JP3661868B2 - Carburizing method - Google Patents

Carburizing method Download PDF

Info

Publication number
JP3661868B2
JP3661868B2 JP2002335666A JP2002335666A JP3661868B2 JP 3661868 B2 JP3661868 B2 JP 3661868B2 JP 2002335666 A JP2002335666 A JP 2002335666A JP 2002335666 A JP2002335666 A JP 2002335666A JP 3661868 B2 JP3661868 B2 JP 3661868B2
Authority
JP
Japan
Prior art keywords
carburizing
gas
carburized
treatment
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335666A
Other languages
Japanese (ja)
Other versions
JP2004169101A (en
Inventor
敏 羽木
守淑 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2002335666A priority Critical patent/JP3661868B2/en
Publication of JP2004169101A publication Critical patent/JP2004169101A/en
Application granted granted Critical
Publication of JP3661868B2 publication Critical patent/JP3661868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、浸炭方法に関し、更に詳しくは、被浸炭処理材である鋼材の表面を浸炭炉内で加熱しながら減圧下で導入される浸炭ガスにより浸炭処理する浸炭方法に関する。
【0002】
【従来の技術】
鋼材表面の硬化技術として古くから知られている「浸炭」は、低炭素鋼を浸炭ガス中で加熱することによって鋼材表面にカーボン(炭素)を取り込み、そのカーボンを鋼材表面から内部へと拡散させてその鋼材表面付近のカーボン濃度を高める方法である。この浸炭方法により鋼材表面付近は高温度のオーステナイト状態からの急冷によりマルテンサイト化された硬化層が形成され、鋼材内部は低炭素のままで高靭性を保持した浸炭鋼製品が得られる。
【0003】
この浸炭処理技術として知られている方法の1つに、常圧ガス雰囲気下での常圧浸炭法がある。この常圧浸炭法は、例えば、一酸化炭素(CO)を浸炭ガスとして用い、これを高温・常圧下で被浸炭処理材(鋼材)と反応させることによってカーボン(C)と二酸化炭素(CO)を生成させると共に生成カーボンを鋼材表面中へと固溶させ、さらにこのカーボンを鋼材表面から内部へと拡散させるというものである。
【0004】
しかし、近年、環境問題や資源問題に対する関心の高まりを背景として、CO、CO等のガスを排出する常圧浸炭法が問題視される一方、省エネルギー、省資源や公害防止に極めて有効な浸炭法として減圧下で浸炭処理を行う浸炭法が注目を浴びている。
【0005】
この浸炭法は、減圧下で浸炭ガスとして炭化水素系ガスを導入することにより鋼材表面の浸炭処理を行うものである。浸炭処理に際しては、高温且つ減圧下において炭化水素系ガスが鋼材との反応によってカーボン(C)と水素ガス(H)に分解し、生成したカーボンが鋼中へと固溶し、鋼表面から内部へと拡散される。従来、減圧下での浸炭処理における浸炭ガスとしてはアセチレンガス(例えば、特許文献1参照)、エチレンガス(例えば、特許文献2参照)や、エチレンと水素との混合ガス(例えば、特許文献3参照)、エチレンとアセチレンとの混合ガス(例えば、特許文献4参照)等が用いられている。
【0006】
【特許文献1】
特開平8−325701号公報
【特許文献2】
特開2002−146512号公報
【特許文献3】
特開2001−262313号公報
【特許文献4】
特開2000−1765号公報
【0007】
これらの浸炭ガスを用いた浸炭法によれば、高温度での熱処理により高品質の浸炭処理品が得られ、また浸炭処理の熱エネルギーの無駄がなくなり、ガス消費量も常圧浸炭処理プロセスに比べて少なくて済む上、二酸化炭素の排出がないため環境特性にも優れるという利点を有する。
【0008】
【発明が解決しようとする課題】
しかし、エチレンガスやアセチレンガスを浸炭ガスとして用いた浸炭処理においては、これら浸炭ガス種が不飽和炭化水素からなる反応性の高い可燃性のガスであるため、煤の発生が起こり易く、また、配管等からのガス漏れにより引火する危険性があり取扱いが難しいという問題があり、さらにはこれらのガスが高価であるため熱処理コストが嵩むという問題があった。
【0009】
また、エチレンガスやアセチレンガスは、単位炭素原子数当たりのガス量が少ないため、浸炭炉内で分散・拡散しにくく、浸炭ムラが発生し易いという問題もあった。
【0010】
本発明の解決しようとする課題は、鋼材を浸炭処理する際にCO、CO等の有害ガスの発生がなく、安価で、しかも、煤や浸炭ムラの発生がない高品質の浸炭鋼を得ることが可能な浸炭方法を提供することである。
【0011】
【課題を解決するための手段】
この課題を解決するための本発明の浸炭方法は、被浸炭処理材である鋼材を浸炭ガスが減圧下で供給される浸炭炉内で加熱しながら浸炭処理するに際し、前記浸炭ガスとして飽和炭化水素系ガスを主成分とする都市ガス若しくは天然ガスを用い、これをそのガス圧が3〜10kPaの範囲内となるように制御した状態で前記浸炭炉内に常時供給しながら、前記鋼材を、加熱温度850〜1100℃の範囲内、保持時間15〜120minの範囲内で加熱保持して浸炭処理を行い、その後、1kPa以下の減圧下且つ前記浸炭処理温度下で0〜120min保持する拡散処理を行い、さらに、拡散処理後800〜900℃の温度範囲内に降温しこの温度下で5〜60min保持する焼入れ保持処理を行うことを要旨とする。
【0012】
この浸炭方法によれば、使用する都市ガス及び天然ガスがエチレンやアセチレン等のガスに比べて安価に入手可能であるため、浸炭処理コストならびに得られる浸炭処理製品のコストを低減させることができる。特に、都市ガスは、家庭用等のガスラインとして広く普及しているため、浸炭ガス源としての供給が極めて容易である。
【0013】
また、浸炭ガスとして用いる都市ガス及び天然ガスは、比較的浸炭能力の低いメタンを主成分とし、浸炭能力の高い炭素数2以上の炭化水素系のガス種が少量ずつ含まれているので、浸炭制御が容易に行え、かつ、煤などの発生のない表面性状に優れた浸炭処理材が得られる。また、炭素数2以上の浸炭ガス種の分散性に優れているので、浸炭処理時間の短縮化も図られる。
【0014】
また、浸炭時の都市ガス若しくは天然ガスの供給ガス圧が3〜10kPaの範囲内に制御されているので、浸炭反応が適正に行われ浸炭時に煤や浸炭ムラの発生が抑えられる。
【0015】
さらに、浸炭炉内の加熱温度を850〜1100℃の範囲内に制御し、浸炭炉内での保持時間を15〜120minの範囲内に制御することによって、浸炭ガスと鋼材との反応が効果的に促進されるとともに、煤の発生のない適正量のカーボンを固溶させることができる。
【0016】
また、鋼材を浸炭炉内で浸炭処理した後、1kPa以下の減圧下且つ前記浸炭処理温度下で0〜120min保持する拡散処理を行い、さらに、拡散処理後800〜900℃の温度範囲内に降温しこの温度下で15〜60min保持する焼入れ保持処理を行うことによって良好な拡散効果を得ることができる。
【0017】
また、浸炭炉内の鋼材表面に接触する浸炭ガスの流量、鋼材の単位表面積当たり26〜210NL/min・mとなるように制御することによって、煤の発生を抑えると共に適正量のカーボンを固溶させることができる。
【0018】
【発明の実施の形態】
以下に本発明の好適な実施の形態を図面を参照して詳細に説明する。
【0019】
初めに、本発明に係る浸炭方法について説明する。浸炭炉を用いて鋼材を浸炭処理するに際しては、炉内に浸炭ガスを所定ガス圧に制御して供給すると共に炉内を所定温度まで加熱する。この時、浸炭ガスが例えば式1に示す反応式によってカーボン(C)と水素ガス(H)に分解し、これにより生成したカーボンが鋼材(Fe)中へと取り込まれる(固溶する)。
【0020】
【式1】
<例えば、浸炭ガスがメタン(CH)の場合>
Fe+CH(g)→Fe[C]+2H(g)
(g):気体状態を表す。
[C]:鋼材(Fe)中に固溶したカーボンを表す。
【0021】
