JP2010222636A - Surface treatment method of steel product - Google Patents

Surface treatment method of steel product Download PDF

Info

Publication number
JP2010222636A
JP2010222636A JP2009070838A JP2009070838A JP2010222636A JP 2010222636 A JP2010222636 A JP 2010222636A JP 2009070838 A JP2009070838 A JP 2009070838A JP 2009070838 A JP2009070838 A JP 2009070838A JP 2010222636 A JP2010222636 A JP 2010222636A
Authority
JP
Japan
Prior art keywords
gas
treated
carburizing
temperature
heating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009070838A
Other languages
Japanese (ja)
Inventor
Toru Inagaki
徹 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009070838A priority Critical patent/JP2010222636A/en
Publication of JP2010222636A publication Critical patent/JP2010222636A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the surface treatment method of steel product for efficient surface modification of a member to be treated comprising steel product. <P>SOLUTION: The surface treatment method of steel product comprises: a process of performing vacuum carburizing treatment of reducing a pressure at a primary heating temperature T1 and, at the same time, supplying a carburizing gas to the member to be treated; and then, a process of performing nitriding treatment of replacing the carburizing gas with nitriding gas, lowering the temperature to a secondary heating temperature T2 and retaining the temperature at the secondary heating temperature T2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼材からなる被処理部材を効率よく表面改質する鋼材の表面処理方法に関する。   The present invention relates to a surface treatment method for a steel material for efficiently modifying the surface of a member to be treated made of steel.

従来から自動車等の各種機械部品として鋼材製の歯車が用いられる。
ただし、鋼材の強度が不十分であると、歯車の歯元に曲げ応力が作用した際に歯元破壊等が生じる場合がある。また、歯車の歯車表面部にすべり力が作用して歯車表面部の一部が剥がれるピッチングが生じることもある。このような歯元破壊を防止し、ピッチングを抑制するためにはしばしば歯車表面部に浸炭処理が行われる。歯車表面部に浸炭処理を行って炭化物を析出させることにより、歯車表面部の機械的特性を向上させ、歯元強度を確保して信頼性の高い歯車を得ることができる。
Conventionally, steel gears are used as various machine parts such as automobiles.
However, if the strength of the steel material is insufficient, the tooth root may be destroyed when a bending stress is applied to the tooth root of the gear. In addition, a sliding force may act on the gear surface portion of the gear to cause a parting of the gear surface portion to cause pitching. In order to prevent such tooth root destruction and suppress pitching, carburizing treatment is often performed on the gear surface portion. Carburizing treatment is performed on the gear surface portion to precipitate carbide, thereby improving the mechanical characteristics of the gear surface portion and securing the tooth root strength, thereby obtaining a highly reliable gear.

ただし、上記浸炭処理に際して析出させる炭化物は所定のサイズ・形状を有している必要がある。例えば、粗大な炭化物が結晶粒界に沿って網目状に析出すると、歯車表面部の疲労強度が低下するだけでなく、焼入れ時に割れが発生することがある。したがって、歯車表面部の疲労強度を向上させるには、炭化物の粗大化を抑制する必要がある。   However, the carbide to be precipitated in the carburizing process needs to have a predetermined size and shape. For example, if coarse carbides precipitate in a network form along the crystal grain boundaries, not only the fatigue strength of the gear surface portion decreases, but also cracks may occur during quenching. Therefore, in order to improve the fatigue strength of the gear surface portion, it is necessary to suppress the coarsening of carbides.

従来から微細な炭化物を分散して析出させる方法として種々の方法が提案されている。例えば、特許文献1、2には、歯車に対して、Acm線以上の一次加熱温度で浸炭性ガスを供給する一次浸炭処理を行ったのち急冷し、その後、A1線以上でAcm線以下の二次加熱温度で浸炭性ガスを供給する二次浸炭処理を行い、急冷することが記載されている。 Conventionally, various methods have been proposed as a method for dispersing and precipitating fine carbides. For example, Patent Documents 1 and 2, with respect to the gear, and quenched after performing the primary carburization process of supplying the carburizing gas in A cm line more primary heating temperature, then, A cm line by A 1-wire or It describes that a secondary carburizing process for supplying a carburizing gas at the following secondary heating temperature is performed, followed by rapid cooling.

一次浸炭処理では、所定の一次加熱温度下で歯車材の周囲に浸炭性ガスを供給する。これにより、歯車の表面部から炭素が侵入する。所定の時間、一次浸炭処理を行い、歯車材を急冷すると、炭化物の析出が抑制されて、歯車表面部に炭素が過飽和に固溶した中間処理材が得られる。一次浸炭処理を行った後急冷するのは、浸炭処理を行った後に続けて降温すると、二次加熱温度に至るまでの間に粗大な炭化物が析出してしまうからである。
この後、一次加熱温度よりもやや低温の二次加熱温度まで歯車材を昇温する。これにより、炭素を過飽和に含有する歯車材の浸炭処理部分に炭化物の核が多量に生成され、さらに、当該二次加熱温度で浸炭性ガスを供給する二次浸炭処理を行うと、歯車表層に微細な炭化物が分散して析出する。
In the primary carburizing process, carburizing gas is supplied around the gear member at a predetermined primary heating temperature. Thereby, carbon penetrate | invades from the surface part of a gearwheel. When the primary carburizing treatment is performed for a predetermined time and the gear material is rapidly cooled, precipitation of carbide is suppressed, and an intermediate treatment material in which carbon is supersaturated in the gear surface portion is obtained. The reason for rapid cooling after the primary carburizing treatment is that if the temperature is lowered continuously after the carburizing treatment, coarse carbides are deposited until the secondary heating temperature is reached.
Thereafter, the gear member is heated to a secondary heating temperature slightly lower than the primary heating temperature. As a result, a large amount of carbide nuclei are generated in the carburized portion of the gear material containing carbon in supersaturation, and when carburizing gas is supplied to supply the carburizing gas at the secondary heating temperature, a gear surface layer is formed. Fine carbides are dispersed and deposited.

また、例えば、特許文献3には、浸炭性ガスおよび浸窒性ガスを減圧炉内に間欠的に供給することで、浸炭浸窒処理を繰り返し行なうことが記載されている。このように、浸炭浸窒処理を繰り返し行なうことで、炭化物の粗大化を抑制できる。しかも、歯車表面部に多量の窒素が侵入して焼入れ性を高めることができる。   For example, Patent Document 3 describes that carburizing and nitriding treatment is repeatedly performed by intermittently supplying a carburizing gas and a nitriding gas into a vacuum furnace. Thus, the coarsening of the carbide can be suppressed by repeatedly performing the carburizing and nitriding treatment. In addition, a large amount of nitrogen enters the gear surface portion, and the hardenability can be improved.

特開2004−285384号公報JP 2004-285384 A 特開2007−308792号公報JP 2007-308792 A 特開2006−28541号公報JP 2006-28541 A

特許文献1、2では浸炭処理を2回行う必要があり、その際に温度サイクルが2回繰り返される。このため、処理工数が増大して歯車の製造コストも高まる。加えて、熱変形量も増大する。また、特許文献3では、浸炭性ガスおよび浸窒性ガスを間欠的に供給するため、浸炭性ガスおよび浸窒性ガスの供給比率および供給タイミングを制御する必要があり、処理条件の制御が煩雑になる。加えて、歯車表面部に多量の窒素を侵入させると、歯車表面部の硬さが低下するためこれを補うショットピーニング等の表面加工が必要になる場合がある。   In patent documents 1 and 2, it is necessary to perform a carburizing process twice, and a temperature cycle is repeated twice in that case. For this reason, the processing man-hour increases and the manufacturing cost of the gear increases. In addition, the amount of thermal deformation increases. Further, in Patent Document 3, since the carburizing gas and the nitriding gas are intermittently supplied, it is necessary to control the supply ratio and the supply timing of the carburizing gas and the nitriding gas, and the control of the processing conditions is complicated. become. In addition, if a large amount of nitrogen enters the gear surface portion, the hardness of the gear surface portion decreases, so surface processing such as shot peening may be necessary to compensate for this.

本発明の目的は、鋼材からなる被処理部材を効率よく表面改質することができる鋼材の表面処理方法を提供する点にある。   An object of the present invention is to provide a surface treatment method for steel that can efficiently modify the surface of a member to be treated made of steel.

