. In this state, the inside of the nitriding tank 11 is heated by the heating device 19.

このとき、図2の実線及び二点鎖線に示すように、窒化処理槽11内の軟窒化処理温度は総軟窒化処理時間が3〜5時間までは440℃、その後総軟窒化処理時間が15〜17時間までは420℃、その後は400℃に設定される。このように、窒化処理槽11内の軟窒化処理温度を440℃から段階的に400℃まで低下させることにより、尿素の熱分解反応と、その熱分解反応で生成した分解ガスによる窒化反応とをバランス良く進行させ、前記窒化物に基づく化合物層の生成を抑制することができる。   At this time, as shown by a solid line and a two-dot chain line in FIG. 2, the soft nitriding temperature in the nitriding tank 11 is 440 ° C. until the total soft nitriding time is 3 to 5 hours, and the total soft nitriding time is 15 after that. It is set to 420 ° C. until ˜17 hours, and then to 400 ° C. Thus, by reducing the soft nitriding temperature in the nitriding tank 11 from 440 ° C. to 400 ° C. in steps, the thermal decomposition reaction of urea and the nitriding reaction by the decomposition gas generated by the thermal decomposition reaction are performed. It is possible to proceed in a well-balanced manner and to suppress the formation of the compound layer based on the nitride.

すなわち、窒化処理槽11内の温度を440℃に上昇させると、尿素は熱分解してアンモニアガス、シアン化水素ガス、一酸化炭素ガス等の分解ガスが発生する。アンモニアガス及び一酸化炭素等は、鉄鋼材料の表面で活性化窒素及び活性化炭素となり、内部へ拡散して浸炭窒化拡散層が形成される。同時に、分解ガスのうち還元性のシアン化水素などは鉄鋼材料表面の酸化膜を活性化し、浸炭や窒化が困難とされているオーステナイト系ステンレス鋼についても、窒素原子及び炭素原子が鉄鋼材料の表面から内部に拡散浸透する軟窒化処理を可能とする。   That is, when the temperature in the nitriding tank 11 is raised to 440 ° C., urea is thermally decomposed to generate decomposition gases such as ammonia gas, hydrogen cyanide gas, carbon monoxide gas. Ammonia gas, carbon monoxide, and the like become activated nitrogen and activated carbon on the surface of the steel material and diffuse into the inside to form a carbonitriding diffusion layer. At the same time, reducing hydrogen cyanide in the cracked gas activates the oxide film on the surface of the steel material, and even in the austenitic stainless steel, where carburization and nitriding are difficult, nitrogen atoms and carbon atoms are introduced from the surface of the steel material. Soft nitriding treatment that diffuses and penetrates into the substrate is possible.

このとき、窒化処理槽11内の軟窒化処理温度が初期には高く、その後段階的に低くなるように設定されていることから、副反応が抑えられ、前記分解ガスによる軟窒化反応が優位に進行し、鉄鋼材料表面が軟窒化層により強化されるとともに、クロムを含む複合窒化物による化合物層の形成が抑えられ、鉄鋼材料の耐食性の低下が抑制される。   At this time, since the soft nitriding temperature in the nitriding tank 11 is set to be initially high and then gradually reduced, side reactions are suppressed, and the soft nitriding reaction by the decomposition gas is dominant. As the steel material surface is strengthened by the soft nitride layer, the formation of the compound layer by the composite nitride containing chromium is suppressed, and the deterioration of the corrosion resistance of the steel material is suppressed.

以上の窒化処理後においては、導出流路22の導出用バルブ23を開いて窒化処理槽11内のガスを導出流路22から排ガス処理装置24に導き、そこで排ガスを燃焼又は触媒処理させて脱臭及び無害化処理が行われる。   After the above nitriding treatment, the derivation valve 23 of the derivation flow path 22 is opened to guide the gas in the nitriding treatment tank 11 from the derivation flow path 22 to the exhaust gas treatment device 24, where the exhaust gas is burned or catalytically treated for deodorization. And detoxification processing is performed.

