JP2005179714A - Carburizing method - Google Patents

Carburizing method Download PDF

Info

Publication number
JP2005179714A
JP2005179714A JP2003419705A JP2003419705A JP2005179714A JP 2005179714 A JP2005179714 A JP 2005179714A JP 2003419705 A JP2003419705 A JP 2003419705A JP 2003419705 A JP2003419705 A JP 2003419705A JP 2005179714 A JP2005179714 A JP 2005179714A
Authority
JP
Japan
Prior art keywords
carburizing
gas
chamber
pressure
steel product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003419705A
Other languages
Japanese (ja)
Other versions
JP4292280B2 (en
Inventor
Shogo Narita
匠吾 成田
Hisashi Ebihara
寿 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2003419705A priority Critical patent/JP4292280B2/en
Publication of JP2005179714A publication Critical patent/JP2005179714A/en
Application granted granted Critical
Publication of JP4292280B2 publication Critical patent/JP4292280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carburizing method capable of shortening the carburizing time and controlling the carbon potential. <P>SOLUTION: The carburizing method to store a steel work W in a carburizing chamber 11 and carburize it comprises a first carburizing step of supplying enrich gas into the carburizing chamber 11 to carburize the steel work W under a pressure reducing state, and a second carburizing step of supplying carrier gas and enrich gas into the carburizing chamber 11 to carburize the steel work W under the pressure higher than the pressure in the first carburizing step. The first carburizing step is performed in, for example, 5-30 minutes. In the second carburizing step, the pressure in the carburizing chamber is, for example, the atmospheric pressure. The carburizing time can be shortened compared with that by a known gas carburizing method using carrier gas, and carbon potential can also be controlled. Excellent carburization can be performed without deposition of cementite. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,鋼材料の浸炭処理方法に関する。   The present invention relates to a carburizing method for steel material.

鋼材料の浸炭処理方法としては,炭化水素系ガスと空気との混合ガスを原料として吸熱型変成ガス発生炉を用いて変成することで得られる変成ガス(エンドサーミックガス)をキャリアガスとし,このキャリアガスと共に所定のカーボンポテンシャルを得るためのエンリッチガスとして炭化水素系ガスを浸炭室内に供給して浸炭処理する方法(キャリアガスを用いたガス浸炭処理方法)が広く普及している。このガス浸炭処理方法では,浸炭室内雰囲気を構成するガス成分の濃度もしくは分圧を測定することにより,間接的に炭素ポテンシャルを算出し,その結果を元にエンリッチガスの供給量を調節することにより浸炭の制御が可能である。   As a carburizing method for steel materials, a modified gas (endthermic gas) obtained by using a mixed gas of hydrocarbon gas and air as a raw material and using an endothermic modified gas generator is used as a carrier gas. A method of carburizing by supplying a hydrocarbon-based gas as an enriched gas for obtaining a predetermined carbon potential together with a carrier gas into a carburizing chamber (a gas carburizing method using a carrier gas) has been widely used. In this gas carburizing method, the carbon potential is indirectly calculated by measuring the concentration or partial pressure of the gas components that make up the carburizing room atmosphere, and the amount of enriched gas supplied is adjusted based on the result. Carburization can be controlled.

通常,このようなキャリアガスを用いたガス浸炭処理方法では,目標とする表面炭素濃度よりも高い雰囲気炭素ポテンシャルに設定することで,単位時間当たりの炭素侵入量を高めて処理時間の短縮を図っている。そして,続く拡散工程で炭素の拡散を行い,表面炭素濃度と浸炭深さの調整を行う。しかし,浸炭中の炭素ポテンシャルを高くするためにエンリッチガス(炭化水素系ガス)を浸炭室内に供給し過ぎるとスーティング発生(煤の発生)の危険性を生じるので,処理時間の短縮には限界がある。現在では,キャリアガスを用いたガス浸炭処理方法は,数ある浸炭方法の中で比較的確立された技術であるといえるが,エネルギーや地球環境の観点からはまだ十分であるとは言い難く,更なる改善が望まれている。その取り組みの一つとして,処理時間短縮が挙げられる。そして,処理時間短縮は,使用ガス量やエネルギーの低減にもつながる。   Usually, in such a gas carburizing method using a carrier gas, the carbon penetration per unit time is increased to shorten the processing time by setting the atmospheric carbon potential higher than the target surface carbon concentration. ing. In the subsequent diffusion process, carbon is diffused, and the surface carbon concentration and carburization depth are adjusted. However, too much enriched gas (hydrocarbon gas) is supplied to the carburizing chamber to increase the carbon potential during carburizing, so there is a risk of sooting (generation of soot). There is. At present, the gas carburizing method using carrier gas is a relatively well-established technology among many carburizing methods, but it is still not sufficient from the viewpoint of energy and the global environment. Further improvements are desired. One approach is to reduce processing time. And shortening the processing time also leads to a reduction in the amount of gas used and energy.

一方,最近では,真空浸炭処理方法(もしくは減圧浸炭処理方法)と呼ばれる浸炭処理方法が普及しつつある。通常,真空浸炭処理方法では,キャリアガスを使用することなく,減圧下の浸炭室内に直接メタンガスやプロパンガスなどの炭化水素系ガスを添加する。こうして添加された炭化水素系ガスが,高温の鋼材品の表面上で分解することで生じた活性な炭素が鋼材品料に侵入するものと考えられている。かような真空浸炭処理方法は,前述のキャリアガスを用いたガス浸炭処理方法と比べて鋼材品への炭素流入速度が速く,短時間で所望の浸炭深さを得ることが可能である。   On the other hand, recently, a carburizing method called a vacuum carburizing method (or a reduced pressure carburizing method) is becoming widespread. Normally, in the vacuum carburizing method, hydrocarbon gas such as methane gas or propane gas is added directly into the carburizing chamber under reduced pressure without using carrier gas. It is considered that the activated carbon generated by the hydrocarbon gas added in this way decomposes on the surface of a high-temperature steel product enters the steel product material. Such a vacuum carburizing method has a higher carbon inflow rate into the steel product than the gas carburizing method using the carrier gas described above, and can obtain a desired carburizing depth in a short time.

従来,この真空浸炭処理方法としては,飽和炭化水素系ガスを直接炉内に供給し,10〜70kPaの圧力で処理する方法の他,特開平8−325701号に開示されているように,アセチレンガスを用いて,1kPa以下の圧力で処理する方法,特開2000−1765号に開示されているように,エチレンガスまたはエチレンガスとアセチレンガスとの混合ガスを用いて,1〜10kPaの圧力で処理する方法が知られている。   Conventionally, as this vacuum carburizing treatment method, a saturated hydrocarbon gas is directly supplied into a furnace and treated at a pressure of 10 to 70 kPa, as well as acetylene as disclosed in JP-A-8-325701. A method of processing at a pressure of 1 kPa or less using a gas, as disclosed in JP 2000-1765 A, using a mixed gas of ethylene gas or ethylene gas and acetylene gas at a pressure of 1 to 10 kPa. Methods for processing are known.

特開平8−325701号公報JP-A-8-325701 特開2000−1765号公報JP 2000-1765 A

しかしながら,真空浸炭処理方法には,浸炭室内雰囲気の炭素ポテンシャル制御が困難であると言う問題が残されている。前述のキャリアガスを用いたガス浸炭処理方法と異なり,真空浸炭処理方法では,浸炭深さと表面炭素濃度の調整は,浸炭と拡散の時間制御によって行われるのが一般的であり,その操業条件は,経験(ノウハウ)によるところが大きい。   However, the vacuum carburizing method still has the problem that it is difficult to control the carbon potential in the carburizing room atmosphere. Unlike the gas carburizing method using the carrier gas described above, the vacuum carburizing method generally adjusts the carburization depth and surface carbon concentration by controlling the time of carburization and diffusion. , It depends largely on experience (know-how).