本発明に係る鋼材の表面処理方法の第1特徴手段は、被処理部材に対し、一次加熱温度で減圧しつつ浸炭性ガスを供給する真空浸炭処理を行った後に、その浸炭性ガスを浸窒性ガスに置換しつつ二次加熱温度に降温し、その二次加熱温度に保持する浸窒処理を行う点にある。   The first characteristic means of the steel material surface treatment method according to the present invention is a method in which a carburizing gas is supplied to a member to be treated while supplying a carburizing gas while reducing the pressure at the primary heating temperature, and then the carburizing gas is nitrogenated. The temperature is lowered to the secondary heating temperature while substituting with the reactive gas, and the nitriding treatment is performed to maintain the secondary heating temperature.

浸炭浸窒処理を行う際には、被処理部材の表面から炭素元素が侵入できるよう処理雰囲気を高温にする必要がある。その際に雰囲気ガスとしては、炭素を含有する浸炭性ガスを使用するが、雰囲気が高温であるために、余剰の浸炭性ガスは容易にスス化してしまう。このススは、被処理部材の表面や装置の各部に付着して浸炭処理製品の品質を低下させたり、装置の頻繁な保守清掃が必要となるなど、浸炭処理製品の生産効率を低下させる要因となる。
本発明ではこの点を改善すべく、減圧環境下で浸炭浸窒処理を行う。真空浸炭処理では、浸炭に寄与しない余剰の浸炭性ガスが順次排出される。このため、浸炭性ガスが熱分解してススを生じることを防止できる。よって、処理製品の品質が向上し、装置の清掃頻度が減少して処理効率を高めることができる。
さらに、本発明では、被処理部材を一回だけ加熱し、その冷却過程で浸窒処理まで行うから熱処理効率が非常に良い。また、本手段では、真空浸炭処理を行った後に、浸炭性ガスを浸窒性ガスに置換して浸窒処理を行うので、浸炭性ガスおよび浸窒性ガスの供給比率を制御したり、浸炭性ガスおよび浸窒性ガスの供給タイミングを頻繁に制御する必要がなく、処理条件の制御が容易である。このように、本手段は、浸炭浸窒処理に際して減圧環境を形成する必要はあるものの、従来の二回の加熱処理を行っていた手法に比べて処理効率を大幅に向上させることができる。
When performing the carburizing and nitriding treatment, it is necessary to increase the temperature of the treatment atmosphere so that the carbon element can enter from the surface of the member to be treated. At this time, a carburizing gas containing carbon is used as the atmospheric gas. However, since the atmosphere is high in temperature, the excess carburizing gas easily becomes sooted. This soot is a factor that reduces the production efficiency of carburized products, such as the quality of carburized products that adhere to the surface of the member to be processed and each part of the device, and the need for frequent maintenance and cleaning of the device. Become.
In the present invention, in order to improve this point, carburizing and nitriding treatment is performed under a reduced pressure environment. In the vacuum carburizing process, surplus carburizing gas that does not contribute to carburizing is sequentially discharged. For this reason, it can prevent carburizing gas from thermally decomposing and producing soot. Therefore, the quality of the processed product is improved, the frequency of cleaning the apparatus is reduced, and the processing efficiency can be increased.
Furthermore, in the present invention, since the member to be treated is heated only once and the nitriding treatment is performed in the cooling process, the heat treatment efficiency is very good. Further, in this means, after the vacuum carburizing process is performed, the carburizing gas is replaced with the nitriding gas and the nitriding process is performed, so the supply ratio of the carburizing gas and the nitrocarburizing gas can be controlled, It is not necessary to frequently control the supply timing of the oxidizing gas and the nitriding gas, and the processing conditions can be easily controlled. Thus, although this means needs to form a reduced pressure environment during the carburizing and nitriding treatment, the treatment efficiency can be greatly improved as compared with the conventional method in which the heat treatment is performed twice.

本発明の第2特徴手段は、前記被処理部材として鉄を主に含む金属を用い、前記真空浸炭処理および前記浸窒処理後の前記被処理部材の表面炭素濃度を0.9質量%以上に設定する点にある。   The second characteristic means of the present invention uses a metal mainly containing iron as the member to be treated, and the surface carbon concentration of the member to be treated after the vacuum carburizing treatment and the nitriding treatment is 0.9 mass% or more. There is a point to set.

本手段であれば、被処理部材の表面炭素濃度を共析点以上の濃度に設定することができ、浸炭浸窒処理に際して炭化物が析出し易くなる。   With this means, the surface carbon concentration of the member to be treated can be set to a concentration equal to or higher than the eutectoid point, and carbides are likely to precipitate during the carburizing and nitriding treatment.

本発明の第3特徴手段は、前記真空浸炭処理および前記浸窒処理後の前記被処理部材の表面窒素濃度を0.39質量%以上に設定する点にある。   The 3rd characteristic means of this invention exists in the point which sets the surface nitrogen concentration of the said to-be-processed member after the said vacuum carburizing process and the said nitriding process to 0.39 mass% or more.

微細な炭素の析出物を得るためには、炭素元素の量に応じて適切な量の窒素元素を母材のマトリックス中に存在させ、被処理部材の冷却に際して析出する炭素元素が粗大化しようとするのを窒素元素に阻止させる必要がある。本発明の窒素濃度であれば、上記濃度の炭素元素に対して、析出時の炭素元素の拡散を有効に阻止することができる。その結果、被処理部材の表面部における炭素析出物が極めて微細なものとなり、被処理部材の機械的特性を向上させることができる。   In order to obtain fine carbon deposits, an appropriate amount of nitrogen element is present in the matrix of the base material in accordance with the amount of carbon element, and the carbon element that precipitates during cooling of the workpiece is coarsened. It is necessary to prevent the nitrogen element from doing so. With the nitrogen concentration of the present invention, the diffusion of carbon element during precipitation can be effectively prevented with respect to the carbon element having the above concentration. As a result, the carbon deposits on the surface portion of the member to be processed become extremely fine, and the mechanical characteristics of the member to be processed can be improved.

本発明の第4特徴手段は、前記被処理部材のCrを1.00質量%以下に設定する点にある。   The 4th characteristic means of this invention exists in the point which sets Cr of the said to-be-processed member to 1.00 mass% or less.

鋼材中のCrは、炭素と結合して炭化物を形成する。この炭化物は、焼入れ時にマルテンサイト中に固溶して鋼材が軟化するのを抑制する。しかし、1.00質量%を超える量のCrを添加すると、浸窒処理中に浸窒性ガス中の窒素と反応してCrNを形成し、被処理部材に対する窒素の浸入が不十分なものとなる。よって本発明では、被処理部材のCrを1.00質量%以下に設定する。これにより、浸窒処理中のCrNの形成を抑え、確実に浸窒処理が行えることとなる。   Cr in the steel material combines with carbon to form a carbide. This carbide suppresses solidification in martensite during quenching and softening of the steel material. However, if an amount of Cr exceeding 1.00% by mass is added, it reacts with nitrogen in the nitriding gas during the nitriding treatment to form CrN, and the penetration of nitrogen into the member to be treated is insufficient. Become. Therefore, in this invention, Cr of a to-be-processed member is set to 1.00 mass% or less. Thereby, the formation of CrN during the nitriding treatment is suppressed, and the nitriding treatment can be performed reliably.

本発明の第5特徴手段は、前記一次加熱温度から前記二次加熱温度に降温する降温速度を2.7℃/分以下とする点にある。   The fifth characteristic means of the present invention is that the rate of temperature decrease from the primary heating temperature to the secondary heating temperature is 2.7 ° C./min or less.

浸窒処理に際し、環境温度が高いほど被処理部材に対する窒素の浸入速度は高まる。しかしながら、長時間に亘って被処理部材を高温に維持すると、窒素によってその拡散を阻止されない炭素元素、つまり、被処理品の表面からある程度深部に存在する炭素元素が被処理部材のより深部に拡散してしまう。この結果、被処理部材の表面部における炭素濃度が低下することとなる。一方、急速に被処理部材を冷却すると、窒素元素を所定の深さまで浸入させることができない。
よって、本手段では、二次加熱温度に際しての降温速度を2.7℃/分以下に設定する。これにより、被処理部材の表面近傍における炭素濃度および窒素濃度を共に適正化し、微細な炭素析出物を有する被処理部材を得ることができる。
In the nitriding process, the higher the environmental temperature, the higher the nitrogen penetration rate into the member to be treated. However, if the member to be treated is kept at a high temperature for a long time, carbon elements that are not prevented from being diffused by nitrogen, that is, carbon elements existing to some extent deep from the surface of the article to be treated diffuse into deeper portions of the member to be treated. Resulting in. As a result, the carbon concentration in the surface portion of the member to be processed is reduced. On the other hand, when the member to be treated is rapidly cooled, the nitrogen element cannot be infiltrated to a predetermined depth.
Therefore, in this means, the temperature lowering rate at the secondary heating temperature is set to 2.7 ° C./min or less. Thereby, both the carbon concentration and the nitrogen concentration in the vicinity of the surface of the member to be processed can be optimized, and the member to be processed having fine carbon deposits can be obtained.

