JPH0248618B2 - - Google Patents
Info
- Publication number
- JPH0248618B2 JPH0248618B2 JP57011217A JP1121782A JPH0248618B2 JP H0248618 B2 JPH0248618 B2 JP H0248618B2 JP 57011217 A JP57011217 A JP 57011217A JP 1121782 A JP1121782 A JP 1121782A JP H0248618 B2 JPH0248618 B2 JP H0248618B2
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- carburizing
- heating chamber
- temperature
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 110
- 238000005255 carburizing Methods 0.000 claims description 83
- 238000001816 cooling Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 18
- 238000009792 diffusion process Methods 0.000 claims description 15
- 239000011810 insulating material Substances 0.000 claims description 15
- 238000010791 quenching Methods 0.000 claims description 15
- 230000000171 quenching effect Effects 0.000 claims description 15
- 239000007789 gas Substances 0.000 description 28
- 239000002826 coolant Substances 0.000 description 9
- 239000004071 soot Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 238000011017 operating method Methods 0.000 description 5
- 239000012774 insulation material Substances 0.000 description 4
- 239000003921 oil Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910017060 Fe Cr Inorganic materials 0.000 description 1
- 229910002544 Fe-Cr Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/20—Carburising
- C23C8/22—Carburising of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Description
【発明の詳細な説明】
<産業上の利用分野>
この発明は連続真空浸炭炉、とくに第1加熱
室、第2加熱室および冷却室からなる3室と、こ
れらの3室を区画する2つの中間真空扉からなる
3室2扉タイプの連続真空浸炭炉とその操業方法
に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a continuous vacuum carburizing furnace, in particular, to a continuous vacuum carburizing furnace, which has three chambers consisting of a first heating chamber, a second heating chamber, and a cooling chamber, and two chambers that partition these three chambers. This invention relates to a three-chamber, two-door type continuous vacuum carburizing furnace consisting of an intermediate vacuum door and its operating method.
<従来の技術>
真空炉中で被熱物を加熱後炭化水素ガスをこの
炉に導入して浸炭し、ついで拡散させた後急冷
(焼入れ)して浸炭部を硬化させる真空浸炭法は、
従来のガス浸炭法にくらべて高温で処理すること
ができるため、浸炭時間が短縮され、被熱物の表
面炭素濃度や浸炭深さの制御は浸炭および拡散時
間の調整によつて行うことが可能であり、従来の
ガス浸炭法と異なり浸炭性ガス雰囲気中に酸素が
なく表面異常層が発生しないという特徴があるた
め急速に普及してきた(特公昭54−31976号公報
参照)。<Prior art> The vacuum carburizing method involves heating an object to be heated in a vacuum furnace, introducing hydrocarbon gas into the furnace, carburizing the object, then diffusing it, and then rapidly cooling (quenching) to harden the carburized part.
Compared to conventional gas carburizing methods, carburizing can be performed at higher temperatures, so carburizing time is shortened, and the surface carbon concentration and carburizing depth of the heated object can be controlled by adjusting the carburizing and diffusion times. Unlike the conventional gas carburizing method, this method has rapidly become popular because there is no oxygen in the carburizing gas atmosphere and no abnormal surface layer is generated (see Japanese Patent Publication No. 31976/1983).
そこでこのような真空浸炭処理において、出願
人は第1図に示すような2室1扉タイプの半連続
真空浸炭炉を提案した(特願昭56−21826号(等
開昭57−137417号)参照。)この炉は発熱体1A
と断熱材1Bとからなる加熱室1と、この加熱室
1を内設した真空炉体4と、内部に冷却剤7を収
納し、蓋体9の装着で気密化できる冷却室6とが
連設され、前記加熱室1の発熱体1Aに接続する
加熱電力源E、真空炉体4に接続する真空排気源
Vおよび浸炭性ガス源Cと、装入扉2、中間真空
扉5、搬出扉10、被熱物Mの移送手段3、蓋体
9に接続する真空排気源V、加圧ガス源Gで構成
されている。 Therefore, in such a vacuum carburizing process, the applicant proposed a two-chamber, one-door type semi-continuous vacuum carburizing furnace as shown in Fig. 1 (Japanese Patent Application No. 56-21826 (Tokyo Patent Application No. 57-137417)). (See.) This furnace has a heating element of 1A.
A heating chamber 1 consisting of a heating chamber 1 and a heat insulating material 1B, a vacuum furnace body 4 in which the heating chamber 1 is installed, and a cooling chamber 6 that stores a coolant 7 inside and can be made airtight by attaching a lid 9 are connected. A heating power source E connected to the heating element 1A of the heating chamber 1, a vacuum exhaust source V and a carburizing gas source C connected to the vacuum furnace body 4, a charging door 2, an intermediate vacuum door 5, and an unloading door. 10, a transfer means 3 for the object to be heated M, a vacuum exhaust source V connected to the lid 9, and a pressurized gas source G.