従って,本発明の目的は,処理時間を短くでき,かつ,炭素ポテンシャルの制御も可能な浸炭処理方法を提供することにある。   Accordingly, an object of the present invention is to provide a carburizing treatment method that can shorten the treatment time and can also control the carbon potential.

この目標を達成するために,本発明によれば,鋼材品を浸炭室内に収納して浸炭処理する方法であって,炭化水素系ガスを浸炭室内に供給し,減圧下で鋼材品を浸炭する前期浸炭工程と,キャリアガスとエンリッチガスを浸炭室内に供給し,前期浸炭工程よりも高い圧力下で鋼材品を浸炭する後期浸炭工程とを有することを特徴とする,浸炭処理方法が提供される。この浸炭処理方法によれば,前期浸炭工程でより短時間で鋼材品の表面に高炭素濃度層を形成させ,後期浸炭工程では,浸炭ポテンシャルを制御しながら,鋼材品表面の高炭素濃度層を拡散させる。これにより,従来のキャリアガスを用いた浸炭処理方法よりも短時間で所望の浸炭特性を得ることができる。前期浸炭工程で浸炭室内に供給される炭化水素系,及び/又は,後期浸炭工程で浸炭室内に供給されるエンリッチガスは,例えばCガス,Cガス,C10ガス,Cガス,Cガス,Cガス,CHガスの1種又は2種以上である。前期浸炭工程において,Cガスを浸炭室内に供給し,浸炭室内圧力を0.1kPa〜1kPaとして鋼材品を浸炭しても良い。また,前期浸炭工程は,例えば5〜30分間である。後期浸炭工程において,浸炭室内圧力を大気圧として鋼材品を浸炭しても良い。また,後期浸炭工程において,空気,Oガス,COガスの1種又は2種以上からなる酸化性ガスを浸炭室内に供給しても良い。更に,後期浸炭工程後,拡散工程を行っても良い。 In order to achieve this goal, according to the present invention, a steel product is stored in a carburizing chamber and carburized, and a hydrocarbon gas is supplied into the carburizing chamber and the steel product is carburized under reduced pressure. There is provided a carburizing method characterized by having a first carburizing process and a second carburizing process for supplying a carrier gas and an enriched gas into a carburizing chamber and carburizing a steel product under a pressure higher than that of the first carburizing process. . According to this carburizing method, a high carbon concentration layer is formed on the surface of the steel product in a shorter time in the first carburizing process, and in the latter carburizing process, the high carbon concentration layer on the surface of the steel product is controlled while controlling the carburizing potential. Spread. Thereby, desired carburizing characteristics can be obtained in a shorter time than a carburizing method using a conventional carrier gas. Examples of the hydrocarbon gas supplied to the carburizing chamber in the early carburizing process and / or the enriched gas supplied to the carburizing chamber in the later carburizing process include C 3 H 8 gas, C 3 H 6 gas, and C 4 H 10 gas. , C 2 H 2 gas, C 2 H 4 gas, C 2 H 6 gas, or CH 4 gas. In the initial carburizing step, C 2 H 2 gas may be supplied into the carburizing chamber, and the steel product may be carburized at a pressure in the carburizing chamber of 0.1 kPa to 1 kPa. Moreover, the initial carburizing step is, for example, 5 to 30 minutes. In the late carburizing process, the steel product may be carburized with the carburizing chamber pressure set to atmospheric pressure. Further, in the late carburizing step, an oxidizing gas composed of one or more of air, O 2 gas, and CO 2 gas may be supplied into the carburizing chamber. Further, a diffusion process may be performed after the late carburizing process.

本発明によれば,従来のキャリアガスを用いたガス浸炭処理方法に比べて処理時間を短くすることができ,しかも,炭素ポテンシャルの制御も可能な浸炭処理方法を提供することができる。本発明によれば,セメンタイトの析出も無く良好な浸炭を施すことができるようになる。また,炭素ポテンシャル制御によって安定した炉内雰囲気が得られ,これにより二次的効果として,製造ロット間の浸炭ばらつきを少なくすることも期待できる。   According to the present invention, it is possible to provide a carburizing method that can shorten the processing time as compared with a conventional gas carburizing method using a carrier gas and can also control the carbon potential. According to the present invention, good carburization can be performed without precipitation of cementite. In addition, a stable furnace atmosphere can be obtained by controlling the carbon potential, and as a secondary effect, it can be expected to reduce the variation in carburization between production lots.

以下,本発明の好ましい実施の形態を図面を参照にして説明する。図1は,浸炭焼処理装置1の概略的な配置図である。図2は,浸炭室11の説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic layout diagram of the carburizing and treating apparatus 1. FIG. 2 is an explanatory diagram of the carburizing chamber 11.

図1に示すように,浸炭焼処理装置1にあっては,搬送室10の左右に,浸炭室11と油焼入れ室12が設けてあり,搬送室10の背部にガス冷却室13が設けてある。浸炭室11は,鋼材品Wの表面に浸炭処理を施す熱処理設備である。搬送室10の前面には,開閉自在な挿入扉15が設けてある。搬送室10と浸炭室11との間,搬送室10と油焼入れ室12との間,及び,搬送室10とガス冷却室13との間には,それぞれ開閉自在な仕切り扉16,17,18が設けてある。また,油焼入れ室12において,仕切り扉17と対向する側面には,開閉自在な取出し扉20が設けてある。   As shown in FIG. 1, in the carburizing and treating apparatus 1, a carburizing chamber 11 and an oil quenching chamber 12 are provided on the left and right of the transfer chamber 10, and a gas cooling chamber 13 is provided on the back of the transfer chamber 10. is there. The carburizing chamber 11 is a heat treatment facility for carburizing the surface of the steel product W. An insertion door 15 that can be opened and closed is provided on the front surface of the transfer chamber 10. Partition doors 16, 17, 18 that can be opened and closed between the transfer chamber 10 and the carburizing chamber 11, between the transfer chamber 10 and the oil quenching chamber 12, and between the transfer chamber 10 and the gas cooling chamber 13, respectively. Is provided. In the oil quenching chamber 12, an openable / closable take-out door 20 is provided on a side surface facing the partition door 17.

図2に示すように,浸炭室11のケーシングとなる炉殻25の内部には,低放散熱量かつ低蓄熱量のセラミックファイバ等からなる断熱材26で囲まれた加熱ヒータ27が配置されている。このヒータ27の内方には,浸炭処理の対象となる鋼材品Wが挿入される。こうして,ヒータ27の内方に挿入された鋼材品Wの上方には,浸炭室11の内部雰囲気を攪拌するためのファン28が装置してある。   As shown in FIG. 2, a heater 27 surrounded by a heat insulating material 26 made of ceramic fiber having a low heat dissipation amount and a low heat storage amount is disposed inside a furnace shell 25 which is a casing of the carburizing chamber 11. . A steel product W to be carburized is inserted into the heater 27. Thus, a fan 28 for agitating the internal atmosphere of the carburizing chamber 11 is provided above the steel product W inserted inside the heater 27.