以上詳述した実施形態によって発揮される効果を以下にまとめて記載する。
(1)本実施形態における軟窒化処理方法では、尿素を加熱して熱分解し、その分解ガスにより鉄鋼材料の軟窒化処理を行うに際し、軟窒化処理温度の下限が400℃であり、上限が440℃から400℃に亘って段階的に低下するように設定されている。このため、軟窒化処理は軟窒化処理温度の下限と上限との間の低温で行われ、尿素が熱分解されてアンモニアガス、シアン化水素ガス、一酸化炭素ガス等の分解ガスが生成し、その分解ガスにより、前記化合物層の形成を抑制しつつ、鉄鋼材料の軟窒化処理を効率良く実施することができる。
The effects exhibited by the embodiment described in detail above will be collectively described below.
(1) In the soft nitriding method in the present embodiment, when urea is heated and pyrolyzed, and the soft nitriding treatment of the steel material is performed using the decomposition gas, the lower limit of the soft nitriding temperature is 400 ° C., and the upper limit is It is set so as to decrease stepwise from 440 ° C to 400 ° C. For this reason, soft nitriding is performed at a low temperature between the lower and upper limits of the soft nitriding temperature, and urea is thermally decomposed to generate decomposition gases such as ammonia gas, hydrogen cyanide gas, carbon monoxide gas, and the decomposition. The soft nitriding treatment of the steel material can be performed efficiently while suppressing the formation of the compound layer by the gas.

従って、本実施形態の軟窒化処理方法によれば、軟窒化処理に先立って鉄鋼材料の表面に特別な前処理を施すことなく軟窒化処理を行うことができるとともに、鉄鋼材料の耐食性、表面の硬さ、耐摩耗性、耐疲労性等の物性を向上させることができるという効果を奏する。
(2)前記軟窒化処理温度の上限は440℃から400℃に亘って少なくとも2段階で低下するように設定されている。このため、尿素の分解による窒素原子の生成及びその窒素原子による窒化反応の促進と、窒化物に基づく化合物層の生成反応の抑制とを効果的に行うことができる。
(3)前記軟窒化処理温度の下限は軟窒化処理時間に拘らず400℃であり、軟窒化処理温度の上限は総軟窒化処理時間が3〜5時間までは440℃、その後総軟窒化処理時間が6〜10時間までは420℃である。この場合には、窒化反応の促進と、前記化合物層の生成反応の抑制とを一層効果的に行うことができる。
(4)前記窒化剤が尿素のみにより構成されていることにより、その熱分解によって窒化性のアンモニアガス、浸炭性の一酸化炭素及び還元性のシアン化水素ガスを生成させることができ、鉄鋼材料の表面に窒素原子の拡散層を速やかに形成することができる。
(5)前記鉄鋼材料はステンレス鋼である。このため、ステンレス鋼のもつ耐食性を保持しつつ、ステンレス鋼表面の硬さ等の物性を向上させることができる。
(6)前記ステンレス鋼はオーステナイト系ステンレス鋼である。そのため、本窒化処理により、非磁性のままオーステナイト系ステンレス鋼のもつ優れた耐食性を保持又は向上しつつ、耐磨耗性、耐疲労性(耐久性)の向上を図ることができる。
(7)窒化処理槽11内において、尿素の分解と軟窒化処理を同時に行うことから、浸炭ガス生成用の変成炉やハロゲン化物供給装置又は尿素の熱分解炉を窒化処理槽11とは別に設ける必要がなく、装置の構成を簡易にできるとともに、軟窒化処理を効率良く実施することができる。
(8)本実施形態の窒化処理方法では、軟窒化処理温度が440℃以下で実施できることと、プロパンガス等から浸炭性ガスを生成するための別置の変成炉での加熱処理が不要なため、従来の例えば570℃で行うガス窒化処理方法に比べて、加熱温度が著しく低く、省エネルギー化を図ることができる。
Therefore, according to the soft nitriding method of the present embodiment, the soft nitriding treatment can be performed without performing a special pretreatment on the surface of the steel material prior to the soft nitriding treatment, the corrosion resistance of the steel material, There is an effect that physical properties such as hardness, wear resistance and fatigue resistance can be improved.
(2) The upper limit of the soft nitriding temperature is set so as to decrease in at least two stages from 440 ° C. to 400 ° C. For this reason, the production | generation of the nitrogen atom by decomposition | disassembly of urea, acceleration | stimulation of the nitriding reaction by the nitrogen atom, and suppression of the production | generation reaction of the compound layer based on nitride can be performed effectively.
(3) The lower limit of the soft nitriding temperature is 400 ° C. regardless of the soft nitriding time, the upper limit of the soft nitriding temperature is 440 ° C. until the total soft nitriding time is 3 to 5 hours, and then the total soft nitriding treatment. The temperature is 420 ° C. until 6 to 10 hours. In this case, acceleration of the nitriding reaction and suppression of the formation reaction of the compound layer can be performed more effectively.
(4) Since the nitriding agent is composed only of urea, nitriding ammonia gas, carburizing carbon monoxide and reducing hydrogen cyanide gas can be generated by thermal decomposition, and the surface of the steel material In addition, a diffusion layer of nitrogen atoms can be quickly formed.
(5) The steel material is stainless steel. For this reason, physical properties, such as the hardness of the stainless steel surface, can be improved, maintaining the corrosion resistance which stainless steel has.
(6) The stainless steel is an austenitic stainless steel. Therefore, this nitriding treatment can improve wear resistance and fatigue resistance (durability) while maintaining or improving the excellent corrosion resistance of austenitic stainless steel while remaining non-magnetic.
(7) Since the decomposition and soft nitriding of urea are simultaneously performed in the nitriding tank 11, a shift furnace for generating carburizing gas, a halide supply device, or a thermal decomposition furnace for urea is provided separately from the nitriding tank 11. This is not necessary, and the configuration of the apparatus can be simplified, and the soft nitriding treatment can be performed efficiently.
(8) In the nitriding method of the present embodiment, the soft nitriding temperature can be implemented at 440 ° C. or less, and the heat treatment in a separate shift furnace for generating carburizing gas from propane gas or the like is not necessary. Compared with a conventional gas nitriding method performed at, for example, 570 ° C., the heating temperature is significantly lower, and energy saving can be achieved.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明する。
(実施例1及び比較例1)
鉄鋼材料として、オーステナイト系ステンレス鋼(SUS304)の板材を使用した。このステンレス鋼の組成は、炭素(C)0.06質量%、シリカ(Si)0.43質量%、マンガン(Mn)1.11質量%、リン(P)0.031質量%、硫黄(S)0.005質量%、ニッケル(Ni)8.04質量%、クロム(Cr)18.07質量%、残部鉄(Fe)であった。
Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples.
(Example 1 and Comparative Example 1)
As the steel material, an austenitic stainless steel (SUS304) plate was used. The composition of this stainless steel is carbon (C) 0.06% by mass, silica (Si) 0.43% by mass, manganese (Mn) 1.11% by mass, phosphorus (P) 0.031% by mass, sulfur (S ) 0.005 mass%, nickel (Ni) 8.04 mass%, chromium (Cr) 18.07 mass%, and the balance iron (Fe).

