JP2013049898A - Method for improving insulation resistance of vacuum heating furnace - Google Patents

Method for improving insulation resistance of vacuum heating furnace Download PDF

Info

Publication number
JP2013049898A
JP2013049898A JP2011188630A JP2011188630A JP2013049898A JP 2013049898 A JP2013049898 A JP 2013049898A JP 2011188630 A JP2011188630 A JP 2011188630A JP 2011188630 A JP2011188630 A JP 2011188630A JP 2013049898 A JP2013049898 A JP 2013049898A
Authority
JP
Japan
Prior art keywords
heating
heating chamber
vacuum
insulation resistance
graphite heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011188630A
Other languages
Japanese (ja)
Other versions
JP5683416B2 (en
Inventor
Kazuhiko Katsumata
和彦 勝俣
Junji Inoue
純治 井上
Takahisa Shimada
嵩久 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Machinery and Furnace Co Ltd
Original Assignee
IHI Corp
IHI Machinery and Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Machinery and Furnace Co Ltd filed Critical IHI Corp
Priority to JP2011188630A priority Critical patent/JP5683416B2/en
Publication of JP2013049898A publication Critical patent/JP2013049898A/en
Application granted granted Critical
Publication of JP5683416B2 publication Critical patent/JP5683416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving insulation resistance of a vacuum heating furnace, which can shorten the time required for a burnout process to improve processing efficiency of vacuum carburization.SOLUTION: The method for improving insulation resistance of a vacuum heating furnace includes: a vacuum heating step of reducing the inner pressure of a heating chamber 3 of the vacuum heating furnace 1 having a graphite heater 5 in the heating chamber 3 to a predetermined vacuum degree and also heating the inside of the heating chamber 3 with the graphite heater 5 to a predetermined temperature; and a burnout step of introducing dry air into the heating chamber 3 after the vacuum heating step.

Description

本発明は、真空加熱炉の絶縁抵抗改善方法に関する。   The present invention relates to a method for improving insulation resistance of a vacuum heating furnace.

従来、真空加熱炉にて炭化水素系ガスを減圧高温化で分解し、得られた炭素を鉄やクロム等の金属表面で反応させる、真空浸炭法が知られている。このような真空浸炭法においては、鉄等の金属と反応しなかった炭素、すなわち断熱材(炉材)や使用ガス、処理材などから発生する炭素が煤化し、加熱室内に付着する。
すると、例えばヒーターと断熱材との間の絶縁材に煤(炭素)が付着することにより、ヒーターと断熱材との間の絶縁性が低下し、絶縁抵抗が小さくなることによって断熱材に接する加熱炉の外装体(炉体)に僅かながら電気が漏れ、ヒーターの加熱効率が低下してしまう。
Conventionally, a vacuum carburizing method is known in which a hydrocarbon-based gas is decomposed in a vacuum heating furnace under reduced pressure and high temperature, and the obtained carbon is reacted on a metal surface such as iron or chromium. In such a vacuum carburizing method, carbon that has not reacted with a metal such as iron, that is, carbon generated from a heat insulating material (furnace material), a used gas, a processing material, or the like hatches and adheres to the heating chamber.
Then, for example, by attaching soot (carbon) to the insulating material between the heater and the heat insulating material, the insulating property between the heater and the heat insulating material is lowered, and the insulation resistance is reduced, so that the heat contacting the heat insulating material is reduced. A small amount of electricity leaks into the furnace outer body (furnace body), and the heating efficiency of the heater is reduced.

そこで、従来では、特にグラファイトを使用しない真空加熱炉の場合、加熱室内に空気を導入し、前記絶縁材等に付着した煤を燃焼させる方法、いわゆるバーンアウトを行っている(例えば、特許文献1参照)。
一方、加熱室内にグラファイト製の構造物を有する真空加熱炉では、このグラファイト製の構造物が酸化によって消耗するため、酸素を含有する空気を導入し燃焼させることができない。したがって、このような真空加熱炉では、COを導入し、「C+CO→2CO」の反応によって真空加熱炉のバーンアウトを行っている(例えば、特許文献2参照)。
Therefore, conventionally, in the case of a vacuum heating furnace that does not use graphite, so-called burnout has been performed by introducing air into the heating chamber and burning the soot adhering to the insulating material or the like (for example, Patent Document 1). reference).
On the other hand, in a vacuum heating furnace having a graphite structure in the heating chamber, the graphite structure is consumed by oxidation, so oxygen-containing air cannot be introduced and burned. Therefore, in such a vacuum heating furnace, CO 2 is introduced, and burnout of the vacuum heating furnace is performed by a reaction of “C + CO 2 → 2CO” (see, for example, Patent Document 2).

特開2007−131936号公報JP 2007-131936 A 特開昭56−98468号公報JP-A-56-98468

しかしながら、COを導入して行う真空加熱炉のバーンアウトでは、煤となって付着した炭素を反応させて一酸化炭素にするのに多くの時間を要してしまい、バーンアウト工程に長時間が必要になることから、真空浸炭処理の処理効率を低下させる一因となっている。 However, in the burnout of the vacuum heating furnace performed by introducing CO 2 , it takes a lot of time to react the adhering carbon to carbon monoxide, and the burnout process takes a long time. This is a cause of lowering the processing efficiency of the vacuum carburizing process.

本発明は前記事情に鑑みてなされたもので、その目的とするところは、バーンアウト工程に要する時間を短くし、真空浸炭処理の処理効率の向上を可能にする、真空加熱炉の絶縁抵抗改善方法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is to improve the insulation resistance of a vacuum heating furnace that shortens the time required for the burnout process and improves the processing efficiency of the vacuum carburizing process. It is to provide a method.