この半連続真空浸炭炉の操業方法は第1表に示
すように、所定温度へ昇温させた高温の加熱室1
へ空気を導入して大気圧状態とした後、装入扉2
を開放して前記移送手段3により冷態の第1被熱
物M1を装入し、直ちに装入扉2を閉鎖する(第
1工程)。つぎに第1被熱物M1を所定の浸炭温
度に真空加熱後、浸炭性ガス源Cから供給された
浸炭性ガスの雰囲気中で所定時間浸炭処理する。
つぎに浸炭性ガスの供給を止めて再び真空にな
し、前記所定温度か、またはそれよりもやや高温
に真空加熱して第1被熱物M1へ侵入した炭素の
真空拡散処理後、所定の焼入れ温度へ降温させ、
所定時間この焼入れ温度に保持する。その間に冷
却室6を真空排気する(第2工程)。つぎに中間
真空扉5を開放して前記移送手段3により高温の
被熱物M1を冷却室6内の昇降台8へ移送し、直
ちに中間真空扉5を閉鎖する(第3工程)。つぎ
に前記加熱ガス源Gから非酸化性ガスを噴入して
冷却室6を加圧状態になしつつ、前記昇降台8を
降下させて第1被熱物M1を所定温度の冷却剤
(油)7中へ浸漬させて急冷(焼入れ)処理する
とともに、考案の加熱室1へ空気を導入して大気
圧状態とした後、装入扉2を開放して冷態の第2
被熱物M2を装入し、直ちに装入扉2を閉鎖する
(第4工程)。つぎに第2被熱物M2を第1被熱物
M1と同様に真空加熱して浸炭処理、拡散処理お
よび焼入れ温度への降温等を行う。その間に前記
昇降台8に載置中の冷態の被熱物M1を所定位置
へ上昇させると同時に冷却室6を大気圧状態にも
どした後、搬出扉10を開放して被熱物M1を炉
外へ搬出し、搬出扉10を閉鎖して直ちに冷却室
6を真空排気する(第5工程)。以下、定常状態
では第3、4、5工程が所定時間毎に繰返えされ
るものであつた。なお、通常冷却剤7はフアンF
により撹拌されている。 The operating method of this semi-continuous vacuum carburizing furnace is as shown in Table 1.
After introducing air into the tank to bring it to atmospheric pressure, open the charging door 2.
is opened, the cold first heat target M1 is charged by the transfer means 3, and the charging door 2 is immediately closed (first step). Next, the first object to be heated M1 is vacuum heated to a predetermined carburizing temperature, and then carburized in an atmosphere of carburizing gas supplied from the carburizing gas source C for a predetermined period of time.
Next, the supply of the carburizing gas is stopped, the vacuum is created again, and the carbon is vacuum heated to the predetermined temperature or slightly higher than that, and the carbon that has entered the first heat target M1 is vacuum diffused, and then the predetermined quenching is performed. lower the temperature to
This quenching temperature is maintained for a predetermined period of time. During this time, the cooling chamber 6 is evacuated (second step). Next, the intermediate vacuum door 5 is opened, the high-temperature heat object M1 is transferred to the lifting platform 8 in the cooling chamber 6 by the transfer means 3, and the intermediate vacuum door 5 is immediately closed (third step). Next, while pressurizing the cooling chamber 6 by injecting non-oxidizing gas from the heated gas source G, the lifting platform 8 is lowered to move the first heated object M1 to a coolant (oil oil) at a predetermined temperature. ) 7 for rapid cooling (quenching) treatment, and after introducing air into the heating chamber 1 of the invention to bring it to atmospheric pressure, the charging door 2 is opened to cool the second chamber in a cold state.
The object to be heated M2 is charged, and the charging door 2 is immediately closed (fourth step). Next, the second heat target M2 is heated under vacuum in the same manner as the first heat target M1, and subjected to carburizing treatment, diffusion treatment, cooling to the quenching temperature, and the like. In the meantime, the cold object M1 placed on the lifting platform 8 is raised to a predetermined position, and at the same time, the cooling chamber 6 is returned to the atmospheric pressure state, and the unloading door 10 is opened to remove the object M1. It is carried out of the furnace, the carrying-out door 10 is closed, and the cooling chamber 6 is immediately evacuated (fifth step). Thereafter, in the steady state, the third, fourth, and fifth steps were repeated at predetermined intervals. Note that the normal coolant 7 is Fan F.
The mixture is stirred by
この提案した炉は、被熱物Mを加熱室1内へ装
入する時に高温(約820℃)の加熱室1内に空気
が導入され、浸炭処理時の浸炭性ガスによつて生
成された発熱体1A、断熱材1Bへ付着した煤を
焼除できることから、従来生じ易かつた煤の付着
による発熱体1Aの温度制御不能(シヨート等)
や断熱材1Bの断熱性の低下を防止できた。 In this proposed furnace, air is introduced into the heating chamber 1 at a high temperature (approximately 820°C) when the material to be heated M is charged into the heating chamber 1, and air is generated by carburizing gas during the carburizing process. Since the soot adhering to the heating element 1A and the heat insulating material 1B can be burned out, the temperature of the heating element 1A cannot be controlled due to soot adhesion, which was easily caused in the past (shooting, etc.)
It was possible to prevent the deterioration of the heat insulating properties of the heat insulating material 1B.
<発明が解決しようとする問題点>
しかし、この提案した炉は、従来のものに比べ
て稼動率が向上して処理能力が向上しているもの
の、未だ処理能力が不満足なものであつた。<Problems to be Solved by the Invention> However, although the proposed furnace has an improved operating rate and processing capacity compared to the conventional furnace, the processing capacity is still unsatisfactory.
たとえば、浸炭深さが約1.2mmに達するように
1040℃で真空浸炭した場合、第2図に示すよう
に、各被熱物Mは加熱室1内に約155分、冷却室
6内に約5分滞留する。これにより1回分の被熱
物M(約400Kg)は約160分毎に搬出(真空浸炭)
されるため、単位時間あたりの処理能力が低い
(150Kg/h)という欠点があつた。 For example, so that the carburization depth reaches about 1.2mm
In the case of vacuum carburizing at 1040° C., each object to be heated M stays in the heating chamber 1 for about 155 minutes and in the cooling chamber 6 for about 5 minutes, as shown in FIG. As a result, one batch of heated material M (approximately 400 kg) is carried out (vacuum carburizing) approximately every 160 minutes.
Therefore, the processing capacity per unit time was low (150 kg/h).