上記のような浸炭反応によりカーボンが固溶されると鋼材の表面部にはオーステナイト相が形成されるが、これを油槽室の油槽に浸けて急冷することによって鋼材の表面部のオーステナイト相が高硬度のマルテンサイト相へと相変態する。このように浸炭処理を施すことによって、表面部にはマルテンサイト化された硬化層が形成される一方、その内部は依然低炭素のままで高靭性を維持した浸炭処理鋼製品が得られる。
【0022】
本発明に係る浸炭方法における浸炭ガスとしては、都市ガス若しくは天然ガスが用いられる。両ガスは、共にメタン(CH)を主成分とし、これにエタン、プロパン、ブタン等の炭素数2以上の炭化水素系ガスが少量ずつ含まれてなるものである。
【0023】
都市ガスは、エタン(C):6重量%、プロパン(C):4重量%、ブタン(C10):2重量%、及び残部:メタンから構成される。また、天然ガスは、成分は一定ではないが、メタンを主成分として、残部をエタン、プロパン等の飽和炭化水素系ガスで構成される。本発明に係る浸炭方法では、天然ガスとしてメタンが50重量%以上含まれるものを用いるのが好ましい。
【0024】
従来より減圧下での浸炭処理に用いられている浸炭ガスは、エチレン、アセチレン、プロパン等のガスであり、家庭用等ガスとして汎用されている都市ガスや天然ガスが浸炭ガスとして用いられた例はない。これは以下の理由による。すなわち、浸炭は浸炭ガスが鋼材と反応することによりカーボンを生成することにより生じるわけであるが、メタンは反応活性が低い物質であり、浸炭能力に劣るガスである。従って、ガス成分の大部分がメタンで構成される都市ガスや天然ガスも浸炭能力の低く、浸炭ガスとしては不向きとされてきた。
【0025】
しかし、本願発明者らが鋭意研究を重ねた結果、都市ガス、天然ガスを浸炭ガスとして用いた場合でも、その浸炭能力を十分に発揮し実用レベルの浸炭処理製品を提供できることを見出した。これにより、従来のエチレンやアセチレン等の高価なガスに代わって汎用ガスとして広く普及している都市ガスや天然ガスが浸炭ガスとして使用可能となり、浸炭コストが大幅に低減できるという利点がある。
【0026】
さらには、浸炭能力の高い炭素数2以上の炭化水素系のガス種が少量ずつ含まれていることにより、浸炭制御が容易に行え、かつ、煤などの発生のない表面性状に優れた浸炭処理材が得られるという利点もある。その根拠は以下の通りである。すなわち、浸炭炉内に供給される都市ガスや天然ガスには浸炭能力の高い炭素数2以上の炭化水素系のガス種が少量ずつ含まれており、これらのガス種が鋼材の表面と接触し、主に鋼材表面における浸炭処理に寄与するものであるが、都市ガスや天然ガス中の多くは比較的浸炭能力の低いメタンガスであるために、エチレンやアセチレン等のような炭素数2以上の炭化水素系のガス種を単独で浸炭ガスとする場合よりも浸炭反応が緩やかに進行する。このため、所定量のカーボンが鋼材中に固溶されるように浸炭反応を制御することが極めて容易であるという利点がある。また、この場合には、主成分のメタンガスがキャリヤガスの代替となり、炭素数2以上の炭化水素系のガス種が鋼材表面全体にいきわたる結果、均一な浸炭処理を図ることができるので、鋼材中の場所によって浸炭処理に偏りが生じて鋼材表面に多量の煤が発生するといった事態は起こりにくい。これにより、表面性状に優れた浸炭処理材を得ることができるという利点がある。
【0027】
ここで、浸炭時における浸炭ガスのガス圧は3〜10kPaの範囲内にあることが好ましく、さらには、3〜9kPaの範囲内にあることがより好ましい。浸炭ガスのガス圧が3kPaに満たない場合には、鋼材表面部に十分な量のカーボンを接触する時間が短くなる結果、固溶・拡散させることができないという問題があり、一方、浸炭ガスのガス圧が10kPaを超える場合には、カーボンの鋼材中への接触する時間及びカーボンへ分解する時間が長くなる結果、固溶・拡散が律速となり鋼材表面上に飽和カーボンが煤となって発生するという問題があるため好ましくない。
【0028】
また、浸炭時における浸炭炉内の加熱温度は850〜1100℃の範囲内にあることが好ましく、さらには、900〜1050℃の範囲内にあることがより好ましい。加熱温度が850℃に満たない場合には、浸炭反応が促進されず浸炭処理が不十分となるという問題があり、一方、加熱温度が1100℃を超える場合には、鋼材のひずみが大きくなるため実用上適さないという問題があるため好ましくない。
【0029】
また、浸炭時の加熱保持時間は15〜120minの範囲内にあることが好ましく、さらには、15〜60minの範囲内にあることがより好ましい。保持時間が15minに満たない場合には、浸炭反応が促進されず浸炭処理が不十分となるという問題があり、一方、保持時間が120minを超える場合には、保持時間の経過による浸炭効果が得られないばかりでなく、過度の浸炭ガスの供給により鋼材表面部において煤が発生するという問題があるため好ましくない。
【0030】
また、上記加熱処理の後には、通常、浸炭温度域において一定時間、浸炭処理材を保持する拡散処理を行う。この拡散処理では、前段階の加熱処理により浸炭処理材の表面部に固溶されたカーボンを処理材内部へと拡散させて浸炭処理の均質化ならびに硬化層範囲の拡大を図ることを目的とする。また、拡散処理時の炉内の加熱温度は浸炭温度と同じであることが好ましい。ここで、拡散処理時の保持時間は0〜120minの範囲内にあることが好ましい。保持時間が120minを超える場合には、保持時間の経過による浸炭効果が得られず処理に無駄が生じてしまうため好ましくない。
【0031】
また、さらに拡散処理後に所定温度域に降温して一定時間保持する焼入れ保持処理を行うのが好ましい。この焼入れ保持処理により上記カーボンの拡散効果が顕著なものとなる。ここで、焼入れ保持処理温度は800〜900℃の範囲内にあることが好ましく、さらには、850℃であることがより好ましい。保持処理温度が800℃に満たない場合には、拡散効果が少なく、一方、保持処理温度が900℃を超える場合には、焼入れ性能が劣るため好ましくない。
【0032】
またここで、焼入れ保持処理の保持時間は5〜60minの範囲内にあることが好ましく、さらには、5〜30minの範囲内にあることがより好ましい。保持時間が5minに満たない場合には、焼入れ保持処理によるカーボンの拡散効果が得られず、一方、保持時間が60minを超える場合には、保持時間の経過による拡散効果が得られず処理に無駄が生じてしまうため好ましくない。
【0033】
また、浸炭炉内の鋼材表面に接触する浸炭ガスの流量、鋼材の単位表面積当たり26〜210NL/min・mであることが好ましい。ここで鋼材の表面積とは、浸炭炉内に鋼材を設置した場合に、浸炭ガスと接触し得る鋼材部分の総表面積を意味する。また、ここでいう浸炭ガスの流量は、標準状態(0℃、1atm)におけるガス流量をいう。鋼材単位表面積当たりに流量が26NL/min・mに満たない場合には、浸炭反応が十分に促進されないという問題があり、一方、流量が210NL/min・mを超える場合には、流量の増加による浸炭反応の促進効果が得られないため好ましくない。
【0034】
(浸炭処理材の評価手段)
上記浸炭処理プロセスにより得られた浸炭処理材の評価としては、浸炭処理材のビッカース硬さHの測定を行った。このビッカース硬さHは、マルテンサイト化された硬化層中のカーボン濃度に対応するもので、浸炭処理材中にカーボンがどの程度固溶されているかの指標となるものである。測定は、浸炭処理材の深さ方向に対して行った。ビッカース硬さHの測定は、日本工業規格「JIS G 0557」に準拠して行い、圧入荷重は4.903Nとした。試験は各深さにおいて3点ずつ行い、その平均値を測定結果とした。
【0035】
ここで浸炭処理材の評価基準として、硬化層がビッカース硬さHが550以上であり、かつ、このH≧550の条件を満たす硬化層(以下、「有効硬化層」という。)が表面から0.6mm以上の深さまで達しているものは実用化レベルにある浸炭処理製品であると判断した。
【0036】
【実施例】
本発明の効果を、実施例により具体的に説明する。
【0037】
(実施例1/浸炭ガス種の違いによる浸炭挙動の比較)
浸炭処理材として鋼材(材質:SCM415、寸法:幅400mm×奥行500mm×高さ300mm)を用い、これを浸炭炉(室内寸法:幅460mm、奥行610mm、高さ460mm)内に挿置して、炉内の温度が930℃となるように加熱した後、浸炭ガスを表1に示す流量及びガス圧となるように連続的に供給しながら、30min浸炭処理を行った。浸炭ガスとしては、都市ガス(13A)、プロパンガス(C)、アセチレンガス(C)及びエチレン(C)と水素(H)の混合ガスの4種類を使用した。なお、鋼材単位面積当たりの浸炭ガスの流量は、都市ガス(13A)及びエチレン(C)と水素(H)の混合ガスにおいては104.9NL/min・m、プロパンガスにおいては41.95NL/min・m、アセチレンガスにおいては62.9NL/min・mである。さらに、浸炭処理後浸炭ガスの供給を停止して、1kPa以下となるように炉内を減圧し同温度(930℃)に保持した状態で20min拡散処理を行い、次いで、850℃で20min焼入れ保持した後、油焼入れを行った。
【0038】
【表1】