本発明の第6特徴手段は、前記一次加熱温度を900℃〜1050℃の範囲とし、前記二次加熱温度を800℃〜880℃の範囲とした点にある。   The sixth characteristic means of the present invention is that the primary heating temperature is in the range of 900 ° C. to 1050 ° C., and the secondary heating temperature is in the range of 800 ° C. to 880 ° C.

本手段であれば、一次加熱による浸炭工程で被処理部材がγ相に維持され、二次加熱による浸窒工程では浸炭層の温度がAcm線直下に維持されるから、微細な炭素の析出物を得ることができる。特に、浸窒処理をAcm線以下で保持すると、被処理部材の全領域で均等に炭素析出物が形成される。つまり、母材を降温する際には、Acm線に達した部位でまず炭化物が析出する。この結果、この近傍の母材では炭素濃度が低下する。この低下した炭素濃度に対するAcm線はもう少し下の温度であるから、この部位ではそれ以上の炭化物は析出せず、炭化物もそれ以上は粗大化しない。本手段であれば、このような現象を母材全般に亘って生じさせる結果、母材の炭化物が微細化され、機械的特性に優れた被処理部材を得ることができる。 With this means, the material to be treated is maintained in the γ phase in the carburizing process by primary heating, and the temperature of the carburized layer is maintained immediately below the A cm line in the nitriding process by secondary heating. You can get things. In particular, when the nitriding treatment is held below the A cm line, carbon deposits are uniformly formed in the entire region of the member to be treated. In other words, when the temperature of the base material is lowered, carbide is first precipitated at the portion reaching the A cm line. As a result, the carbon concentration decreases in the base material in the vicinity. Since the A cm line with respect to the lowered carbon concentration is a little lower temperature, no more carbides are precipitated at this site, and the carbides are not further coarsened. With this means, such a phenomenon is caused over the entire base material, and as a result, the carbide of the base material is refined and a member to be processed having excellent mechanical characteristics can be obtained.

浸炭浸窒処理の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process. 被処理部材の相変態図である。It is a phase transformation diagram of a member to be processed. 浸炭浸窒処理(処理条件1)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 1). 浸炭浸窒処理(処理条件2)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 2). 浸炭浸窒処理(処理条件3)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 3). 浸炭浸窒処理(処理条件4)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 4). 浸炭浸窒処理(処理条件5)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (process condition 5). 浸炭浸窒処理(処理条件6)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 6). 浸炭浸窒処理(処理条件7)の温度パターンを示す図である。It is a figure which shows the temperature pattern of a carburizing nitriding process (processing condition 7).

本願発明に係る被処理部材としては、例えば、自動車の歯車や、トロイダル式CVTのディスクやパワーローラなど、特に優れた機械的特性が求められる部材を対象とする。
本発明は、このような部材の表面改質を効率的に行う浸炭浸窒方法に関する。以下、本発明の方法につき、図面及び表を参考にしつつ説明する。
As a member to be processed according to the present invention, for example, a member that requires particularly excellent mechanical characteristics, such as an automobile gear, a toroidal CVT disk, or a power roller, is used.
The present invention relates to a carburizing and nitriding method for efficiently performing the surface modification of such a member. Hereinafter, the method of the present invention will be described with reference to the drawings and tables.

〔被処理部材の化学組成〕
被処理部材の機械的強度は含有される炭素濃度に影響される。被処理部材の母材の炭素濃度が0.10質量%未満であると、被処理部材の母材の強度が低下する。一方、被処理部材の母材の炭素濃度が0.40質量%を超えると、被処理部材の母材の硬さが増大して加工性が低下する。よって、本願発明の被処理部材としては、0.10質量%〜0.40質量%の範囲内の炭素を含有するのが好ましい。
[Chemical composition of treated material]
The mechanical strength of the member to be treated is affected by the concentration of contained carbon. When the carbon concentration of the base material of the member to be processed is less than 0.10% by mass, the strength of the base material of the member to be processed decreases. On the other hand, if the carbon concentration of the base material of the member to be processed exceeds 0.40% by mass, the hardness of the base material of the member to be processed increases and the workability decreases. Therefore, the member to be treated of the present invention preferably contains carbon in the range of 0.10% by mass to 0.40% by mass.

機械要素に用いる鋼材には、脱酸剤およびスラグの粘性調整剤としてFeSiが添加されることがある。これにより、被処理部材の酸素量を低減でき、スラグに適度な粘性を与えることができる。このように、Siは、脱酸剤および粘性調整剤としてのFeSiの添加の際に不可避的に混入されるものであるが、被処理部材の浸炭性、加工性および軟化抵抗性を維持するためにも添加される元素である。被処理部材のSiが0.05質量%未満であると、焼き戻しの際に被処理部材が軟化し易くなる。一方、被処理部材のSiが1.10質量%を超えると、被処理部材の浸炭性が低下し、被処理部材の硬さが増大して加工性が低下する。よって、本願発明の被処理部材としては、0.05質量%〜1.10質量%の範囲内のSiを含有するのが好ましい。   FeSi may be added to a steel material used as a machine element as a deoxidizer and a slag viscosity modifier. Thereby, the amount of oxygen of a member to be processed can be reduced, and moderate viscosity can be given to slag. Thus, Si is inevitably mixed during the addition of FeSi as a deoxidizer and viscosity modifier, but in order to maintain the carburizing property, workability, and softening resistance of the member to be treated. It is an element that is also added. When the Si of the member to be processed is less than 0.05% by mass, the member to be processed is easily softened during tempering. On the other hand, when Si of the member to be processed exceeds 1.10% by mass, the carburizing property of the member to be processed is lowered, the hardness of the member to be processed is increased, and the workability is lowered. Therefore, the member to be treated of the present invention preferably contains Si in the range of 0.05% by mass to 1.10% by mass.

鋼材中には、精錬の過程で脱酸剤として作用するMnを添加することがある。Mnは、またA3変態点を降下させてオーステナイトを安定化させることにも用いられる。
ただし、被処理部材のMnが0.30質量%未満であると、被処理部材の強度が低下し、被処理部材の焼入性が低下する。一方、被処理部材のMnが1.20質量%を超えると、被処理部材の硬さが増大して被処理部材の加工性が低下する。よって、被処理部材の強度、焼入性および加工性を維持できるように、本願発明の被処理部材では、0.30質量%〜1.20質量%の範囲内のMnを含有するのが好ましい。
Mn, which acts as a deoxidizer, may be added to the steel material during the refining process. Mn is also used to stabilize the austenite by lowering the A 3 transformation point.
However, when the Mn of the member to be processed is less than 0.30% by mass, the strength of the member to be processed is lowered and the hardenability of the member to be processed is lowered. On the other hand, if the Mn of the member to be processed exceeds 1.20% by mass, the hardness of the member to be processed increases and the workability of the member to be processed decreases. Therefore, in order to maintain the strength, hardenability and workability of the member to be treated, the member to be treated of the present invention preferably contains Mn in the range of 0.30% by mass to 1.20% by mass. .