炉殻25の内部には,炭化水素系ガス供給部30から送られた炭化水素系ガスが,マスフローコントローラ31で供給量を制御されながら,管路32を介して供給される。また同様に,炉殻25の内部には,エンリッチガス供給部33から送られたエンリッチガスとしての炭化水素系ガスが,マスフローコントローラ34で供給量を制御されながら,管路35を介して供給される。炭化水素系ガス(エンリッチガスとしての使用されるものも含む)としては,例えば,Cガス,Cガス,C10ガス,Cガス,Cガス,Cガス,CHガスのうちの1又は2種以上が用いられる。また同様に,炉殻25の内部には,酸化性ガス供給部36から送られた酸化性ガスが,マスフローコントローラ37で供給量を制御されながら,管路38を介して供給される。酸化性ガスとしては,例えば,空気,O,COのうちの1又は2種以上が用いられる。また同様に,炉殻25の内部には,キャリアガス供給部39から送られたキャリアガスが,流量調節バルブ40で供給量を制御されながら,管路41を介して供給される。キャリアガスとしては,例えば,炭化水素系ガスと空気との混合ガスを原料として吸熱型変成ガス発生炉を用いて変成することで得られる変成ガス(エンドサーミックガス)が用いられる。その他,図示はしないが,搬送室10,浸炭室11,油焼入れ室12及びガス冷却室13には,適当なN供給部から送られたNガスが,供給量を制御されながら供給されるようになっている。 Inside the furnace shell 25, the hydrocarbon-based gas sent from the hydrocarbon-based gas supply unit 30 is supplied via the pipe line 32 while the supply amount is controlled by the mass flow controller 31. Similarly, a hydrocarbon-based gas as an enriched gas sent from the enriched gas supply unit 33 is supplied into the furnace shell 25 through a conduit 35 while the supply amount is controlled by the mass flow controller 34. The Examples of hydrocarbon gases (including those used as enriched gases) include C 3 H 8 gas, C 3 H 6 gas, C 4 H 10 gas, C 2 H 2 gas, and C 2 H 4 gas. , C 2 H 6 gas, or CH 4 gas is used. Similarly, the oxidizing gas sent from the oxidizing gas supply unit 36 is supplied into the furnace shell 25 through the conduit 38 while the supply amount is controlled by the mass flow controller 37. As the oxidizing gas, for example, one or more of air, O 2 , and CO 2 are used. Similarly, the carrier gas sent from the carrier gas supply unit 39 is supplied into the furnace shell 25 through the conduit 41 while the supply amount is controlled by the flow rate adjusting valve 40. As the carrier gas, for example, a modified gas (endthermic gas) obtained by using a mixed gas of hydrocarbon gas and air as a raw material and using an endothermic modified gas generator is used. In addition, although not shown, N 2 gas sent from an appropriate N 2 supply unit is supplied to the transfer chamber 10, the carburizing chamber 11, the oil quenching chamber 12, and the gas cooling chamber 13 while the supply amount is controlled. It has become so.

炉殻25(浸炭室11)の内部は,管路45を通じて,真空ポンプ46によって,所望の圧力に減圧される。浸炭室11の内部雰囲気の圧力は,圧力計50で検出され,コントローラ51に入力される。また,浸炭室11の内部雰囲気の温度は,熱電対52で検出され,コントローラ51に入力される。   The inside of the furnace shell 25 (the carburizing chamber 11) is depressurized to a desired pressure by a vacuum pump 46 through a pipe 45. The pressure in the internal atmosphere of the carburizing chamber 11 is detected by the pressure gauge 50 and input to the controller 51. Further, the temperature of the internal atmosphere of the carburizing chamber 11 is detected by the thermocouple 52 and input to the controller 51.

浸炭室11の内部雰囲気は,管路53を通じてサンプリング装置54にサンプリングされる。サンプリング装置54でサンプリングされた浸炭室11の内部雰囲気は,2つの雰囲気分析装置55,56でそれぞれ分析される。一方の雰囲気分析装置55は,COガス分圧計あるいはCOガス濃度計であり,この雰囲気分析装置55で検出されたCOガス分圧あるいはCOガス濃度が,コントローラ51に入力される。他方の雰囲気分析装置56は,COガス分圧計あるいはCOガス濃度計であり,同様に,この雰囲気分析装置56で検出されたCOガス分圧あるいはCOガス濃度も,コントローラ51に入力される。また,浸炭室11の内部雰囲気は,管路60を通じて雰囲気分析装置61にサンプリングされる。雰囲気分析装置61は,Oガス分圧計あるいはOガス濃度計であり,同様に,この雰囲気分析装置61で検出されたOガス分圧あるいはOガス濃度も,コントローラ51に入力される。 The internal atmosphere of the carburizing chamber 11 is sampled by the sampling device 54 through the pipe line 53. The internal atmosphere of the carburizing chamber 11 sampled by the sampling device 54 is analyzed by the two atmosphere analyzers 55 and 56, respectively. One atmosphere analyzer 55 is a CO gas partial pressure meter or CO gas concentration meter, and the CO gas partial pressure or CO gas concentration detected by the atmosphere analyzer 55 is input to the controller 51. The other atmospheric analyzer 56 is a CO 2 gas partial pressure meter or a CO 2 gas concentration meter. Similarly, the CO 2 gas partial pressure or CO 2 gas concentration detected by this atmospheric analyzer 56 is also input to the controller 51. Is done. Further, the internal atmosphere of the carburizing chamber 11 is sampled by the atmosphere analyzer 61 through the pipe line 60. The atmosphere analyzer 61 is an O 2 gas partial pressure meter or an O 2 gas concentration meter. Similarly, the O 2 gas partial pressure or O 2 gas concentration detected by the atmosphere analyzer 61 is also input to the controller 51. .

コントローラ51は,このように,入力された温度,圧力(各分圧),各濃度によって,浸炭室11の内部雰囲気の炭素ポテンシャルを演算する。そして,その演算値に基づいて,調節計62を介して各マスフローコントローラ31,34,37,40を制御すると共に,ヒータ27及び真空ポンプ46を制御し,浸炭室11の内部雰囲気の炭素ポテンシャルを所望の値にする。   Thus, the controller 51 calculates the carbon potential of the internal atmosphere of the carburizing chamber 11 based on the input temperature, pressure (each partial pressure), and each concentration. Based on the calculated value, the mass flow controllers 31, 34, 37, and 40 are controlled via the controller 62, and the heater 27 and the vacuum pump 46 are controlled to control the carbon potential of the internal atmosphere of the carburizing chamber 11. Set to desired value.

以上のように構成された浸炭焼処理装置1においては,最初は,挿入扉15,各仕切り扉16,17,18及び取出し扉20が,いずれも閉じられている。そして,前期状態として,浸炭室11の内部雰囲気の温度を,ヒータ27により,所定の温度(好ましくは850℃〜1050℃)に加熱保持しておき,浸炭室11の内部雰囲気の圧力を,真空ポンプ46により,0.1kPa以下に減圧しておく。また,焼入室12のの内部雰囲気の圧力も,図示しない真空ポンプにより,0.1kPa以下に減圧しておく。また,焼入れ室12に配置される焼入れ油の温度は,後述する鋼材品Wの焼入れ時に所定の温度になる温度まで加熱しておく。一方,搬送室10の内部雰囲気の圧力は,大気圧としておく。   In the carburizing and treating apparatus 1 configured as described above, the insertion door 15, the partition doors 16, 17, and 18 and the extraction door 20 are all closed at first. Then, as the previous state, the temperature of the internal atmosphere of the carburizing chamber 11 is heated and held at a predetermined temperature (preferably 850 ° C. to 1050 ° C.) by the heater 27, and the pressure of the internal atmosphere of the carburizing chamber 11 is reduced to vacuum. The pressure is reduced to 0.1 kPa or less by the pump 46. Also, the pressure of the internal atmosphere of the quenching chamber 12 is reduced to 0.1 kPa or less by a vacuum pump (not shown). Moreover, the temperature of the quenching oil arrange | positioned in the quenching chamber 12 is heated to the temperature used as predetermined | prescribed temperature at the time of quenching of the steel material goods W mentioned later. On the other hand, the pressure inside the transfer chamber 10 is set to atmospheric pressure.