この発明は、このような欠点を解消できるもの
で、浸炭処理時の浸炭性ガスによつて生成される
発熱体や断熱材に付着する煤を焼除でき、発熱体
の温度制御不能や断熱材の断熱性低下を防止でき
るとともに、加熱室を浸炭処理用と拡散処理用の
2室から構成し、拡散処理中に後続の被熱物を浸
炭処理できるようにして、単位時間あたりの処理
能力を向上させることができる連続真空浸炭炉と
その操業方法を提供することを目的とする。 This invention can eliminate these drawbacks, and can burn out the soot that adheres to the heating element and insulation material, which is generated by carburizing gas during carburizing treatment, resulting in the inability to control the temperature of the heating element and the insulation material. In addition to preventing a decrease in the heat insulation properties of The purpose is to provide a continuous vacuum carburizing furnace that can be improved and its operating method.
<問題点を解決するための手段>
この発明の要旨とするところは、(1)炉の前後に
形成した装入口および搬出口にそれぞれ装入扉と
搬出扉を設け、炉の前部、中央部および後部をそ
れぞれ浸炭処理用の第1加熱室、拡散処理用の第
2加熱室および冷却室となし、これらの各室に被
熱物の移送手段を配設し、かつ第1加熱室と第2
加熱室とは第1中間真空扉で区画し、第2加熱室
と冷却室とは第2中間真空扉で区画し、さらに第
1加熱室は加熱電力源、真空排気源および浸炭性
ガス源に接続させ、高温環境の大気圧状態ならび
に真空圧状態において化学的、強度的に安定な発
熱体および断熱材で構成し、第2加熱室は加熱電
力源および真空排気源に接続させ、高温環境の真
空圧状態において化学的、強度的に安定な発熱体
および断熱材で構成し、冷却室に被熱物の冷却手
段を配設し、復圧ガス源および真空排気源に接続
させて構成した連続真空浸炭炉、および(2)冷態の
被熱物を高温大気圧状態の第1加熱室へ装入後、
所定の浸炭温度に真空加熱し、つぎに浸炭性ガス
雰囲気中で被熱物を浸炭処理した後、再び真空に
なし、つぎに真空浸炭処理した高温の被熱物を高
温真空圧状態の第2加熱室へ移送して被熱物を拡
散処理した後、所定の焼入れ温度を保持させ、つ
ぎに焼入れ温度に保持されている高温の被熱物を
真空圧状態の冷却室へ移送して冷却手段により急
冷後、大気圧状態にした冷却室から真空浸炭焼入
れした被熱物を炉外へ搬出させる工程を行ない、
前記被熱物を第1加熱室、第2加熱室及び冷却室
の各室から順次移送させた後、順次連続的に後続
の被熱物を前記各室へ搬入させて処理することを
特徴とする連続真空浸炭炉の操業方法である。<Means for Solving the Problems> The gist of the present invention is as follows: (1) A charging door and an unloading door are provided at the charging inlet and unloading port formed at the front and rear of the furnace, respectively, and The first heating chamber for carburizing treatment, the second heating chamber for diffusion treatment, and the cooling chamber are arranged in the first heating chamber and the second heating chamber for diffusion treatment, respectively, and a means for transferring the object to be heated is disposed in each of these chambers. Second
The heating chamber is divided by a first intermediate vacuum door, the second heating chamber and the cooling chamber are divided by a second intermediate vacuum door, and the first heating chamber is connected to a heating power source, a vacuum exhaust source, and a carburizing gas source. The second heating chamber is connected to a heating power source and a vacuum evacuation source, and is constructed of a heating element and a heat insulating material that are chemically and mechanically stable under atmospheric pressure conditions and vacuum pressure conditions in a high-temperature environment. A continuous system consisting of a heating element and heat insulating material that are chemically and mechanically stable under vacuum pressure, a means for cooling the heated object installed in the cooling chamber, and connected to a condensing gas source and a vacuum exhaust source. After charging the vacuum carburizing furnace and (2) the cold object to be heated into the first heating chamber at high temperature and atmospheric pressure,
After vacuum heating to a predetermined carburizing temperature, and then carburizing the object in a carburizing gas atmosphere, the vacuum is applied again, and then the vacuum carburized and high-temperature object is transferred to a second chamber under high temperature and vacuum pressure. After the object to be heated is transferred to a heating chamber and subjected to a diffusion treatment, a predetermined quenching temperature is maintained, and then the high temperature object to be heated, which is maintained at the quenching temperature, is transferred to a cooling chamber under vacuum pressure and cooled by means of cooling means. After quenching, the vacuum carburized and quenched material is transported out of the furnace from the cooling chamber, which has been brought to atmospheric pressure.
After the object to be heated is sequentially transferred from each of the first heating chamber, the second heating chamber, and the cooling chamber, the subsequent object to be heated is sequentially and continuously carried into each of the chambers for processing. This is a method of operating a continuous vacuum carburizing furnace.
<実施例>
以下、この発明の連続真空浸炭炉の実施例を第
3図により説明する。第1加熱室11および第2
加熱室16はそれぞれ高温強度が大で高温真空状
態でも熱亀裂が生じなく蒸発もせず、高温状態で
直接空気に触れても酸化燃焼しない抵抗発熱体、
たとえば再結晶処理を施した炭化ケイ素質発熱
体、表面にアルミナ溶射被膜層を形成させた炭化
ケイ素質発熱体、最高加熱温度が1000℃以下、真
空圧0.2トール程度ならばNi−Cr系合金発熱体ま
たはFe−Cr系合金発熱体など、化学的、強度的
に安定な発熱体11A,16Aと、熱伝導率が小
さく、高温状態で繰返し真空、大気に触れても化
学的、強度的に安定な耐火材、たとえば高純度セ
ラミツクフアイバからなる断熱材11B,16B
で構成する。<Example> Hereinafter, an example of the continuous vacuum carburizing furnace of the present invention will be described with reference to FIG. The first heating chamber 11 and the second
The heating chambers 16 each include a resistance heating element that has high high-temperature strength, does not cause thermal cracks or evaporates even in a high-temperature vacuum state, and does not oxidize and burn even when directly exposed to air in a high-temperature state.