本発明の真空加熱炉の絶縁抵抗改善方法は、加熱室内にグラファイト製ヒーターを有する真空加熱炉の前記加熱室内を予め設定した真空度に減圧するとともに、前記グラファイト製ヒーターによって該加熱室内を予め設定した温度に加熱する減圧加熱工程と、
前記減圧加熱工程後、前記加熱室内に乾燥空気を導入するバーンアウト工程と、
を備えることを特徴とする。
The method for improving the insulation resistance of a vacuum heating furnace according to the present invention is to reduce the pressure in the heating chamber of the vacuum heating furnace having a graphite heater in the heating chamber to a preset degree of vacuum and to set the heating chamber in advance by the graphite heater. A reduced pressure heating process for heating to
A burnout step of introducing dry air into the heating chamber after the reduced pressure heating step;
It is characterized by providing.

この絶縁抵抗改善方法によれば、加熱室内を予め設定した真空度に減圧するとともに、グラファイト製ヒーターによって該加熱室内を予め設定した温度に加熱した後、加熱室内に乾燥空気を導入するバーンアウトを行うので、酸化によってグラファイト製ヒーターが消耗するのを抑えつつ、該ヒーターと断熱材との間の絶縁材に付着した煤(炭素)を迅速に酸化してガス化し、前記絶縁材から除去することができる。これにより、グラファイト製ヒーターと断熱材との間の絶縁性が改善し、グラファイト製ヒーターの加熱効率が向上する。   According to this insulation resistance improving method, the heating chamber is depressurized to a preset vacuum degree, and after the heating chamber is heated to a preset temperature by a graphite heater, a burnout for introducing dry air into the heating chamber is performed. Therefore, while suppressing the exhaustion of the graphite heater due to oxidation, the soot (carbon) adhering to the insulating material between the heater and the heat insulating material is rapidly oxidized and gasified to be removed from the insulating material. Can do. Thereby, the insulation between a graphite heater and a heat insulating material improves, and the heating efficiency of a graphite heater improves.

本発明の絶縁抵抗改善方法にあっては、バーンアウト工程に要する時間を短くし、真空浸炭処理の処理効率を向上することができる。   In the insulation resistance improving method of the present invention, the time required for the burnout process can be shortened and the processing efficiency of the vacuum carburizing process can be improved.

真空加熱炉の概略構成図である。It is a schematic block diagram of a vacuum heating furnace. 絶縁抵抗を改善する方法の処理パターンの説明図である。It is explanatory drawing of the process pattern of the method of improving an insulation resistance. 絶縁抵抗を改善する方法の処理パターンの説明図である。It is explanatory drawing of the process pattern of the method of improving an insulation resistance.

以下、本発明の絶縁抵抗改善方法に係る実施形態を詳しく説明する。
図1は、本実施形態の絶縁抵抗改善方法を説明するための図であり、図1中符号1は真空加熱炉である。この真空加熱炉1は、外装体となる炉体2内に加熱室3を有して構成されている。加熱室3は、炉体2に保持部材(図示せず)を介して保持されたもので、グラファイト(黒鉛や石墨)等の断熱材4によって形成されたものであり、内部にグラファイト製ヒーター5を有している。
Hereinafter, embodiments according to the method for improving insulation resistance of the present invention will be described in detail.
FIG. 1 is a diagram for explaining the insulation resistance improving method of the present embodiment, and reference numeral 1 in FIG. 1 denotes a vacuum heating furnace. This vacuum heating furnace 1 includes a heating chamber 3 in a furnace body 2 that serves as an exterior body. The heating chamber 3 is held in the furnace body 2 via a holding member (not shown) and is formed by a heat insulating material 4 such as graphite (graphite or graphite), and has a graphite heater 5 inside. have.

グラファイト製ヒーター5は、加熱室3の断熱材4に形成された貫通孔4a、4aから端部が引き出され、図示しない制御部を介して電源に接続されている。制御部は、グラファイト製ヒーター5への通電のオンオフ、及び印加する電圧を制御することにより、グラファイト製ヒーター5による加熱を制御する。   The graphite heater 5 is pulled out from through holes 4a and 4a formed in the heat insulating material 4 of the heating chamber 3, and is connected to a power source via a control unit (not shown). The controller controls heating by the graphite heater 5 by controlling on / off of energization to the graphite heater 5 and a voltage to be applied.

貫通孔4aには、グラファイト製ヒーター5と断熱材4との間を絶縁するための絶縁材6が設けられている。
また、炉体2には配管を介して真空ポンプ7が接続されており、これによって炉体2内、すなわち加熱室3内を予め設定した所望の真空度に減圧できるようになっている。本実施形態の真空ポンプ7は、加熱室3内を160Pa以下に減圧できるようになっている。
In the through hole 4a, an insulating material 6 for insulating the graphite heater 5 and the heat insulating material 4 is provided.
Further, a vacuum pump 7 is connected to the furnace body 2 via a pipe so that the inside of the furnace body 2, that is, the inside of the heating chamber 3 can be depressurized to a predetermined degree of vacuum. The vacuum pump 7 of the present embodiment can reduce the pressure in the heating chamber 3 to 160 Pa or less.