そして先ず,搬送室10前面の挿入扉15を開き,鋼材品Wを搬送室10内に挿入する。そして,挿入扉15を閉じ,搬送室10内を図示しない真空ポンプによって0.1kPa以下にまで減圧する。その後,搬送室10と浸炭室11の間の仕切り扉16を開き,鋼材品Wを浸炭炉11に搬入し,仕切り扉16を閉じる。なお,このような搬送室10と浸炭室11の間における鋼材品Wの移動,及び,後述する搬送室10と焼入れ室12の間における鋼材品Wの移動は,図示しないが,モーター駆動のチェーン搬送装置,ローラーハースなどの搬送装置によって行われる。   First, the insertion door 15 on the front surface of the transfer chamber 10 is opened, and the steel product W is inserted into the transfer chamber 10. Then, the insertion door 15 is closed, and the inside of the transfer chamber 10 is decompressed to 0.1 kPa or less by a vacuum pump (not shown). Thereafter, the partition door 16 between the transfer chamber 10 and the carburizing chamber 11 is opened, the steel product W is carried into the carburizing furnace 11, and the partition door 16 is closed. The movement of the steel product W between the transfer chamber 10 and the carburizing chamber 11 and the movement of the steel product W between the transfer chamber 10 and the quenching chamber 12 described later are not shown, but are motor-driven chains. It is carried out by a conveying device such as a conveying device or roller hearth.

仕切り扉16を閉じて浸炭室11を密封した後,浸炭室11内において,ヒータ27により,所定の時間(例えば15分間),減圧下で鋼材品Wを加熱する。その後,浸炭室11内にNガスを供給し,内部雰囲気を所定圧力(例えば100kPa)に復圧する。こうして,N雰囲気下で処理材Wの昇温・均熱工程が行われる。そして,処理材Wが浸炭温度まで十分に昇温・均熱された後,真空ポンプ46により,浸炭室11の内部雰囲気の圧力を,0.1kPa以下に再び減圧する。 After the partition door 16 is closed and the carburizing chamber 11 is sealed, the steel product W is heated in the carburizing chamber 11 by a heater 27 under a reduced pressure for a predetermined time (for example, 15 minutes). Thereafter, N 2 gas is supplied into the carburizing chamber 11 and the internal atmosphere is restored to a predetermined pressure (for example, 100 kPa). In this way, the temperature raising / soaking process of the treatment material W is performed in an N 2 atmosphere. Then, after the treatment material W is sufficiently heated and soaked to the carburizing temperature, the pressure of the internal atmosphere of the carburizing chamber 11 is reduced again to 0.1 kPa or less by the vacuum pump 46.

次に,マスフローコントローラ31を開き,例えばCガス,Cガス,C10ガス,Cガス,Cガス,Cガス,CHガスの1種又は2種以上などからなる炭化水素系ガスからなる浸炭ガスを浸炭室11内に供給し,浸炭室11内の内部雰囲気を所定の圧力(例えば,0.1〜10kPa)まで復圧させる。なお,浸炭室11内の内部雰囲気を0.1kPa未満に減圧した場合には浸炭能力が失われ,一方,浸炭室11内の内部雰囲気を10kPaより大きくすると,スーティング発生の問題が生じる。なお,炭化水素系ガスとしてCガスを用いる場合,浸炭室11内の内部雰囲気を0.1〜0.7kPaの範囲に復圧させるのが好ましい。こうして,浸炭室11内の内部雰囲気を所定の圧力に保持しつつ,浸炭室11内に炭化水素系ガスからなる浸炭ガスを所定の流量(例えば,Cガスを2リットル/min)で供給しながら,減圧下で鋼材品を浸炭する前期浸炭工程(真空浸炭処理工程)を所定時間施す。 Next, the mass flow controller 31 is opened, and for example, C 3 H 8 gas, C 3 H 6 gas, C 4 H 10 gas, C 2 H 2 gas, C 2 H 4 gas, C 2 H 6 gas, CH 4 gas A carburizing gas composed of one or more hydrocarbon-based gases is supplied into the carburizing chamber 11, and the internal atmosphere in the carburizing chamber 11 is restored to a predetermined pressure (for example, 0.1 to 10 kPa). . In addition, when the internal atmosphere in the carburizing chamber 11 is reduced to less than 0.1 kPa, the carburizing ability is lost. On the other hand, if the internal atmosphere in the carburizing chamber 11 is larger than 10 kPa, a problem of sooting occurs. In the case of using C 2 H 2 gas as a hydrocarbon gas, that causes pressure recovery inside atmosphere in the carburizing chamber 11 in the range of 0.1~0.7kPa preferred. Thus, while maintaining the internal atmosphere in the carburizing chamber 11 at a predetermined pressure, a carburizing gas composed of a hydrocarbon-based gas is supplied into the carburizing chamber 11 at a predetermined flow rate (for example, C 2 H 2 gas is 2 liters / min). While supplying, a pre-carburizing process (vacuum carburizing process) for carburizing a steel product under reduced pressure is performed for a predetermined time.

ここで,前期浸炭工程に要する時間は,被処理品である鋼材品Wの表面炭素濃度を十分に上昇させる時間(好ましくは5分以上)とし,また,セメンタイトの析出および粗大化が起こらない時間(好ましくは30分以内)とすることが好ましい。   Here, the time required for the initial carburizing process is a time for sufficiently increasing the surface carbon concentration of the steel product W to be processed (preferably 5 minutes or more), and a time during which cementite precipitation and coarsening does not occur. (Preferably within 30 minutes).

こうして前期浸炭工程を終了した後,流量調節バルブ40を開き,例えば変成ガス(エンドサーミックガス)からなるキャリアガスを浸炭室11内に供給し,浸炭室11内の内部雰囲気を,前述の前期浸炭工程よりも高い圧力(例えば,大気圧)まで復圧させる。そして,浸炭室11の復圧が完了後,その圧力を維持しつつキャリアガスを,例えば50リットル/minで浸炭室11に供給すると共に,マスフローコントローラ34を開いて,例えばCガス,Cガス,C10ガス,Cガス,Cガス,Cガス,CHガスの1種又は2種以上などといったエンリッチガスとしての炭化水素系ガスからなる浸炭ガスを浸炭室11内に供給することにより,後期浸炭工程(ガス浸炭処理工程)を行う。 After completing the previous carburizing step, the flow control valve 40 is opened, and a carrier gas made of, for example, a modified gas (endthermic gas) is supplied into the carburizing chamber 11, and the internal atmosphere in the carburizing chamber 11 is changed to the aforementioned previous carburizing. The pressure is restored to a pressure higher than that in the process (for example, atmospheric pressure). Then, after the return pressure of the carburizing chamber 11 is completed, the carrier gas is supplied to the carburizing chamber 11 at, for example, 50 liters / min while maintaining the pressure, and the mass flow controller 34 is opened, for example, C 3 H 8 gas, Hydrocarbon gas as an enriched gas such as one or more of C 3 H 6 gas, C 4 H 10 gas, C 2 H 2 gas, C 2 H 4 gas, C 2 H 6 gas, CH 4 gas, etc. By supplying a carburizing gas consisting of the above into the carburizing chamber 11, a late carburizing process (gas carburizing process) is performed.

また一方で,この後期浸炭工程においては,マスフローコントローラ37を開き,例えば空気,Oガス,COガスの1種又は2種以上からなる酸化性ガスを浸炭室11内に供給する。 On the other hand, in this late carburizing step, the mass flow controller 37 is opened and, for example, an oxidizing gas composed of one or more of air, O 2 gas, and CO 2 gas is supplied into the carburizing chamber 11.