鋼材中にCrを添加することにより、炭化物を形成したり、焼入れ時にその炭化物がマルテンサイト中に固溶して軟化抵抗性を向上させることができる。
一方、被処理部材のCrが1.00質量%を超えると、浸窒処理中に浸窒性ガス中の窒素が被処理部材のCrと反応してCrNを作り易く、浸窒性ガス中の窒素が被処理部材に侵入し難くなる。よって、本発明では、炭化物の形成を促進し、被処理部材の軟化抵抗性を維持しつつ、浸窒性ガス中の窒素が被処理部材に侵入し易くなるように、Crを0.50質量%〜1.00質量%、より好ましくは0.50質量%〜0.90質量%、一層好ましくは0.50質量%〜0.80質量%含有するのが好ましい。
By adding Cr to the steel material, carbide can be formed, or the carbide can be dissolved in martensite during quenching to improve softening resistance.
On the other hand, if the Cr of the member to be treated exceeds 1.00% by mass, the nitrogen in the nitriding gas easily reacts with the Cr of the member to be treated during the nitriding treatment to form CrN. Nitrogen is less likely to enter the member to be treated. Therefore, in the present invention, the Cr content is 0.50 mass so that the formation of carbides and the softening resistance of the member to be processed can be maintained while the nitrogen in the nitriding gas can easily enter the member to be processed. % To 1.00% by mass, more preferably 0.50% to 0.90% by mass, and still more preferably 0.50% to 0.80% by mass.

鋼材中にMoを添加することにより、焼入れ時に粒界酸化物の生成を抑制し、被処理部材の焼入性を向上させることができる。しかし、Moは高価な元素であり、Moを添加する量が増加すると、コスト高を招く。よって、本願発明の被処理部材は、0.00質量%〜1.00質量%の範囲内、焼入性の観点からより好ましくは、0.10質量%〜1.00質量%の範囲内のMoを含有するのが好ましい。   By adding Mo to the steel material, the generation of grain boundary oxides can be suppressed during quenching, and the hardenability of the member to be treated can be improved. However, Mo is an expensive element, and when the amount of Mo added increases, the cost increases. Therefore, the member to be treated of the present invention is preferably in the range of 0.00 mass% to 1.00 mass%, more preferably in the range of 0.10 mass% to 1.00 mass% from the viewpoint of hardenability. It is preferable to contain Mo.

鋼材中には、鋼材の低温もろさを抑制するためにNiが用いられることがある。Niは、焼入性、低温もろさ抑制の観点から添加することが好ましいが、コストおよび加工性の観点から、本願発明の被処理部材は、0.00質量%〜3.00の範囲内のNiを含有するのが好ましい。尚、製造上の不純物として0.10質量%程度のNiが混入することがあるが、特に問題とはならない。   In steel materials, Ni may be used in order to suppress the low temperature brittleness of steel materials. Ni is preferably added from the viewpoint of hardenability and low-temperature brittleness control, but from the viewpoint of cost and workability, the member to be treated of the present invention has a Ni content in the range of 0.00 mass% to 3.00. It is preferable to contain. In addition, although about 0.10 mass% Ni may mix as an impurity on manufacture, it does not become a problem in particular.

本実施形態では、浸炭浸窒処理を行うために、C,Si,Mn,Cr,Mo,Niを構成元素とする被処理部材を例示した。しかし、各種用途に合わせて、これ以外の元素、例えば、Ti,Nb,Al,V,Bを構成元素に追加しても問題はない。   In the present embodiment, in order to perform the carburizing and nitriding treatment, the member to be treated having C, Si, Mn, Cr, Mo, and Ni as constituent elements is exemplified. However, there is no problem even if other elements such as Ti, Nb, Al, V, and B are added to the constituent elements in accordance with various uses.

〔被処理部材の表面炭素濃度および表面窒素濃度〕
効率よく浸炭処理するためには、炭化物が析出し易くなるよう、被処理部材の表面炭素濃度を共析点(鉄-炭素系鋼材では炭素濃度0.80質量%)以上の濃度にする必要がある。そのために、被処理部材の表面炭素濃度は0.90質量%以上にする。
[Surface carbon concentration and surface nitrogen concentration of treated material]
In order to efficiently carburize, the surface carbon concentration of the member to be treated must be equal to or higher than the eutectoid point (carbon concentration of 0.80% by mass for iron-carbon steel) so that carbides are likely to precipitate. is there. Therefore, the surface carbon concentration of the member to be treated is set to 0.90% by mass or more.

窒素は炭素と共に侵入型元素である。このため、窒素が被処理部材に侵入することで炭素が拡散し難くなり、粗大な炭化物の形成を抑制することができる。この窒素濃度は、母材中の炭素濃度に対応させたものである必要がある。よって、本実施形態では、上記炭素濃度に適応するものとして、被処理部材の表面窒素濃度を0.39質量%以上に設定する。これにより、窒素が被処理部材の結晶中における侵入可能なサイトを占め易く、炭素が拡散し難くなり、炭化物の粗大化を抑制することができる。   Nitrogen is an interstitial element along with carbon. For this reason, it becomes difficult for carbon to diffuse when nitrogen penetrates the member to be treated, and formation of coarse carbides can be suppressed. This nitrogen concentration needs to correspond to the carbon concentration in the base material. Therefore, in this embodiment, the surface nitrogen concentration of the member to be treated is set to 0.39% by mass or more as an adaptation to the carbon concentration. Thereby, nitrogen is easy to occupy the site which can penetrate | invade in the crystal | crystallization of a to-be-processed member, carbon becomes difficult to spread | diffuse, and coarsening of a carbide | carbonized_material can be suppressed.

以下、本発明に係る被処理部材の浸炭浸窒処理について説明する。   Hereinafter, the carburizing and nitriding treatment of the member to be treated according to the present invention will be described.

〔浸炭浸窒処理〕
図1は浸炭浸窒処理の温度パターンを示したものである。図2は、炭素鋼材の相変態図である。図中の矢印付きの太線は被処理部材の表面部(浸炭層)における温度および炭素濃度の変化を示している。図1および図2の(a)〜(e)は、浸炭浸窒処理における各工程を示している。
(Carburizing and nitriding treatment)
FIG. 1 shows a temperature pattern of the carburizing and nitriding treatment. FIG. 2 is a phase transformation diagram of a carbon steel material. Thick lines with arrows in the figure indicate changes in temperature and carbon concentration in the surface portion (carburized layer) of the member to be treated. (A)-(e) of FIG. 1 and FIG. 2 has shown each process in a carburizing nitriding process.

(昇温工程)
真空浸炭炉(図示しない)を減圧し、真空浸炭炉を減圧状態で一次加熱温度T1℃まで昇温する(図1および図2の(a)の部分)。このとき、図2中のX1点はA3線より上に位置し、被処理部材はγ相(オーステナイト相)になっている。
(Temperature raising process)
The vacuum carburizing furnace (not shown) is depressurized, and the vacuum carburizing furnace is heated to the primary heating temperature T1 ° C. in a depressurized state (portion (a) in FIGS. 1 and 2). At this time, X1 point in FIG. 2 is located above the A 3-wire, which is to be processed member γ phase (austenite phase).

(浸炭工程)
続いて、浸炭性ガスを真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を一次加熱温度T1℃で所定時間保持する(図1および図2の(b)の部分)。被処理部材の最表面の炭素濃度が所定の値になるように処理する。このように、減圧環境下で浸炭処理を行うことで、余剰の浸炭性ガスがスス化するのを抑制することができる。よって、浸炭処理装置が汚れるのを防止でき、装置の清掃等の手間が軽減される。その結果、生産効率良く被処理部材を得ることができる。浸炭性ガス中の炭素が被処理部材の表面部に侵入して、被処理部材の表面炭素濃度がC1からC2質量%に上昇する。その結果、被処理部材の表面部に炭素リッチな浸炭層を形成する。このとき、図2中のX2点はAcm線より上に位置し、被処理部材の浸炭層はγ相を維持している。
(Carburization process)
Subsequently, the carburizing gas is supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace is maintained at the primary heating temperature T1 ° C. for a predetermined time (portion (b) in FIGS. 1 and 2). Processing is performed so that the carbon concentration of the outermost surface of the member to be processed becomes a predetermined value. Thus, by performing the carburizing process under a reduced pressure environment, it is possible to suppress the surplus carburizing gas from becoming sooted. Thus, the carburizing apparatus can be prevented from becoming dirty, and the trouble of cleaning the apparatus is reduced. As a result, the member to be processed can be obtained with high production efficiency. Carbon in the carburizing gas enters the surface portion of the member to be treated, and the surface carbon concentration of the member to be treated increases from C1 to C2% by mass. As a result, a carbon-rich carburized layer is formed on the surface portion of the member to be processed. At this time, the point X2 in FIG. 2 is located above the A cm line, and the carburized layer of the member to be processed maintains the γ phase.