さらに、炉体2内の加熱室3には、配管を介して浸炭ガス源8と空気源9と不活性ガス源10とがそれぞれ接続されている。浸炭ガス源8は、アセチレン等の炭化水素ガスからなる浸炭ガスの供給源であり、加熱室3内に浸炭ガスを供給することにより、鉄やクロム等の金属からなる被処理体の表面を浸炭処理するためのものである。なお、浸炭ガス源8に接続された配管には減圧弁および開閉弁が設けられ、さらに流量計が設けられている。これにより、浸炭ガス源8から加熱室3内に供給される浸炭ガスの流量が調整可能になっている。   Furthermore, a carburizing gas source 8, an air source 9, and an inert gas source 10 are connected to the heating chamber 3 in the furnace body 2 through piping. The carburizing gas source 8 is a supply source of a carburizing gas made of a hydrocarbon gas such as acetylene. By supplying the carburizing gas into the heating chamber 3, the surface of the object to be processed made of a metal such as iron or chromium is carburized. It is for processing. In addition, the piping connected to the carburizing gas source 8 is provided with a pressure reducing valve and an on-off valve, and further provided with a flow meter. Thereby, the flow rate of the carburizing gas supplied from the carburizing gas source 8 into the heating chamber 3 can be adjusted.

空気源9は、例えば乾燥空気を充填した空気ボンベからなるもので、加熱室3内に空気を供給することにより、加熱室3内をバーンアウト処理するためのものである。なお、空気源9に接続された配管にも減圧弁および開閉弁が設けられ、さらに流量計が設けられている。これにより、空気源9から加熱室3内に供給される空気の流量も調整可能になっている。また、空気源9としては空気ボンベに限定されることなく、水蒸気を含まない乾燥空気を供給できるものであれば、種々のものが使用可能である。   The air source 9 is composed of, for example, an air cylinder filled with dry air, and is used for performing burnout processing in the heating chamber 3 by supplying air into the heating chamber 3. The piping connected to the air source 9 is also provided with a pressure reducing valve and an on-off valve, and further provided with a flow meter. Thereby, the flow rate of the air supplied from the air source 9 into the heating chamber 3 can also be adjusted. The air source 9 is not limited to an air cylinder, and various air sources can be used as long as they can supply dry air containing no water vapor.

不活性ガス源10は、例えば窒素ガスを加熱室3内に供給するもので、主に加熱室3内を冷却するためのものである。なお、不活性ガス源10に接続された配管にも減圧弁および開閉弁が設けられ、さらに流量計が設けられている。これにより、不活性ガス源10から加熱室3内に供給され窒素(不活性ガス)の流量も調整可能になっている。
また、これら浸炭ガス源8、空気源9、不活性ガス源10と加熱室3とを接続する配管については、加熱室3から炉体2の外部まで一本で形成し、その後分岐して浸炭ガス源8、空気源9、不活性ガス源10にそれぞれ接続するように構成してもよい。
The inert gas source 10 supplies, for example, nitrogen gas into the heating chamber 3 and is mainly for cooling the inside of the heating chamber 3. The piping connected to the inert gas source 10 is also provided with a pressure reducing valve and an on-off valve, and further provided with a flow meter. Thus, the flow rate of nitrogen (inert gas) supplied from the inert gas source 10 into the heating chamber 3 can be adjusted.
The carburizing gas source 8, the air source 9, the inert gas source 10 and the piping connecting the heating chamber 3 are formed from the heating chamber 3 to the outside of the furnace body 2, and then branched and carburized. You may comprise so that it may connect with the gas source 8, the air source 9, and the inert gas source 10, respectively.

真空加熱炉1には、加熱室3内の温度を検出する温度計11と、加熱室3内の圧力を検出する圧力計12とが設けられている。温度計11は、加熱室3内に温度センサ(図示せず)を有したものであり、圧力計12は、加熱室3内に圧力センサ(図示せず)を有したものである。
また、炉体2、加熱室3には、被処理体を搬入・搬出するための扉(図示せず)が設けられている。
The vacuum heating furnace 1 is provided with a thermometer 11 that detects the temperature in the heating chamber 3 and a pressure gauge 12 that detects the pressure in the heating chamber 3. The thermometer 11 has a temperature sensor (not shown) in the heating chamber 3, and the pressure gauge 12 has a pressure sensor (not shown) in the heating chamber 3.
Further, the furnace body 2 and the heating chamber 3 are provided with doors (not shown) for carrying in / out the object to be processed.

このような構成の真空加熱炉1によって浸炭処理を行うには、まず、炉体2、加熱室3の扉を開いて被処理体(図示せず)を加熱室3内に搬入し、続いて各扉を閉める。次に、真空ポンプ7によって炉体2内を減圧(真空引き)し、加熱室3内を所望の真空度にするとともに、グラファイト製ヒーター5に通電することで加熱室3内を加熱し、被処理体を所望温度に加熱する。そして、真空ポンプ7の作動を停止し、浸炭ガス源8から浸炭ガスを予め設定した流量で所定時間供給する。これにより、被処理体に対して浸炭処理を行う。その後、グラファイト製ヒーター5への通電をオフにし、加熱室3内を所定温度に降温したら、加熱室3内、炉体2内を大気圧に戻す。そして、炉体2、加熱室3の扉を開き、浸炭処理を行った被処理体を炉外に搬出する。   In order to perform the carburizing process by the vacuum heating furnace 1 having such a configuration, first, the doors of the furnace body 2 and the heating chamber 3 are opened, and an object to be processed (not shown) is carried into the heating chamber 3. Close each door. Next, the inside of the furnace body 2 is depressurized (evacuated) by the vacuum pump 7 to make the inside of the heating chamber 3 have a desired degree of vacuum, and the inside of the heating chamber 3 is heated by energizing the graphite heater 5, The treated body is heated to a desired temperature. Then, the operation of the vacuum pump 7 is stopped, and the carburizing gas is supplied from the carburizing gas source 8 at a preset flow rate for a predetermined time. Thereby, a carburizing process is performed with respect to a to-be-processed object. After that, when the energization to the graphite heater 5 is turned off and the inside of the heating chamber 3 is lowered to a predetermined temperature, the inside of the heating chamber 3 and the inside of the furnace body 2 are returned to atmospheric pressure. And the door of the furnace body 2 and the heating chamber 3 is opened, and the to-be-processed object which performed the carburizing process is carried out of a furnace.