そして,この後期浸炭工程では,マスフローコントローラ31,34,37,ヒータ27が制御され,所定の浸炭圧力(例えば大気圧)を維持しつつ浸炭室11の内部雰囲気の炭素ポテンシャルを所望の値で制御することが可能である。即ち,後期浸炭工程では,浸炭室11の内部雰囲気の圧力が圧力計50で検出され,コントローラ51に入力される。また,浸炭室11の内部雰囲気の温度は,熱電対52で検出され,コントローラ51に入力される。また,浸炭室11の内部雰囲気が,管路53を通じてサンプリング装置54にサンプリングされる。そして,サンプリング装置54でサンプリングされた浸炭室11の内部雰囲気は,2つの雰囲気分析装置55,56でそれぞれ分析され,雰囲気分析装置55で検出されたCOガス分圧あるいはCOガス濃度と,雰囲気分析装置56で検出されたCOガス分圧あるいはCOガス濃度が,コントローラ51にそれぞれ入力される。また,浸炭室11の内部雰囲気は,管路60を通じて雰囲気分析装置61にサンプリングされる。そして,雰囲気分析装置61で検出されたOガス分圧あるいはOガス濃度が,コントローラ51に入力される。コントローラ51は,このように,入力された温度,圧力(各分圧),各ガス濃度によって,浸炭室11の内部雰囲気の炭素ポテンシャルを演算する。そして,その演算値に基づいて,調節計62を介して各マスフローコントローラ31,34,37を制御して,浸炭室11内への各ガスの供給量を調整する。また,必要があれば,更にヒータ27,真空ポンプ46も制御する。こうして,浸炭室11の内部雰囲気の炭素ポテンシャルを所望の値にする。 In this late carburizing process, the mass flow controllers 31, 34, 37 and the heater 27 are controlled, and the carbon potential of the internal atmosphere of the carburizing chamber 11 is controlled at a desired value while maintaining a predetermined carburizing pressure (for example, atmospheric pressure). Is possible. That is, in the late carburizing process, the pressure in the atmosphere inside the carburizing chamber 11 is detected by the pressure gauge 50 and input to the controller 51. Further, the temperature of the internal atmosphere of the carburizing chamber 11 is detected by the thermocouple 52 and input to the controller 51. Further, the internal atmosphere of the carburizing chamber 11 is sampled by the sampling device 54 through the pipe line 53. The internal atmosphere of the carburizing chamber 11 sampled by the sampling device 54 is analyzed by the two atmosphere analyzers 55 and 56, respectively, and the CO gas partial pressure or CO gas concentration detected by the atmosphere analyzer 55 and the atmosphere analysis are analyzed. The CO 2 gas partial pressure or CO 2 gas concentration detected by the device 56 is input to the controller 51. Further, the internal atmosphere of the carburizing chamber 11 is sampled by the atmosphere analyzer 61 through the pipe line 60. Then, the O 2 gas partial pressure or the O 2 gas concentration detected by the atmosphere analyzer 61 is input to the controller 51. Thus, the controller 51 calculates the carbon potential of the internal atmosphere of the carburizing chamber 11 based on the input temperature, pressure (each partial pressure), and each gas concentration. Based on the calculated value, the mass flow controllers 31, 34, and 37 are controlled via the controller 62 to adjust the supply amount of each gas into the carburizing chamber 11. If necessary, the heater 27 and the vacuum pump 46 are also controlled. Thus, the carbon potential of the internal atmosphere of the carburizing chamber 11 is set to a desired value.

そして,後期浸炭工程を終了した後,浸炭後の拡散工程を行う。この場合,各マスフローコントローラ31,34,37を制御することにより,浸炭室11への炭化水素系ガス,酸化性ガスの供給量を調節し,浸炭室11の内部雰囲気を所望の炭素ポテンシャルに制御することで,鋼材品Wの表面炭素濃度を調節することができる。また,浸炭室11への各ガスの供給を止め,浸炭室11内を真空ポンプ37により再び真空排気し,鋼材品Wを減圧下に保持して表面炭素濃度を調整しても良い。   Then, after the late carburizing process is completed, a diffusion process after carburizing is performed. In this case, by controlling the mass flow controllers 31, 34, and 37, the supply amount of the hydrocarbon-based gas and the oxidizing gas to the carburizing chamber 11 is adjusted, and the internal atmosphere of the carburizing chamber 11 is controlled to a desired carbon potential. By doing so, the surface carbon concentration of the steel product W can be adjusted. Alternatively, the supply of each gas to the carburizing chamber 11 may be stopped, the inside of the carburizing chamber 11 may be evacuated again by the vacuum pump 37, and the steel product W may be held under reduced pressure to adjust the surface carbon concentration.

そして,所定時間の拡散工程を完了させた後,浸炭室11の内部雰囲気の温度を所定の温度に下げる。その後,搬送室10と浸炭室11の間の仕切り扉16を開き,更に,搬送室10と焼入れ室12の仕切り扉17も開き,減圧下において,鋼材品Wを,浸炭室11から搬送室10を経由して焼入れ室に12に搬送し,油焼き入れを行う。   Then, after completing the diffusion process for a predetermined time, the temperature of the internal atmosphere of the carburizing chamber 11 is lowered to a predetermined temperature. Thereafter, the partition door 16 between the transfer chamber 10 and the carburizing chamber 11 is opened, and the partition door 17 between the transfer chamber 10 and the quenching chamber 12 is also opened, and the steel product W is transferred from the carburizing chamber 11 to the transfer chamber 10 under reduced pressure. Is transferred to the quenching chamber via 12 and oil quenching is performed.

そして,焼入れ終了後,取出し扉20が開かれ,焼入れ室12から鋼材品Wが取り出される。なお,表面炭素濃度の調整と焼入れ温度への温度制御は同時に行うことも可能である。   Then, after the quenching is completed, the takeout door 20 is opened, and the steel product W is taken out from the quenching chamber 12. Note that the adjustment of the surface carbon concentration and the temperature control to the quenching temperature can be performed simultaneously.

かくして,従来のキャリアガスを用いたガス浸炭処理方法に比べて処理時間を短くすることができ,しかも,炭素ポテンシャルの制御も可能な浸炭処理を行うことが可能となる。こうして浸炭処理された鋼材品Wは,セメンタイトの析出も無く良好な浸炭を施されたものとなる。   Thus, it is possible to shorten the processing time as compared with the conventional gas carburizing method using a carrier gas and to perform the carburizing process capable of controlling the carbon potential. The steel product W thus carburized is subjected to good carburization without precipitation of cementite.

なお,後期浸炭工程において,浸炭室11内の炭素ポテンシャルの制御は,各雰囲気分析装置55,56,61で検出されるCOガス分圧あるいはCOガス濃度,COガス分圧あるいはCOガス濃度,Oガス分圧あるいはOガス濃度に基いて行う他,浸炭室11の内部雰囲気のHガス分圧あるいはHガス濃度,浸炭室11の内部雰囲気のHO分圧あるいは露点,浸炭室11の内部雰囲気のCHガス分圧あるいはCHガス濃度等に基いて行っても良い。その際の炭素ポテンシャルは,浸炭温度で決まる炭素固溶限を参考に煤の析出の発生しない範囲で設定すれば良い。 In the latter carburizing process, the carbon potential in the carburizing chamber 11 is controlled by the CO gas partial pressure or CO gas concentration, the CO 2 gas partial pressure or the CO 2 gas concentration detected by the atmosphere analyzers 55, 56 and 61. In addition to the O 2 gas partial pressure or O 2 gas concentration, the H 2 gas partial pressure or H 2 gas concentration of the internal atmosphere of the carburizing chamber 11, the H 2 O partial pressure or dew point of the internal atmosphere of the carburizing chamber 11, it may be performed based on the CH 4 gas partial pressure or CH 4 gas concentration of the inner atmosphere of the carburizing chamber 11. The carbon potential at that time may be set within a range where no soot precipitation occurs with reference to the carbon solubility limit determined by the carburizing temperature.