(降温工程)
続いて、浸炭性ガスの供給を止め、浸炭性ガスの量が十分少なくなったときに、真空浸炭炉の減圧を解除しつつ浸窒性ガスを真空浸炭炉の内部に供給する。併せて、真空浸炭炉の内部温度を所定の冷却速度で二次加熱温度T2まで降温する(図1および図2の(c)の部分)。このとき、浸窒性ガス中の窒素が被処理部材の浸炭層に侵入し始め、侵入した窒素によって炭素の拡散が遅延される。
(Cooling process)
Subsequently, the supply of the carburizing gas is stopped, and when the amount of the carburizing gas becomes sufficiently small, the nitrocarburizing gas is supplied to the inside of the vacuum carburizing furnace while releasing the decompression of the vacuum carburizing furnace. At the same time, the internal temperature of the vacuum carburizing furnace is lowered to the secondary heating temperature T2 at a predetermined cooling rate (part (c) in FIGS. 1 and 2). At this time, nitrogen in the nitriding gas begins to enter the carburized layer of the member to be treated, and the diffusion of carbon is delayed by the intruding nitrogen.

炭素および窒素は共に侵入型元素であり、被処理部材の結晶中における侵入可能なサイトが決まっている。炭素および窒素は、そのサイトを介して拡散する。窒素が被処理部材に侵入してそのサイトを占めてしまうと、炭素が拡散し難くなる。このため、炭素の拡散が遅延し、粗大な炭化物が析出することを抑制できる。   Both carbon and nitrogen are interstitial elements, and the sites that can enter in the crystal of the member to be processed are determined. Carbon and nitrogen diffuse through the site. When nitrogen enters the member to be processed and occupies the site, carbon becomes difficult to diffuse. For this reason, it is possible to suppress the diffusion of carbon and the precipitation of coarse carbides.

一次加熱温度T1が高いほど窒素が被処理部材に侵入し易い。また、窒素の拡散係数も大きくなる。しかし、一次加熱温度T1が高いほど炭素の拡散係数も大きくなる。よって、内部雰囲気の浸窒性ガスの濃度を高めつつ窒素の拡散係数も大きくするのが望ましい。このため、真空浸炭炉の内部温度の冷却速度はある程度遅いことが好ましい。
一方、真空浸炭炉の内部温度の冷却速度をあまり速くすると、窒素が被処理部材に侵入し難くなり、窒素によって炭素の拡散が遅延する効果を十分に発揮できないことがある。したがって、真空浸炭炉の内部温度の冷却速度が所定の速度以下であることが好ましい。
As the primary heating temperature T1 is higher, nitrogen is more likely to enter the member to be processed. In addition, the diffusion coefficient of nitrogen increases. However, the higher the primary heating temperature T1, the larger the carbon diffusion coefficient. Therefore, it is desirable to increase the diffusion coefficient of nitrogen while increasing the concentration of the nitriding gas in the internal atmosphere. For this reason, it is preferable that the cooling rate of the internal temperature of a vacuum carburizing furnace is slow to some extent.
On the other hand, if the cooling rate of the internal temperature of the vacuum carburizing furnace is made too fast, nitrogen will not easily enter the member to be treated, and the effect of delaying the diffusion of carbon by nitrogen may not be fully exhibited. Therefore, it is preferable that the cooling rate of the internal temperature of the vacuum carburizing furnace is not more than a predetermined rate.

(浸窒工程)
真空浸炭炉の内部温度を二次加熱温度T2、即ち、炭素濃度C2におけるAcm線直下の温度で所定時間保持する(図1および図2の(d)の部分)。上記したように、窒素によって炭素の拡散が遅延しているので、微細な炭化物が徐々に析出する。さらに、微細な炭化物の析出を促すため、図2中のX3点をAcm線の直下に位置させる。そうすることで、被処理部材の浸炭浸窒された領域の部位で炭化物を析出させることができる。このように、微細な炭化物を被処理部材に分散して析出させることで、被処理部材の強度の向上をはかることができる。
(Nitrogenization process)
The internal temperature of the vacuum carburizing furnace is maintained for a predetermined time at the secondary heating temperature T2, that is, the temperature immediately below the A cm line at the carbon concentration C2 (part (d) in FIGS. 1 and 2). As described above, since the diffusion of carbon is delayed by nitrogen, fine carbides gradually precipitate. Further, in order to promote the precipitation of fine carbides, the point X3 in FIG. 2 is positioned directly below the A cm line. By doing so, it is possible to deposit carbide at the site of the carbonitrided region of the member to be treated. Thus, the strength of the member to be treated can be improved by dispersing and precipitating fine carbides on the member to be treated.

(焼入れ工程)
炭化物が所定の状態に析出したのち、被処理部材を急冷する(図1および図2の(e)の部分)。これにより、被処理部材は主としてマルテンサイト相に相変化する。微細な炭化物による分散強化に加えて準安定なマルテンサイト相への相変化により被処理部材の硬さが増大する。尚、必要に応じて焼入れ工程の後に焼き戻し工程を行っても良い。
(Quenching process)
After the carbide is precipitated in a predetermined state, the member to be treated is rapidly cooled (portion (e) in FIGS. 1 and 2). Thereby, a to-be-processed member mainly changes into a martensite phase. In addition to dispersion strengthening with fine carbides, the hardness of the member to be treated increases due to a phase change to a metastable martensite phase. In addition, you may perform a tempering process after a hardening process as needed.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

〔使用鋼材〕
被処理部材として以下の鋼材A〜Cを用いた。
[Used steel]
The following steel materials A to C were used as members to be processed.

Figure 2010222636
Figure 2010222636

それら鋼材A〜Cを以下の条件で浸炭浸窒処理した。   These steel materials A to C were subjected to carburizing and nitriding treatment under the following conditions.

(処理条件1)
図3に示すように、CO,CO2,N2,H2の混合ガス(浸炭性ガス)雰囲気下でガス浸炭炉の内部温度を910℃(一次加熱温度)まで昇温した。昇温後、被処理部材の最表面の炭素濃度が0.8%になるように処理し、ガス浸炭炉の内部温度を910℃で120分間保持した。ガス浸炭炉の内部温度を0.7℃/分の冷却速度で850℃(二次加熱温度)まで降温した後、ガス浸炭炉の内部温度を850℃で30分間保持した。その後、被処理部材を急冷した。CO,CO2,N2,H2の割合は、夫々、20.9%,0.38%(850℃)/0.22%(910℃),40.0%,38.0%である。尚、CO2を一定に保つため、CH4を微量添加している。
(Processing condition 1)
As shown in FIG. 3, the internal temperature of the gas carburizing furnace was raised to 910 ° C. (primary heating temperature) in a mixed gas (carburizing gas) atmosphere of CO, CO 2 , N 2 , and H 2 . After the temperature increase, the carbon concentration on the outermost surface of the member to be processed was treated to 0.8%, and the internal temperature of the gas carburizing furnace was maintained at 910 ° C. for 120 minutes. After the internal temperature of the gas carburizing furnace was lowered to 850 ° C. (secondary heating temperature) at a cooling rate of 0.7 ° C./min, the internal temperature of the gas carburizing furnace was maintained at 850 ° C. for 30 minutes. Thereafter, the member to be treated was quenched. The proportions of CO, CO 2 , N 2 and H 2 are 20.9%, 0.38% (850 ° C.) / 0.22% (910 ° C.), 40.0% and 38.0%, respectively. . Note that a small amount of CH 4 is added to keep CO 2 constant.

(処理条件2)
図4に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃(一次加熱温度)で40分間保持した。被処理部材の最表面の炭素濃度が0.8%になるように処理した。アセチレンガスの供給を停止し、真空浸炭炉の内部温度を930℃で40分間保持した。真空浸炭炉の内部温度を2.7℃/分の冷却速度で850℃(二次加熱温度)まで降温した後、真空浸炭炉の内部温度を850℃で30分間保持した。その後、被処理部材を急冷した。
(Processing condition 2)
As shown in FIG. 4, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied into the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. (primary heating temperature) for 40 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 0.8%. The supply of acetylene gas was stopped, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. for 40 minutes. After the internal temperature of the vacuum carburizing furnace was lowered to 850 ° C. (secondary heating temperature) at a cooling rate of 2.7 ° C./min, the internal temperature of the vacuum carburizing furnace was maintained at 850 ° C. for 30 minutes. Thereafter, the member to be treated was quenched.