For example, a silicon carbide heating element that has undergone recrystallization treatment, a silicon carbide heating element that has an alumina spray coating layer formed on its surface, a Ni-Cr alloy that generates heat if the maximum heating temperature is 1000℃ or less and the vacuum pressure is about 0.2 Torr. Heating elements 11A and 16A, which are chemically and mechanically stable, such as metal or Fe-Cr alloy heating elements, have low thermal conductivity and are chemically and mechanically stable even when repeatedly exposed to vacuum or air at high temperatures. Insulating materials 11B and 16B made of a refractory material such as high-purity ceramic fiber
Consists of.
つぎに、真空排気源Vおよび浸炭性ガス源Cに
接続させた真空炉体14内に前記第1加熱室11
を定置するとともに、前記発熱体11Aとそれの
加熱電力源Eとを接続させ、また真空炉体14の
前端側に形成した装入口14Aには装入扉12
を、後端側に形成した移送口14Bには第1中間
真空扉15をそれぞれ配設する。 Next, the first heating chamber 11 is placed in a vacuum furnace body 14 connected to a vacuum exhaust source V and a carburizing gas source C.
At the same time, the heating element 11A and its heating power source E are connected, and a charging door 12 is connected to the charging port 14A formed on the front end side of the vacuum furnace body 14.
A first intermediate vacuum door 15 is disposed at each transfer port 14B formed on the rear end side.
前記真空炉体14に対して気密的に連設され、
かつ真空排気源Vに接続させた真空炉体17内に
前記第2加熱室16を定置するとともに、前記発
熱体16Aとそれの加熱電力源Eとを接続させ、
また真空炉体17の移送口17Aには第2中間真
空扉18を配設する。 connected to the vacuum furnace body 14 in an airtight manner,
and placing the second heating chamber 16 in the vacuum furnace body 17 connected to the vacuum exhaust source V, and connecting the heating element 16A and its heating power source E;
Further, a second intermediate vacuum door 18 is provided at the transfer port 17A of the vacuum furnace body 17.
前記真空炉体17には冷却剤21を収納した冷
却室20が連設され、その上部に復圧ガス源Gお
よび真空排気源Vに接続させた蓋体23を気密的
に装着する。この冷却室20に形成した搬出口2
0Aには搬出扉22を配設する。また前記冷却室
20の側壁部には前記冷却剤21中に浸漬させた
フアンFが装着されている。 A cooling chamber 20 containing a coolant 21 is connected to the vacuum furnace body 17, and a lid 23 connected to a repressurizing gas source G and an evacuation source V is airtightly attached to the top of the cooling chamber 20. Export port 2 formed in this cooling chamber 20
A carry-out door 22 is provided at 0A. Further, a fan F immersed in the coolant 21 is attached to a side wall of the cooling chamber 20.
つぎに被熱物Mの移送手段として、前記真空炉
体14内にはコンベヤ13A,13Cが、前記第
1加熱室11内にはコンベヤ13Bが配設されて
いる。前記真空炉体17内にはコンベヤ13D,
13Fが、前記第2加熱室16内にはコンベヤ1
3Eが配設されている。前記冷却室20内にはコ
ンベヤ13G,13Hが配設され、これらのコン
ベヤ13Gと13Hとの間に上昇または降下可能
な昇降台19が配設され、被熱物Mは冷却手段と
しての冷却剤21へ昇降可能である。 Next, as means for transferring the object to be heated M, conveyors 13A and 13C are disposed within the vacuum furnace body 14, and a conveyor 13B is disposed within the first heating chamber 11. Inside the vacuum furnace body 17, a conveyor 13D,
13F, a conveyor 1 is installed in the second heating chamber 16.
3E is installed. Conveyors 13G and 13H are disposed in the cooling chamber 20, and a lifting platform 19 that can be raised or lowered is disposed between these conveyors 13G and 13H, and the heated object M is a coolant serving as a cooling means. It is possible to go up and down to 21.
なお、この連続真空浸炭炉には図示しないが、
各加熱室の温度および圧力制御機器、被熱物Mの
移送制御機器、装入扉12、第1・第2中間真空
扉15,18、搬出扉22の開閉制御機器などが
付設されている。 Although not shown in this continuous vacuum carburizing furnace,
A temperature and pressure control device for each heating chamber, a transfer control device for the heated object M, an opening/closing control device for the loading door 12, the first and second intermediate vacuum doors 15 and 18, and the unloading door 22 are attached.
つぎに、この実施例の連続真空浸炭炉の操業方
法を説明する。 Next, a method of operating the continuous vacuum carburizing furnace of this embodiment will be explained.