(実施例1)
浸炭室内での浸炭結果を見るために,鋼材品として,材質SCR420H,直径φ18mm,長さ40mmの棒状試片を,浸炭室内において図3に示す1〜5の位置にそれぞれ設置した。即ち,グロスが浸炭室の最大積載量である直方体形状からなる鋼材品を浸炭室内に挿入した場合における,該鋼材品のコーナー部及び中央部に相当する位置に,各棒状試片をそれぞれ設置した。この鋼材品(各棒状試片)を,圧力0.1kPa以下,温度950℃に保持された浸炭室にて,浸炭温度950℃まで昇温加熱した。
(Example 1)
In order to see the carburization results in the carburizing chamber, steel specimens were installed as rods of material SCR420H, diameter φ18 mm, and length 40 mm at positions 1 to 5 shown in FIG. 3 in the carburizing chamber. That is, when a steel product having a rectangular parallelepiped shape whose gross load is the maximum loading capacity of the carburizing chamber is inserted into the carburizing chamber, each rod-shaped specimen is installed at a position corresponding to the corner and center of the steel product. . This steel product (each bar specimen) was heated to a carburizing temperature of 950 ° C. in a carburizing chamber maintained at a pressure of 0.1 kPa or less and a temperature of 950 ° C.

図4は,実施例1にかかる処理工程(昇温・均熱工程,浸炭工程(前期浸炭工程及び後期浸炭工程),拡散工程)を経過時間に従って示した説明図である。最初の15分間,浸炭室内を真空排気しながら加熱を行った後,Nガスを供給して浸炭室内を100kPaに復圧し,950℃で鋼材品の昇温・均熱を行った。鋼材品を浸炭室内に搬入してから90分後,浸炭室内を再び排気し,浸炭室内の圧力を0.1kPa以下とした。その後,Cガスを浸炭室内に供給し,前期浸炭工程(真空浸炭処理)を鋼材品に10分間施した。前期浸炭工程中,Cを2リットル/minで浸炭室内に供給し,真空ポンプの排気速度を制御することで浸炭室内圧力を0.67kPaに保持した。 FIG. 4 is an explanatory diagram showing processing steps (temperature raising / soaking step, carburizing step (early carburizing step and late carburizing step), diffusion step) according to Example 1 according to elapsed time. After heating for 15 minutes while evacuating the carburizing chamber, N 2 gas was supplied to restore the pressure in the carburizing chamber to 100 kPa, and the temperature of the steel product was raised and soaked at 950 ° C. 90 minutes after carrying the steel product into the carburizing chamber, the carburizing chamber was evacuated again, and the pressure in the carburizing chamber was reduced to 0.1 kPa or less. Thereafter, C 2 H 2 gas was supplied into the carburizing chamber, and the carburizing process (vacuum carburizing treatment) was performed on the steel product for 10 minutes. During the previous carburizing process, C 2 H 2 was supplied into the carburizing chamber at 2 liters / min, and the pressure in the carburizing chamber was maintained at 0.67 kPa by controlling the exhaust speed of the vacuum pump.

こうして10分間の前期浸炭工程を施した後,Cの供給を停止した。続いて,キャリアガス(エンドサーミックガス)を50リットル/minで供給することで浸炭室内を大気圧まで復圧し,後期浸炭工程(ガス浸炭)を開始した。後期浸炭工程中は,キャリアガスを50リットル/minで浸炭室内に流し続け,浸炭室内圧力を大気圧に保った。また,浸炭室へのCとCOの供給量を調節することで,浸炭室内雰囲気の炭素ポテンシャルを1.2%に制御した。 In this manner, after the pre-carburization process for 10 minutes was performed, the supply of C 2 H 2 was stopped. Subsequently, the carburizing chamber was returned to atmospheric pressure by supplying a carrier gas (endthermic gas) at 50 liters / min, and a late carburizing process (gas carburizing) was started. During the late carburizing process, the carrier gas was kept flowing at 50 l / min into the carburizing chamber, and the carburizing chamber pressure was maintained at atmospheric pressure. In addition, the carbon potential of the carburizing chamber atmosphere was controlled to 1.2% by adjusting the amount of C 3 H 8 and CO 2 supplied to the carburizing chamber.

150分間の後期浸炭工程を施した後,拡散工程を開始した。この拡散工程では炭素ポテンシャルを0.9%に制御した。50分間の拡散工程を施した後,再び浸炭室内を真空排気し,搬送室を経由して焼入室にて鋼材品に油焼入を施した。   After the late carburizing process for 150 minutes, the diffusion process was started. In this diffusion step, the carbon potential was controlled to 0.9%. After performing a diffusion process for 50 minutes, the carburizing chamber was evacuated again, and the steel product was oil-quenched in the quenching chamber via the transfer chamber.

こうして浸炭焼入処理を完了した実施例1における,前述の浸炭室内5箇所に設置された鋼材品の平均炭素濃度分布を図5に示す。その結果,有効浸炭深さ(0.36%C)は0.94mmであり,表面炭素濃度はほぼ0.8wt%Cとなった。この実施例1と,従来のキャリアガス(エンドサーミックガス)を用いたガス浸炭処理方法(浸炭工程炭素ポテンシャル1.2%制御)とで,浸炭工程に要した時間を比較したところ,実施例1の浸炭工程時間が160分であるのに対し,従来のガス浸炭処理方法の場合は190分となり,30分の時間短縮となった。つまり約16%の浸炭工程時間短縮が達成できた。   FIG. 5 shows the average carbon concentration distribution of the steel products installed in the five carburizing chambers in Example 1 where the carburizing and quenching process was completed in this way. As a result, the effective carburization depth (0.36% C) was 0.94 mm, and the surface carbon concentration was approximately 0.8 wt% C. When the time required for the carburizing process was compared between this Example 1 and a conventional gas carburizing method using a carrier gas (endothermic gas) (carburizing process carbon potential 1.2% control), Example 1 Compared with the carburizing process time of 160 minutes, in the case of the conventional gas carburizing process, the time is 190 minutes, which is a reduction of 30 minutes. In other words, the carburizing process time was reduced by about 16%.

このように,実施例1によれば,従来のキャリアガス(エンドサーミックガス)を用いたガス浸炭処理方法に比べて,短時間で必要とする深さの浸炭処理層を得ることができた。更に,従来のガス浸炭処理方法と同様に炭素ポテンシャルの制御が容易であり,また,煤の発生,セメンタンイトの析出も無く良好な浸炭処理を施すことができた。   Thus, according to Example 1, it was possible to obtain a carburized layer having a required depth in a short time as compared with a gas carburizing method using a conventional carrier gas (endothermic gas). Furthermore, as with the conventional gas carburizing treatment method, the control of the carbon potential was easy, and good carburizing treatment could be performed without generation of soot and cementite precipitation.

(実施例2)
実施例1と同様に,浸炭室内での浸炭結果を見るために,鋼材品として,材質SCR420H,直径φ18mm,長さ40mmの棒状試片を,浸炭室内において図3に示す1〜5の位置にそれぞれ設置した。即ち,グロスが浸炭室の最大積載量である直方体形状からなる鋼材品を浸炭室内に挿入した場合における,該鋼材品のコーナー部及び中央部に相当する位置に,各棒状試片をそれぞれ設置した。この鋼材品(各棒状試片)を,圧力0.1kPa以下,温度950℃に保持された浸炭室にて,浸炭温度950℃まで昇温加熱した。
(Example 2)
As in Example 1, in order to see the carburization result in the carburizing chamber, a rod-shaped specimen having a material SCR420H, a diameter φ18 mm, and a length of 40 mm was placed at positions 1 to 5 shown in FIG. Each was installed. That is, when a steel product having a rectangular parallelepiped shape whose gross load is the maximum loading capacity of the carburizing chamber is inserted into the carburizing chamber, each rod-shaped specimen is installed at a position corresponding to the corner and center of the steel product. . This steel product (each bar specimen) was heated to a carburizing temperature of 950 ° C. in a carburizing chamber maintained at a pressure of 0.1 kPa or less and a temperature of 950 ° C.