(処理条件3)
図5に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃で80分間保持した。被処理部材の最表面の炭素濃度が1.0%になるように処理した。真空浸炭炉を減圧しつつアセチレンガスの供給を停止した。アセチレンガスの量が十分少なくなったときに、真空浸炭炉の内部温度を2.0℃/分の冷却速度で870℃(二次加熱温度)まで降温した。真空浸炭炉の減圧を解除しアンモニアガス(浸窒性ガス)を真空浸炭炉の内部に供給し、大気圧下に保持しながら、真空浸炭炉の内部温度を870℃で180分間保持した。その後、被処理部材を急冷した。
(Processing condition 3)
As shown in FIG. 5, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. for 80 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 1.0%. The supply of acetylene gas was stopped while depressurizing the vacuum carburizing furnace. When the amount of acetylene gas was sufficiently reduced, the internal temperature of the vacuum carburizing furnace was lowered to 870 ° C. (secondary heating temperature) at a cooling rate of 2.0 ° C./min. The decompression of the vacuum carburizing furnace was released and ammonia gas (nitrocarburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 870 ° C. for 180 minutes while maintaining the atmospheric pressure. Thereafter, the member to be treated was quenched.

(処理条件4)
図6に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃(一次加熱温度)で80分間保持した。被処理部材の最表面の炭素濃度が1.0%になるように処理した。真空浸炭炉を減圧しつつアセチレンガスの供給を停止した。アセチレンガスの量が十分少なくなったときに、真空浸炭炉の減圧を解除しアンモニアガス(浸窒性ガス)を真空浸炭炉の内部に供給し、大気圧下に保持しながら、真空浸炭炉の内部温度を1.8℃/分で870℃(二次加熱温度)まで降温した後、真空浸炭炉の内部温度を870℃で30分間保持した。その後、被処理部材を急冷した。
(Processing condition 4)
As shown in FIG. 6, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the pressure of the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. (primary heating temperature) for 80 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 1.0%. The supply of acetylene gas was stopped while depressurizing the vacuum carburizing furnace. When the amount of acetylene gas is sufficiently low, the vacuum carburizing furnace is depressurized and ammonia gas (nitriding gas) is supplied to the inside of the vacuum carburizing furnace. After the internal temperature was lowered to 870 ° C. (secondary heating temperature) at 1.8 ° C./min, the internal temperature of the vacuum carburizing furnace was maintained at 870 ° C. for 30 minutes. Thereafter, the member to be treated was quenched.

(処理条件5)
図7に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃(一次加熱温度)で80分間保持した。被処理部材の最表面の炭素濃度が1.0%になるように処理した。真空浸炭炉を減圧しつつアセチレンガスの供給を停止した。アセチレンガスの量が十分少なくなったときに、真空浸炭炉の減圧を解除しアンモニアガス(浸窒性ガス)を真空浸炭炉の内部に供給し、大気圧下に保持しながら、真空浸炭炉の内部温度を2.4℃/分で850℃(二次加熱温度)まで降温した後、真空浸炭炉の内部温度を850℃で60分間保持した。その後、被処理部材を急冷した。
(Processing condition 5)
As shown in FIG. 7, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the pressure of the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. (primary heating temperature) for 80 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 1.0%. The supply of acetylene gas was stopped while depressurizing the vacuum carburizing furnace. When the amount of acetylene gas is sufficiently low, the vacuum carburizing furnace is depressurized and ammonia gas (nitriding gas) is supplied to the inside of the vacuum carburizing furnace. After lowering the internal temperature to 850 ° C. (secondary heating temperature) at 2.4 ° C./min, the internal temperature of the vacuum carburizing furnace was maintained at 850 ° C. for 60 minutes. Thereafter, the member to be treated was quenched.

(処理条件6)
図8に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃(一次加熱温度)で80分間保持した。被処理部材の最表面の炭素濃度が1.0%になるように処理した。真空浸炭炉を減圧しつつアセチレンガスの供給を停止した。アセチレンガスの量が十分少なくなったときに、真空浸炭炉の減圧を解除しアンモニアガス(浸窒性ガス)を真空浸炭炉の内部に供給し、大気圧下に保持しながら、真空浸炭炉の内部温度を2.0℃/分で870℃(二次加熱温度)まで降温した後、真空浸炭炉の内部温度を870℃で30分間保持した。その後、被処理部材を急冷した。
(Processing condition 6)
As shown in FIG. 8, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the pressure of the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. (primary heating temperature) for 80 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 1.0%. The supply of acetylene gas was stopped while depressurizing the vacuum carburizing furnace. When the amount of acetylene gas is sufficiently low, the vacuum carburizing furnace is depressurized and ammonia gas (nitriding gas) is supplied to the inside of the vacuum carburizing furnace. After the internal temperature was lowered to 870 ° C. (secondary heating temperature) at 2.0 ° C./min, the internal temperature of the vacuum carburizing furnace was maintained at 870 ° C. for 30 minutes. Thereafter, the member to be treated was quenched.

(処理条件7)
図9に示すように、真空浸炭炉を減圧し、真空浸炭炉を減圧状態で930℃(一次加熱温度)まで昇温した。真空浸炭炉を減圧しつつアセチレンガス(浸炭性ガス)を真空浸炭炉の内部に供給し、真空浸炭炉の内部温度を930℃(一次加熱温度)で80分間保持した。被処理部材の最表面の炭素濃度が1.0%になるように処理した。真空浸炭炉を減圧しつつアセチレンガスの供給を停止した。アセチレンガスの量が十分少なくなったときに、真空浸炭炉の減圧を解除しアンモニアガス(浸窒性ガス)を真空浸炭炉の内部に供給し、大気圧下に保持しながら、真空浸炭炉の内部温度を2.7℃/分で850℃(二次加熱温度)まで降温した後、真空浸炭炉の内部温度を850℃で30分間保持した。その後、被処理部材を急冷した。
(Processing condition 7)
As shown in FIG. 9, the vacuum carburizing furnace was depressurized, and the vacuum carburizing furnace was heated to 930 ° C. (primary heating temperature) in a reduced pressure state. While reducing the pressure of the vacuum carburizing furnace, acetylene gas (carburizing gas) was supplied to the inside of the vacuum carburizing furnace, and the internal temperature of the vacuum carburizing furnace was maintained at 930 ° C. (primary heating temperature) for 80 minutes. It processed so that the carbon concentration of the outermost surface of a to-be-processed member might be 1.0%. The supply of acetylene gas was stopped while depressurizing the vacuum carburizing furnace. When the amount of acetylene gas is sufficiently low, the vacuum carburizing furnace is depressurized and ammonia gas (nitriding gas) is supplied to the inside of the vacuum carburizing furnace. After the internal temperature was lowered to 850 ° C. (secondary heating temperature) at 2.7 ° C./min, the internal temperature of the vacuum carburizing furnace was maintained at 850 ° C. for 30 minutes. Thereafter, the member to be treated was quenched.

本実施例では、真空浸炭炉の降温を終了した時点(処理条件3)、あるいは、真空浸炭炉の降温を開始した時点(処理条件4〜7)で、アンモニアガスを供給する。しかし、アンモニアガスに加えて窒素ガスを供給しても良い。この場合、窒素ガスは、主として真空浸炭炉の内部圧力を高めるために用いられる。アンモニアガスおよび窒素ガスを供給することにより、アンモニアガスを単独で供給する場合に較べて真空浸炭炉の内部圧力を速やかに高めることができる。その結果、アンモニアガスが窒素と水素とに熱分解するのを抑制することができる。アンモニアガスおよび窒素ガスの割合は、被処理部材の材質や真空浸炭炉の内部温度等の諸条件に応じて適宜決定される。   In this embodiment, ammonia gas is supplied when the temperature lowering of the vacuum carburizing furnace is completed (processing condition 3) or when the temperature lowering of the vacuum carburizing furnace is started (processing conditions 4 to 7). However, nitrogen gas may be supplied in addition to ammonia gas. In this case, nitrogen gas is mainly used to increase the internal pressure of the vacuum carburizing furnace. By supplying ammonia gas and nitrogen gas, the internal pressure of the vacuum carburizing furnace can be quickly increased as compared with the case of supplying ammonia gas alone. As a result, it is possible to suppress the thermal decomposition of ammonia gas into nitrogen and hydrogen. The ratio of ammonia gas and nitrogen gas is appropriately determined according to various conditions such as the material of the member to be processed and the internal temperature of the vacuum carburizing furnace.