そして、実施例1では、窒化処理槽11内のカゴ13中に鉄鋼材料としてステンレス鋼の板材を支持した。また、スクリューコンベア16の投入口17から尿素を投入し、その尿素を、導入流路14を介して窒化処理槽11内に供給した。続いて、加熱装置19で窒化処理槽11内を加熱し、窒化処理槽11内の軟窒化処理温度を図3に示すように変化させ、尿素の熱分解及びステンレス鋼の軟窒化処理を行った。すなわち、総軟窒化処理時間が4時間までは窒化処理槽11内の軟窒化処理温度が440℃、その後総軟窒化処理時間が8時間までは温度が420℃となるように設定した。   In Example 1, a stainless steel plate material was supported as a steel material in the basket 13 in the nitriding tank 11. Further, urea was introduced from the inlet 17 of the screw conveyor 16, and the urea was supplied into the nitriding treatment tank 11 through the introduction flow path 14. Subsequently, the inside of the nitriding tank 11 was heated with the heating device 19, and the soft nitriding temperature in the nitriding tank 11 was changed as shown in FIG. 3 to perform thermal decomposition of urea and soft nitriding of stainless steel. . That is, the soft nitriding temperature in the nitriding tank 11 was set to 440 ° C. until the total soft nitriding time was 4 hours, and then the temperature was set to 420 ° C. until the total soft nitriding time was 8 hours.

この軟窒化処理によって得られたステンレス鋼表面の軟窒化層(拡散層)の厚さを、次のような方法で測定した。
すなわち、軟窒化処理後のステンレス鋼を切断した状態で、マーブル腐食液(硫酸銅4g、塩酸20ml及び水20mlの割合の混合液)に浸漬した後、ステンレス鋼の表面から、切断面の色調が異なる境界部までの厚さを測定し、軟窒化層の厚さとした。なお、ステンレス鋼の母材は黒色系で軟窒化層は白色系になるため、境界部を判別することができる。その結果、図4に示すように、母材30の表面に厚さ16μmで、ほぼ均一な厚さの軟窒化層31が形成されていた。
The thickness of the soft nitriding layer (diffusion layer) on the stainless steel surface obtained by the soft nitriding treatment was measured by the following method.
That is, after the nitrocarburized stainless steel is cut, it is immersed in a marble corrosion solution (mixed solution of 4 g of copper sulfate, 20 ml of hydrochloric acid and 20 ml of water), and then the color of the cut surface is changed from the surface of the stainless steel. The thickness up to different boundary portions was measured and used as the thickness of the soft nitrided layer. Since the stainless steel base material is black and the nitrocarburized layer is white, the boundary can be identified. As a result, as shown in FIG. 4, a soft nitride layer 31 having a thickness of 16 μm and a substantially uniform thickness was formed on the surface of the base material 30.