図6は,実施例2にかかる処理工程(昇温・均熱工程,浸炭工程(前期浸炭工程及び後期浸炭工程),拡散工程)を経過時間に従って示した説明図である。最初の15分間,浸炭室内を真空排気しながら加熱を行った後,Nガスを供給して浸炭室内を100kPaに復圧し,950℃で鋼材品の昇温・均熱を行った。鋼材品を浸炭室内に搬入してから90分後,浸炭室内を再び排気し,浸炭室内の圧力を0.1kPa以下とした。その後,Cガスを浸炭室内に供給し,前期浸炭工程(真空浸炭処理)を鋼材品に30分間施した。前期浸炭工程中,Cを2リットル/minで浸炭室内に供給し,真空ポンプの排気速度を制御することで浸炭室内圧力を0.67kPaに保持した。 FIG. 6 is an explanatory diagram showing processing steps (temperature raising / soaking step, carburizing step (early carburizing step and late carburizing step), diffusion step) according to Example 2 according to the elapsed time. After heating for 15 minutes while evacuating the carburizing chamber, N 2 gas was supplied to restore the pressure in the carburizing chamber to 100 kPa, and the temperature of the steel product was raised and soaked at 950 ° C. 90 minutes after carrying the steel product into the carburizing chamber, the carburizing chamber was evacuated again, and the pressure in the carburizing chamber was reduced to 0.1 kPa or less. Thereafter, C 2 H 2 gas was supplied into the carburizing chamber, and the carburizing process (vacuum carburizing treatment) was performed on the steel product for 30 minutes. During the previous carburizing process, C 2 H 2 was supplied into the carburizing chamber at 2 liters / min, and the pressure in the carburizing chamber was maintained at 0.67 kPa by controlling the exhaust speed of the vacuum pump.

こうして30分間の前期浸炭工程を施した後,Cの供給を停止した。続いて,キャリアガス(エンドサーミックガス)を50リットル/minで供給することで浸炭室内を大気圧まで復圧し,後期浸炭工程(ガス浸炭)を開始した。後期浸炭工程中は,キャリアガスを50リットル/minで浸炭室内に流し続け,浸炭室内圧力を大気圧に保った。また,浸炭室へのCとCOの供給量を調節することで,浸炭室内雰囲気の炭素ポテンシャルを1.2%に制御した。 Thus, after the 30-minute pre-carburization step, the supply of C 2 H 2 was stopped. Subsequently, the carburizing chamber was returned to atmospheric pressure by supplying a carrier gas (endthermic gas) at 50 liters / min, and a late carburizing process (gas carburizing) was started. During the late carburizing process, the carrier gas was kept flowing at 50 l / min into the carburizing chamber, and the carburizing chamber pressure was maintained at atmospheric pressure. In addition, the carbon potential of the carburizing chamber atmosphere was controlled to 1.2% by adjusting the amount of C 3 H 8 and CO 2 supplied to the carburizing chamber.

80分間の後期浸炭工程を施した後,拡散工程を開始した。この拡散工程では炭素ポテンシャルを0.9%に制御した。50分間の拡散工程を施した後,再び浸炭室内を真空排気し,搬送室を経由して焼入室にて鋼材品に油焼入を施した。   After the late carburizing process for 80 minutes, the diffusion process was started. In this diffusion step, the carbon potential was controlled to 0.9%. After performing a diffusion process for 50 minutes, the carburizing chamber was evacuated again, and the steel product was oil-quenched in the quenching chamber via the transfer chamber.

こうして浸炭焼入処理を完了した実施例2における,前述の浸炭室内5箇所に設置された鋼材品の平均炭素濃度分布を図7に示す。その結果,有効浸炭深さ(0.36%C)は0.89mmであり,表面炭素濃度はほぼ0.8wt%Cとなった。この実施例2と,従来のキャリアガス(エンドサーミックガス)を用いたガス浸炭処理方法(浸炭工程炭素ポテンシャル1.2%制御)とで,浸炭工程(前記浸炭工程及び後期浸炭工程)に要した時間を比較したところ,実施例2の浸炭工程時間が110分であり,従来のガス浸炭処理方法の場合の190分と比べて80分の時間短縮となった。つまり約58%の浸炭工程時間短縮が達成できた。このように,実施例1と同様に,従来のキャリアガス(エンドサーミックガス)を用いたガス浸炭処理方法に比べて,短時間で必要とする深さの浸炭処理層を得ることができた。更に,従来のガス浸炭処理方法と同様に炭素ポテンシャルの制御が容易であり,また,煤の発生,セメンタンイトの析出も無く良好な浸炭処理を施すことができた。   FIG. 7 shows the average carbon concentration distribution of the steel products installed in the five carburizing chambers in Example 2 where the carburizing and quenching process was completed in this way. As a result, the effective carburization depth (0.36% C) was 0.89 mm, and the surface carbon concentration was approximately 0.8 wt% C. In this Example 2 and the conventional gas carburizing method (carburizing process carbon potential 1.2% control) using a carrier gas (endothermic gas), the carburizing process (the carburizing process and the late carburizing process) was required. When the time was compared, the carburizing process time of Example 2 was 110 minutes, which was 80 minutes shorter than 190 minutes in the case of the conventional gas carburizing treatment method. In other words, the carburizing process time was reduced by about 58%. Thus, as in Example 1, a carburized layer having a required depth could be obtained in a shorter time than a conventional gas carburizing method using a carrier gas (endothermic gas). Furthermore, as with the conventional gas carburizing treatment method, the control of the carbon potential was easy, and good carburizing treatment could be performed without generation of soot and cementite precipitation.

本発明は,各種部品などの鋼材品の浸炭処理に適用できる。   The present invention can be applied to carburizing treatment of steel products such as various parts.

浸炭焼処理装置の概略的な配置図である。It is a schematic layout of a carburizing and treating apparatus. 浸炭室の説明図である。It is explanatory drawing of a carburizing chamber. 実施例1及び2における,浸炭室内での鋼材品の配置を示す説明図である。It is explanatory drawing which shows arrangement | positioning of the steel material goods in the carburizing chamber in Example 1 and 2. FIG. 実施例1にかかる処理工程の説明図である。6 is an explanatory diagram of a processing process according to Example 1. FIG. 実施例1の鋼材品の平均炭素濃度分布図である。2 is an average carbon concentration distribution diagram of the steel product of Example 1. FIG. 実施例2にかかる処理工程の説明図である。FIG. 10 is an explanatory diagram of processing steps according to Example 2; 実施例2の鋼材品の平均炭素濃度分布図である。It is an average carbon concentration distribution map of the steel product of Example 2.

符号の説明Explanation of symbols

W 鋼材品
1 浸炭焼処理装置
10 搬送室
11 浸炭室
12 油焼入れ室
13 ガス冷却室
25 炉殻
26 断熱材
27 加熱ヒータ
28 ファン
30 炭化水素系ガス供給部
31,34,37 マスフローコントローラ
33 エンリッチガス供給部
36 酸化性ガス供給部
39 キャリアガス供給部
46 真空ポンプ
50 圧力計
51 コントローラ
52 熱電対
54 サンプリング装置
55,56,61 雰囲気分析装置
62 調節計
W Steel Products 1 Carburizing and Treating Device 10 Transfer Chamber 11 Carburizing Chamber 12 Oil Quenching Chamber 13 Gas Cooling Chamber 25 Furnace Shell 26 Heat Insulating Material 27 Heating Heater 28 Fan 30 Hydrocarbon Gas Supply Unit 31, 34, 37 Mass Flow Controller 33 Enriched Gas Supply unit 36 Oxidizing gas supply unit 39 Carrier gas supply unit 46 Vacuum pump 50 Pressure gauge 51 Controller 52 Thermocouple 54 Sampling device 55, 56, 61 Atmosphere analyzer 62 Controller

Claims (7)