この連続真空浸炭炉では第2表に示すように、
所定温度(約820℃)へ昇温させた高温の第1加
熱室11へ空気を導入して大気圧状態とした後、
装入扉12を開放して、前記移送手段13により
冷態の第1被熱物M1を装入し、直ちに装入扉1
2を閉鎖する(第1工程)。つぎに第1被熱物M
1を所定の浸炭温度(約1040℃)に真空加熱後、
浸炭性ガス源Cから供給された浸炭性ガスの雰囲
気中で所定時間浸炭処理する。その後浸炭性ガス
の供給を止めて再び真空にする。その間に所定温
度(約820℃)へ昇温させた第2加熱室16を真
空排気する(第2工程)。つぎに第1中間真空扉
15を開放して真空浸炭処理した高温の第1被熱
物M1を前記移送手段13により第2加熱室16
へ移送し、直ちに第1中間真空扉15を閉鎖する
(第3工程)。つぎに第1被熱物M1を前記浸炭温
度と同じか、それよりもやや高温に真空加熱し
て、前記浸炭処理により第1被熱物M1へ侵入し
た炭素の拡散処理を行い、その後所定の焼入れ温
度へ降温(約820℃)させて所定時間保持する。
その間に高温(約820℃)の第1加熱室11へ空
気を導入して前記浸炭処理時に供給した浸炭性ガ
スによつて生成し、前記発熱体11A、断熱材1
1Bへ付着した煤(炭素微粒子)を焼除して大気
圧状態にもどし、装入扉12を開放して冷態の第
2被熱物M2を装入し、直ちに装入扉12を閉鎖
する。一方冷却室20を真空排気する(第4工
程)。つぎに第1加熱室11では第2被熱物M2
を第1被熱物M1と同様の真空加熱、浸炭処理を
行う。一方第2中間真空扉18を開放して前記移
送手段13により高温の第1被熱物M1を第2加
熱室16から冷却室20の昇降台19へ移送し、
直ちに第2中間真空扉18を閉鎖する(第5工
程)。つぎに冷却室20を復圧させるために復圧
ガス源Gから非酸化性ガスを噴入させて所定の低
圧状態になしつつ、前記昇降台19を前記冷却剤
(油)21中へ降下させて高温の第1被熱物M1
を急冷(焼入れ)処理後、昇降台19を所定位置
へ上昇させる。一方第1中間真空扉15を開放し
て第2被熱物M2を第1加熱室11から真空状態
の第2加熱室16へ移送し、直ちに第1中間真空
扉15を閉鎖する(第6工程)。つぎに第2加熱
室16では第2被熱物M2を第1被熱物M1と同
様に拡散処理、焼入れ温度へ降温、保持等を行
い、さらに冷却室20が大気圧状態にもどれば前
記復圧ガスの供給停止と同時に、搬出扉22を開
放して第1被熱物M1を炉外へ搬出し、搬出扉2
2を閉鎖すると同時に冷却室20を真空圧状態に
する。一方高温の第1加熱室11へ空気を導入し
て前記同様の煤焼除を行い、大気圧状態にもどれ
ば装入扉12を開放して冷態の第3被熱物M3を
装入し、直ちに装入扉12を閉鎖する(第7工
程)。以下、定常状態では前記第5・6・7工程
が所定時間毎に繰返えされる。なお、通常冷却剤
はフアンFにより撹拌されている。 In this continuous vacuum carburizing furnace, as shown in Table 2,
After introducing air into the high-temperature first heating chamber 11 that has been heated to a predetermined temperature (approximately 820°C) and brought to atmospheric pressure,
The charging door 12 is opened, the cold first object to be heated M1 is charged by the transfer means 13, and the charging door 1 is immediately opened.
2 (first step). Next, the first heated object M
After vacuum heating 1 to the specified carburizing temperature (approximately 1040℃),
Carburizing is performed in an atmosphere of carburizing gas supplied from carburizing gas source C for a predetermined period of time. After that, the supply of carburizing gas is stopped and vacuum is created again. During this time, the second heating chamber 16, which has been heated to a predetermined temperature (approximately 820° C.), is evacuated (second step). Next, the first intermediate vacuum door 15 is opened and the vacuum carburized high-temperature first heat object M1 is transferred to the second heating chamber 16 by the transfer means 13.
and immediately close the first intermediate vacuum door 15 (third step). Next, the first heat target M1 is vacuum heated to a temperature equal to or slightly higher than the carburizing temperature, and the carbon that has entered the first heat target M1 through the carburizing process is diffused, and then a predetermined temperature is applied. The temperature is lowered to the quenching temperature (approximately 820℃) and held for a specified period of time.
During that time, air is introduced into the first heating chamber 11 at a high temperature (approximately 820° C.), and the carburizing gas is generated by the carburizing gas supplied during the carburizing process.
The soot (carbon particles) adhering to 1B is burned off to return it to atmospheric pressure, the charging door 12 is opened, the cold second heated material M2 is charged, and the charging door 12 is immediately closed. . Meanwhile, the cooling chamber 20 is evacuated (fourth step). Next, in the first heating chamber 11, the second heated object M2
is subjected to the same vacuum heating and carburizing treatment as the first heat target M1. On the other hand, the second intermediate vacuum door 18 is opened and the high-temperature first heated object M1 is transferred from the second heating chamber 16 to the lifting platform 19 of the cooling chamber 20 by the transfer means 13;
Immediately close the second intermediate vacuum door 18 (fifth step). Next, in order to restore the pressure in the cooling chamber 20, non-oxidizing gas is injected from the restoration gas source G to achieve a predetermined low pressure state, and the lifting table 19 is lowered into the coolant (oil) 21. The first heated object M1 is heated to a high temperature.
After the quenching (quenching) treatment, the lifting platform 19 is raised to a predetermined position. On the other hand, the first intermediate vacuum door 15 is opened, the second heated object M2 is transferred from the first heating chamber 11 to the second heating chamber 16 in a vacuum state, and the first intermediate vacuum door 15 is immediately closed (sixth step ). Next, in the second heating chamber 16, the second heat target M2 is subjected to a diffusion treatment, lowered to the quenching temperature, maintained, etc. in the same manner as the first heat target M1, and further, when the cooling chamber 20 returns to the atmospheric pressure state, the above-mentioned recovery is performed. At the same time as the supply of pressurized gas is stopped, the carry-out door 22 is opened to carry out the first heated object M1 out of the furnace, and the carry-out door 2
At the same time as closing the cooling chamber 20, the cooling chamber 20 is brought into a vacuum state. On the other hand, air is introduced into the high-temperature first heating chamber 11 to perform the same soot burning process as described above, and when the pressure returns to atmospheric pressure, the charging door 12 is opened and the cold third heat object M3 is charged. , immediately close the charging door 12 (seventh step). Thereafter, in the steady state, the fifth, sixth, and seventh steps are repeated at predetermined intervals. Note that the coolant is usually stirred by a fan F.