このような浸炭処理を繰り返し行うと、被処理体と反応しなかった炭素、すなわち浸炭ガスから発生した炭素等が煤化し、加熱室3内に付着する。
すると、発生した煤はグラファイト製ヒーター5と断熱材4との間の絶縁材6にも付着し、これによってグラファイト製ヒーター5と断熱材4との間の絶縁性が低下し、絶縁抵抗が小さくなる。
When such carburizing treatment is repeated, carbon that has not reacted with the object to be treated, that is, carbon generated from the carburizing gas, hatches and adheres to the heating chamber 3.
Then, the generated soot also adheres to the insulating material 6 between the graphite heater 5 and the heat insulating material 4, thereby reducing the insulation between the graphite heater 5 and the heat insulating material 4 and reducing the insulation resistance. Become.

そこで、本発明では、このような浸炭処理によって小さくなったグラファイト製ヒーター5と断熱材4との間の絶縁抵抗を改善し、元の大きな抵抗に回復すべく、以下の工程からなる処理を図2に示すパターンで行う。
まず、本実施形態の減圧加熱工程として、真空ポンプ7を作動させて炉体2内および加熱室3内を予め設定した真空度、本実施形態では160Paに減圧する。そして、この真空度に減圧した後、グラファイト製ヒーター5に通電し、該加熱室3内を予め設定した温度、本実施形態では800℃に加熱する。ここで、グラファイト製ヒーター5による加熱室3内の加熱は、昇温速度を8℃/分程度で行い、56分かけて800℃に加熱する。
Therefore, in the present invention, in order to improve the insulation resistance between the graphite heater 5 and the heat insulating material 4 reduced by such carburizing treatment and restore the original large resistance, a process comprising the following steps is performed. The pattern shown in FIG.
First, as the reduced pressure heating process of the present embodiment, the vacuum pump 7 is operated to reduce the pressure inside the furnace body 2 and the heating chamber 3 to a preset degree of vacuum, that is, 160 Pa in the present embodiment. Then, after reducing the pressure to this degree of vacuum, the graphite heater 5 is energized to heat the inside of the heating chamber 3 to a preset temperature, in this embodiment 800 ° C. Here, the heating in the heating chamber 3 by the graphite heater 5 is performed at a rate of temperature rise of about 8 ° C./min and heated to 800 ° C. over 56 minutes.

本実施形態の減圧加熱工程では、このようにして加熱室3内を減圧・加熱した後、安定化工程として、前記グラファイト製ヒーター5への通電をオフにし、加熱室3内の温度を安定化させ、均熱化する。具体的には、グラファイト製ヒーター5への通電をオフにした後、その状態、すなわち160Pa、800℃の状態で10分間保持する。このような安定化工程を行うと、グラファイト製ヒーター5自体の温度も加熱室3内の温度にほぼ等しい温度にまで降温し、これらの間で温度差がほとんどなくなり、グラファイト製ヒーター5や断熱材4、絶縁材6を含めた加熱室3全体がほぼ均一な温度(800℃)となる。   In the reduced pressure heating process of the present embodiment, after the pressure in the heating chamber 3 is reduced and heated in this way, as a stabilization process, the power supply to the graphite heater 5 is turned off to stabilize the temperature in the heating chamber 3. And soak. Specifically, after energization of the graphite heater 5 is turned off, the state is maintained, that is, at 160 Pa and 800 ° C. for 10 minutes. When such a stabilization process is performed, the temperature of the graphite heater 5 itself is lowered to a temperature substantially equal to the temperature in the heating chamber 3, and there is almost no temperature difference between them. 4. The heating chamber 3 as a whole including the insulating material 6 has a substantially uniform temperature (800 ° C.).

次いで、バーンアウト工程として、真空ポンプ7の作動を停止し、さらにほぼ均一な温度になった加熱室3内に空気源9から乾燥空気を導入し、加熱室3内を60分間バーンアウト処理する。乾燥空気の導入量としては、減圧弁によって空気源9からの二次圧を0.2〜0.25MPa程度に調整することで、予め設定した適宜量とする。このようなバーアウト処理を行うことにより、浸炭処理の際に発生して絶縁材6等に付着した煤が酸化され、「C+O→CO」の反応によって迅速にガス化される。これにより、絶縁材6等に付着した煤は除去される。また、予め加熱室3内を高真空度(160Pa)に保持しているので、導入された乾燥空気によってグラファイト製ヒーター5が酸化され、消耗するのが抑えられる。
なお、このようなバーンアウト工程の間、グラファイト製ヒーター5への通電をオフにしているので、加熱室3の温度は徐々に低下する。
Next, as a burnout process, the operation of the vacuum pump 7 is stopped, and further, dry air is introduced from the air source 9 into the heating chamber 3 having a substantially uniform temperature, and the inside of the heating chamber 3 is burned out for 60 minutes. . The amount of dry air introduced is set to an appropriate amount set in advance by adjusting the secondary pressure from the air source 9 to about 0.2 to 0.25 MPa by a pressure reducing valve. By performing such a bar-out process, soot generated during the carburizing process and adhering to the insulating material 6 or the like is oxidized and rapidly gasified by a reaction of “C + O 2 → CO 2 ”. Thereby, the wrinkles adhering to the insulating material 6 etc. are removed. In addition, since the inside of the heating chamber 3 is maintained at a high degree of vacuum (160 Pa) in advance, it is possible to suppress the graphite heater 5 from being oxidized and consumed by the introduced dry air.
During the burnout process, since the power supply to the graphite heater 5 is turned off, the temperature of the heating chamber 3 gradually decreases.