鋼材品を浸炭室内に収納して浸炭処理する方法であって,
炭化水素系ガスを浸炭室内に供給し,減圧下で鋼材品を浸炭する前期浸炭工程と,
キャリアガスとエンリッチガスを浸炭室内に供給し,前期浸炭工程よりも高い圧力下で鋼材品を浸炭する後期浸炭工程とを有することを特徴とする,浸炭処理方法。
A method of storing steel products in a carburizing chamber and carburizing them,
Carburizing process for supplying hydrocarbon gas into the carburizing chamber and carburizing steel products under reduced pressure,
A carburizing treatment method comprising a later carburizing step of supplying a carrier gas and an enriched gas into a carburizing chamber and carburizing a steel product under a pressure higher than that of the previous carburizing step.
前期浸炭工程で浸炭室内に供給される炭化水素系ガス,及び/又は,後期浸炭工程で浸炭室内に供給されるエンリッチガスが,Cガス,Cガス,C10ガス,Cガス,Cガス,Cガス,CHガスの1種又は2種以上であることを特徴とする,請求項1に記載の浸炭処理方法。 The hydrocarbon-based gas supplied into the carburizing chamber in the early carburizing process and / or the enriched gas supplied into the carburizing chamber in the later carburizing process are C 3 H 8 gas, C 3 H 6 gas, C 4 H 10 gas. The carburizing method according to claim 1, wherein the method is one or more of C 2 H 2 gas, C 2 H 4 gas, C 2 H 6 gas, and CH 4 gas. 前期浸炭工程において,Cガスを浸炭室内に供給し,浸炭室内圧力を0.1kPa〜1kPaとして鋼材品を浸炭することを特徴とする,請求項1又は2に記載の浸炭処理方法。 3. The carburizing method according to claim 1, wherein in the initial carburizing step, C 2 H 2 gas is supplied into the carburizing chamber, and the steel product is carburized at a pressure of 0.1 kPa to 1 kPa in the carburizing chamber. 前期浸炭工程が5〜30分間であることを特徴とする,請求項1,2又は3に記載の浸炭処理方法。 The carburizing method according to claim 1, 2 or 3, wherein the first carburizing step is 5 to 30 minutes. 後期浸炭工程において,浸炭室内圧力を大気圧として鋼材品を浸炭することを特徴とする,請求項1,2,3又は4に記載の浸炭処理方法。 The carburizing treatment method according to claim 1, 2, 3, or 4, wherein in the latter carburizing step, the steel product is carburized by setting the carburizing chamber pressure to atmospheric pressure. 後期浸炭工程において,空気,Oガス,COガスの1種又は2種以上からなる酸化性ガスを浸炭室内に供給することを特徴とする,請求項1,2,3,4又は5に記載の浸炭処理方法。 6. In the late carburizing step, oxidizing gas comprising one or more of air, O 2 gas, and CO 2 gas is supplied into the carburizing chamber. The carburizing method described. 後期浸炭工程後,拡散工程を行うことを特徴とする,請求項1,2,3,4,5又は6に記載の浸炭処理方法。 The carburizing method according to claim 1, 2, 3, 4, 5 or 6, wherein a diffusion step is performed after the late carburizing step.
JP2003419705A 2003-12-17 2003-12-17 Carburizing method Expired - Lifetime JP4292280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003419705A JP4292280B2 (en) 2003-12-17 2003-12-17 Carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003419705A JP4292280B2 (en) 2003-12-17 2003-12-17 Carburizing method

Publications (2)

Publication Number Publication Date
JP2005179714A true JP2005179714A (en) 2005-07-07
JP4292280B2 JP4292280B2 (en) 2009-07-08

Family

ID=34781518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003419705A Expired - Lifetime JP4292280B2 (en) 2003-12-17 2003-12-17 Carburizing method

Country Status (1)

Country Link
JP (1) JP4292280B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208395A (en) * 2007-02-23 2008-09-11 Ihi Corp Carburizing apparatus and carburizing method
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
JP2011190498A (en) * 2010-03-15 2011-09-29 Oriental Engineering Co Ltd Surface modifying method
JP2012193393A (en) * 2011-03-15 2012-10-11 Chugai Ro Co Ltd Carburizing treatment device
JP2015129324A (en) * 2014-01-07 2015-07-16 株式会社日本テクノ Gas carburization method and gas carburization apparatus
CN107502851A (en) * 2017-08-15 2017-12-22 肥西县通力机械有限公司 A kind of process of surface treatment of plastic mould
JP2020158865A (en) * 2019-03-28 2020-10-01 高砂工業株式会社 Carburization gas nozzle and vacuum carburization furnace
WO2023190205A1 (en) * 2022-03-31 2023-10-05 Dowaサーモテック株式会社 Vacuum carburizing furnace and vacuum carburizing processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771090C (en) 2009-08-07 2017-07-11 Swagelok Company Low temperature carburization under soft vacuum
WO2013109415A1 (en) 2012-01-20 2013-07-25 Swagelok Company Concurrent flow of activating gas in low temperature carburization

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208395A (en) * 2007-02-23 2008-09-11 Ihi Corp Carburizing apparatus and carburizing method
WO2008124239A1 (en) * 2007-04-06 2008-10-16 Swagelok Company Hybrid carburization with intermediate rapid quench
JP2011190498A (en) * 2010-03-15 2011-09-29 Oriental Engineering Co Ltd Surface modifying method
JP2012193393A (en) * 2011-03-15 2012-10-11 Chugai Ro Co Ltd Carburizing treatment device
JP2015129324A (en) * 2014-01-07 2015-07-16 株式会社日本テクノ Gas carburization method and gas carburization apparatus
CN107502851A (en) * 2017-08-15 2017-12-22 肥西县通力机械有限公司 A kind of process of surface treatment of plastic mould
JP2020158865A (en) * 2019-03-28 2020-10-01 高砂工業株式会社 Carburization gas nozzle and vacuum carburization furnace
JP7236729B2 (en) 2019-03-28 2023-03-10 高砂工業株式会社 Carburizing gas nozzle and vacuum carburizing furnace
WO2023190205A1 (en) * 2022-03-31 2023-10-05 Dowaサーモテック株式会社 Vacuum carburizing furnace and vacuum carburizing processing method

Also Published As

Publication number Publication date
JP4292280B2 (en) 2009-07-08

Similar Documents

Publication Publication Date Title
JP4292280B2 (en) Carburizing method
USRE29881E (en) Method of vacuum carburizing
JP5428031B2 (en) Carburizing method and apparatus
WO2004029320A1 (en) Method of nitriding metal ring and apparatus therefor
JP5209921B2 (en) Heat treatment method and heat treatment equipment
JP6552209B2 (en) Method and apparatus for manufacturing metal spring
JP2004346412A (en) Continuous vacuum carburizing furnace
JPH06172960A (en) Vacuum carburization method
CN102159747B (en) Fluoridation treatment method, fluoridation treatment device, and method for using fluoridation treatment device
JP5428032B2 (en) Carburizing method
US7276204B2 (en) Carburization treatment method and carburization treatment apparatus
JP5233258B2 (en) Method and apparatus for producing steel material having steel surface with controlled carbon concentration
JP2001214255A (en) Gas-hardening treatment method for metal surface
JP2003147506A (en) Carburizing method of steel parts
JPH11124622A (en) Heat treatment
GB2044804A (en) Heat treatment method
JP2008260994A (en) Method for producing carburized product
JP4169864B2 (en) Method of carburizing steel
JP5225634B2 (en) Heat treatment method and heat treatment equipment
JP2009091638A (en) Heat-treatment method and heat-treatment apparatus
JP2005105396A (en) Carburizing method
JP2017197822A (en) Surface hardening method and surface hardening apparatus
JP6773411B2 (en) Carburizing system and manufacturing method of surface hardened steel
JPWO2019182140A1 (en) Vacuum carburizing method and carburized component manufacturing method
JPS5952705B2 (en) Vacuum carburizing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4292280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term