また、比較例1では、鉄鋼材料として実施例1と同じステンレス鋼を使用し、実施例1の軟窒化処理を行わなかった。
実施例1で軟窒化処理後に得られたステンレス鋼及び比較例1のステンレス鋼について、耐食性の試験(硫酸腐食試験)をJIS−G0591に準拠し、ステンレス鋼を5質量%硫酸水溶液中に6時間浸漬することによって行った。
Moreover, in the comparative example 1, the same stainless steel as Example 1 was used as a steel material, and the soft nitriding process of Example 1 was not performed.
The stainless steel obtained after soft nitriding in Example 1 and the stainless steel of Comparative Example 1 were subjected to a corrosion resistance test (sulfuric acid corrosion test) in accordance with JIS-G0591, and the stainless steel was immersed in a 5% by mass sulfuric acid aqueous solution for 6 hours. This was done by dipping.

その結果、比較例1の未処理のステンレス鋼では質量減少が10.0(g/m・h)であったのに対し、実施例1で得られた軟窒化処理後のステンレス鋼では質量減少を2.6(g/m・h)に抑えることができ、耐食性は良好であることが示された。 As a result, the mass reduction was 10.0 (g / m 2 · h) in the untreated stainless steel of Comparative Example 1, whereas the mass after the soft nitriding treatment obtained in Example 1 was mass. The decrease could be suppressed to 2.6 (g / m 2 · h), indicating that the corrosion resistance was good.

また、実施例1で得られた軟窒化処理後のステンレス鋼についてその表面から約10μmの深さの断面におけるビッカース硬さを測定した結果777HVで、表面は900〜1,000HVであった。
(実施例2)
前記実施例1において、窒化処理槽11内の軟窒化処理温度を終始400℃に保持した以外は、実施例1と同様にしてステンレス鋼の軟窒化処理を行った。その結果、得られたステンレス鋼表面の軟窒化層(拡散層)の厚さは、約1μmであった。この軟窒化処理後のステンレス鋼は、その表面に厚さ1μmの軟窒化層が形成されていることから、その表面における耐食性について実施例1とほぼ同等の効果が得られるものと推測される。
(比較例2及び3)
比較例2では、実施例1において、窒化処理槽11内の軟窒化処理温度を550℃の一定温度とした以外は実施例1と同様にして軟窒化処理を行った。比較例3では、比較例2おける浸炭窒化処理を行わなかった。そして、軟窒化処理後の比較例2のステンレス鋼及び未処理の比較例3のステンレス鋼について、下記に示す方法で耐食性の試験を行った。
Further, the Vickers hardness of the cross section having a depth of about 10 μm from the surface of the stainless steel after the soft nitriding treatment obtained in Example 1 was 777 HV, and the surface was 900 to 1,000 HV.
(Example 2)
In Example 1, the soft nitriding treatment of stainless steel was performed in the same manner as in Example 1 except that the soft nitriding temperature in the nitriding treatment tank 11 was kept at 400 ° C. throughout. As a result, the thickness of the soft nitriding layer (diffusion layer) on the surface of the obtained stainless steel was about 1 μm. Since the soft nitrided layer having a thickness of 1 μm is formed on the surface of the stainless steel after the soft nitriding treatment, it is presumed that the effect equivalent to that of Example 1 is obtained with respect to the corrosion resistance on the surface.
(Comparative Examples 2 and 3)
In Comparative Example 2, soft nitriding was performed in the same manner as in Example 1 except that the soft nitriding temperature in the nitriding tank 11 was set to a constant temperature of 550 ° C. in Example 1. In Comparative Example 3, the carbonitriding process in Comparative Example 2 was not performed. And the corrosion resistance test was done by the method shown below about the stainless steel of the comparative example 2 after nitrocarburizing treatment, and the stainless steel of the untreated comparative example 3.