その後、冷却工程として、不活性ガス源10から加熱室3内に窒素を導入する。導入する窒素の圧力を87kPaとし、1分間窒素の導入を行う。これにより、加熱室3内を冷却し、例えば60℃に降温する。   Thereafter, nitrogen is introduced into the heating chamber 3 from the inert gas source 10 as a cooling step. The pressure of nitrogen to be introduced is set to 87 kPa, and nitrogen is introduced for 1 minute. Thereby, the inside of the heating chamber 3 is cooled, and the temperature is lowered to 60 ° C., for example.

また、本実施形態では、前記の絶縁抵抗改善のための処理の前後で、グラファイト製ヒーター5と炉体2との間の抵抗(絶縁抵抗)を、テスターで測定した。なお、グラファイト製ヒーター5の測定点については、ヒーター回路の前と後ろの2点で行った。測定結果を以下に示す。
・「ヒーター回路の前」絶縁抵抗改善処理前:6.9Ω→絶縁抵抗改善処理後:7.1Ω
・「ヒーター回路の後」絶縁抵抗改善処理前:6.8Ω→絶縁抵抗改善処理後:7.1Ω
したがって、グラファイト製ヒーター5と断熱材4との間の絶縁材6に付着した煤(炭素)がバーンアウト処理によって除去され、該絶縁材6の絶縁性が改善されたことが確認された。
In this embodiment, the resistance (insulation resistance) between the graphite heater 5 and the furnace body 2 was measured with a tester before and after the treatment for improving the insulation resistance. Note that the graphite heater 5 was measured at two points before and after the heater circuit. The measurement results are shown below.
・ Before the heater circuit Before insulation resistance improvement: 6.9Ω → After insulation resistance improvement: 7.1Ω
・ "After heater circuit" Before insulation resistance improvement treatment: 6.8Ω → After insulation resistance improvement treatment: 7.1Ω
Therefore, it was confirmed that soot (carbon) adhering to the insulating material 6 between the graphite heater 5 and the heat insulating material 4 was removed by the burnout process, and the insulating property of the insulating material 6 was improved.

また、グラファイト製ヒーター5についても、絶縁抵抗改善のための処理の前後で表面抵抗を測定したところ、以下に示すように前記ヒーター5と炉体2との間の抵抗と同様の傾向を示すことが分かった。なお、該ヒーター5の測定は、「ヒーター受け」、「ハンガ」、「パワーリード」の3点で行った。
・「ヒーター受け」 絶縁抵抗改善処理前:93Ω → 絶縁抵抗改善処理後:92Ω
・「ハンガ」 絶縁抵抗改善処理前:77Ω → 絶縁抵抗改善処理後:94Ω
・「パワーリード」 絶縁抵抗改善処理前:66Ω → 絶縁抵抗改善処理後:76Ω
Further, when the surface resistance of the graphite heater 5 was measured before and after the treatment for improving the insulation resistance, it showed the same tendency as the resistance between the heater 5 and the furnace body 2 as shown below. I understood. The heater 5 was measured at three points: “heater receiver”, “hanger”, and “power lead”.
・ "Heater receiver" Before insulation resistance improvement treatment: 93Ω → After insulation resistance improvement treatment: 92Ω
・ "Hanger" Before insulation resistance improvement treatment: 77Ω → After insulation resistance improvement treatment: 94Ω
・ "Power Lead" Before insulation resistance improvement treatment: 66Ω → After insulation resistance improvement treatment: 76Ω

グラファイト製ヒーター5はその表面がポーラスになっており、微小な孔が多く形成されているため、浸炭処理によって発生した炭素(煤)は前記の孔内に多く付着する。しかし、前記結果からも分かるように、バーンアウト処理によってこのように付着した炭素(煤)がグラファイト製ヒーター5より先に酸化され、除去される。したがって、バーンアウト処理によるグラファイト製ヒーター5の消耗が抑制される。   Since the graphite heater 5 has a porous surface and many fine holes are formed, a large amount of carbon (soot) generated by the carburizing process adheres to the holes. However, as can be seen from the above results, carbon (soot) adhering in this way is oxidized and removed prior to the graphite heater 5 by the burnout process. Therefore, consumption of the graphite heater 5 due to the burnout process is suppressed.

なお、前記実施形態とは別に、前記方法の減圧加熱工程において加熱温度を700℃とし、それ以外は前記方法と同様にして各工程を行った。その結果、絶縁抵抗の改善は見られたものの、加熱温度を800℃とした前記実施形態に比べると効果が小さかった。   Separately from the above embodiment, the heating temperature was set to 700 ° C. in the reduced pressure heating step of the above method, and the other steps were performed in the same manner as in the above method. As a result, although the insulation resistance was improved, the effect was small as compared with the above embodiment in which the heating temperature was 800 ° C.