たとえば、浸炭深さが約1.2mmに達するように
1040℃で真空浸炭した場合、第4図に示すよう
に、各被熱物Mは第1加熱室11内に約75分、第
2加熱室16内に約75分、冷却室19内に約5分
滞留する。これにより各被熱物の真空浸炭処理時
間は約155分であるが、第2表に示すとおり定常
状態では第1加熱室11、第2加熱室16、冷却
室20内にはそれぞれ被熱物Mが滞留する(第7
工程参照)。これにより1回分の被熱物M(約400
Kg)は約75分毎に真空浸炭処理されて搬出される
ため、単位時間あたりの処理能力が約320Kgに増
大するという特徴がある。 For example, so that the carburization depth reaches about 1.2mm
In the case of vacuum carburizing at 1040°C, as shown in FIG. Remain for 5 minutes. As a result, the vacuum carburizing time for each object to be heated is approximately 155 minutes, but as shown in Table 2, in the steady state, there are no objects to be heated in the first heating chamber 11, second heating chamber 16, and cooling chamber 20. M stays (7th
(See process). This allows one batch of heated material M (approximately 400
Kg) is vacuum carburized and transported approximately every 75 minutes, which increases processing capacity to approximately 320 kg per unit time.
したがつて、この実施例の連続真空浸炭炉の操
業工程は従来の半連続真空浸炭炉のそれと同様に
浸炭処理、拡散処理及び急冷の3工程があるが、
浸炭処理と拡散処理とを別々の加熱室で行なうよ
うにしたことから、前記のとおり1.2mm浸炭の場
合のサイクルタイムを約75分(従来炉は160分)
に短縮でき、処理コストや処理工数を約1/2に低
減させることができる。 Therefore, the operating steps of the continuous vacuum carburizing furnace of this embodiment include the three steps of carburizing treatment, diffusion treatment, and rapid cooling, similar to those of the conventional semi-continuous vacuum carburizing furnace.
Since carburizing and diffusion are performed in separate heating chambers, the cycle time for 1.2 mm carburization has been reduced to approximately 75 minutes (compared to 160 minutes for conventional furnaces).
It is possible to reduce processing costs and processing man-hours by about half.
なお、1040℃真空浸炭において、さらに浸炭深
さを増大させる場合は、第3表に示すように、第
1加熱室11、第2加熱室16内における被熱物
の滞留時間を長くする必要があるが、第1加熱室
11における浸炭時間よりも第2加熱室16にお
ける拡散時間の延長割合を大きく必要としてい
る。 In addition, in the case of vacuum carburizing at 1040°C, when the carburizing depth is further increased, as shown in Table 3, it is necessary to lengthen the residence time of the heated material in the first heating chamber 11 and the second heating chamber 16. However, the diffusion time in the second heating chamber 16 needs to be extended at a greater rate than the carburizing time in the first heating chamber 11.
しかし、実施例の連続真空浸炭炉では、浸炭処
理用の第1加熱室11と拡散処理用の第2加熱室
16との2室を備えていることから、第3図に示
すように、第1加熱室11よりも第2加熱室16
を長くして、第2加熱室16での滞留被熱物数を
増加させ、所定時間第2加熱室16で滞留させた
後、順次1つずつ被熱物を冷却室20へ移すよう
にすることで対処でき、サイクルタイムはいずれ
も従来提案した半連続真空浸炭炉の場合にくらべ
て著しく短縮できる。 However, since the continuous vacuum carburizing furnace of the embodiment has two chambers, the first heating chamber 11 for carburizing treatment and the second heating chamber 16 for diffusion treatment, as shown in FIG. The second heating chamber 16 is larger than the first heating chamber 11.
is increased to increase the number of heated objects staying in the second heating chamber 16, and after staying in the second heating chamber 16 for a predetermined time, the heated objects are transferred one by one to the cooling chamber 20. In both cases, the cycle time can be significantly shortened compared to the previously proposed semi-continuous vacuum carburizing furnace.
また、この実施例では、先行被熱物の真空浸炭
処理により第1加熱室11内の発熱体11A及び
断熱材11Bに付着した、発熱体11Aの抵抗値
を低下させて発熱体11Aの温度制御不能や絶縁
不良を生じさせたり、断熱材11Bの断熱性を損
なわせる煤を、発熱体11Aや断熱材11Bに支
障なく、空気導入によつて焼除して炉外へ放出
し、その後後続の被熱物を装入できるため、第1
加熱室11の温度制御が容易であり、断熱材11
Bの断熱効果が損なわれない。 In addition, in this embodiment, the temperature of the heating element 11A is controlled by reducing the resistance value of the heating element 11A, which has adhered to the heating element 11A and the heat insulating material 11B in the first heating chamber 11 through the vacuum carburizing treatment of the preceding heated object. The soot that causes failure or insulation failure or impairs the insulation properties of the heat insulating material 11B is burned out by introducing air and released to the outside of the furnace without causing any hindrance to the heating element 11A or the heat insulating material 11B. Because the object to be heated can be charged, the first
The temperature of the heating chamber 11 can be easily controlled, and the heat insulating material 11
The insulation effect of B is not impaired.
<発明の作用・効果>
以上のように、この発明に係る連続真空浸炭炉
とその操業方法では、浸炭処理用の高温の加熱室
へ空気を導入でき、かつその加熱室の発熱体や断
熱材が高温状態で空気に触れても酸化燃焼しない
材質からできていることから、発熱体や断熱材に
支障なくそれらに付着した煤を焼除できて、煤の
付着による発熱体の温度制御不能や断熱材の断熱
性低下を防止できる。<Operations and Effects of the Invention> As described above, the continuous vacuum carburizing furnace and the operating method thereof according to the present invention can introduce air into the high-temperature heating chamber for carburizing treatment, and can also reduce the heating element and heat insulating material of the heating chamber. Since it is made of a material that does not oxidize and burn even when exposed to air at high temperatures, soot adhering to the heating element or insulation material can be burned off without causing any problems, preventing the inability to control the temperature of the heating element due to soot adhesion. It is possible to prevent the insulation properties of the insulation material from deteriorating.