すなわち、試験溶液として、濃度60質量%の濃硝酸を純水で希釈して濃度5質量%とした硝酸水を用いた。一方、ステンレス鋼の表面をアセトンで脱脂処理した。そして、ステンレス鋼を室温で濃度5質量%の硝酸水中に48時間浸漬し、浸漬前後の質量変化を測定した。   That is, as a test solution, a nitric acid solution having a concentration of 5% by mass by diluting concentrated nitric acid having a concentration of 60% by mass with pure water was used. On the other hand, the surface of stainless steel was degreased with acetone. And stainless steel was immersed in nitric acid with a concentration of 5% by mass at room temperature for 48 hours, and the mass change before and after immersion was measured.

その結果、比較例3の未処理材ではステンレス鋼の質量減少が0.019(g/m・h)であったのに対し、比較例2ではステンレス鋼の質量減少が1.212(g/m・h)であった。従って、軟窒化処理温度を550℃という高温の一定温度で行った場合には、ステンレス鋼の表面に形成された軟窒化層(拡散層)の上に前記化合物層が形成されているため、耐食性が低下したものと考えられる。 As a result, in the untreated material of Comparative Example 3, the mass reduction of stainless steel was 0.019 (g / m 2 · h), whereas in Comparative Example 2, the mass reduction of stainless steel was 1.212 (g / M 2 · h). Accordingly, when the soft nitriding temperature is set at a constant high temperature of 550 ° C., the compound layer is formed on the soft nitriding layer (diffusion layer) formed on the surface of the stainless steel. Is thought to have been reduced.

なお、前記実施形態を次のように変更して具体化することも可能である。
・ 前記窒化処理槽11内における軟窒化処理温度の上限を、前記温度領域R内において、440〜400℃に亘って3段階又は4段階以上に低下するように構成してもよい。
It should be noted that the embodiment described above can be modified and embodied as follows.
-You may comprise so that the upper limit of the soft nitriding temperature in the said nitriding tank 11 may fall in three steps or four steps or more over 440-400 degreeC in the said temperature range R.

・ 前記窒化処理における軟窒化処理時間を、前記温度領域R内で適宜延長又は短縮するように設定してもよい。
・ 前記窒化処理槽11内におけるアンモニアガス、シアン化水素ガス又は一酸化炭素ガスの濃度を測定し、それらの濃度に基づいて温度領域R内で軟窒化処理温度や軟窒化処理時間を調整してもよい。
The soft nitriding treatment time in the nitriding treatment may be set so as to be extended or shortened as appropriate within the temperature region R.
-The concentration of ammonia gas, hydrogen cyanide gas or carbon monoxide gas in the nitriding treatment tank 11 may be measured, and the soft nitriding temperature and soft nitriding time may be adjusted in the temperature region R based on these concentrations. .

11…窒化処理槽、19…加熱装置、R…温度領域。   11 ... Nitriding tank, 19 ... Heating device, R ... Temperature region.

Claims (6)

尿素を含む窒化剤を加熱して熱分解し、その分解ガスにより軟窒化処理温度で鉄鋼材料の軟窒化処理を行う軟窒化処理方法において、
前記軟窒化処理温度の下限は400℃であり、軟窒化処理温度の上限は440℃から400℃の範囲で段階的に低下するように設定されていることを特徴とする軟窒化処理方法。
In a nitrocarburizing treatment method in which a nitriding agent containing urea is heated and thermally decomposed, and the nitrocarburizing treatment of the steel material is performed at the soft nitriding treatment temperature by the decomposition gas,
The soft nitriding treatment method is characterized in that the lower limit of the soft nitriding temperature is 400 ° C., and the upper limit of the soft nitriding temperature is set so as to decrease stepwise in the range of 440 ° C. to 400 ° C.
前記軟窒化処理温度の上限は440℃から400℃の範囲で少なくとも2段階で低下するように設定されていることを特徴とする請求項1に記載の軟窒化処理方法。 2. The soft nitriding method according to claim 1, wherein the upper limit of the soft nitriding temperature is set to fall in at least two stages in a range of 440 ° C. to 400 ° C. 2. 前記軟窒化処理温度の下限は軟窒化処理時間に拘らず400℃であり、軟窒化処理温度の上限は総軟窒化処理時間が3〜5時間までは440℃、その後総軟窒化処理時間が6〜10時間までは420℃であることを特徴とする請求項1又は請求項2に記載の軟窒化処理方法。 The lower limit of the soft nitriding temperature is 400 ° C. regardless of the soft nitriding time. The upper limit of the soft nitriding temperature is 440 ° C. until the total soft nitriding time is 3 to 5 hours, and then the total soft nitriding time is 6. The soft nitriding method according to claim 1 or 2, wherein the temperature is 420 ° C for up to 10 hours. 前記窒化剤は尿素のみにより構成されていることを特徴とする請求項1から請求項3のいずれか一項に記載の軟窒化処理方法。 The soft nitriding method according to any one of claims 1 to 3, wherein the nitriding agent is composed only of urea. 前記鉄鋼材料はステンレス鋼であることを特徴とする請求項1から請求項4のいずれか一項に記載の軟窒化処理方法。 The soft nitriding method according to any one of claims 1 to 4, wherein the steel material is stainless steel. 前記ステンレス鋼はオーステナイト系ステンレス鋼であることを特徴とする請求項5に記載の軟窒化処理方法。 6. The soft nitriding method according to claim 5, wherein the stainless steel is an austenitic stainless steel.
JP2012273573A 2012-12-14 2012-12-14 Soft nitriding method Active JP6072530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012273573A JP6072530B2 (en) 2012-12-14 2012-12-14 Soft nitriding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012273573A JP6072530B2 (en) 2012-12-14 2012-12-14 Soft nitriding method