以上説明したように、本実施形態の真空加熱炉の絶縁抵抗改善方法にあっては、加熱室3内を予め設定した真空度に減圧するとともに、グラファイト製ヒーター5によって該加熱室3内を予め設定した温度に加熱した後、加熱室3内に乾燥空気を導入するバーンアウトを行うので、酸化によってグラファイト製ヒーター5が消耗するのを抑えつつ、該ヒーター5と断熱材4との間の絶縁材6に付着した煤(炭素)を迅速に酸化してガス化し、絶縁材6から除去することができる。これにより、グラファイト製ヒーター5と断熱材4との間の絶縁性を改善し、グラファイト製ヒーター5の加熱効率を向上することができる。
また、空気を導入して酸素で煤(炭素)を直接酸化するので、二酸化炭素を用いて酸化を行う従来法に比べてより迅速に煤(炭素)の酸化を行うことができ、したがってバーンアウト工程に要する時間を短くし、真空浸炭処理の処理効率を向上することができる。
As described above, in the method for improving the insulation resistance of the vacuum heating furnace of the present embodiment, the inside of the heating chamber 3 is depressurized to a preset degree of vacuum and the inside of the heating chamber 3 is preliminarily formed by the graphite heater 5. After heating to the set temperature, burnout for introducing dry air into the heating chamber 3 is performed, so that the insulation between the heater 5 and the heat insulating material 4 is suppressed while suppressing the consumption of the graphite heater 5 due to oxidation. The soot (carbon) adhering to the material 6 can be quickly oxidized and gasified and removed from the insulating material 6. Thereby, the insulation between the graphite heater 5 and the heat insulating material 4 can be improved, and the heating efficiency of the graphite heater 5 can be improved.
In addition, since air is introduced to directly oxidize soot (carbon) with oxygen, soot (carbon) can be oxidized more quickly than conventional methods that oxidize using carbon dioxide, and therefore burnout is possible. The time required for the process can be shortened, and the processing efficiency of the vacuum carburizing process can be improved.

また、加熱室3内を減圧・加熱した後、グラファイト製ヒーター5への通電をオフにして加熱室3内の温度を安定化させる、安定化工程を行っているので、グラファイト製ヒーター5自体の温度を加熱室3内の温度とほぼ等しい温度にまで降温させることにより、これらの間の温度差をほとんどなくすことができる。したがって、この後のバーンアウトの際、グラファイト製ヒーター5の温度が他より高いことで反応し易くなり、消耗し易くなるのを防止することができる。   In addition, after the pressure in the heating chamber 3 is reduced and heated, a stabilization process is performed in which the temperature in the heating chamber 3 is stabilized by turning off the power to the graphite heater 5. By lowering the temperature to a temperature substantially equal to the temperature in the heating chamber 3, the temperature difference between them can be almost eliminated. Therefore, in the subsequent burnout, it is possible to prevent the graphite heater 5 from being easily reacted and exhausted because the temperature of the graphite heater 5 is higher than the others.

次に、本発明の絶縁抵抗改善方法に係る他の実施形態を説明する。
本実施形態が先に示した実施形態と異なるところは、本実施形態では、先の実施形態におけるバーンアウト工程を複数回繰り返す点である。
すなわち、本実施形態では、浸炭処理によって小さくなったグラファイト製ヒーター5と断熱材4との間の絶縁抵抗を、図3に示すパターンにしたがって各処理を行う。
Next, another embodiment according to the insulation resistance improving method of the present invention will be described.
The difference between the present embodiment and the previous embodiment is that the burnout process in the previous embodiment is repeated a plurality of times.
That is, in this embodiment, each process is performed according to the pattern shown in FIG. 3 about the insulation resistance between the graphite heater 5 and the heat insulating material 4 which became small by the carburizing process.

図3に示すように、本実施形態ではまず、先の実施形態と同様にして減圧加熱工程を行う。具体的には、所定の真空度(160Pa)に減圧し、800℃に加熱した後、グラファイト製ヒーター5への通電をオフにして、加熱室3内の温度を安定化させる。
次いで、先の実施形態と同様にしてバーンアウト工程を行う。ただし、本実施形態では、前記したようにバーンアウト工程を複数回繰り返すため、この工程1回当たりの処理時間を短くする。本実施形態では、図3に示すようにバーンアウト工程を3回繰り返すようにし、したがって工程1回当たりの処理時間を20分間とする。なお、バーンアウト工程については、複数回行う場合、2回または4回以上としてもよい。
As shown in FIG. 3, in this embodiment, first, the reduced pressure heating process is performed in the same manner as in the previous embodiment. Specifically, after reducing the pressure to a predetermined degree of vacuum (160 Pa) and heating to 800 ° C., the power supply to the graphite heater 5 is turned off to stabilize the temperature in the heating chamber 3.
Next, a burnout process is performed in the same manner as in the previous embodiment. However, in this embodiment, since the burnout process is repeated a plurality of times as described above, the processing time per process is shortened. In the present embodiment, the burnout process is repeated three times as shown in FIG. 3, and therefore the processing time per process is 20 minutes. In addition, about a burnout process, when performing it in multiple times, it is good also as 2 times or 4 times or more.