Figure 0003661868
【0039】
得られた浸炭処理製品について表面から深さ方向に対してビッカース硬さHの測定を行い、浸炭ガス種の違いによる浸炭挙動(深さ方向に対するビッカース硬さHの変化)を比較した。
【0040】
(実施例2/浸炭ガスのガス圧の違いによる浸炭挙動の比較)
実施例1と同じ被浸炭処理材及び浸炭炉を用い、浸炭ガスとして都市ガス(13A)を3〜9kPaのガス圧範囲且つ60L/minの流量(鋼材単位面積当たりの流量:(104.9NL/min・m)で炉内に連続供給しながら浸炭処理を行った。さらに、その後実施例1と同じ条件で拡散処理及び焼入れを行った。
【0041】
得られた浸炭処理製品について、カーボンがどの程度の深さまで固溶・拡散したかを示す浸炭深さの測定、製品表面のビッカース硬さHの測定及びその表面におけるビッカース硬さH値のばらつきの測定を行った。ここで、ビッカース硬さH値のばらつきとは、複数の測定点における最高硬度値と最低硬度値との差を採ったものであり、硬度差が50以下の場合には実用可能な浸炭製品の許容範囲内であると判断した。
【0042】
(実施例3/浸炭ガスの流量の違いによる浸炭挙動の比較)
実施例1及び2と同じ被浸炭処理材及び浸炭炉を用い、浸炭ガスとして都市ガス(13A)を3kPaのガス圧且つ15〜120L/minの流量範囲内(鋼材単位面積当たりの流量:26〜210NL/min・m)で炉内に連続供給しながら浸炭処理を行った。さらに、その後実施例1及び2と同じ条件で拡散処理を行った。
【0043】
得られた浸炭処理製品について表面から深さ方向に対してビッカース硬さHの測定を行い、浸炭ガスの流量の違いによる浸炭挙動(深さ方向に対するビッカース硬さHの変化)を比較した。
【0044】
(実施例4/拡散時間の違いによる浸炭挙動の比較)
実施例1〜3と同じ被浸炭処理材及び浸炭炉を用い、浸炭ガスとして都市ガス(13A)を9kPaのガス圧且つ60L/minの流量(鋼材単位面積当たりの流量:104.9NL/min・m)で炉内に連続供給しながら浸炭処理を行った。浸炭処理後、浸炭ガスの供給を停止して、1kPa以下となるように炉内を減圧し同温度(930℃)に保持した状態で0〜30minの拡散時間を変化させて拡散処理を行い、さらに一部処理材を除き850℃で20min焼入れ保持を行った後油焼入れ(急冷)を行った。本実施例の浸炭処理、拡散処理及び焼入れ時の加熱履歴を図4に示す。
【0045】
得られた浸炭処理製品について表面から深さ方向に対してビッカース硬さHの測定を行い、拡散処理における拡散時間の違いによる浸炭挙動(深さ方向に対するビッカース硬さHの変化)を比較した。
【0046】
図1に実施例1に係る浸炭挙動(深さ方向に対するビッカース硬さHの変化)に及ぼす浸炭ガス種の影響についての結果を示す。図示したように、アセチレンガスを使用した場合に表面付近のビッカース硬さH値が最も高くなったが、他の浸炭ガスとの違いは顕著に認められなかった。すなわち、浸炭ガスとして都市ガス(13A)を使用した場合にも、従来のアセチレンガスやプロパンガス等と同様の浸炭挙動を示した。また、都市ガス(13A)を浸炭ガスとした場合には、煤の発生や浸炭ムラの発生がない良質の浸炭処理製品が得られた。
【0047】
また、図2に実施例2に係る浸炭ガス圧を変化させた場合の浸炭挙動についての結果を示す。図示したように、ガス流量を60L/minと一定にしてガス圧を3〜9kPaの範囲内で変化させた場合には、いずれのガス圧下でも浸炭深さが0.6mm以上且つビッカース硬さH値が550以上、すなわち、有効硬化層の厚みが0.6mm以上であり目標値(実用化レベル)に達していた。また、ガス圧が6kPa以上では、ビッカース硬さHの最大値と最小値との差が50以下とビッカース硬さH値のばらつきが少なく、煤や浸炭ムラの発生のない良質な浸炭処理材が得られた。なお、ガス圧が3kPaの場合には、硬度差が50を超えているが、ガス流量を増大させることによって50以下に抑えることができる。また、ガス圧が3kPa未満については示していないが、3kPa未満ではビッカース硬さH値、浸炭深さ共に大幅に低下し、さらにビッカース硬さH値のバラツキも大きく、浸炭処理が不十分であった。一方、ガス圧が9kPaを超える範囲では、ガス圧の増加による浸炭効果は認められなかった。
【0048】
また、図3に実施例3に係るガス流量を変化させた場合の浸炭挙動についての結果を示す。図示したように、ガス流量の増加に伴いカーボンの固溶・拡散量も増大する傾向にあり、流量45L/min以上では浸炭ガス圧が3kPaであっても、浸炭深さが約0.6mmの部分までビッカース硬さHが550以上の有効硬化層が形成されていた。なお、流量が60L/minを超える範囲では、流量の増加による浸炭効果は認められなかった。
【0049】
また、図5に実施例4に係る拡散処理における拡散時間の変化させた場合の浸炭挙動についての結果を示す。図示したように、浸炭処理後すぐに油焼入れした場合(焼入れ保持なし)には、鋼材内部へのカーボンの拡散が少なく表面からの0.2〜0.3mmの深さにおいてビッカース硬さHが最大値となるなどカーボンの濃度ムラが生じた。一方、浸炭処理後、拡散時間を0〜30minとしその後850℃で20min焼入れ保持を施した条件では、カーボンが鋼材内部へと拡散し、さらに拡散時間が15min以上では有効硬化層が表面から約0.6mm以上の深さまで形成されると共に、煤や浸炭ムラの発生のない良質の浸炭処理製品が得られた。
【0050】
以上の結果から、浸炭ガスとして都市ガス(13A)を使用し、そのガス圧を3〜9kPaの範囲内に制御して連続供給しながら浸炭処理を行うことによって、従来より減圧下での浸炭処理において浸炭ガスとして使用されているアセチレンガス、エチレンガス、プロパンガス等と同様の優れた浸炭効果が得られた。具体的には、一般に浸炭処理材としての実用化レベルとされるビッカース硬さHが550以上の有効硬化層が表面から0.6mm以上の深さまで形成されるという条件を満たし、かつ、煤や浸炭ムラの発生のない良質の浸炭処理製品を得ることができた。なお、上記実施例では、浸炭ガス圧を3〜9kPaの範囲内で制御しているが、浸炭ガス圧が10kPaの範囲までは浸炭反応に対するガス圧の効果を確認している。
【0051】
また、上記の浸炭効果は都市ガス(13A)を浸炭ガスとして用いた場合だけでなく、天然ガスを用いた場合にも、浸炭ガス圧を3〜10kPa、浸炭温度を850〜1100℃、浸炭時間を15〜120minとする浸炭条件下で鋼材を浸炭処理することによって、上記都市ガス(13A)を用いた場合と同様に有効硬化層が表面から0.6mm以上の深さまで形成され、かつ、煤や浸炭ムラの発生のない浸炭処理製品を得ることができた。
【0052】
本発明は上記した実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の改変が可能である。例えば、浸炭処理並びに拡散処理を行う処理装置は上記のものに限られず種々の形態を有するもので構わない。また、被浸炭処理材として使用する鋼材も上記実施例のものに限られない。さらに、浸炭処理、拡散処理及び焼入れ時の加熱履歴についても上記実施例ものに限られない。
【0053】
【発明の効果】
本発明の浸炭方法によれば、浸炭ガスとして、従来減圧下での浸炭処理において浸炭用の供給ガスとして有効であるとされてきたエチレンガスやアセチレンガス等よりも安価な都市ガス若しくは天然ガスを使用することによって、浸炭処理コストならびに得られる浸炭処理製品のコストを低減させることができるという効果がある。特に、家庭用等のガスラインとして広く普及している都市ガスを浸炭ガスとして使用することによって、浸炭処理設備への浸炭ガスの供給が極めて容易であり、浸炭処理コスト等をより安価に抑えることができるという効果がある。
【0054】
また、都市ガスや天然ガスは、比較的浸炭能力の低いメタンが主成分として含まれていることにより、浸炭制御が容易に行え、かつ、煤などの発生のない表面性状に優れた浸炭処理材が得られるという効果がある。また、炭素数2以上の浸炭ガス種の分散性が良好であることから、浸炭時の反応ムラが少なく拡散処理時間ひいては浸炭処理工程全体の短縮化をも図ることができるという効果がある。さらには、常圧浸炭法のように浸炭時に有害なCOが一切発生せず、環境面からも優れている。
【0055】
また、浸炭処理を所定浸炭ガス圧(3〜10kPa)、所定温度(850〜1100℃)、所定保持時間(15〜120min)の条件下で行うことによって、煤や浸炭ムラの発生がなく、鋼材内部までカーボンが十分に固溶・拡散された高品質の浸炭処理製品を提供することができるという効果がある。
【0056】
また、浸炭処理後に、浸炭処理製品を1kPa以下の減圧下で所定時間、特に5〜30minの間保持する拡散処理を行うことによって、浸炭処理によって鋼材の表面部に固溶されたカーボンを処理材内部へと効果的に拡散させることができる。これにより、浸炭ムラの発生が抑えられ、最適な厚みを有する硬化層が形成された良質の浸炭処理製品を提供することができるという効果がある。さらに拡散処理後で所定温度(800〜900℃)、所定時間(5〜60min)の条件下で行うことによって、カーボン拡散効果がさらに向上しより均一且つ高品質の浸炭処理製品を提供することができるという効果がある。
【0057】
また、浸炭処理時の流量を所定条件下(鋼材単位面積当たりの流量:26〜210NL/min・m)に制御することにより、浸炭処理製品の品質等をより高めることができるという効果もある。
【図面の簡単な説明】
【図1】 本発明の第1実施例に係る浸炭処理材における浸炭挙動(深さ方向に対するビッカース硬さHの変化)に及ぼす浸炭ガス種の影響を示した図である。
【図2】 本発明の第2実施例に係る浸炭処理材における浸炭挙動(深さ方向に対するビッカース硬さHの変化)に及ぼす浸炭ガス圧の影響を示した図である。
【図3】 本発明の第3実施例に係る浸炭処理材における浸炭挙動(深さ方向に対するビッカース硬さHの変化)に及ぼす浸炭ガス流量を示した図である。
【図4】 本発明の第4実施例に係る浸炭処理、拡散処理及び焼入れ時の加熱履歴を示した図である。
【図5】 上記実施例に係る浸炭処理材における浸炭挙動(深さ方向に対するビッカース硬さHの変化)に及ぼす拡散時間の影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a carburizing method, and more particularly to a carburizing method for carburizing with a carburizing gas introduced under reduced pressure while heating the surface of a steel material as a carburized material in a carburizing furnace.
[0002]
[Prior art]
  “Carburization”, which has long been known as a technology for hardening steel surfaces, heats low-carbon steel in a carburizing gas to capture carbon into the steel surface and diffuse the carbon from the steel surface to the inside. This is a method for increasing the carbon concentration in the vicinity of the steel surface. By this carburizing method, a hardened layer that has been martensite formed by rapid cooling from the high-temperature austenite state is formed near the surface of the steel material, and a carburized steel product that retains high toughness while maintaining low carbon inside the steel material is obtained.
[0003]
  As one of the methods known as this carburizing treatment technique, there is an atmospheric pressure carburizing method under an atmospheric pressure gas atmosphere. In this normal pressure carburizing method, for example, carbon monoxide (CO) is used as a carburizing gas, and this is reacted with a carburized material (steel material) at a high temperature and under a normal pressure to react with carbon (C) and carbon dioxide (CO).2), And the generated carbon is dissolved in the steel surface and further diffused from the steel surface to the inside.
[0004]
  However, in recent years, with the background of growing interest in environmental and resource issues, CO, CO2While the atmospheric pressure carburizing method that discharges gases such as these is regarded as a problem, the carburizing method that performs carburizing treatment under reduced pressure is attracting attention as a carburizing method that is extremely effective for energy saving, resource saving and pollution prevention.
[0005]
  In this carburizing method, a carburizing process is performed on the surface of a steel material by introducing a hydrocarbon-based gas as a carburizing gas under reduced pressure. In the carburizing process, the hydrocarbon gas reacts with the steel material at a high temperature and under a reduced pressure to cause carbon (C) and hydrogen gas (H2), And the generated carbon dissolves in the steel and diffuses from the steel surface to the inside. Conventionally, as a carburizing gas in carburizing treatment under reduced pressure, acetylene gas (for example, refer to Patent Document 1), ethylene gas (for example, refer to Patent Document 2), or a mixed gas of ethylene and hydrogen (for example, refer to Patent Document 3). ), A mixed gas of ethylene and acetylene (for example, see Patent Document 4) and the like.
[0006]
[Patent Document 1]
          JP-A-8-325701
[Patent Document 2]
          JP 2002-146512 A
[Patent Document 3]
          JP 2001-262313 A
[Patent Document 4]
          JP 2000-1765 A
[0007]
  According to the carburizing method using these carburizing gases, a high-quality carburized product can be obtained by heat treatment at a high temperature, the waste of heat energy of the carburizing process is eliminated, and the gas consumption is also reduced to the atmospheric pressure carburizing process. Compared to this, there is an advantage in that it requires less and has excellent environmental characteristics since it does not emit carbon dioxide.
[0008]
[Problems to be solved by the invention]
  However, in carburizing treatment using ethylene gas or acetylene gas as the carburizing gas, these carburizing gas species are highly flammable gases composed of unsaturated hydrocarbons, so that soot is easily generated, There is a problem that it is difficult to handle because there is a risk of ignition due to gas leakage from a pipe or the like. Further, since these gases are expensive, there is a problem that the heat treatment cost increases.
[0009]
  In addition, since ethylene gas and acetylene gas have a small amount of gas per unit carbon atom, there is a problem that dispersion and diffusion in the carburizing furnace is difficult and carburizing unevenness is likely to occur.
[0010]
  The problem to be solved by the present invention is that when carburizing steel, CO, CO2It is an object of the present invention to provide a carburizing method capable of obtaining a high-quality carburized steel that does not generate harmful gases such as, is inexpensive, and does not generate soot and carburizing unevenness.
[0011]
[Means for Solving the Problems]