Publications (2)

Publication Number Publication Date
JP2014118593A true JP2014118593A (en) 2014-06-30
JP6072530B2 JP6072530B2 (en) 2017-02-01

Family

ID=51173691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012273573A Active JP6072530B2 (en) 2012-12-14 2012-12-14 Soft nitriding method

Country Status (1)

Country Link
JP (1) JP6072530B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278723A (en) * 1975-12-15 1977-07-02 Ford Motor Co Pack nitriding of low alloy steel
JPS537547A (en) * 1976-06-07 1978-01-24 Ford Motor Co Pack nitriding of low alloy steel
JP2006249486A (en) * 2005-03-10 2006-09-21 Air Water Inc Metal nitriding method
WO2011009463A1 (en) * 2009-07-20 2011-01-27 Expanite A/S A method of activating an article of passive ferrous or non-ferrous metal prior to carburising, nitriding and/or nitrocarburising

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278723A (en) * 1975-12-15 1977-07-02 Ford Motor Co Pack nitriding of low alloy steel
JPS537547A (en) * 1976-06-07 1978-01-24 Ford Motor Co Pack nitriding of low alloy steel
JP2006249486A (en) * 2005-03-10 2006-09-21 Air Water Inc Metal nitriding method
WO2011009463A1 (en) * 2009-07-20 2011-01-27 Expanite A/S A method of activating an article of passive ferrous or non-ferrous metal prior to carburising, nitriding and/or nitrocarburising

Also Published As

Publication number Publication date
JP6072530B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5826748B2 (en) Method of activating ferrous or non-ferrous metal passive products prior to carburizing, nitriding and / or carbonitriding
JP4861703B2 (en) Method for activating metal member surface
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
JP2013501852A5 (en)
EP3205742B1 (en) Method for altering surface of an iron based metal
US8414710B2 (en) Method for surface treatment of metal material
WO2019131602A1 (en) Nitrided steel member, and method and apparatus for producing nitrided steel member
JP6072530B2 (en) Soft nitriding method
JP5758278B2 (en) Nitriding method
JP6374178B2 (en) Manufacturing method of machine parts
RU2639755C1 (en) Method for gas nitration of products of structural steels
Caliari et al. An investigation into the effects of different oxy-nitrocarburizing conditions on hardness profiles and corrosion behavior of 16MnCr5 steels
RU2367716C1 (en) Processing method of steel products in gaseous medium
JP2013256687A (en) Gas carburizing method
JP2005232518A (en) Surface hardening treatment method for engine valve
JP2010189686A (en) Method for nitriding iron group element-based alloy
KR102188994B1 (en) Low-Temperature Carburizing Method by Controlling Carbon Potential
JPH10306364A (en) Gas nitrosulphurizing method and device
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
KR102264958B1 (en) Pretreatment Solution for Soot Reduction and Low-Temperature Vacuum Carburizing Method Using the Same
KR102188995B1 (en) Low-Temperature Carburizing Method Using Native Oxide Removal Gas
JP3661868B2 (en) Carburizing method
JP5793802B2 (en) Gas carburizing method
JP2005200695A (en) Gas carburizing method
US11492693B2 (en) Pre-treatment process of a surface of a metallic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250