本実施形態では、浸炭性ガスとしてアセチレンやエチレン等の不飽和炭化水素系ガスを用いた。しかし、プロパンなどの飽和炭化水素系ガスであっても良く、それら不飽和炭化水素系ガスおよび飽和炭化水素系ガスの混合物であっても良い。   In the present embodiment, an unsaturated hydrocarbon gas such as acetylene or ethylene is used as the carburizing gas. However, it may be a saturated hydrocarbon gas such as propane, or a mixture of the unsaturated hydrocarbon gas and the saturated hydrocarbon gas.

上記処理条件1〜7で浸炭浸窒処理した鋼材A〜Cについて、各種の試験・測定を行った。SEM観察を行ない、析出物の有無および析出物の大きさを調べた。EPMAにより鋼材A〜Cの表面炭素濃度および表面窒素濃度を測定した。ビッカース硬さ計により鋼材A〜Cの表面硬さを測定した。面圧3.3GPa、回転数1400rpm、すべり率−40%。油温80℃の条件下でローラピッチング試験を行い、ピッチングに至るまでのピッチング寿命(繰返し回数)を測定した。   Various tests and measurements were performed on the steel materials A to C subjected to the carburizing and nitriding treatment under the above processing conditions 1 to 7. SEM observation was performed to examine the presence or absence of precipitates and the size of the precipitates. The surface carbon concentration and the surface nitrogen concentration of the steel materials A to C were measured by EPMA. The surface hardness of the steel materials A to C was measured with a Vickers hardness meter. The contact pressure is 3.3 GPa, the rotation speed is 1400 rpm, and the slip ratio is -40%. A roller pitching test was performed under the condition of an oil temperature of 80 ° C., and the pitching life (number of repetitions) until the pitching was measured.

〔実験結果〕
以上の結果を表2に示す。
〔Experimental result〕
The results are shown in Table 2.

Figure 2010222636
Figure 2010222636

(表面炭素濃度と析出物との関係)
比較例1,2の表面炭素濃度は、夫々、0.80および0.78質量%であり、炭化物は析出しなかった。一方、比較例3〜5、および、実施例1〜3の表面炭素濃度は、0.93〜1.08質量%の範囲内であり、炭化物が析出した。これにより、被処理部材の浸炭層の表面炭素濃度が、0.90質量%以上であれば、炭化物が析出することがわかる。
(Relationship between surface carbon concentration and precipitates)
The surface carbon concentrations of Comparative Examples 1 and 2 were 0.80 and 0.78% by mass, respectively, and no carbide was precipitated. On the other hand, the surface carbon density | concentration of Comparative Examples 3-5 and Examples 1-3 was in the range of 0.93-1.08 mass%, and the carbide | carbonized_material precipitated. Thereby, when the surface carbon concentration of the carburized layer of the member to be treated is 0.90% by mass or more, it can be seen that the carbide is precipitated.

(表面窒素濃度と析出物との関係)
比較例3〜5、および、実施例1〜3の表面窒素濃度は、0.39〜1.00質量%の範囲内であり、粗大な炭化物は析出しなかった。浸炭層の表面窒素濃度が低いと、窒素が被処理部材の結晶中に存在する侵入可能なサイトを十分に占めることができない。このため、炭素がそのサイトを介して拡散して、粗大な炭化物が析出する。しかしながら、被処理部材の浸炭層の表面窒素濃度が0.39質量%以上であれば、粗大な炭化物が析出しない。
(Relationship between surface nitrogen concentration and precipitates)
The surface nitrogen concentrations of Comparative Examples 3 to 5 and Examples 1 to 3 were in the range of 0.39 to 1.00% by mass, and coarse carbides did not precipitate. If the surface nitrogen concentration of the carburized layer is low, nitrogen cannot sufficiently occupy the invading sites present in the crystal of the member to be treated. For this reason, carbon diffuses through the site and a coarse carbide precipitates. However, if the surface nitrogen concentration of the carburized layer of the member to be treated is 0.39% by mass or more, coarse carbides do not precipitate.

(Cr濃度と析出物との関係)
比較例3〜6および実施例1〜5のCr濃度は、0.50〜1.00質量%の範囲内であり、粗大な炭化物は析出しなかった。被処理部材のCr濃度が高いと、浸窒処理中にアンモニアガス中の窒素が被処理部材のCrと反応してCrNを作り易い。このため、アンモニアガス中の窒素が被処理部材に侵入し難くなる。このように、被処理部材のCr濃度が1.00質量%以下であれば、アンモニアガス中の窒素が被処理部材に侵入し易く、粗大な炭化物の析出を抑制することができる。
(Relationship between Cr concentration and precipitates)
Cr density | concentration of Comparative Examples 3-6 and Examples 1-5 was in the range of 0.50-1.00 mass%, and the coarse carbide did not precipitate. When the Cr concentration of the member to be treated is high, nitrogen in the ammonia gas reacts with Cr of the member to be treated during the nitriding treatment, and it is easy to make CrN. For this reason, it becomes difficult for nitrogen in ammonia gas to enter the member to be treated. Thus, if the Cr concentration of the member to be treated is 1.00% by mass or less, nitrogen in the ammonia gas can easily enter the member to be treated, and precipitation of coarse carbides can be suppressed.

(降温速度とピッチング寿命との関係)
実施例2,1,4,5における、一次加熱温度T1、二次加熱温度T2、二次加熱温度T2で保持する保持時間、一次加熱温度T1から二次加熱温度T2に降温するときの降温時間および降温速度、析出物の有無、ピッチング寿命を表3に示す。
(Relationship between cooling rate and pitching life)
In Examples 2, 1, 4, and 5, the primary heating temperature T1, the secondary heating temperature T2, the holding time held at the secondary heating temperature T2, and the temperature lowering time when the temperature is lowered from the primary heating temperature T1 to the secondary heating temperature T2. Table 3 shows the cooling rate, the presence or absence of precipitates, and the pitching life.

Figure 2010222636
実施例2,1,4,5のいずれにおいても炭化物が析出した。降温速度は、1.8〜2.7℃/分の範囲内である。また、実施例2と実施例1とを比較すると、降温速度が小さいほどピッチング寿命が長いことがわかる。これにより、降温速度が、上記範囲の上限値である2.7℃/分以下であれば、疲労強度が向上する。
Figure 2010222636
In all of Examples 2, 1, 4 and 5, carbides were precipitated. The cooling rate is in the range of 1.8 to 2.7 ° C./min. Moreover, when Example 2 and Example 1 are compared, it turns out that a pitching lifetime is long, so that a temperature fall rate is small. Thereby, if the temperature decreasing rate is 2.7 ° C./min or less which is the upper limit of the above range, the fatigue strength is improved.

被処理部材の硬さは、実施例2と実施例1とで変わらない。しかし、被処理部材のピッチング寿命は、実施例2のものが実施例1のものの約2倍であった。これは、実施例2の降温速度が実施例1の降温速度よりも小さく、より多くの窒素が被処理部材に侵入して、被処理部材の軟化抵抗性が向上したためと考えられる。さらに、被処理部材の炭化物の量は、実施例2のほうが実施例1よりも多いことも確認されており、そのことが、ピッチング寿命の更なる延長に寄与しているものと考えられる。   The hardness of the member to be processed does not change between the second embodiment and the first embodiment. However, the pitching life of the member to be treated was about twice that of Example 1 compared to that of Example 1. This is presumably because the temperature decrease rate of Example 2 was smaller than the temperature decrease rate of Example 1, and more nitrogen entered the member to be processed, and the softening resistance of the member to be processed was improved. Furthermore, it has also been confirmed that the amount of carbide in the member to be treated is larger in Example 2 than in Example 1, which is considered to contribute to further extending the pitching life.

(一次加熱温度および二次加熱温度)
浸炭工程で被処理部材がγ相を維持できるように、一次加熱温度を900℃〜1050℃の範囲内にしている。また、浸窒工程で微細な炭化物を析出させるためには、X3点をAcm線の直下に位置させる必要がある。このため、二次加熱温度を800℃〜880℃の範囲内にしている。
(Primary heating temperature and secondary heating temperature)
The primary heating temperature is in the range of 900 ° C. to 1050 ° C. so that the member to be treated can maintain the γ phase in the carburizing process. Further, in order to deposit fine carbides in the nitriding step, it is necessary to position the point X3 directly below the A cm line. For this reason, the secondary heating temperature is set within a range of 800 ° C to 880 ° C.