  In order to solve this problem, the carburizing method of the present invention is a saturated hydrocarbon as the carburizing gas when carburizing a steel material to be carburized while heating in a carburizing furnace supplied with carburizing gas under reduced pressure. While using city gas or natural gas whose main component is a system gas and constantly controlling the gas pressure within the range of 3 to 10 kPa in the carburizing furnace, the steel materialThe diffusion treatment is carried out by heating and holding within a range of heating temperature of 850 to 1100 ° C. and holding time of 15 to 120 min, and then holding for 0 to 120 min under reduced pressure of 1 kPa or less and at the carburizing temperature. Furthermore, after the diffusion treatment, a quenching holding treatment is performed in which the temperature is lowered within a temperature range of 800 to 900 ° C. and held at this temperature for 5 to 60 minutes.This is the gist.
[0012]
  According to this carburizing method, since the city gas and natural gas to be used can be obtained at a lower cost than gases such as ethylene and acetylene, the carburizing cost and the cost of the carburized product obtained can be reduced. In particular, since city gas is widely used as a gas line for home use and the like, supply as a carburizing gas source is extremely easy.
[0013]
  In addition, city gas and natural gas used as carburizing gas are mainly composed of methane, which has a relatively low carburizing ability, and contain a small amount of hydrocarbon-based gas species having 2 or more carbon atoms with a high carburizing ability. A carburized material that can be easily controlled and has excellent surface properties free from soot and the like is obtained. Moreover, since the dispersibility of the carburizing gas species having 2 or more carbon atoms is excellent, the carburizing time can be shortened.
[0014]
  Moreover, since the supply gas pressure of the city gas or natural gas at the time of carburizing is controlled within a range of 3 to 10 kPa, carburization reaction is appropriately performed, and generation of soot and carburizing unevenness is suppressed at the time of carburizing.
[0015]
  Furthermore, the heating temperature in the carburizing furnace is controlled within the range of 850 to 1100 ° C.And soakHolding time in the charcoal furnace1By controlling within the range of 5 to 120 min, the reaction between the carburizing gas and the steel material can be effectively promoted, and an appropriate amount of carbon with no generation of soot can be dissolved.
[0016]
  Moreover, after carburizing the steel material in the carburizing furnace, a diffusion treatment is performed by holding for 0 to 120 minutes under a reduced pressure of 1 kPa or less and the carburizing temperature, and further, the temperature is lowered within a temperature range of 800 to 900 ° C. A good diffusion effect can be obtained by performing a quenching holding treatment for 15 to 60 minutes at this temperature.
[0017]
  Also, the flow rate of carburizing gas that contacts the steel surface in the carburizing furnaceThe, 26-210 NL / min · m per unit surface area of steel2By controlling so that it becomes, it can suppress generation | occurrence | production of a soot and can make an appropriate amount of carbon form a solid solution.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
  Preferred embodiments of the present invention will be described below in detail with reference to the drawings.
[0019]
  First, the carburizing method according to the present invention will be described. When carburizing a steel material using a carburizing furnace, the carburizing gas is supplied to the furnace while being controlled to a predetermined gas pressure, and the furnace is heated to a predetermined temperature. At this time, the carburizing gas is, for example, carbon (C) and hydrogen gas (H2The carbon produced thereby is taken into the steel material (Fe) (solid solution).
[0020]
[Formula 1]
  <For example, carburizing gas is methane (CH4If>
    Fe + CH4(G) → Fe [C] + 2H2(G)
      (g): represents a gas state.
      [C]: Carbon dissolved in steel (Fe).
[0021]
  When carbon is dissolved in the carburizing reaction as described above, an austenite phase is formed on the surface of the steel material. By soaking it in an oil tank in the oil tank chamber and quenching, the austenite phase on the surface of the steel material is increased. It transforms into a martensitic phase of hardness. By performing the carburizing treatment in this manner, a hardened layer martensite is formed on the surface portion, while a carburized steel product that maintains high toughness while maintaining low carbon inside is obtained.
[0022]
  As the carburizing gas in the carburizing method according to the present invention, city gas or natural gas is used. Both gases are both methane (CH4) As a main component, and a small amount of hydrocarbon gas having 2 or more carbon atoms such as ethane, propane, butane and the like.
[0023]
  City gas is ethane (C2H6): 6% by weight, propane (C3H8): 4% by weight, butane (C4H10): 2% by weight, and the balance: methane. Natural gas is not composed of components, but methane is the main component and the balance is composed of a saturated hydrocarbon gas such as ethane or propane. In the carburizing method according to the present invention, it is preferable to use a natural gas containing 50% by weight or more of methane.
[0024]
  The carburizing gas conventionally used for carburizing under reduced pressure is a gas such as ethylene, acetylene, propane, etc., and city gas and natural gas that are widely used as household gases etc. are used as carburizing gas There is no. This is due to the following reason. That is, carburization occurs when carburizing gas reacts with steel to produce carbon, but methane is a substance with low reaction activity and is inferior in carburizing ability. Therefore, city gas and natural gas, in which most of the gas components are composed of methane, have low carburizing ability and have not been suitable as carburizing gas.
[0025]
  However, as a result of intensive studies by the present inventors, it has been found that even when city gas or natural gas is used as the carburizing gas, the carburizing ability can be sufficiently exhibited and a carburized product at a practical level can be provided. This makes it possible to use city gas and natural gas that are widely used as general-purpose gas instead of conventional expensive gases such as ethylene and acetylene as carburizing gas, and the carburizing cost can be greatly reduced.
[0026]
  Furthermore, carburizing treatment with excellent surface properties that can easily control carburization and does not generate soot by containing a small amount of hydrocarbon-based gas species having 2 or more carbon atoms with high carburizing ability. There is also an advantage that a material can be obtained. The grounds are as follows. In other words, city gas and natural gas supplied to the carburizing furnace contain small amounts of hydrocarbon-based gas types having 2 or more carbon atoms with high carburizing ability, and these gas types come into contact with the surface of the steel material. , Which mainly contributes to carburizing treatment on the surface of steel, but because most of city gas and natural gas are methane gas with relatively low carburizing ability, carbonization with 2 or more carbon atoms such as ethylene and acetylene The carburization reaction proceeds more slowly than when a hydrogen-based gas species is used alone as the carburizing gas. For this reason, there is an advantage that it is extremely easy to control the carburization reaction so that a predetermined amount of carbon is dissolved in the steel. In this case, the main component methane gas is used as a substitute for the carrier gas, and as a result of the hydrocarbon type gas having 2 or more carbon atoms spreading over the entire steel surface, a uniform carburizing treatment can be achieved. It is difficult to cause a situation in which the carburization treatment is biased depending on the location of the steel and a large amount of soot is generated on the steel surface. Thereby, there exists an advantage that the carburized material excellent in surface property can be obtained.
[0027]
  Here, the gas pressure of the carburizing gas at the time of carburizing is preferably in the range of 3 to 10 kPa, and more preferably in the range of 3 to 9 kPa. When the gas pressure of the carburizing gas is less than 3 kPa, there is a problem in that it cannot be dissolved or diffused as a result of shortening the time for contacting a sufficient amount of carbon to the steel surface portion. When the gas pressure exceeds 10 kPa, the time for contacting carbon into the steel material and the time for decomposing into carbon become longer. As a result, solid solution / diffusion is rate-determined and saturated carbon is generated on the surface of the steel material as soot. This is not preferable because of the problem.
[0028]
  Moreover, it is preferable that the heating temperature in the carburizing furnace at the time of carburizing exists in the range of 850-1100 degreeC, and it is more preferable that it exists in the range of 900-1050 degreeC. When the heating temperature is less than 850 ° C., there is a problem that the carburization reaction is not promoted and the carburizing treatment becomes insufficient. On the other hand, when the heating temperature exceeds 1100 ° C., the distortion of the steel material increases. This is not preferable because it is not suitable for practical use.
[0029]