また、この発明に係る連続真空浸炭炉とその操
業方法は、加熱室が浸炭処理用と拡散処理用の2
室から構成され、拡散処理中に後続の被熱物を浸
炭処理でき、各室を全て効率良く稼動できること
から、単位時間あたりの処理能力を向上させるこ
とができる。特に、この発明に係る連続真空浸炭
炉では、複数個の被熱物を拡散処理用の加熱室内
に浸炭処理や焼入れ処理に支障なく所定時間滞留
させておくことが可能となるため、浸炭深さを深
くする必要のある処理では、浸炭処理に要する時
間より、拡散処理に要する時間の割合が著しく長
くなりますので、このような処理では、従来提案
した炉に比べて著しく処理能力を向上させること
ができる。 Further, the continuous vacuum carburizing furnace and the operating method thereof according to the present invention have two heating chambers, one for carburizing treatment and one for diffusion treatment.
It is composed of several chambers, and the subsequent heated object can be carburized during the diffusion treatment, and all the chambers can be operated efficiently, so that the processing capacity per unit time can be improved. In particular, in the continuous vacuum carburizing furnace according to the present invention, it is possible to retain a plurality of objects to be heated in the heating chamber for diffusion treatment for a predetermined time without hindering the carburizing treatment or quenching treatment. In processes that require a deep carburization process, the time required for diffusion process is significantly longer than the time required for carburizing process, so in such processes, the processing capacity can be significantly improved compared to conventionally proposed furnaces. Can be done.
第1〜2図は従来提案した半連続真空浸炭炉と
その操業例を示す図で、第1図は半連続真空浸炭
炉の構造を示す概要図、第2図はこの炉による被
熱物の経時温度曲線図、第3〜4図はこの発明の
連続真空浸炭炉とその操業例を示す図で、第3図
は連続真空浸炭炉の構造を示す概要図、第4図は
この炉による被熱物の経時温度曲線図である。
11……第1加熱室、11A……発熱体、11
B……断熱材、12……装入扉、13……移送手
段、14A……装入口、15……第1中間真空
扉、16……第2加熱室、16A……発熱体、1
6B……断熱材、18……第2中間真空扉、20
……冷却室、20A……搬出口、21……冷却
剤、22……搬出扉、C……浸炭性ガス源、E…
…加熱電力源、G……復圧ガス源、M……被熱
物、V……真空排気源。
Figures 1 and 2 are diagrams showing a conventionally proposed semi-continuous vacuum carburizing furnace and an example of its operation. Figures 3 and 4 are diagrams showing the continuous vacuum carburizing furnace of the present invention and an example of its operation. Figure 3 is a schematic diagram showing the structure of the continuous vacuum carburizing furnace, and Figure 4 is a diagram showing the structure of the continuous vacuum carburizing furnace. It is a temperature curve diagram of a hot object over time. 11...First heating chamber, 11A...Heating element, 11
B...Insulating material, 12...Charging door, 13...Transfer means, 14A...Charging port, 15...First intermediate vacuum door, 16...Second heating chamber, 16A...Heating element, 1
6B...Insulating material, 18...Second intermediate vacuum door, 20
...Cooling room, 20A...Export port, 21...Coolant, 22...Export door, C...Carburizing gas source, E...
...Heating power source, G...Repressurized gas source, M...Heat target, V...Vacuum exhaust source.
【表】【table】
Claims (1)
れぞれ装入扉および搬出扉を設け、炉の前部、中
央部および後部をぞれそれ浸炭処理用の第1加熱
室、拡散処理用の第2加熱室および冷却室とな
し、これらの各室に被熱物の移送手段を配設し、
かつ第1加熱室と第2加熱室とは第1中間真空扉
で区画し、第2加熱室と冷却室とは第2中間真空
扉で区画し、さらに第1加熱室は加熱電力源、真
空排気源および浸炭性ガス源に接続させ、高温環
境の大気圧状態ならびに真空圧状態において化学
的、強度的に安定な発熱体および断熱材で構成
し、第2加熱室は加熱電力源および真空排気源に
接続させ、高温環境の真空圧状態において化学
的、強度的に安定な発熱体および断熱材で構成
し、冷却室に被熱物の冷却手段を配設し、復圧ガ
ス源および真空排気源に接続させて構成したこと
を特徴とする連続真空浸炭炉。 2 冷態の被熱物を高温大気圧状態の第1加熱室
へ装入後、所定の浸炭温度に真空加熱し、つぎに
浸炭性ガス雰囲気中で被熱物を浸炭処理した後、
再び真空になし、つぎに真空浸炭処理した高温の
被熱物を高温真空圧状態の第2加熱室へ移送し
て、被熱物を拡散処理した後、所定の焼入れ温度
を保持させ、つぎに焼入れ温度に保持されている
高温の被熱物を真空圧状態の冷却室へ移送して冷
却手段により急冷後、大気圧状態にした冷却室か
ら真空浸炭焼入れした被熱物を炉外へ排出させる
工程を行ない、前記被熱物を前記第1加熱室、第
2加熱室及び冷却室の各室から順次移送させた
後、順次連続的に後続の被熱物を前記各室へ搬入
させて処理することを特徴とする連続真空浸炭炉
の操業方法。[Scope of Claims] 1. A charging inlet and an unloading door formed at the front and rear of the furnace are respectively provided with a charging door and an unloading door, and the front, center and rear of the furnace are respectively provided with a first heating chamber for carburizing treatment. , a second heating chamber and a cooling chamber for diffusion treatment, and each of these chambers is provided with means for transferring the heated object,
The first heating chamber and the second heating chamber are separated by a first intermediate vacuum door, the second heating chamber and the cooling chamber are partitioned by a second intermediate vacuum door, and the first heating chamber is separated by a heating power source and a vacuum. The second heating chamber is connected to an exhaust source and a carburizing gas source, and is composed of a heating element and a heat insulating material that are chemically and mechanically stable in high-temperature environments at atmospheric pressure and vacuum conditions. It is connected to a gas source and is composed of a heating element and heat insulating material that are chemically and mechanically stable in a high-temperature environment and vacuum state, and a means for cooling the heated object is installed in the cooling room, and a repressurizing gas source and vacuum exhaust are installed. A continuous vacuum carburizing furnace characterized in that it is connected to a power source. 2. After charging the cold object to be heated into the first heating chamber at high temperature and atmospheric pressure, vacuum heating it to a predetermined carburizing temperature, and then carburizing the object in a carburizing gas atmosphere.