(炭化物の粒径)
実施例1の被処理部材についてSEM観察を行なった結果、(Fe,Cr)3Cを主たる成分とする0.2μm〜0.5μm程度の微細な炭化物が多数確認された。
(Carbide particle size)
Workpiece member result of performing SEM observation for the Example 1, (Fe, Cr) 3 C fine carbides of about 0.2μm~0.5μm whose main component was confirmed number.

本発明は、各種被処理部材を浸炭浸窒処理するのに適用可能である。   The present invention can be applied to carburizing and nitriding various members to be processed.

T1 一次加熱温度
T2 二次加熱温度
T1 Primary heating temperature T2 Secondary heating temperature

Claims (6)

被処理部材に対し、一次加熱温度で減圧しつつ浸炭性ガスを供給する真空浸炭処理を行った後に、その浸炭性ガスを浸窒性ガスに置換しつつ二次加熱温度に降温し、その二次加熱温度に保持する浸窒処理を行う鋼材の表面処理方法。   After subjecting the workpiece to vacuum carburizing to supply carburizing gas while reducing the pressure at the primary heating temperature, the carburizing gas is replaced with nitriding gas and the temperature is lowered to the secondary heating temperature. A method for surface treatment of a steel material that performs a nitriding treatment that is maintained at a next heating temperature. 前記被処理部材が鉄を主に含む金属であり、前記真空浸炭処理および前記浸窒処理後の前記被処理部材の表面炭素濃度を0.9質量%以上に設定する請求項1に記載の鋼材の表面処理方法。   The steel member according to claim 1, wherein the member to be treated is a metal mainly containing iron, and the surface carbon concentration of the member to be treated after the vacuum carburizing treatment and the nitriding treatment is set to 0.9 mass% or more. Surface treatment method. 前記真空浸炭処理および前記浸窒処理後の前記被処理部材の表面窒素濃度を0.39質量%以上に設定する請求項1に記載の鋼材の表面処理方法。   The steel material surface treatment method according to claim 1, wherein a surface nitrogen concentration of the member to be treated after the vacuum carburizing treatment and the nitriding treatment is set to 0.39 mass% or more. 前記被処理部材のCrを1.00質量%以下に設定する請求項1に記載の鋼材の表面処理方法。   The steel material surface treatment method according to claim 1, wherein Cr of the member to be treated is set to 1.00 mass% or less. 前記一次加熱温度から前記二次加熱温度に降温する降温速度を2.7℃/分以下に設定する請求項1〜4のいずれか1項に記載の鋼材の表面処理方法。   The method for surface treatment of a steel material according to any one of claims 1 to 4, wherein a temperature lowering rate at which the temperature is lowered from the primary heating temperature to the secondary heating temperature is set to 2.7 ° C / min or less. 前記一次加熱温度を900℃〜1050℃の範囲とし、前記二次加熱温度を800℃〜880℃の範囲とする請求項1〜5のいずれか1項に記載の鋼材の表面処理方法。   The steel material surface treatment method according to any one of claims 1 to 5, wherein the primary heating temperature is in a range of 900 ° C to 1050 ° C, and the secondary heating temperature is in a range of 800 ° C to 880 ° C.
JP2009070838A 2009-03-23 2009-03-23 Surface treatment method of steel product Pending JP2010222636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070838A JP2010222636A (en) 2009-03-23 2009-03-23 Surface treatment method of steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070838A JP2010222636A (en) 2009-03-23 2009-03-23 Surface treatment method of steel product

Publications (1)

Publication Number Publication Date
JP2010222636A true JP2010222636A (en) 2010-10-07

Family

ID=43040143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070838A Pending JP2010222636A (en) 2009-03-23 2009-03-23 Surface treatment method of steel product

Country Status (1)

Country Link
JP (1) JP2010222636A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part
JP2018012892A (en) * 2017-08-18 2018-01-25 愛知製鋼株式会社 Vacuum carbonitridation method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910124A (en) * 1972-05-30 1974-01-29
JPH08174340A (en) * 1994-12-27 1996-07-09 Nissan Motor Co Ltd Part for machine structure having excellent surface fatigue strength and manufacture thereof
JPH11158601A (en) * 1997-12-01 1999-06-15 Nippon Seiko Kk Production of rolling member
JP2000018369A (en) * 1998-06-29 2000-01-18 Nissan Motor Co Ltd High strength gear and its manufacture
US20020166607A1 (en) * 2001-04-04 2002-11-14 Herwig Altena Process and device for low-pressure carbonitriding of steel parts
WO2003050321A1 (en) * 2001-12-13 2003-06-19 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
JP2006028541A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure
JP2007262505A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Heat treatment method of steel member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910124A (en) * 1972-05-30 1974-01-29
JPH08174340A (en) * 1994-12-27 1996-07-09 Nissan Motor Co Ltd Part for machine structure having excellent surface fatigue strength and manufacture thereof
JPH11158601A (en) * 1997-12-01 1999-06-15 Nippon Seiko Kk Production of rolling member
JP2000018369A (en) * 1998-06-29 2000-01-18 Nissan Motor Co Ltd High strength gear and its manufacture
US20020166607A1 (en) * 2001-04-04 2002-11-14 Herwig Altena Process and device for low-pressure carbonitriding of steel parts
WO2003050321A1 (en) * 2001-12-13 2003-06-19 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
JP2006028541A (en) * 2004-07-12 2006-02-02 Nissan Motor Co Ltd Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure
JP2007262505A (en) * 2006-03-29 2007-10-11 Aisin Seiki Co Ltd Heat treatment method of steel member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212416B2 (en) 2009-08-07 2015-12-15 Swagelok Company Low temperature carburization under soft vacuum
US10156006B2 (en) 2009-08-07 2018-12-18 Swagelok Company Low temperature carburization under soft vacuum
US10934611B2 (en) 2009-08-07 2021-03-02 Swagelok Company Low temperature carburization under soft vacuum
US9617632B2 (en) 2012-01-20 2017-04-11 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US10246766B2 (en) 2012-01-20 2019-04-02 Swagelok Company Concurrent flow of activating gas in low temperature carburization
US11035032B2 (en) 2012-01-20 2021-06-15 Swagelok Company Concurrent flow of activating gas in low temperature carburization
JP2015010250A (en) * 2013-06-27 2015-01-19 愛知製鋼株式会社 Vacuum carbonitriding method
JP2017075359A (en) * 2015-10-14 2017-04-20 大同特殊鋼株式会社 Manufacturing method of vacuum carbonitrided part
JP2018012892A (en) * 2017-08-18 2018-01-25 愛知製鋼株式会社 Vacuum carbonitridation method

Similar Documents

Publication Publication Date Title
JP3894635B2 (en) Carburized member, manufacturing method thereof, and carburizing system
RU2518840C2 (en) Case-hardened steel element and method of its production
JP3909902B2 (en) Steel parts for high surface pressure resistance and method for producing the same
US20100126632A1 (en) Manufacturing method for high-concentration carburized steel
JP3387427B2 (en) Heat treatment method for steel
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
JP5241455B2 (en) Carbonitriding member and method for producing carbonitriding member
KR100898679B1 (en) High-concentration carburized/low-strain quenched member and process for producing the same
JP2010285689A (en) Carburized steel component excellent in low-cycle bending fatigue strength
JP2007046088A (en) Nitrided quenched part, and method for producing the same
JP4655528B2 (en) Manufacturing method of high-strength machine structure parts and high-strength machine structure parts
JP2010222636A (en) Surface treatment method of steel product
JP4876668B2 (en) Heat treatment method for steel members
JP2005163173A (en) Gear part and method of producing thereof
CN113862610A (en) Pretreatment method for improving corrosion resistance of carburized layer
KR101719560B1 (en) Heat treatment method for surface hardened alloy steel
JP5632454B2 (en) Spring steel and steel surface treatment method
JP2007238969A (en) Nitriding method
JP5599211B2 (en) Manufacturing method of bearing parts and bearing parts
JP7364895B2 (en) Steel parts and their manufacturing method
JP2008163414A (en) Rolling member and manufacturing method for the same
JP3436459B2 (en) Heat treatment method for steel
JP5408465B2 (en) Method of carburizing steel
JP2004107709A (en) Rolling member and manufacturing method thereof
KR20000027040A (en) Method for heat treatment of surface of steel to reduce heating transformation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140828