このようにして1回目のバーンアウト工程を行ったら、真空ポンプ7を作動させて一旦加熱室3内を所定の真空度(160Pa)に減圧し、さらにグラファイト製ヒーター5に通電して加熱室3内を800℃に加熱する。そして、800℃に加熱し、真空ポンプ7を停止した後、グラファイト製ヒーター5への通電をオフにし、加熱室3内の温度を安定化させる。
次いで、1回目のバーンアウト工程と同様にして2回目のバーンアウト工程を行い、さらに同様の処理を繰り返して3回目のバーンアウト工程を行う。
その後、先の実施形態と同様にして冷却工程を行う。
When the first burnout process is performed in this way, the vacuum pump 7 is operated to temporarily depressurize the inside of the heating chamber 3 to a predetermined degree of vacuum (160 Pa), and further energize the graphite heater 5 to heat the heating chamber 3. The inside is heated to 800 ° C. And after heating to 800 degreeC and stopping the vacuum pump 7, the electricity supply to the graphite heater 5 is turned off, and the temperature in the heating chamber 3 is stabilized.
Next, the second burnout process is performed in the same manner as the first burnout process, and the third process is repeated by repeating the same process.
Thereafter, the cooling step is performed in the same manner as in the previous embodiment.

このような真空加熱炉の絶縁抵抗改善方法にあっても、減圧加熱工程の後、加熱室3内に乾燥空気を導入するバーンアウトを行うので、酸化によってグラファイト製ヒーター5が消耗するのを抑えつつ、絶縁材6に付着した煤(炭素)を迅速に酸化してガス化し、除去することができる。これにより、グラファイト製ヒーター5と断熱材4との間の絶縁性を改善し、グラファイト製ヒーター5の加熱効率を向上することができる。
また、空気を導入して酸素で煤(炭素)を直接酸化するので、従来法に比べてより迅速に煤(炭素)の酸化を行うことができ、したがってバーンアウト工程に要する時間を短くし、真空浸炭処理の処理効率を向上することができる。
また、バーアウト工程を複数回繰り返し行い、1回当たりの処理時間を短くしているので、グラファイト製ヒーター5の酸化による消耗をより確実に抑えることができる。
Even in such a method for improving the insulation resistance of a vacuum furnace, burnout for introducing dry air into the heating chamber 3 is performed after the reduced pressure heating step, so that the graphite heater 5 is prevented from being consumed by oxidation. However, the soot (carbon) adhering to the insulating material 6 can be rapidly oxidized and gasified to be removed. Thereby, the insulation between the graphite heater 5 and the heat insulating material 4 can be improved, and the heating efficiency of the graphite heater 5 can be improved.
In addition, since air is introduced to directly oxidize soot (carbon) with oxygen, soot (carbon) can be oxidized more quickly than in the conventional method, thus shortening the time required for the burnout process, The processing efficiency of the vacuum carburizing process can be improved.
Further, since the bar-out process is repeated a plurality of times and the processing time per time is shortened, the consumption due to oxidation of the graphite heater 5 can be more reliably suppressed.

なお、本発明は前記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、前記実施形態では減圧加熱工程での加熱室3の加熱温度を800℃としたが、この加熱温度については800℃に限定されることなく、任意の温度にすることができる。図2に示した実施形態において、その減圧加熱工程における加熱温度を850℃とし、それ以外は前記方法と同様にして各工程を行った結果、加熱温度を800℃とした前記実施形態と同等の効果が得られた。したがって、減圧加熱工程での加熱室3の加熱温度としては、800℃〜850℃の範囲とするのが好ましいことが分かった。
また、減圧加熱工程での加熱室3の圧力(真空度)を160Paとしたが、この圧力についても、充分な真空度となる範囲で任意に設定することができる。
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
For example, in the above-described embodiment, the heating temperature of the heating chamber 3 in the reduced pressure heating step is set to 800 ° C., but the heating temperature is not limited to 800 ° C. and can be set to an arbitrary temperature. In the embodiment shown in FIG. 2, the heating temperature in the reduced pressure heating step is set to 850 ° C., and the other steps are performed in the same manner as in the above method. As a result, the heating temperature is set to 800 ° C. The effect was obtained. Therefore, it turned out that it is preferable to set it as the range of 800 to 850 degreeC as heating temperature of the heating chamber 3 in a pressure reduction heating process.
Moreover, although the pressure (degree of vacuum) of the heating chamber 3 in the reduced pressure heating step is set to 160 Pa, this pressure can also be arbitrarily set within a range where the degree of vacuum is sufficient.

1…真空加熱炉、2…炉体、3…加熱室、4…断熱材、4a…貫通孔、5…グラファイト製ヒーター、6…絶縁材、7…真空ポンプ、8…浸炭ガス源、9…空気源 DESCRIPTION OF SYMBOLS 1 ... Vacuum heating furnace, 2 ... Furnace body, 3 ... Heating chamber, 4 ... Heat insulating material, 4a ... Through-hole, 5 ... Graphite heater, 6 ... Insulating material, 7 ... Vacuum pump, 8 ... Carburizing gas source, 9 ... Air source

Claims (3)