After creating a vacuum again, the high-temperature heat object subjected to vacuum carburization is transferred to the second heating chamber under high temperature and vacuum pressure, and after the heat object is diffused, a predetermined quenching temperature is maintained, and then The high-temperature heat object held at the quenching temperature is transferred to a cooling chamber under vacuum pressure and rapidly cooled by a cooling means, and then the vacuum carburized and quenched object is discharged from the cooling chamber at atmospheric pressure to the outside of the furnace. After carrying out the process and sequentially transferring the object to be heated from each of the first heating chamber, second heating chamber, and cooling chamber, subsequent objects to be heated are successively carried into each of the chambers for processing. A method of operating a continuous vacuum carburizing furnace characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121782A JPS58130270A (en) | 1982-01-27 | 1982-01-27 | Continuous vacuum carburizing furnace and its operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1121782A JPS58130270A (en) | 1982-01-27 | 1982-01-27 | Continuous vacuum carburizing furnace and its operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58130270A JPS58130270A (en) | 1983-08-03 |
JPH0248618B2 true JPH0248618B2 (en) | 1990-10-25 |
Family
ID=11771796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1121782A Granted JPS58130270A (en) | 1982-01-27 | 1982-01-27 | Continuous vacuum carburizing furnace and its operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58130270A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013049898A (en) * | 2011-08-31 | 2013-03-14 | Ihi Corp | Method for improving insulation resistance of vacuum heating furnace |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60138065A (en) * | 1983-12-27 | 1985-07-22 | Chugai Ro Kogyo Kaisha Ltd | Gas carburizing and quenching method and continuous gas carburizing and quenching equipment |
AT404029B (en) * | 1996-09-16 | 1998-07-27 | Ald Aichelin Ges M B H | LOW-PRESSURE REARING PLANT |
JP4537522B2 (en) * | 2000-02-07 | 2010-09-01 | 中外炉工業株式会社 | Intermittently driven vacuum carburizing furnace |
EP1642995A4 (en) * | 2003-07-04 | 2008-12-24 | Nachi Fujikoshi Corp | Method of continuous vacuum carburization of metal wire, metal band or metal pipe and apparatus therefor |
JP4741523B2 (en) * | 2007-01-19 | 2011-08-03 | 株式会社電子工学センター | Instantaneous power failure generator |
JP5225634B2 (en) * | 2007-08-14 | 2013-07-03 | Dowaサーモテック株式会社 | Heat treatment method and heat treatment equipment |
CN106104187A (en) * | 2014-04-24 | 2016-11-09 | 株式会社Ihi | Annealing device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431976A (en) * | 1977-08-13 | 1979-03-09 | Norichika Tanaka | Multiistage vertical incinerator |
JPS568915A (en) * | 1979-07-03 | 1981-01-29 | Victor Co Of Japan Ltd | Nonlinear distortion reducing circuit of digital filter |
-
1982
- 1982-01-27 JP JP1121782A patent/JPS58130270A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431976A (en) * | 1977-08-13 | 1979-03-09 | Norichika Tanaka | Multiistage vertical incinerator |
JPS568915A (en) * | 1979-07-03 | 1981-01-29 | Victor Co Of Japan Ltd | Nonlinear distortion reducing circuit of digital filter |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013049898A (en) * | 2011-08-31 | 2013-03-14 | Ihi Corp | Method for improving insulation resistance of vacuum heating furnace |
Also Published As
Publication number | Publication date |
---|---|
JPS58130270A (en) | 1983-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6127485A (en) | Continuous type atmosphere heat treatment furnace | |
JPH08285462A (en) | Thermally treating device for metallic work under vacuum | |
JPH0141684B2 (en) | ||
JPH0248618B2 (en) | ||
KR100881822B1 (en) | A carburization treatment apparatus | |
TW469338B (en) | Substrate heating method and the continuous heat treatment furnace thereof | |
JP3211356B2 (en) | In-line type plasma CVD equipment | |
JP5428032B2 (en) | Carburizing method | |
JP2859704B2 (en) | Vacuum heat treatment furnace | |
JP5092170B2 (en) | Carburizing and quenching method and carburizing and quenching apparatus | |
JPH04297025A (en) | Semiconductor production device | |
JP2871111B2 (en) | Cooling method in vacuum furnace | |
JP2001004282A (en) | Vacuum heater | |
JPS60141863A (en) | Method and device for continuous heat treatment | |
JPS612330A (en) | Processing equipment | |
JP2555868B2 (en) | Vacuum heat treatment method | |
JPS63262455A (en) | Vacuum carburization furnace and its operating method | |
JPH0268927A (en) | Semiconductor manufacturing device | |
JP2833051B2 (en) | Vacuum heat treatment method | |
JPH0345946Y2 (en) | ||
JPH06248329A (en) | Heat treatment apparatus having quenching oil vessel chamber | |
JPH0382707A (en) | Continuous type vacuum heat treatment furnace | |
JP2003166016A (en) | Vacuum carburization apparatus | |
JPS6032114Y2 (en) | Continuous gas carburizing furnace | |
JPH10209045A (en) | Method for cooling substrate in vacuum film forming method and apparatus for cooling substrate in vacuum film forming apparatus |