  Moreover, it is preferable that the heat holding time at the time of carburizing is in the range of 15 to 120 min, and more preferably in the range of 15 to 60 min. When the holding time is less than 15 min, there is a problem that the carburizing reaction is not promoted and the carburizing treatment becomes insufficient. On the other hand, when the holding time exceeds 120 min, the carburizing effect due to the elapse of the holding time is obtained. Not only is it not possible, but there is a problem that soot is generated on the surface of the steel material due to excessive supply of carburizing gas, which is not preferable.
[0030]
  In addition, after the heat treatment, a diffusion treatment for holding the carburized material is usually performed for a certain time in the carburizing temperature range. The purpose of this diffusion treatment is to homogenize the carburizing treatment and expand the range of the hardened layer by diffusing carbon dissolved in the surface portion of the carburizing treatment material into the inside of the treatment material by the heat treatment in the previous stage. . The heating temperature in the furnace during the diffusion treatment is preferably the same as the carburizing temperature. Here, the holding time during the diffusion treatment is preferably in the range of 0 to 120 min. If the holding time exceeds 120 min, the carburizing effect due to the elapse of the holding time cannot be obtained, and processing is wasted, which is not preferable.
[0031]
  Further, it is preferable to perform a quenching holding process in which the temperature is lowered to a predetermined temperature range and held for a certain time after the diffusion process. By this quenching holding treatment, the carbon diffusion effect becomes remarkable. Here, the quenching holding treatment temperature is preferably in the range of 800 to 900 ° C, and more preferably 850 ° C. When the holding treatment temperature is less than 800 ° C., the diffusion effect is small. On the other hand, when the holding treatment temperature exceeds 900 ° C., the quenching performance is inferior.
[0032]
  Further, here, the holding time of the quenching holding treatment is preferably in the range of 5 to 60 min, and more preferably in the range of 5 to 30 min. If the holding time is less than 5 min, the carbon diffusion effect due to the quenching holding process cannot be obtained. On the other hand, if the holding time exceeds 60 min, the diffusion effect due to the elapse of the holding time cannot be obtained and is wasted in the processing. This is not desirable because
[0033]
  Also, the flow rate of carburizing gas that contacts the steel surface in the carburizing furnaceIs, 26-210 NL / min · m per unit surface area of steel2It is preferable that Here, the surface area of the steel material means the total surface area of the steel material portion that can come into contact with the carburizing gas when the steel material is installed in the carburizing furnace. Moreover, the flow rate of the carburizing gas here refers to the gas flow rate in a standard state (0 ° C., 1 atm). The flow rate per unit surface area of steel is 26 NL / min · m2If it is less than 1, there is a problem that the carburization reaction is not sufficiently promoted, while the flow rate is 210 NL / min · m.2In the case where it exceeds 1, the effect of promoting the carburization reaction by increasing the flow rate cannot be obtained, which is not preferable.
[0034]
    (Evaluation means for carburized material)
  As an evaluation of the carburized material obtained by the carburizing process, the Vickers hardness H of the carburized material isVWas measured. This Vickers hardness HVCorresponds to the carbon concentration in the martensitic hardened layer and serves as an index of how much carbon is dissolved in the carburized material. The measurement was performed in the depth direction of the carburized material. Vickers hardness HVWas measured according to Japanese Industrial Standard “JIS G 0557”, and the press-fit load was 4.903N. The test was performed at three points at each depth, and the average value was used as the measurement result.
[0035]
  Here, as an evaluation standard of the carburized material, the hardened layer has Vickers hardness HVIs over 550 and this HVIt was judged that a cured layer satisfying the condition of ≧ 550 (hereinafter referred to as “effective cured layer”) reaching a depth of 0.6 mm or more from the surface was a carburized product at a practical level.
[0036]
【Example】
  The effects of the present invention will be specifically described with reference to examples.
[0037]
    (Example 1 / Comparison of carburizing behavior depending on carburizing gas type)
  CoveredUsing a steel material (material: SCM415, dimensions: width 400 mm × depth 500 mm × height 300 mm) as a carburizing material, this is inserted into a carburizing furnace (indoor dimensions: width 460 mm, depth 610 mm, height 460 mm), After heating so that the temperature in the furnace was 930 ° C., carburizing treatment was performed for 30 minutes while continuously supplying the carburizing gas so as to have the flow rate and gas pressure shown in Table 1. As carburizing gas, city gas (13A), propane gas (C3H8), Acetylene gas (C2H2) And ethylene (C2H4) And hydrogen (H24 types of mixed gas were used. The flow rate of carburizing gas per unit area of steel material is city gas (13A) and ethylene (C2H4) And hydrogen (H2) 104.9 NL / min · m2In propane gas, 41.95 NL / min · m2In acetylene gas, 62.9 NL / min · m2It is. Further, after the carburizing process, the supply of the carburizing gas is stopped, the furnace is depressurized so as to be 1 kPa or less, and the diffusion process is performed for 20 minutes while maintaining the same temperature (930 ° C.). After that, oil quenching was performed.
[0038]
[Table 1]
Figure 0003661868
[0039]
  About the obtained carburized product, Vickers hardness H from the surface to the depth directionVAnd carburization behavior (Vickers hardness H in the depth direction)VChange).
[0040]
    (Example 2 / Comparison of carburizing behavior due to difference in gas pressure of carburizing gas)
  Using the same carburized material and carburizing furnace as in Example 1, city gas (13A) as a carburizing gas was in a gas pressure range of 3 to 9 kPa and a flow rate of 60 L / min (flow rate per unit area of steel material: (104.9 NL / min ・ m2The carburization process was performed while continuously feeding into the furnace. Further, diffusion treatment and quenching were then performed under the same conditions as in Example 1.
[0041]
  For the carburized product obtained, measurement of carburization depth indicating how much carbon was dissolved and diffused, Vickers hardness H of the product surfaceVMeasurement and Vickers hardness H on the surfaceVThe variation of the value was measured. Where Vickers hardness HVThe value variation is obtained by taking the difference between the maximum hardness value and the minimum hardness value at a plurality of measurement points, and when the hardness difference is 50 or less, it is determined that it is within the allowable range of a practical carburized product. did.
[0042]
    (Example 3 / Comparison of carburizing behavior depending on the flow rate of carburizing gas)
  Using the same carburized material and carburizing furnace as in Examples 1 and 2, city gas (13A) was used as the carburizing gas within a gas pressure of 3 kPa and a flow rate range of 15 to 120 L / min (flow rate per unit area of steel material: 26 to 210NL / min · m2The carburization process was performed while continuously feeding into the furnace. Further, diffusion treatment was then performed under the same conditions as in Examples 1 and 2.
[0043]
  About the obtained carburized product, Vickers hardness H from the surface to the depth directionVAnd carburizing behavior (Vickers hardness H in the depth direction) due to the difference in the flow rate of carburizing gas.VChange).
[0044]
    (Example 4 / Comparison of carburizing behavior due to difference in diffusion time)
  Using the same carburized material and carburizing furnace as in Examples 1 to 3, city gas (13A) was used as the carburizing gas at a gas pressure of 9 kPa and a flow rate of 60 L / min (flow rate per unit area of steel: 104.9 NL / min. m2The carburization process was performed while continuously feeding into the furnace. After the carburizing treatment, the supply of carburizing gas is stopped, the inside of the furnace is depressurized to 1 kPa or less, and the diffusion time is changed by changing the diffusion time of 0 to 30 min while maintaining the same temperature (930 ° C.). Further, some of the treated materials were removed, and after quenching and holding at 850 ° C. for 20 minutes, oil quenching (rapid cooling) was performed. The heating history at the time of carburizing treatment, diffusion treatment, and quenching in this example is shown in FIG.
[0045]
  About the obtained carburized product, Vickers hardness H from the surface to the depth directionVAnd carburization behavior (Vickers hardness H in the depth direction) due to the difference in diffusion time in the diffusion treatmentVChange).
[0046]
  FIG. 1 shows carburization behavior (Vickers hardness H with respect to the depth direction) according to Example 1.VThe results on the effect of carburizing gas species on the change in As shown, Vickers hardness H near the surface when acetylene gas is usedVAlthough the value was the highest, the difference from other carburizing gases was not noticeable. That is, even when city gas (13A) was used as the carburizing gas, the same carburizing behavior as that of the conventional acetylene gas or propane gas was exhibited. Moreover, when the city gas (13A) was used as the carburizing gas, a high-quality carburized product without generation of soot and carburizing unevenness was obtained.