加熱室内にグラファイト製ヒーターを有する真空加熱炉の前記加熱室内を予め設定した真空度に減圧するとともに、前記グラファイト製ヒーターによって該加熱室内を予め設定した温度に加熱する減圧加熱工程と、
前記減圧加熱工程後、前記加熱室内に乾燥空気を導入するバーンアウト工程と、
を備えることを特徴とする真空加熱炉の絶縁抵抗改善方法。
A vacuum heating step of reducing the pressure in the heating chamber of a vacuum heating furnace having a graphite heater in the heating chamber to a preset degree of vacuum and heating the heating chamber to a preset temperature by the graphite heater;
A burnout step of introducing dry air into the heating chamber after the reduced pressure heating step;
A method for improving insulation resistance of a vacuum heating furnace, comprising:
前記減圧加熱工程は、前記グラファイト製ヒーターによって加熱室内を予め設定した温度に加熱した後、該グラファイト製ヒーターへの通電をオフにし、加熱室内の温度を安定化させる安定化工程を有することを特徴とする請求項1記載の真空加熱炉の絶縁抵抗改善方法。   The reduced pressure heating step includes a stabilization step of heating the interior of the heating chamber to a preset temperature with the graphite heater and then turning off the power to the graphite heater to stabilize the temperature in the heating chamber. The method for improving insulation resistance of a vacuum heating furnace according to claim 1. 前記減圧加熱工程では、前記加熱室内を160Pa以下に減圧するとともに、該加熱室内を800℃〜850℃に加熱することを特徴とする請求項1又は2に記載の真空加熱炉の絶縁抵抗改善方法。   The method for improving insulation resistance of a vacuum heating furnace according to claim 1 or 2, wherein, in the reduced pressure heating step, the heating chamber is depressurized to 160 Pa or less and the heating chamber is heated to 800 ° C to 850 ° C. .
JP2011188630A 2011-08-31 2011-08-31 Method for improving insulation resistance of vacuum heating furnace Active JP5683416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188630A JP5683416B2 (en) 2011-08-31 2011-08-31 Method for improving insulation resistance of vacuum heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188630A JP5683416B2 (en) 2011-08-31 2011-08-31 Method for improving insulation resistance of vacuum heating furnace

Publications (2)

Publication Number Publication Date
JP2013049898A true JP2013049898A (en) 2013-03-14
JP5683416B2 JP5683416B2 (en) 2015-03-11

Family

ID=48012158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188630A Active JP5683416B2 (en) 2011-08-31 2011-08-31 Method for improving insulation resistance of vacuum heating furnace

Country Status (1)

Country Link
JP (1) JP5683416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163912A (en) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 Heat processing device
WO2023190205A1 (en) * 2022-03-31 2023-10-05 Dowaサーモテック株式会社 Vacuum carburizing furnace and vacuum carburizing processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129703B1 (en) * 1971-06-23 1976-08-27
JPH0248618B2 (en) * 1982-01-27 1990-10-25 Michio Sugyama
JP2792047B2 (en) * 1988-10-05 1998-08-27 大同特殊鋼株式会社 Heat treatment method
JP2004099934A (en) * 2002-09-05 2004-04-02 Daido Steel Co Ltd Method for removing soot in vacuum heat treatment furnace
JP2005029600A (en) * 2003-07-07 2005-02-03 Yoshimitsu Oshima Apparatus for dry distillation and carbonization treatment of waste and method for dry distillation and carbonization treatment
JP2007131936A (en) * 2005-11-14 2007-05-31 Nachi Fujikoshi Corp Burnout method for vacuum carburizing furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129703B1 (en) * 1971-06-23 1976-08-27
JPH0248618B2 (en) * 1982-01-27 1990-10-25 Michio Sugyama
JP2792047B2 (en) * 1988-10-05 1998-08-27 大同特殊鋼株式会社 Heat treatment method
JP2004099934A (en) * 2002-09-05 2004-04-02 Daido Steel Co Ltd Method for removing soot in vacuum heat treatment furnace
JP2005029600A (en) * 2003-07-07 2005-02-03 Yoshimitsu Oshima Apparatus for dry distillation and carbonization treatment of waste and method for dry distillation and carbonization treatment
JP2007131936A (en) * 2005-11-14 2007-05-31 Nachi Fujikoshi Corp Burnout method for vacuum carburizing furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019163912A (en) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 Heat processing device
JP7193237B2 (en) 2018-03-20 2022-12-20 トヨタ自動車株式会社 Heat treatment equipment
WO2023190205A1 (en) * 2022-03-31 2023-10-05 Dowaサーモテック株式会社 Vacuum carburizing furnace and vacuum carburizing processing method

Also Published As

Publication number Publication date
JP5683416B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5883727B2 (en) Gas nitriding and gas soft nitriding methods
TWI665731B (en) Substrate processing method and substrate processing apparatus
JP3839615B2 (en) Vacuum carburizing method
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
JP5683416B2 (en) Method for improving insulation resistance of vacuum heating furnace
US10557180B2 (en) Heat treating device
JP2008109091A (en) Method, apparatus and program of forming silicon oxide film
JP2007131936A (en) Burnout method for vacuum carburizing furnace
JP2011026647A (en) Gas carburization treatment device and gas carburization method
JP2004332075A (en) Carburization control method and carburizing device using the method
JP2013256687A (en) Gas carburizing method
JP6812494B2 (en) Metal spring manufacturing method and manufacturing equipment
JP2005179714A (en) Carburizing method
JP6543213B2 (en) Surface hardening method and surface hardening apparatus
CN109439886A (en) The control method of small-bore 12Cr1MoVG steel pipe decarburized layer
JP2008260994A (en) Method for producing carburized product
JP6910387B2 (en) Semiconductor device manufacturing method, board processing method, board processing device and program
JP2005325371A (en) Vacuum carburizing furnace
JP2017166035A (en) Gas carburization method and gas carburization apparatus
JP4255815B2 (en) Gas carburizing method
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
WO2008120715A1 (en) Substrate processing apparatus and method for stabilizing status in processing chamber of the substrate processing apparatus
JP6357042B2 (en) Gas soft nitriding method and gas soft nitriding apparatus
JP2024034774A (en) Vacuum carburizing method and vacuum carburizing equipment
JP5029541B2 (en) Carburizing treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5683416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250