[0047]
  Moreover, the result about the carburizing behavior at the time of changing the carburizing gas pressure concerning Example 2 in FIG. 2 is shown. As shown in the figure, when the gas flow rate is kept constant at 60 L / min and the gas pressure is changed within the range of 3 to 9 kPa, the carburization depth is 0.6 mm or more and the Vickers hardness is H.VThe value was 550 or more, that is, the thickness of the effective cured layer was 0.6 mm or more, and the target value (practical use level) was reached. When the gas pressure is 6 kPa or higher, the Vickers hardness HVThe difference between the maximum and minimum values is 50 or less and Vickers hardness HVA high-quality carburized material with little variation in value and no occurrence of soot and carburizing unevenness was obtained. Note that when the gas pressure is 3 kPa, the hardness difference exceeds 50, but can be suppressed to 50 or less by increasing the gas flow rate. Further, although the gas pressure is not shown for less than 3 kPa, the Vickers hardness is less than 3 kPa.VBoth value and carburization depth are greatly reduced, and Vickers hardness HVThe variation in value was large, and the carburizing treatment was insufficient. On the other hand, in the range where the gas pressure exceeds 9 kPa, the carburizing effect due to the increase in gas pressure was not recognized.
[0048]
  Moreover, the result about the carburizing behavior at the time of changing the gas flow rate which concerns on FIG. 3 at Example 3 is shown. As shown in the figure, as the gas flow rate increases, the solid solution / diffusion amount of carbon also tends to increase. At a flow rate of 45 L / min or more, even if the carburizing gas pressure is 3 kPa, the carburizing depth is about 0.6 mm. Vickers hardness H to partVAn effective cured layer of 550 or more was formed. In addition, the carburizing effect by the increase in the flow rate was not recognized in the range where the flow rate exceeded 60 L / min.
[0049]
  Moreover, the result about the carburizing behavior at the time of changing the diffusion time in the diffusion process which concerns on FIG. 5 at Example 4 is shown. As shown in the figure, when oil quenching is performed immediately after carburizing treatment (without quenching retention), there is little carbon diffusion into the steel material, and Vickers hardness H at a depth of 0.2 to 0.3 mm from the surface.VAs a result, the density of carbon was uneven. On the other hand, after the carburizing treatment, under the condition that the diffusion time is 0 to 30 minutes and then quenching and holding is performed at 850 ° C. for 20 minutes, carbon diffuses into the steel material, and when the diffusion time is 15 minutes or more, the effective hardened layer is about 0% from the surface. A high-quality carburized product that was formed to a depth of 6 mm or more and was free of wrinkles and carburization unevenness was obtained.
[0050]
  From the above results, by using city gas (13A) as the carburizing gas and performing the carburizing process while continuously supplying the gas pressure within the range of 3 to 9 kPa, carburizing process under a reduced pressure than before. The same excellent carburizing effect as acetylene gas, ethylene gas, propane gas and the like used as carburizing gas in the process was obtained. Specifically, Vickers hardness H, which is generally regarded as a practical use level as a carburized material.VSatisfies the condition that an effective hardened layer of 550 or more is formed to a depth of 0.6 mm or more from the surface, and a carburized product having good quality without generation of soot and carburizing unevenness can be obtained. In the above embodiment, the carburizing gas pressure is controlled within the range of 3 to 9 kPa, but the effect of the gas pressure on the carburizing reaction is confirmed up to the carburizing gas pressure of 10 kPa.
[0051]
  Further, the carburizing effect is not only when the city gas (13A) is used as the carburizing gas, but also when natural gas is used, the carburizing gas pressure is 3 to 10 kPa, the carburizing temperature is 850 to 1100 ° C., and the carburizing time. By carburizing the steel under carburizing conditions of 15 to 120 min, an effective hardened layer is formed to a depth of 0.6 mm or more from the surface as in the case of using the city gas (13A), and And carburized product with no occurrence of uneven carburization.
[0052]
  The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the present invention. For example, the processing apparatus that performs the carburizing process and the diffusion process is not limited to the above, and may have various forms. Further, the steel material used as the carburized material is not limited to that of the above embodiment. Furthermore, the carburizing process, the diffusion process, and the heating history at the time of quenching are not limited to those in the above embodiment.
[0053]
【The invention's effect】
  According to the carburizing method of the present invention, as a carburizing gas, a city gas or natural gas that is cheaper than ethylene gas, acetylene gas, etc., which has been conventionally effective as a carburizing supply gas in carburizing treatment under reduced pressure, is used. By using it, there is an effect that the carburizing cost and the cost of the carburized product obtained can be reduced. In particular, by using city gas, which is widely used as a gas line for households, as carburizing gas, it is extremely easy to supply carburizing gas to carburizing equipment, and to reduce carburizing cost and other costs. There is an effect that can be.
[0054]
  In addition, city gas and natural gas contain methane, which has a relatively low carburizing capacity, as a main component, so that carburization can be easily controlled and carburizing materials with excellent surface properties that do not generate soot and the like. Is effective. Further, since the dispersibility of the carburized gas species having 2 or more carbon atoms is good, there is an effect that reaction unevenness at the time of carburizing is small and the diffusion treatment time and thus the entire carburizing treatment process can be shortened. Further, unlike the atmospheric pressure carburizing method, no harmful CO is generated at the time of carburizing, which is excellent from the environmental viewpoint.
[0055]
  Further, by performing the carburizing process under the conditions of a predetermined carburizing gas pressure (3 to 10 kPa), a predetermined temperature (850 to 1100 ° C.), and a predetermined holding time (15 to 120 min), there is no occurrence of soot and carburizing unevenness, and steel material There is an effect that it is possible to provide a high-quality carburized product in which carbon is sufficiently dissolved and diffused to the inside.
[0056]
  Further, after the carburizing process, by performing a diffusion process for holding the carburized product under a reduced pressure of 1 kPa or less for a predetermined time, in particular, for 5 to 30 minutes, the carbon that has been dissolved in the surface portion of the steel material by the carburizing process is treated. It can be effectively diffused inside. Thereby, there is an effect that it is possible to provide a high-quality carburized product in which the occurrence of carburizing unevenness is suppressed and a hardened layer having an optimum thickness is formed. Furthermore, by carrying out under the conditions of a predetermined temperature (800 to 900 ° C.) and a predetermined time (5 to 60 min) after the diffusion treatment, the carbon diffusion effect is further improved and a more uniform and high quality carburized product can be provided. There is an effect that can be done.
[0057]
  Moreover, the flow rate at the time of carburizing is set under a predetermined condition (flow rate per unit area of steel material: 26 to 210 NL / min · m).2), The quality of the carburized product can be further improved.
[Brief description of the drawings]
FIG. 1 shows carburization behavior (Vickers hardness H with respect to the depth direction) in a carburized material according to a first embodiment of the present invention.VIt is the figure which showed the influence of the carburizing gas kind which gives to (change of).
FIG. 2 shows carburization behavior (Vickers hardness H with respect to the depth direction) in the carburized material according to the second embodiment of the present invention.VIt is the figure which showed the influence of the carburizing gas pressure which gives to (change of).
FIG. 3 shows carburization behavior (Vickers hardness H with respect to the depth direction) in the carburized material according to the third embodiment of the present invention.VIt is the figure which showed the carburizing gas flow rate which affects to (change).
FIG. 4 is a diagram showing a heating history during carburizing, diffusion, and quenching according to a fourth example of the present invention.
FIG. 5 shows carburizing behavior (Vickers hardness H with respect to the depth direction) in the carburized material according to the embodiment.VIt is the figure which showed the influence of the spreading | diffusion time which gives to the (change of).

Claims (2)

被浸炭処理材である鋼材を浸炭ガスが減圧下で供給される浸炭炉内で加熱しながら浸炭処理する浸炭方法において、
前記浸炭ガスとして飽和炭化水素系ガスを主成分とする都市ガス若しくは天然ガスを用い、これをそのガス圧が3〜10kPaの範囲内となるように制御した状態で前記浸炭炉内に常時供給しながら、前記鋼材を、加熱温度850〜1100℃の範囲内、保持時間15〜120minの範囲内で加熱保持して浸炭処理を行い、その後、1kPa以下の減圧下且つ前記浸炭処理温度下で0〜120min保持する拡散処理を行い、さらに、拡散処理後800〜900℃の温度範囲内に降温しこの温度下で5〜60min保持する焼入れ保持処理を行うことを特徴とする浸炭方法。
In the carburizing method of carburizing while heating in a carburizing furnace in which the carburizing gas is supplied under reduced pressure to the steel material that is the carburized material,
As the carburizing gas, city gas or natural gas mainly composed of a saturated hydrocarbon gas is used, and the gas pressure is controlled so that the gas pressure is within the range of 3 to 10 kPa. However, the steel material is heated and held within a heating temperature range of 850 to 1100 ° C. and a holding time range of 15 to 120 min , and then carburized, and then 0 to 0 under a reduced pressure of 1 kPa or less and the carburizing temperature. A carburizing method characterized by performing a diffusion treatment for 120 minutes, and further performing a quenching and holding treatment in which the temperature is lowered within a temperature range of 800 to 900 ° C. after the diffusion treatment and is held at this temperature for 5 to 60 minutes .
浸炭炉内の鋼材表面に接触する浸炭ガスの流量、鋼材の単位表面積当たり26〜210NL/min・mとしたことを特徴とする請求項1に記載の浸炭方法。The carburizing method according to claim 1, wherein the flow rate of the carburizing gas contacting the steel material surface in the carburizing furnace is set to 26 to 210 NL / min · m 2 per unit surface area of the steel material.
JP2002335666A 2002-11-19 2002-11-19 Carburizing method Expired - Fee Related JP3661868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335666A JP3661868B2 (en) 2002-11-19 2002-11-19 Carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335666A JP3661868B2 (en) 2002-11-19 2002-11-19 Carburizing method

Publications (2)

Publication Number Publication Date
JP2004169101A JP2004169101A (en) 2004-06-17
JP3661868B2 true JP3661868B2 (en) 2005-06-22

Family

ID=32699738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335666A Expired - Fee Related JP3661868B2 (en) 2002-11-19 2002-11-19 Carburizing method

Country Status (1)

Country Link
JP (1) JP3661868B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Also Published As

Publication number Publication date
JP2004169101A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP2007046088A (en) Nitrided quenched part, and method for producing the same
KR100858598B1 (en) Method for activating surface of metal member
JP3960697B2 (en) Carburizing and carbonitriding methods
JP2004332074A (en) Carburizing method
US10557180B2 (en) Heat treating device
US6187111B1 (en) Vacuum carburizing method
JP3867376B2 (en) Manufacturing method of rolling member
JP3661868B2 (en) Carburizing method
EP1080243B1 (en) Low pressure carbonitriding method for metal alloy parts
JP3854851B2 (en) Carburizing method for steel parts
JP2010222636A (en) Surface treatment method of steel product
JP2013256687A (en) Gas carburizing method
JP5295813B2 (en) Method for nitriding iron group alloys
JP2008260994A (en) Method for producing carburized product
JP2008202105A (en) Method for carbonitriding metallic member
JP2017197822A (en) Surface hardening method and surface hardening apparatus
JP6935326B2 (en) Gas carburizing method
JP5529158B2 (en) Manufacturing method of gas atmosphere for metal processing
JP2005220390A (en) Vacuum carburizing method and vacuum carburizing device
JP6133326B2 (en) Method for producing a gas mixture containing substantially equal proportions of carbon monoxide and hydrogen
KR102466935B1 (en) Sulfnitriding heat treatment apparatus
KR102188995B1 (en) Low-Temperature Carburizing Method Using Native Oxide Removal Gas
KR100474414B1 (en) Bright heat treatment method of inert neutral-gas environment at a high temperature
JP2013049898A (en) Method for improving insulation resistance of vacuum heating furnace
JP2005200695A (en) Gas carburizing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent or registration of utility model

Ref document number: 3661868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120401

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130401

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees