JP2014118484A - Thermal conductive silicone composition and thermal conductive member - Google Patents

Thermal conductive silicone composition and thermal conductive member Download PDF

Info

Publication number
JP2014118484A
JP2014118484A JP2012274714A JP2012274714A JP2014118484A JP 2014118484 A JP2014118484 A JP 2014118484A JP 2012274714 A JP2012274714 A JP 2012274714A JP 2012274714 A JP2012274714 A JP 2012274714A JP 2014118484 A JP2014118484 A JP 2014118484A
Authority
JP
Japan
Prior art keywords
component
conductive silicone
thermally conductive
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012274714A
Other languages
Japanese (ja)
Other versions
JP6339761B2 (en
Inventor
Tomoko Kato
智子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Co Ltd filed Critical Dow Corning Toray Co Ltd
Priority to JP2012274714A priority Critical patent/JP6339761B2/en
Priority to PCT/JP2013/084177 priority patent/WO2014098204A1/en
Priority to TW102146748A priority patent/TW201428057A/en
Publication of JP2014118484A publication Critical patent/JP2014118484A/en
Application granted granted Critical
Publication of JP6339761B2 publication Critical patent/JP6339761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductive silicone composition providing a cured article excellent in adhesive property to a base material and having no crack when used as a thermal conductive member, especially a potting agent of electronic materials, and to provide a thermal conductive member made by curing the same.SOLUTION: There is provided a thermal conductive silicone rubber composition having a mass change by thermogravimetric analysis (TGA) before and after being maintained for 30 minutes at 250°C of less than 4.0 mass% and containing a thermal conductive filler of aluminum hydroxide or magnesium oxide. There is also provided a thermal conductive member made by curing the same.

Description

本発明は、熱伝導性シリコーン組成物及びそれを硬化させた熱伝導性部材に関する。   The present invention relates to a thermally conductive silicone composition and a thermally conductive member obtained by curing the composition.

近年、トランジスター、IC、及びメモリー素子等の電子部品を搭載したプリント回路基板やハイブリッドICの高密度・高集積化にともなって、これらを効率よく放熱するために各種の熱伝導性シリコーンゴム組成物が使用されている。このような熱伝導性シリコーンゴム組成物としては、ビニル基含有オルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、アルミナ、石英粉末、マグネシア、窒化ホウ素、及び炭化ケイ素から選択される熱伝導性充填剤、アミノシラン、エポキシシラン、及びアルキルチタネートから選択される接着性付与剤、並びに白金系触媒からなる熱伝導性シリコーンゴム組成物(特開昭61−157569号公報)、一分子中に脂肪族不飽和基を少なくとも0.1モル%含有するオルガノポリシロキサン、一分子中にケイ素原子に結合した水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、平均粒子径が10〜50μmである球状アルミナ微粉末と平均粒子径が10μm未満である球状又は非球状のアルミナ微粉末、及び白金又は白金系化合物からなる熱伝導性シリコーンゴム組成物(特開昭63−251466号公報)、アルケニル基含有オルガノポリシロキサン、オルガノハイドロジェンポリシロキサン、平均粒子径が0.1〜5μmである無定形アルミナ微粉末と平均粒子径が5〜50μmである球状アルミナ微粉末、及び白金系触媒からなる熱伝導性シリコーンゴム組成物(特開平02−041362号公報)、一分子中にアルケニル基を平均して0.5個以上含んでいるアルケニル基含有オルガノポリシロキサン、一分子中にケイ素原子に結合した水素原子を少なくとも2個含んでなるオルガノハイドロジェンポリシロキサン、平均粒子径が50μm以下であり、長短径比が1.0〜1.4である高純度のアルミナ微粉末、及び白金系触媒からなる熱伝導性シリコーンゴム組成物(特開平05−105814号公報)が提案されている。   In recent years, various thermal conductive silicone rubber compositions have been developed to efficiently dissipate heat as printed circuit boards and hybrid ICs equipped with electronic components such as transistors, ICs, and memory devices have become dense and highly integrated. Is used. Examples of such a heat conductive silicone rubber composition include vinyl group-containing organopolysiloxane, organohydrogenpolysiloxane, alumina, quartz powder, magnesia, boron nitride, and silicon carbide. , An epoxy silane, and an alkyl titanate, and a thermally conductive silicone rubber composition comprising a platinum-based catalyst (JP-A-61-157569), an aliphatic unsaturated group in one molecule Organopolysiloxane containing at least 0.1 mol%, organohydrogenpolysiloxane having at least two hydrogen atoms bonded to silicon atoms in one molecule, spherical alumina fine powder having an average particle size of 10 to 50 μm and average particles Spherical or non-spherical alumina fine powder having a diameter of less than 10 μm And a thermally conductive silicone rubber composition (Japanese Unexamined Patent Publication No. 63-251466) comprising platinum or a platinum-based compound, an alkenyl group-containing organopolysiloxane, an organohydrogenpolysiloxane, having an average particle size of 0.1 to 5 μm A thermally conductive silicone rubber composition (Japanese Patent Laid-Open No. 02-041362) comprising a certain amorphous alumina fine powder, a spherical alumina fine powder having an average particle diameter of 5 to 50 μm, and a platinum-based catalyst, an alkenyl group in one molecule Alkenyl group-containing organopolysiloxane containing 0.5 or more on average, organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms in one molecule, and having an average particle size of 50 μm or less And a high-purity alumina fine powder having a major axis to minor axis ratio of 1.0 to 1.4, and a platinum-based catalyst. Thermally conductive silicone rubber composition (Japanese Unexamined Patent Publication No. 05-105814) have been proposed.

しかし、これらの熱伝導性シリコーンゴム組成物は、硬化途上で該組成物から揮発する低沸分や該組成物からブリードアウトするオイル分により、周囲の基材を汚染するという問題があった。また、熱伝導性部材として硬化して用いた場合に基材との密着性が悪いという問題があった。更に、硬化物にクラックが発生し、硬化物が破壊してしまうという問題があった。   However, these thermally conductive silicone rubber compositions have a problem that the surrounding base material is contaminated by a low boiling point component that volatilizes from the composition during curing or an oil component that bleeds out from the composition. In addition, when used as a thermally conductive member, there is a problem of poor adhesion to the substrate. Furthermore, there was a problem that cracks occurred in the cured product and the cured product was destroyed.

これに対し、一分子中に少なくとも2個のケイ素原子結合アルケニル基を有し、ケイ素原子結合の水酸基及びアルコキシ基を有しない、4量体〜20量体の環状シロキサンの含有量が質量単位が1,000ppm以下であるオルガノポリシロキサン、一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合のアルケニル基、水酸基及びアルコキシ基を有しないオルガノポリシロキサン、接着性付与剤、熱伝導性充填剤、及びヒドロシリル化反応用触媒からなる熱伝導性シリコーン組成物(特開2011−153252号公報)が提案されている。   On the other hand, the content of the cyclic siloxane of a tetramer to a 20-mer having at least two silicon-bonded alkenyl groups in one molecule and having no silicon-bonded hydroxyl group and alkoxy group is a mass unit. Organopolysiloxane having 1,000 ppm or less, organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, and having no silicon-bonded alkenyl group, hydroxyl group and alkoxy group, an adhesion-imparting agent, A thermally conductive silicone composition (Japanese Patent Laid-Open No. 2011-153252) comprising a thermally conductive filler and a hydrosilylation reaction catalyst has been proposed.

特開昭61−157569号公報JP-A 61-157469 特開昭63−251466号公報JP-A-63-251466 特開平02−041362号公報Japanese Patent Laid-Open No. 02-041362 特開平05−105814号公報JP 05-105814 A 特開2011−153252号公報JP 2011-153252 A

しかし、この熱伝導性シリコーン組成物においても、熱伝導性部材として硬化して用いた場合に基材との密着性が悪く、硬化物にクラックが発生してしまい、硬化物が破壊してしまうという問題があった。   However, even in this thermally conductive silicone composition, when cured and used as a thermally conductive member, the adhesion to the substrate is poor, cracks occur in the cured product, and the cured product is destroyed. There was a problem.

本発明は上記課題を解決すべくなされたものであり、熱伝導性部材、特に電子材料のポッティング剤等として用いた場合に、基材への密着性に優れ、クラックを有しない硬化物を与える熱伝導性シリコーン組成物、及びそれを硬化させた熱伝導性部材を提供することにある。   The present invention has been made to solve the above-mentioned problems, and when used as a heat conductive member, particularly as a potting agent for electronic materials, provides a cured product having excellent adhesion to a substrate and having no cracks. It is providing the heat conductive silicone composition and the heat conductive member which hardened it.

本発明者らは上記の課題について鋭意検討した結果、本発明に到達した。すなわち、本発明の目的は、(A)250℃で30分間保持した前後の熱重量分析(TGA)による質量変化が4.0質量%未満である、水酸化アルミニウム又は酸化マグネシウムの熱伝導性充填剤を含む、熱伝導性シリコーンゴム組成物によって達成される。   As a result of intensive studies on the above problems, the present inventors have reached the present invention. That is, the object of the present invention is (A) Thermally conductive filling of aluminum hydroxide or magnesium oxide whose mass change by thermogravimetric analysis (TGA) before and after holding at 250 ° C. for 30 minutes is less than 4.0% by mass This is achieved by a thermally conductive silicone rubber composition containing an agent.

本発明の熱伝導性シリコーンゴム組成物は、
(B)一分子中に少なくとも2個のケイ素原子結合アルケニル基を有するオルガノポリシロキサン、
(C)一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合アルケニル基、水酸基及びアルコキシを有しないオルガノポリシロキサン、及び
(D)ヒドロシリル化反応用触媒
を更に含むことが好ましい。
The thermally conductive silicone rubber composition of the present invention is
(B) an organopolysiloxane having at least two silicon-bonded alkenyl groups in one molecule;
(C) an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule and having no silicon-bonded alkenyl group, hydroxyl group and alkoxy, and (D) a catalyst for hydrosilylation reaction. preferable.

前記(B)成分は、分子鎖両末端にケイ素原子結合アルケニル基を有するオルガノポリシロキサンであることが好ましい。   The component (B) is preferably an organopolysiloxane having silicon-bonded alkenyl groups at both ends of the molecular chain.

前記(A)成分の含有量は、(B)成分100質量部に対して100〜2,000質量部であることが好ましい。   The content of the component (A) is preferably 100 to 2,000 parts by mass with respect to 100 parts by mass of the component (B).

前記(C)成分の含有量は、前記(B)成分中のアルケニル基1モルに対してケイ素原子結合水素原子が0.5〜10モルとなる量であることが好ましい。   The content of the component (C) is preferably such that silicon-bonded hydrogen atoms are 0.5 to 10 moles per mole of the alkenyl group in the component (B).

本発明の熱伝導性シリコーン組成物は、(E)接着付与剤を更に含むことができる。   The heat conductive silicone composition of this invention can further contain (E) adhesion imparting agent.

前記(C)成分と前記(E)成分との合計量は、前記(B)成分と前記(C)成分と前記(E)成分との合計量に対して、0.5〜10質量%であることが好ましい。   The total amount of the component (C) and the component (E) is 0.5 to 10% by mass with respect to the total amount of the component (B), the component (C), and the component (E). Preferably there is.

本発明の熱伝導性シリコーン組成物は、(F)(A)成分以外の熱伝導性充填剤を更に含むことができる。   The heat conductive silicone composition of this invention can further contain heat conductive fillers other than (F) (A) component.

前記(A)成分と(F)成分のいずれか1つの成分、又は両方の成分は、ケイ素表面処理剤によって表面処理されていることが好ましい。   It is preferable that any one component of the said (A) component and (F) component, or both components are surface-treated with the silicon surface treating agent.

また、本発明は、前記熱伝導性シリコーン組成物を硬化させた熱伝導性部材にも関する。   The present invention also relates to a heat conductive member obtained by curing the heat conductive silicone composition.

本発明の熱伝導性シリコーン組成物は、熱伝導性部材、特に電子材料のポッティング剤等として用いた場合に、基材への密着性に優れ、クラックを有しない硬化物を得ることができるという特徴がある。また、本発明の熱伝導性シリコーン組成物を用いて製造した放熱材料は、熱伝導性に優れ、不良品が少ないという特徴を有する。   When the heat conductive silicone composition of the present invention is used as a heat conductive member, particularly as a potting agent for electronic materials, it is possible to obtain a cured product having excellent adhesion to a substrate and having no cracks. There are features. Moreover, the heat dissipation material manufactured using the heat conductive silicone composition of this invention has the characteristics that it is excellent in heat conductivity and there are few inferior goods.

(A)成分は本組成物に熱伝導性を付与するための熱伝導性充填剤であり、250℃で30分間保持した前後の熱重量分析(TGA)による質量変化が4.0質量%未満である、水酸化アルミニウム又は酸化マグネシウムである。(A)成分は、水酸化アルミニウムであることが好ましい。一方、質量変化が4.0質量%以上であるものを用いた場合、得られる熱伝導性シリコーンゴムの高温安定性が悪化し、基材への密着不良や、クラック等の硬化物の破壊が発生し、得られる放熱材料の品質不良品につながるため、好ましくない。   Component (A) is a thermally conductive filler for imparting thermal conductivity to the composition, and its mass change by thermogravimetric analysis (TGA) before and after being held at 250 ° C. for 30 minutes is less than 4.0% by mass. Is aluminum hydroxide or magnesium oxide. The component (A) is preferably aluminum hydroxide. On the other hand, when a material having a mass change of 4.0% by mass or more is used, the high temperature stability of the obtained heat conductive silicone rubber is deteriorated, resulting in poor adhesion to the substrate and destruction of a cured product such as a crack. This is not preferable because it is generated and leads to defective quality of the obtained heat dissipation material.

(A)成分の形状は特に限定されないが、例えば、球状、針状、円盤状、棒状、及び不定形状が挙げられ、好ましくは、球状又は不定形状である。また、(A)成分の平均粒子径は限定されないが、顕微鏡観察又はレーザー回折散乱式粒度分布測定装置を用いて測定して、好ましくは、0.01〜100μmの範囲内であり、より好ましくは、0.01〜50μmの範囲内、特に好ましくは0.5〜25μmの範囲内である。   Although the shape of (A) component is not specifically limited, For example, spherical shape, needle shape, disk shape, rod shape, and indefinite shape are mentioned, Preferably it is spherical shape or indefinite shape. Moreover, although the average particle diameter of (A) component is not limited, Preferably it is in the range of 0.01-100 micrometers, as measured using a microscope observation or a laser diffraction scattering type particle size distribution measuring apparatus, More preferably , In the range of 0.01 to 50 μm, particularly preferably in the range of 0.5 to 25 μm.

また、本組成物において、(A)成分はケイ素系表面処理剤により表面処理されていることが好ましい。このケイ素系表面処理剤としては、例えば、メチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、及びN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン等のアルコキシシラン;メチルトリクロルシラン、ジメチルジクロルシラン、及びトリメチルモノクロルシラン等のクロロシラン;ヘキサメチルジシラザン及びヘキサメチルシクロトリシラザン等のシラザン;並びに分子鎖両末端シラノール基封鎖ジメチルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体オリゴマー、分子鎖両末端シラノール基封鎖メチルビニルシロキサンオリゴマー、及び分子鎖両末端シラノール基封鎖メチルフェニルシロキサンオリゴマー等のシロキサンオリゴマーが挙げられる。   In the present composition, the component (A) is preferably surface-treated with a silicon-based surface treatment agent. Examples of the silicon-based surface treatment agent include methyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-aminopropyltrimethylsilane. Alkoxysilanes such as methoxysilane, 3-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane; chlorosilanes such as methyltrichlorosilane, dimethyldichlorosilane, and trimethylmonochlorosilane; Silazanes such as hexamethyldisilazane and hexamethylcyclotrisilazane; and silanol-blocked dimethylsiloxane oligomers at both ends of the molecular chain, and dimethylsiloxane / methylvinylsilo blocked at both ends of the molecular chain San copolymer oligomer capped at both molecular terminals with silanol groups methylvinylsiloxane oligomer, and siloxane oligomers such capped at both molecular terminals with silanol groups methylphenylsiloxane oligomer and the like.

これらの表面処理方法としては、例えば、(A)成分とケイ素系表面処理剤を直接混合して処理する方法(乾式処理方法)、ケイ素系表面処理剤をトルエン、メタノール、及びヘプタン等の有機溶剤と共に(A)成分と混合して処理する方法(湿式処理方法)、並びに(B)成分とケイ素系表面処理剤との混合物中に(A)成分を配合するか、又は、(B)成分と(A)成分の混合物中にケイ素系表面処理剤を配合して(A)成分の表面を処理する方法(in−situ処理方法)が挙げられる。   As these surface treatment methods, for example, a method of directly mixing (A) component and a silicon-based surface treatment agent (dry treatment method), the silicon-based surface treatment agent is an organic solvent such as toluene, methanol, and heptane. And (A) component in a mixture of component (A) and processing (wet treatment method), and (B) component and silicon-based surface treatment agent, or (B) component and (A) The method (in-situ processing method) which mix | blends a silicon type surface treating agent in the mixture of a component, and processes the surface of (A) component is mentioned.

(A)成分は、市販の水酸化アルミニウム又は酸化マグネシウムであって、本発明に規定する質量変化特性を有するものを選択することで得られる(例えば、住友化学社製 CWL325LV等)ほか、例えば市販の水酸化アルミニウム又は酸化マグネシウムを熱処理することによって得ることができる。熱処理の条件は特に限定されないが、不活性ガス又は真空中、100〜500℃で処理することが好ましく、150℃から300℃で処理することがより好ましい。不活性ガスとしては、窒素、ヘリウム、及びアルゴンが例示される。なお、この不活性ガス中に、水素ガス等の還元性ガスを含んでもよい。熱処理時間も特に限定されるものではないが、例えば、10分〜10時間、好ましくは30分〜5時間の範囲とすることができる。   The component (A) is commercially available aluminum hydroxide or magnesium oxide, which can be obtained by selecting one having the mass change characteristic defined in the present invention (for example, CWL325LV manufactured by Sumitomo Chemical Co., Ltd.). It can be obtained by heat-treating aluminum hydroxide or magnesium oxide. Although the heat treatment conditions are not particularly limited, the treatment is preferably performed at 100 to 500 ° C. in an inert gas or vacuum, and more preferably at 150 to 300 ° C. Nitrogen, helium, and argon are illustrated as an inert gas. The inert gas may contain a reducing gas such as hydrogen gas. The heat treatment time is not particularly limited, but can be, for example, in the range of 10 minutes to 10 hours, preferably 30 minutes to 5 hours.

(A)成分の含有量は(B)成分100質量部に対して100〜2,000質量部の範囲内であり、好ましくは200〜1,600質量部の範囲内である。これは、(A)成分の含有量が上記範囲の下限以上であると、得られるシリコーンゴムの熱伝導性が良好となるからであり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好となるからである。   (A) Content of a component exists in the range of 100-2,000 mass parts with respect to 100 mass parts of (B) component, Preferably it exists in the range of 200-1,600 mass parts. This is because the thermal conductivity of the resulting silicone rubber is good when the content of the component (A) is at least the lower limit of the above range, and on the other hand, the composition obtained when it is below the upper limit of the above range. This is because the handling workability of the object is improved.

(B)成分のオルガノポリシロキサンは本組成物の主剤であり、一分子中に少なくとも2個のケイ素原子結合アルケニル基を有するものである。(B)成分中のケイ素原子結合アルケニル基としては、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、及びヘプテニル基が挙げられ、特に、ビニル基が好ましい。(B)成分中のアルケニル基以外のケイ素原子結合有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、及びヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、及びナフチル基等のアリール基;ベンジル基及びフェネチル基等のアラルキル基;並びにクロロメチル基、3−クロロプロピル基、及び3,3,3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられ、特に、メチル基及びフェニル基が好ましい。このような(B)成分の分子構造は限定されず、例えば、直鎖状、一部分岐を有する直鎖状、及び分岐鎖状が挙げられ、特に、直鎖状が好ましい。   The (B) component organopolysiloxane is the main component of the present composition and has at least two silicon-bonded alkenyl groups in one molecule. Examples of the silicon atom-bonded alkenyl group in component (B) include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group, and a vinyl group is particularly preferable. Examples of silicon-bonded organic groups other than alkenyl groups in component (B) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups; phenyl groups, tolyl Aryl groups such as benzyl, phenethyl and the like; and halogenated alkyls such as chloromethyl, 3-chloropropyl and 3,3,3-trifluoropropyl Group, and methyl group and phenyl group are particularly preferable. The molecular structure of such component (B) is not limited, and examples thereof include a straight chain, a partially branched straight chain, and a branched chain, and a straight chain is particularly preferable.

(B)成分の25℃における粘度は限定されないが、10〜500,000mPa・sの範囲内であることが好ましく、50〜100,000mPa・sの範囲内であることがより好ましい。これは、(B)成分の粘度が上記範囲の下限以上であると、得られるシリコーンゴムの物理的特性が良好となるからであり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が向上するからである。なお、(B)成分の25℃での粘度は、例えば、JIS K7117−1に準拠してB型粘度計を用いて測定することにより求めることができる。   The viscosity of component (B) at 25 ° C. is not limited, but is preferably in the range of 10 to 500,000 mPa · s, more preferably in the range of 50 to 100,000 mPa · s. This is because when the viscosity of the component (B) is not less than the lower limit of the above range, the resulting silicone rubber has good physical properties, and on the other hand, it is not more than the upper limit of the above range. This is because the handling operability of the is improved. In addition, the viscosity at 25 degreeC of (B) component can be calculated | required by measuring using a B-type viscosity meter based on JISK7117-1, for example.

また、(B)成分は4量体〜20量体の環状シロキサンの含有量が質量単位で1,000ppm以下であることが好ましい。これは、(B)成分中の4量体〜20量体の環状シロキサンの含有量が上記範囲の上限以下であると、得られる組成物の硬化途上で、該組成物から揮発する低沸分をより減少することができるからである。このような環状シロキサンとしては、例えば、環状ジメチルシロキサンオリゴマー、環状メチルビニルシロキサンオリゴマー、環状メチルフェニルシロキサンオリゴマー、及び環状ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマーが挙げられる。(B)成分中の4量体〜20量体の環状シロキサンの含有量はガスクロマトグラフィー等の分析により測定可能である。   In addition, the component (B) preferably contains a tetramer to a 20mer cyclic siloxane in a mass unit of 1,000 ppm or less. This is because the content of the tetramer to 20mer cyclic siloxane in the component (B) is not more than the upper limit of the above range, and the low-boiling fraction volatilized from the composition during curing of the resulting composition. It is because it can reduce more. Examples of such cyclic siloxanes include cyclic dimethylsiloxane oligomers, cyclic methylvinylsiloxane oligomers, cyclic methylphenylsiloxane oligomers, and cyclic dimethylsiloxane / methylvinylsiloxane copolymer oligomers. The content of the tetramer to 20mer cyclic siloxane in the component (B) can be measured by analysis such as gas chromatography.

このような(B)成分のオルガノポリシロキサンとしては、例えば、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、式:R SiO1/2で示されるシロキサン単位と式:R SiO1/2で示されるシロキサン単位と式:R SiO2/2で示されるシロキサン単位と少量の式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R SiO1/2で示されるシロキサン単位と式:R SiO2/2で示されるシロキサン単位と少量の式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:RSiO2/2で示されるシロキサン単位と少量の式:RSiO3/2で示されるシロキサン単位若しくは式:RSiO3/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、及び、これらのオルガノポリシロキサンの二種以上の混合物が挙げられる。上式中、Rはアルケニル基以外の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、及びヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、及びナフチル基等のアリール基;ベンジル基及びフェネチル基等のアラルキル基;並びにクロロメチル基、3−クロロプロピル基、及び3,3,3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられる。また、上式中、Rはアルケニル基であり、例えば、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、及びヘプテニル基が挙げられる。 Examples of the organopolysiloxane of component (B) include, for example, a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer with both molecular chain terminals, a trimethylsiloxy group-capped methylvinylpolysiloxane with both molecular chain terminals, Terminal trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends dimethylvinylsiloxy group-blocked dimethylpolysiloxane, molecular chain both ends dimethylvinylsiloxy group-blocked methylvinylpolysiloxane, molecular chain both ends Dimethylvinylsiloxy-blocked dimethylsiloxane / methylvinylsiloxane copolymer, dimethylvinylsiloxy-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer , Wherein: the siloxane units of the formula R 1 3 SiO 1/2: siloxane units represented by the formula R 1 2 R 2 SiO 1/2: siloxane units and a small amount of which is represented by R 1 2 SiO 2/2 Organopolysiloxane copolymer comprising a siloxane unit represented by the formula: SiO 4/2 , a siloxane unit represented by the formula: R 1 2 R 2 SiO 1/2 and a siloxane represented by the formula: R 1 2 SiO 2/2 Unit and a small amount of formula: an organopolysiloxane copolymer comprising a siloxane unit represented by SiO 4/2 , a siloxane unit represented by a formula: R 1 R 2 SiO 2/2 and a small amount of formula: R 1 SiO 3/2 in the siloxane units or of the formula shown organopolysiloxane copolymers composed of siloxane units represented by R 2 SiO 3/2, and these Oruganopori Mixtures of two or more Rokisan thereof. In the above formula, R 1 is a monovalent hydrocarbon group other than an alkenyl group, for example, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, and a heptyl group; a phenyl group, Aryl groups such as tolyl, xylyl, and naphthyl groups; aralkyl groups such as benzyl and phenethyl groups; and halogenations such as chloromethyl, 3-chloropropyl, and 3,3,3-trifluoropropyl An alkyl group is mentioned. In the above formula, R 2 is an alkenyl group, and examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.

(C)成分のオルガノポリシロキサンは本組成物の架橋剤であり、一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合のアルケニル基、水酸基及びアルコキシ基を有しないものである。(C)成分中のケイ素原子結合有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、及びヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、及びナフチル基等のアリール基;ベンジル基及びフェネチル基等のアラルキル基;並びにクロロメチル基、3−クロロプロピル基、及び3,3,3−トリフロロプロピル基等のハロゲン化アルキル基が挙げられ、特に、メチル基及びフェニル基が好ましい。このような(C)成分の分子構造は限定されず、例えば、直鎖状、一部分岐を有する直鎖状、分岐鎖状が挙げられ、特に、直鎖状が好ましい。   Component (C), the organopolysiloxane, is a cross-linking agent of the present composition, and has at least two silicon-bonded hydrogen atoms in one molecule, and does not have silicon-bonded alkenyl groups, hydroxyl groups, and alkoxy groups. It is. Examples of silicon-bonded organic groups in component (C) include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, and heptyl groups; phenyl groups, tolyl groups, and xylyl groups. And aryl groups such as naphthyl group; aralkyl groups such as benzyl group and phenethyl group; and halogenated alkyl groups such as chloromethyl group, 3-chloropropyl group, and 3,3,3-trifluoropropyl group. In particular, a methyl group and a phenyl group are preferable. The molecular structure of such component (C) is not limited, and examples thereof include a straight chain, a partially branched straight chain, and a branched chain, and a straight chain is particularly preferable.

(C)成分の25℃における粘度は限定されないが、1〜500,000mPa・sの範囲内であることが好ましく、5〜100,000mPa・sの範囲内であることがより好ましい。これは、(C)成分の粘度が上記範囲の下限以上であると、得られるシリコーンゴムの物理的特性が良好となるからであり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好となるからである。なお、(C)成分の25℃での粘度は、例えば、JIS K7117−1に準拠してB型粘度計を用いて測定することにより求めることができる。   The viscosity of component (C) at 25 ° C. is not limited, but is preferably in the range of 1 to 500,000 mPa · s, and more preferably in the range of 5 to 100,000 mPa · s. This is because when the viscosity of the component (C) is not less than the lower limit of the above range, the resulting silicone rubber has good physical properties, and on the other hand, it is not more than the upper limit of the above range. This is because the handling workability is improved. In addition, the viscosity at 25 degreeC of (C) component can be calculated | required by measuring using a B-type viscosity meter based on JISK7117-1, for example.

このような(C)成分のオルガノポリシロキサンとしては、例えば、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、式:R SiO1/2で示されるシロキサン単位と式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、式:RHSiO2/2で示されるシロキサン単位と式:RSiO3/2で示されるシロキサン単位若しくは式:HSiO3/2で示されるシロキサン単位からなるオルガノポリシロキサン共重合体、及びこれらのオルガノポリシロキサンの二種以上の混合物が挙げられる。上式中、Rはアルケニル基以外の一価炭化水素基であり、前記と同様の基が例示される。 Examples of the organopolysiloxane of component (C) include, for example, molecular chain both ends trimethylsiloxy group-capped methylhydrogen polysiloxane, molecular chain both ends trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane copolymer, molecule Trimethylsiloxy group-capped dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer, both chain ends dimethylhydrogensiloxy group-capped dimethylpolysiloxane, molecular chain both ends dimethylhydrogensiloxy group-capped dimethylsiloxane / methyl Phenylsiloxane copolymer, dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane with both molecular chains, siloxane unit represented by formula: R 1 3 SiO 1/2 and formula: R 1 2 An organopolysiloxane copolymer comprising a siloxane unit represented by HSiO 1/2 and a siloxane unit represented by formula: SiO 4/2 , a siloxane unit represented by formula: R 1 2 HSiO 1/2 and formula: SiO 4 / An organopolysiloxane copolymer comprising a siloxane unit represented by formula 2 , a siloxane unit represented by formula: R 1 HSiO 2/2 and a siloxane unit represented by formula: R 1 SiO 3/2 or a formula: HSiO 3/2 And organopolysiloxane copolymers composed of the siloxane units shown, and mixtures of two or more of these organopolysiloxanes. In the above formula, R 1 is a monovalent hydrocarbon group other than an alkenyl group, and the same groups as described above are exemplified.

(C)成分の含有量は、(B)成分中のアルケニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.5〜10モルの範囲内となる量であり、好ましくは0.5〜5モルの範囲内となる量であり、さらに好ましくは0.5〜3モルの範囲内となる量である。これは、(C)成分の含有量が上記範囲の下限以上であると、得られる組成物の硬化を十分に行うことができるようになるからであり、一方、上記範囲の上限以下であると、得られるシリコーンゴムの物理的特性の経時的変化を抑制することができるからである。   The content of component (C) is such that the silicon-bonded hydrogen atoms in this component are within the range of 0.5 to 10 mol, preferably 1 mol per alkenyl group in component (B), preferably The amount is in the range of 0.5 to 5 mol, and more preferably in the range of 0.5 to 3 mol. This is because when the content of the component (C) is not less than the lower limit of the above range, the resulting composition can be sufficiently cured, and on the other hand, not more than the upper limit of the above range. This is because the change over time in the physical properties of the resulting silicone rubber can be suppressed.

(D)成分は本組成物の硬化を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、例えば、白金微粉末、白金黒、白金担持シリカ微粉末、白金担持活性炭、塩化白金酸、四塩化白金、塩化白金酸のアルコール溶液、白金とオレフィンとの錯体、白金とジビニルテトラメチルジシロキサン等のアルケニルシロキサンとの錯体等の白金系触媒;テトラキス(トリフェニルホスフィン)パラジウム等のパラジウム系触媒;及びロジウム系触媒、並びに、これらの金属系触媒を含有してなるポリスチレン樹脂、ナイロン樹脂、ポリカーボネート樹脂、及びシリコーン樹脂等の粒子径が10μm未満の熱可塑性樹脂粉末が挙げられる。   Component (D) is a hydrosilylation reaction catalyst for promoting the curing of the composition. Examples of the component (D) include platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, platinum tetrachloride, an alcohol solution of chloroplatinic acid, a complex of platinum and olefin, platinum and Platinum-based catalysts such as complexes with alkenylsiloxanes such as divinyltetramethyldisiloxane; palladium-based catalysts such as tetrakis (triphenylphosphine) palladium; and rhodium-based catalysts, and polystyrene resins containing these metal-based catalysts A thermoplastic resin powder having a particle diameter of less than 10 μm, such as nylon resin, polycarbonate resin, and silicone resin.

(D)成分含有量は触媒量であり、例えば、(B)成分に対して(D)成分中の金属原子が質量単位で0.1〜500ppmの範囲内となる量であることが好ましく、1〜50ppmの範囲内となる量であることがより好ましい。これは、(D)成分の含有量が上記範囲の下限以上であると、得られる組成物の硬化性が良好となるからであり、一方、上記範囲の上限以下であっても、得られる組成物の硬化には十分であるからである。   (D) Component content is a catalyst amount, for example, it is preferable that the metal atom in (D) component with respect to (B) component is the quantity which is in the range of 0.1-500 ppm by mass unit, It is more preferable that the amount be in the range of 1 to 50 ppm. This is because if the content of the component (D) is equal to or higher than the lower limit of the above range, the resulting composition has good curability. This is because it is sufficient for curing the product.

(E)成分は本組成物に接着性を付与するための接着性付与剤である。この(E)成分は限定されないが、ケイ素原子結合アルコキシ基を有する有機ケイ素化合物であることが好ましい。(E)成分中のケイ素原子結合アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、及びブトキシ基が挙げられ、特に、メトキシ基が好ましい。また、(E)成分中のケイ素原子結合有機基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、及びオクチル基等のアルキル基;ビニル基、アリル基、及びヘキセニル基等のアルケニル基;フェニル基、トリル基、及びキシリル基等のアリール基;3,3,3−トリフロロプロピル基及び3−クロロプロピル基等のハロゲン化アルキル基;3−グリシドキシピロピル基、3−メタクリロキシプロピル基、3−アミノプロピル基、及びN−(2−アミノエチル)−3−アミノプロピル基等の官能性有機基;トリメトキシシリルエチル基及びメチルジメトキシシリルエチル基等のアルコキシシリルアルキル基;並びにケイ素原子結合水素原子が挙げられる。   The component (E) is an adhesiveness imparting agent for imparting adhesiveness to the composition. The component (E) is not limited, but is preferably an organosilicon compound having a silicon atom-bonded alkoxy group. Examples of the silicon atom-bonded alkoxy group in component (E) include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group, and a methoxy group is particularly preferable. Examples of the silicon atom-bonded organic group in component (E) include alkyl groups such as methyl, ethyl, propyl, butyl, hexyl, and octyl groups; vinyl groups, allyl groups, and hexenyl groups. Alkenyl groups such as phenyl groups, tolyl groups, and xylyl groups; halogenated alkyl groups such as 3,3,3-trifluoropropyl groups and 3-chloropropyl groups; 3-glycidoxypyrrolyl groups , Functional organic groups such as 3-methacryloxypropyl group, 3-aminopropyl group, and N- (2-aminoethyl) -3-aminopropyl group; alkoxy such as trimethoxysilylethyl group and methyldimethoxysilylethyl group A silylalkyl group; and a silicon-bonded hydrogen atom.

このような(E)成分としては、3−グリシドキシピロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、及びN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン等のアルコキシシランの一種若しくは二種以上からなる部分加水分解縮合物;メチルポリシリケート、エチルポリシリケート、一般式:

Figure 2014118484
(式中、mは0以上の整数であり、nは1以上の整数である。)
で示されるオルガノシロキサンオリゴマー;一般式:
Figure 2014118484
(式中、mは0以上の整数であり、nは1以上の整数である。)
で示されるオルガノシロキサンオリゴマー;一般式:
Figure 2014118484
(式中、mは0以上の整数であり、n及びpはそれぞれ1以上の整数である。)
で示されるオルガノシロキサンオリゴマー;一般式:
Figure 2014118484
(式中、mは0以上の整数であり、n及びpはそれぞれ1以上の整数である。)
で示されるオルガノシロキサンオリゴマー;一般式:
Figure 2014118484
(式中、mは0以上の整数であり、nは1以上の整数である。)
で示されるオルガノシロキサンオリゴマー;一般式:
Figure 2014118484
(式中、mは0以上の整数である。)
で示されるオルガノシロキサンオリゴマー;並びに一般式:
Figure 2014118484
(式中、mは0以上の整数である。)
で示されるオルガノシロキサンオリゴマーが挙げられる。 Examples of such a component (E) include 3-glycidoxypyrrolyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3- Partially hydrolyzed condensate comprising one or more alkoxysilanes such as aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane; methyl Polysilicate, ethyl polysilicate, general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more, and n is an integer of 1 or more.)
An organosiloxane oligomer represented by the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more, and n is an integer of 1 or more.)
An organosiloxane oligomer represented by the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more, and n and p are each an integer of 1 or more.)
An organosiloxane oligomer represented by the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more, and n and p are each an integer of 1 or more.)
An organosiloxane oligomer represented by the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more, and n is an integer of 1 or more.)
An organosiloxane oligomer represented by the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more.)
As well as the general formula:
Figure 2014118484
(In the formula, m is an integer of 0 or more.)
The organosiloxane oligomer shown by these is mentioned.

(E)成分としては、特に、(i)沸点が100℃以上であるケイ素原子結合アルコキシ基を有する有機ケイ素化合物と(ii)一分子中に少なくとも1個のケイ素原子結合アルケニル基を有し、ケイ素原子結合水酸基を有するジオルガノシロキサンオリゴマーとの混合物、又は前記(i)成分と(ii)成分との縮合反応物であることが好ましい。   As the component (E), in particular, (i) an organosilicon compound having a silicon atom-bonded alkoxy group having a boiling point of 100 ° C. or higher, and (ii) having at least one silicon atom-bonded alkenyl group in one molecule, It is preferably a mixture with a diorganosiloxane oligomer having a silicon atom-bonded hydroxyl group, or a condensation reaction product of the component (i) and the component (ii).

(i)成分は沸点、すなわち、1気圧における沸点(標準沸点)が100℃以上であるが、これは、沸点が100℃以上であると、得られる組成物の硬化途上で、該組成物から揮発する低沸分をより減少することができるからである。このような(i)成分としては、例えば、3−グリシドキシピロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、及びN−(2−アミノエチル)−3−アミノプロピルトリメトキシシランが挙げられる。   The component (i) has a boiling point, that is, a boiling point at 1 atm (standard boiling point) of 100 ° C. or higher. This is because, when the boiling point is 100 ° C. or higher, in the course of curing of the resulting composition, This is because the low boiling point component that volatilizes can be further reduced. Examples of the component (i) include 3-glycidoxypyrrolyl trimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, Examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.

また、(ii)成分はケイ素原子結合水酸基(シラノール基)を有するジオルガノシロキサンオリゴマーであり、該シラノール基の含有量が多くとも9質量%であることが好ましい。これはその含有量が9質量%以下であると、得られる組成物の接着性が良好となるからである。このような(ii)成分としては、例えば、分子鎖両末端シラノール基封鎖メチルビニルシロキサンオリゴマー、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合オリゴマー、及び分子鎖両末端シラノール基封鎖メチルビニルシロキサン・メチルフェニルシロキサン共重合オリゴマーが挙げられる。   The component (ii) is a diorganosiloxane oligomer having a silicon atom-bonded hydroxyl group (silanol group), and the content of the silanol group is preferably at most 9% by mass. This is because the adhesiveness of the composition obtained will become favorable that the content is 9 mass% or less. Examples of the component (ii) include, for example, molecular chain both-end silanol group-capped methyl vinyl siloxane oligomer, molecular chain both-end silanol group-capped dimethylsiloxane / methyl vinyl siloxane copolymer oligomer, and molecular chain both-end silanol group-capped methyl. Examples include vinylsiloxane / methylphenylsiloxane copolymer oligomers.

(E)成分は、上記(i)成分と上記(ii)成分の混合物であってもよく、また、それらを縮合反応してなる反応物であってもよい。上記(i)成分と上記(ii)成分を縮合反応する方法は限定されないが、水酸化カリウム及び水酸化ナトリウム等の塩基性触媒の存在下で反応を行うことが好ましい。   The component (E) may be a mixture of the component (i) and the component (ii), or may be a reaction product obtained by a condensation reaction between them. A method for performing the condensation reaction between the component (i) and the component (ii) is not limited, but the reaction is preferably performed in the presence of a basic catalyst such as potassium hydroxide or sodium hydroxide.

(E)成分の含有量は、(B)成分100質量部に対して少なくとも0.05質量部であり、好ましくは少なくとも0.1質量部である。これは、(E)成分の含有量が、上記範囲の下限以上であると、得られる組成物の接着性が良好となるからである。   The content of the component (E) is at least 0.05 parts by mass, preferably at least 0.1 parts by mass with respect to 100 parts by mass of the component (B). This is because the adhesiveness of the composition obtained will become favorable as content of (E) component is more than the minimum of the said range.

(F)成分は(A)成分と同様に本組成物に熱伝導性を付与するための熱伝導性充填剤である。このような(F)成分としては、(A)成分以外の熱伝導性充填剤、例えば、金、銀、銅、アルミニウム、ニッケル、真鍮、形状記憶合金、及び半田等の金属系粉末;セラミック、ガラス、石英、及び有機樹脂等の粉末表面に、金、銀、ニッケル、及び銅等の金属を蒸着又はメッキした粉末;酸化アルミニウム、酸化ベリリウム、酸化クロム、酸化亜鉛、酸化チタン、及び結晶性シリカ等の金属酸化物系粉末;窒化ホウ素、窒化ケイ素、及び窒化アルミニウム等の金属窒化物系粉末;炭化ホウ素、炭化チタン、及び炭化ケイ素等の金属炭化物系粉末;水酸化マグネシウム等の金属水酸化物系粉末;カーボンナノチューブ、カーボンマイクロファイバー、ダイヤモンド、及びグラファイト等の炭素系粉末;並びにこれらの2種以上の混合物が挙げられる。特に、(F)成分は、金属系粉末、金属酸化物系粉末、又は金属窒化物系粉末が好ましく、具体的には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、又は窒化アルミニウム粉末であることが好ましい。なお、これらの熱伝導性充填剤は、水酸化アルミニウムまたは酸化マグネシウムと異なり、水和水や吸湿に伴う充填剤の質量変化は、多くの場合、問題とならない。   The component (F) is a thermally conductive filler for imparting thermal conductivity to the composition in the same manner as the component (A). Examples of such component (F) include thermally conductive fillers other than component (A), for example, metal powders such as gold, silver, copper, aluminum, nickel, brass, shape memory alloy, and solder; ceramics, Powder obtained by depositing or plating a metal such as gold, silver, nickel, and copper on a powder surface such as glass, quartz, and organic resin; aluminum oxide, beryllium oxide, chromium oxide, zinc oxide, titanium oxide, and crystalline silica Metal oxide powders such as boron nitride, silicon nitride, and aluminum nitride; Metal carbide powders such as boron carbide, titanium carbide, and silicon carbide; Metal hydroxides such as magnesium hydroxide Carbon powders such as carbon nanotubes, carbon microfibers, diamond, and graphite; and mixtures of two or more thereof. It is. In particular, the component (F) is preferably a metal powder, a metal oxide powder, or a metal nitride powder. Specifically, the silver powder, aluminum powder, aluminum oxide powder, zinc oxide powder, or aluminum nitride powder. It is preferable that In these heat conductive fillers, unlike aluminum hydroxide or magnesium oxide, mass change of the filler due to hydration water or moisture absorption is not a problem in many cases.

(F)成分の形状は特に限定されないが、例えば、球状、針状、円盤状、棒状、及び不定形状が挙げられ、好ましくは、球状又は不定形状である。また、(F)成分の平均粒子径は限定されないが、好ましくは、0.01〜100μmの範囲内であり、より好ましくは、0.01〜50μmの範囲内である。   Although the shape of (F) component is not specifically limited, For example, spherical shape, needle shape, disk shape, rod shape, and indefinite shape are mentioned, Preferably it is spherical shape or indefinite shape. Moreover, although the average particle diameter of (F) component is not limited, Preferably, it exists in the range of 0.01-100 micrometers, More preferably, it exists in the range of 0.01-50 micrometers.

また、(F)成分はケイ素系表面処理剤により表面処理されていることが好ましい。このケイ素系表面処理剤としては、(A)成分で挙げたケイ素処理剤と同じものを使用することができる。また、これらの表面処理方法としても、(A)成分で挙げた方法と同じ方法で行うことができる。(A)成分と(F)成分のいずれか1つの成分、又は両方の成分がケイ素表面処理剤によって表面処理されていることが好ましい。   The component (F) is preferably surface-treated with a silicon-based surface treatment agent. As the silicon-based surface treating agent, the same silicon treating agent as mentioned in the component (A) can be used. Moreover, also as these surface treatment methods, it can carry out by the same method as the method quoted by (A) component. It is preferable that any one component of (A) component and (F) component, or both components are surface-treated with the silicon surface treating agent.

(F)成分の含有量は(B)成分100質量部に対して100〜2,000質量部の範囲内であり、好ましくは、200〜1,600質量部の範囲内である。これは、(F)成分の含有量が上記範囲の下限以上であると、得られるシリコーンゴムの熱伝導性が良好となるからであり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好となるからである。   (F) Content of a component exists in the range of 100-2,000 mass parts with respect to 100 mass parts of (B) component, Preferably, it exists in the range of 200-1,600 mass parts. This is because the thermal conductivity of the resulting silicone rubber is good when the content of the component (F) is at least the lower limit of the above range, and on the other hand, the composition obtained when the content is below the upper limit of the above range. This is because the handling workability of the object is improved.

また、本組成物の取扱作業性を向上させるため、硬化抑制剤を含むことが好ましい。この硬化抑制剤としては、例えば、2−メチル−3−ブチン−2−オール、3,5−ジメチル−1−ヘキシン−3−オール、及び2−フェニル−3−ブチン−2−オール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、及び3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;並びにベンゾトリアゾールが挙げられる。これらの硬化抑制剤の含有量は、(B)成分に対して質量単位で10〜50,000ppmの範囲内であることが好ましい。   Moreover, in order to improve the handling workability | operativity of this composition, it is preferable that a hardening inhibitor is included. Examples of the curing inhibitor include alkynes such as 2-methyl-3-butyn-2-ol, 3,5-dimethyl-1-hexyn-3-ol, and 2-phenyl-3-butyn-2-ol. Examples include alcohols; enyne compounds such as 3-methyl-3-penten-1-yne and 3,5-dimethyl-3-hexen-1-yne; and benzotriazole. The content of these curing inhibitors is preferably in the range of 10 to 50,000 ppm by mass with respect to component (B).

本発明の熱伝導性シリコーン組成物を調製する方法は特に限定されず、例えば、[1](B)成分に(A)成分を混合し、これに(C)成分を徐々に加え混合して調製する方法、[2](A)成分と(C)成分をあらかじめ混合し、(B)成分を徐々に加えて調製する方法を用いて調製することができるが、特に[1]の方法であることが好ましい。混合装置としては種々の装置が使用可能であるが、2本ロール、バンバリーミキサー、ニーダーミキサー、プラネタリーミキサー、ロスミキサー、ホバートミキサー、スピードミキサー等の周知の混練手段により均一に混合することにより調製することができる。特に、ロスミキサーの使用が好ましい。   The method for preparing the heat conductive silicone composition of the present invention is not particularly limited. For example, (1) component (A) is mixed with component (B), and component (C) is gradually added thereto and mixed. Preparation method [2] The component (A) and the component (C) can be mixed in advance, and the component (B) can be gradually added and prepared. Preferably there is. Various devices can be used as the mixing device, but it is prepared by mixing uniformly by a known kneading means such as a two-roll, a Banbury mixer, a kneader mixer, a planetary mixer, a loss mixer, a Hobart mixer, or a speed mixer. can do. In particular, the use of a loss mixer is preferable.

本発明の熱伝導性充填剤用表面処理剤及び熱伝導性シリコーン組成物には、本発明の目的を損なわない限り、その他の任意成分として、各種の添加剤、例えば、ヒュームド酸化チタン等の補強充填剤;珪藻土、アルミノ珪酸、酸化鉄、酸化亜鉛、及び炭酸カルシウム等の非補強充填剤;並びにこれらの充填剤をオルガノシラン、及びポリオルガノシロキサン等の有機ケイ素化合物で表面処理したものを配合してもよい。また、必要に応じてメチルエチルケトンやメチルイソブチルケトンなどの溶媒、顔料、染料、耐熱剤、難燃剤、内部離型剤、可塑剤、ミネラルオイル、及び無官能のシリコーンオイル等のシリコーン組成物に汎用される添加剤を配合してもよい。   In the surface treatment agent for heat conductive filler and the heat conductive silicone composition of the present invention, various additives such as fumed titanium oxide are reinforced as other optional components as long as the object of the present invention is not impaired. Fillers; non-reinforcing fillers such as diatomaceous earth, aluminosilicate, iron oxide, zinc oxide and calcium carbonate; and those surface-treated with organosilicon compounds such as organosilane and polyorganosiloxane May be. In addition, it is widely used for silicone compositions such as solvents such as methyl ethyl ketone and methyl isobutyl ketone, pigments, dyes, heat-resistant agents, flame retardants, internal mold release agents, plasticizers, mineral oils, and non-functional silicone oils as required. Additives may be blended.

以下、本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。また、実施例中の物性は25℃における値である。なお、熱伝導性充填剤の粒子径は、各メーカーのカタログ値である。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to an Example. The physical properties in the examples are values at 25 ° C. In addition, the particle diameter of a heat conductive filler is a catalog value of each manufacturer.

[熱伝導性充填剤の質量変化(=加熱減量%)]
各熱伝導性充填剤を、以下の測定条件で、250℃で30分保持した後の質量減少率を測定した。
装置:株式会社島津製作所製熱重量測定装置 TGA−50)
昇温速度:室温から250℃まで10℃/min
温度条件:250℃到達後30分保持
測定雰囲気:窒素ガス(流量50ml/min)
サンプル量:10mg
[Mass change of thermally conductive filler (= heat loss%)]
Each heat conductive filler was measured for mass reduction rate after being held at 250 ° C. for 30 minutes under the following measurement conditions.
Device: Shimadzu Corporation thermogravimetric measuring device TGA-50)
Temperature increase rate: 10 ° C / min from room temperature to 250 ° C
Temperature condition: Hold for 30 minutes after reaching 250 ° C. Measurement atmosphere: Nitrogen gas (flow rate 50 ml / min)
Sample amount: 10mg

[高温保持試験後の熱伝導性シリコーンゴム(硬化物)の安定性評価]
各熱伝導性シリコーンゴム組成物を50ccガラスビーカーに40cc充填し、熱循環式オーブンで150℃、1時間の条件で加熱硬化させることにより、熱伝導性シリコーンゴム(試料)を得た。得られた試料は、180℃で72時間更に保管した後、外観を目視観察することにより、以下の基準で評価した。
○:保管後、ビーカー面からの剥離(密着不良)や試料の破壊(割れ等)が認められない。
×:保管後、ビーカー面からの剥離及び試料の破壊が明らかに認められる。
[Stability evaluation of thermally conductive silicone rubber (cured product) after high temperature holding test]
A heat conductive silicone rubber (sample) was obtained by filling 40 cc of each heat conductive silicone rubber composition in a 50 cc glass beaker and heating and curing in a heat circulating oven at 150 ° C. for 1 hour. The obtained sample was further stored at 180 ° C. for 72 hours, and then visually evaluated for the appearance, and evaluated according to the following criteria.
○: After storage, peeling from the beaker surface (adhesion failure) and destruction (cracking, etc.) of the sample are not observed.
X: After storage, peeling from the beaker surface and destruction of the sample are clearly observed.

[実施例1]
ロスミキサーにより、粘度400mPa・sの分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン100質量部、メチルトリメトキシシラン4.3質量部、及び平均粒子径25μmの加熱減量3.9質量%の不定形状水酸化アルミニウム微粒子(住友化学社製 CWL325LV)320質量部を室温で混合した。その後、減圧下、150℃で1時間加熱混合してシリコーンゴムベースを調製した。次に、上記シリコーンゴムベースに、粘度5mPa・sの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体1質量部(シリコーンゴムベースに含まれている上記ジメチルポリシロキサン中のビニル基1モルに対して、本成分中のケイ素原子結合水素原子が0.8モルとなる量)、2−フェニル−3−ブチン−2−オール0.1質量部、及び白金の1,3−ジビニルテトラメチルジシロキサン錯体(シリコーンゴムベースに含まれている上記ジメチルポリシロキサンに対して、本成分中の白金金属が質量単位で30ppmとなる量)を添加し、室温で均一に混合して熱伝導性シリコーンゴム組成物1を調製した。
[Example 1]
Using a loss mixer, 100 parts by mass of dimethylpolysiloxane blocked with a dimethylvinylsiloxy group at both ends of a molecular chain having a viscosity of 400 mPa · s, 4.3 parts by mass of methyltrimethoxysilane, and 3.9% by mass with an average particle size of 25 μm. 320 parts by mass of fine aluminum hydroxide particles (CWL325LV, manufactured by Sumitomo Chemical Co., Ltd.) were mixed at room temperature. Thereafter, the mixture was heated and mixed at 150 ° C. for 1 hour under reduced pressure to prepare a silicone rubber base. Next, on the silicone rubber base, 1 part by mass of a dimethylsiloxane / methylhydrogensiloxane copolymer blocked with a trimethylsiloxy group at both ends of a molecular chain having a viscosity of 5 mPa · s (in the dimethylpolysiloxane contained in the silicone rubber base) Amount of silicon atom-bonded hydrogen atom in this component to 0.8 mol) per mol of vinyl group, 0.1 part by mass of 2-phenyl-3-butyn-2-ol, and 1,3 of platinum -Add divinyltetramethyldisiloxane complex (the amount of platinum metal in this component to 30ppm by mass with respect to the dimethylpolysiloxane contained in the silicone rubber base) and mix evenly at room temperature. A thermally conductive silicone rubber composition 1 was prepared.

[比較例1]
実施例1の水酸化アルミニウム微粒子(CWL325LV)の代わりに、平均粒子径18μmの加熱減量4.4質量%の不定形状水酸化アルミニウム微粒子(昭和電工社製 ハイジライトH−31)を用いた以外は実施例1と同様にして、熱伝導性シリコーンゴム組成物2を調製した。
[Comparative Example 1]
Instead of the aluminum hydroxide fine particles (CWL325LV) of Example 1, non-uniform shaped aluminum hydroxide fine particles (Heidilite H-31 manufactured by Showa Denko KK) with an average particle diameter of 18 μm and a weight loss of 4.4% by mass were used. In the same manner as in Example 1, a heat conductive silicone rubber composition 2 was prepared.

[実施例2]
比較例1で用いた平均粒子径18μmの加熱減量4.4質量%の不定形状水酸化アルミニウム微粒子(昭和電工社製 ハイジライトH−31)を、熱循環式オーブンで250℃−3時間乾燥させることにより、最終的に平均粒子径18μmの加熱減量1.4質量%の不定形状水酸化アルミニウム微粒子(以下、「空焼きしたH−31」という)を調製した。
実施例1の水酸化アルミニウム微粒子(CWL325LV)の代わりに、この「空焼きしたH−31」を用いた以外は実施例1と同様にして、熱伝導性シリコーンゴム組成物3を調製した。
[Example 2]
The amorphous aluminum hydroxide fine particles of 4.4 mass% with an average particle diameter of 18 μm used in Comparative Example 1 (Heidilite H-31 manufactured by Showa Denko KK) are dried at 250 ° C. for 3 hours in a thermal circulation oven. As a result, amorphous aluminum hydroxide fine particles (hereinafter referred to as “air-baked H-31”) having an average particle diameter of 18 μm and a loss on heating of 1.4% by mass were prepared.
A thermally conductive silicone rubber composition 3 was prepared in the same manner as in Example 1 except that this “air-baked H-31” was used instead of the aluminum hydroxide fine particles (CWL325LV) of Example 1.

[比較例2]
実施例1の水酸化アルミニウム微粒子(CWL325LV)の代わりに、平均粒子径9μmの加熱減量4.1質量%の不定形状水酸化アルミニウム微粒子(日本軽金属社製 BF083)を用いた以外は実施例1と同様にして、熱伝導性シリコーンゴム組成物4を調製した。
[Comparative Example 2]
Example 1 is used except that in place of the aluminum hydroxide fine particles (CWL 325LV) of Example 1, irregular shaped aluminum hydroxide fine particles (BF083 manufactured by Nippon Light Metal Co., Ltd.) having an average particle size of 9 μm and a weight loss of 4.1% by mass are used. Similarly, a heat conductive silicone rubber composition 4 was prepared.

[比較例3]
実施例1の水酸化アルミニウム微粒子(CWL325LV)の代わりに、平均粒子径3.6μmの加熱減量4.9質量%の不定形状水酸化アルミニウム微粒子(昭和電工社製 HP350)を用いた以外は実施例1と同様にして、熱伝導性シリコーンゴム組成物5を調製した。
[Comparative Example 3]
Example except that in place of the aluminum hydroxide fine particles (CWL325LV) in Example 1, amorphous aluminum hydroxide fine particles (HP350, Showa Denko KK) having an average particle size of 3.6 μm and a weight loss of 4.9% by mass were used. In the same manner as in Example 1, a heat conductive silicone rubber composition 5 was prepared.

[実施例3]
比較例3で用いた平均粒子径3.6μmの加熱減量4.9質量%の不定形状水酸化アルミニウム微粒子(昭和電工社製 HP350)を、熱循環式オーブンで250℃、3時間乾燥させることにより、最終的に3.6μmの加熱減量2.1質量%の不定形状水酸化アルミニウム微粒子(以下、「空焼きしたHP350」という)を調製した。
実施例1の水酸化アルミニウム微粒子(CWL325LV)の代わりに、この「空焼きしたHP350」を用いた以外は実施例1と同様にして、熱伝導性シリコーンゴム組成物6を調製した。
[Example 3]
By drying amorphous aluminum hydroxide fine particles (HP350 manufactured by Showa Denko KK) having an average particle size of 3.6 μm and a weight loss of 4.9% by mass used in Comparative Example 3 in a thermal circulation oven at 250 ° C. for 3 hours. Finally, an amorphous aluminum hydroxide fine particle (hereinafter referred to as “air-baked HP350”) having a loss on heating of 2.1 μ% by mass of 3.6 μm was prepared.
A thermally conductive silicone rubber composition 6 was prepared in the same manner as in Example 1 except that this “air-baked HP350” was used instead of the aluminum hydroxide fine particles (CWL325LV) of Example 1.

実施例1〜3及び比較例1〜3について、得られた熱伝導性シリコーンゴム組成物中の熱伝導性充填剤の種類、平均粒径、質量変化(=加熱減量%)と熱伝導性シリコーンゴム(硬化物)の安定性評価の結果を、表1に示す。   About Examples 1-3 and Comparative Examples 1-3, the kind of heat conductive filler in the obtained heat conductive silicone rubber composition, an average particle diameter, mass change (= heating loss%), and heat conductive silicone Table 1 shows the results of the stability evaluation of the rubber (cured product).

Figure 2014118484
Figure 2014118484

表1に示すとおり、加熱減量が4.0質量%未満である熱伝導性充填剤を用いることにより、高温保持試験後の熱伝導性シリコーンゴム硬化物の容器(ビーカー)への密着不良や硬化物の破壊(クラック)等が極めて効果的に抑制されることが分かった。特に、実施例1と比較例4との対比から明らかなように、類似の水酸化アルミニウムを用いた場合でも、加熱減量4.0%を境にして、得られる熱伝導性シリコーンゴムの高温安定性が急激に悪化し、密着不良や硬化物の破壊が発生することが確認された。   As shown in Table 1, by using a thermally conductive filler with a loss on heating of less than 4.0% by mass, poor adhesion and curing of the thermally conductive silicone rubber cured product after the high temperature holding test to the container (beaker) It has been found that the destruction (cracking) of objects is extremely effectively suppressed. In particular, as is clear from the comparison between Example 1 and Comparative Example 4, even when similar aluminum hydroxide is used, the high temperature stability of the resulting heat conductive silicone rubber is limited to a heating loss of 4.0%. It was confirmed that the property deteriorated rapidly, resulting in poor adhesion and destruction of the cured product.

本発明の熱伝導性シリコーンゴム組成物は、基材への密着性に優れ、硬化に伴うクラックの発生を抑制することができるので、電気・電子部品の放熱接着剤、例えば、トランジスター、IC、メモリー素子等の電子部品を登載したプリント回路基板、ハイブリッドICのポッティング材や接着剤、半導体素子の接着剤、及びエンジンマウントの接着・シール剤として好適である。   The heat conductive silicone rubber composition of the present invention is excellent in adhesion to the substrate and can suppress the occurrence of cracks due to curing, so that a heat-dissipating adhesive for electrical and electronic parts, such as transistors, ICs, It is suitable as a printed circuit board on which electronic parts such as a memory element are mounted, a potting material or adhesive for a hybrid IC, an adhesive for a semiconductor element, and an adhesive / sealant for an engine mount.

Claims (10)

(A)250℃で30分間保持した前後の熱重量分析(TGA)による質量変化が4.0質量%未満である、水酸化アルミニウム又は酸化マグネシウムの熱伝導性充填剤
を含む、熱伝導性シリコーン組成物。
(A) A thermally conductive silicone comprising a thermally conductive filler of aluminum hydroxide or magnesium oxide, wherein the mass change by thermogravimetric analysis (TGA) before and after holding at 250 ° C. for 30 minutes is less than 4.0% by mass Composition.
(B)一分子中に少なくとも2個のケイ素原子結合アルケニル基を有するオルガノポリシロキサン、
(C)一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合アルケニル基、水酸基及びアルコキシを有しないオルガノポリシロキサン、及び
(D)ヒドロシリル化反応用触媒
を更に含む、請求項1に記載の熱伝導性シリコーン組成物。
(B) an organopolysiloxane having at least two silicon-bonded alkenyl groups in one molecule;
(C) an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule and having no silicon-bonded alkenyl group, hydroxyl group and alkoxy, and (D) a catalyst for hydrosilylation reaction. Item 2. The thermally conductive silicone composition according to item 1.
前記(B)成分が、分子鎖両末端にケイ素原子結合アルケニル基を有するオルガノポリシロキサンである、請求項2に記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to claim 2, wherein the component (B) is an organopolysiloxane having silicon-bonded alkenyl groups at both ends of the molecular chain. 前記(A)成分の含有量が、前記(B)成分100質量部に対して100〜2,000質量部である、請求項に2又は3に記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to claim 2 or 3, wherein the content of the component (A) is 100 to 2,000 parts by mass with respect to 100 parts by mass of the component (B). 前記(C)成分の含有量が、前記(B)成分中のアルケニル基1モルに対してケイ素原子結合水素原子が0.5〜10モルとなる量である、請求項2から4のいずれか一項に記載の熱伝導性シリコーン組成物。   5. The content of the component (C) is any amount according to claim 2, wherein the silicon atom-bonded hydrogen atom is 0.5 to 10 moles per mole of the alkenyl group in the component (B). The thermally conductive silicone composition according to one item. (E)接着付与剤
を更に含む、請求項1から5のいずれか一項に記載の熱伝導性シリコーン組成物。
(E) The heat conductive silicone composition according to any one of claims 1 to 5, further comprising an adhesion-imparting agent.
前記(C)成分と前記(E)成分との合計量が、前記(B)成分と前記(C)成分と前記(E)成分との合計量に対して、0.5〜10質量%である、請求項6に記載の熱伝導性シリコーン組成物。   The total amount of the component (C) and the component (E) is 0.5 to 10% by mass with respect to the total amount of the component (B), the component (C), and the component (E). The thermally conductive silicone composition according to claim 6. (F)(A)成分以外の熱伝導性充填剤
を更に含む、請求項1から7のいずれか一項に記載の熱伝導性シリコーン組成物。
(F) The thermally conductive silicone composition according to any one of claims 1 to 7, further comprising a thermally conductive filler other than the component (A).
前記(A)成分と(F)成分のいずれか1つの成分、又は両方の成分がケイ素表面処理剤によって表面処理されている、請求項8に記載の熱伝導性シリコーン組成物。   The thermally conductive silicone composition according to claim 8, wherein any one of the component (A) and the component (F) or both components are surface-treated with a silicon surface treatment agent. 請求項1から9のいずれか一項に記載の熱伝導性シリコーン組成物を硬化させた熱伝導性部材。   The heat conductive member which hardened the heat conductive silicone composition as described in any one of Claim 1 to 9.
JP2012274714A 2012-12-17 2012-12-17 Thermally conductive silicone composition and thermally conductive member Active JP6339761B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012274714A JP6339761B2 (en) 2012-12-17 2012-12-17 Thermally conductive silicone composition and thermally conductive member
PCT/JP2013/084177 WO2014098204A1 (en) 2012-12-17 2013-12-13 Thermally conductive silicone composition and thermally conductive member
TW102146748A TW201428057A (en) 2012-12-17 2013-12-17 Thermally conductive silicone composition and thermally conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274714A JP6339761B2 (en) 2012-12-17 2012-12-17 Thermally conductive silicone composition and thermally conductive member

Publications (2)

Publication Number Publication Date
JP2014118484A true JP2014118484A (en) 2014-06-30
JP6339761B2 JP6339761B2 (en) 2018-06-06

Family

ID=49917213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274714A Active JP6339761B2 (en) 2012-12-17 2012-12-17 Thermally conductive silicone composition and thermally conductive member

Country Status (3)

Country Link
JP (1) JP6339761B2 (en)
TW (1) TW201428057A (en)
WO (1) WO2014098204A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182222A1 (en) * 2017-03-31 2018-10-04 주식회사 케이씨씨 Heat-dissipating gel-type silicone rubber composition
WO2020084860A1 (en) * 2018-10-26 2020-04-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
WO2021112070A1 (en) * 2019-12-02 2021-06-10 信越化学工業株式会社 Wafer processing temporary adhesive, wafer laminate, thin wafer manufacturing method
WO2022049816A1 (en) * 2020-09-03 2022-03-10 富士高分子工業株式会社 Heat conductive silicone composition and method for producing same
WO2022049817A1 (en) * 2020-09-03 2022-03-10 富士高分子工業株式会社 Thermally conductive silicone composition and method for producing same
WO2022071707A1 (en) * 2020-09-29 2022-04-07 주식회사 엘지에너지솔루션 Curable composition and two-liquid-type curable composition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158790B (en) * 2015-04-10 2018-11-16 台达电子工业股份有限公司 power module and its thermal interface structure
EP3737727B1 (en) * 2018-01-11 2022-03-09 Dow Silicones Corporation Method for applying thermally conductive composition on electronic components
JP7088215B2 (en) * 2018-01-17 2022-06-21 信越化学工業株式会社 Thermally conductive thin-film cured product, its manufacturing method, and thermally conductive member
JP2023522541A (en) * 2020-03-16 2023-05-31 ダウ シリコーンズ コーポレーション Thermally conductive silicone composition
WO2023030167A1 (en) * 2021-08-30 2023-03-09 Dow Silicones Corporation Thermally conductive silicone rubber composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140456A (en) * 1991-11-20 1993-06-08 Shin Etsu Chem Co Ltd Production of heat-conductive silicone rubber composition
JPH05239358A (en) * 1992-03-02 1993-09-17 Toshiba Silicone Co Ltd Thermally conductive silicone rubber composition
JPH06293861A (en) * 1993-03-23 1994-10-21 Toshiba Silicone Co Ltd Heat conductive silicone rubber composition
JPH0940871A (en) * 1995-07-27 1997-02-10 Shin Etsu Chem Co Ltd Silicone rubber composition for high-voltage electric insulator
JP2002072728A (en) * 2000-08-30 2002-03-12 Dow Corning Toray Silicone Co Ltd Thermally conductive liquid silicone rubber composition for fixing roll and fixing roll coated with fluororesin
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2011098566A (en) * 2009-10-08 2011-05-19 Shin-Etsu Chemical Co Ltd Thermal conductive silicone rubber composite sheet
JP2011153252A (en) * 2010-01-28 2011-08-11 Dow Corning Toray Co Ltd Heat-conductive silicone rubber composition
JP2013124257A (en) * 2011-12-13 2013-06-24 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composition and cured product of the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157569A (en) 1984-12-28 1986-07-17 Shin Etsu Polymer Co Ltd Thermally conductive adhesive composition
JPS63251466A (en) 1987-04-06 1988-10-18 Shin Etsu Chem Co Ltd Thermally conductive liquid silicone rubber composition
JP2704732B2 (en) 1988-08-01 1998-01-26 東レ・ダウコーニング・シリコーン株式会社 Curable liquid organopolysiloxane composition
JP2691823B2 (en) 1991-01-24 1997-12-17 信越化学工業株式会社 Curable silicone composition and cured product thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140456A (en) * 1991-11-20 1993-06-08 Shin Etsu Chem Co Ltd Production of heat-conductive silicone rubber composition
JPH05239358A (en) * 1992-03-02 1993-09-17 Toshiba Silicone Co Ltd Thermally conductive silicone rubber composition
JPH06293861A (en) * 1993-03-23 1994-10-21 Toshiba Silicone Co Ltd Heat conductive silicone rubber composition
JPH0940871A (en) * 1995-07-27 1997-02-10 Shin Etsu Chem Co Ltd Silicone rubber composition for high-voltage electric insulator
JP2002072728A (en) * 2000-08-30 2002-03-12 Dow Corning Toray Silicone Co Ltd Thermally conductive liquid silicone rubber composition for fixing roll and fixing roll coated with fluororesin
JP2011025676A (en) * 2009-06-29 2011-02-10 Shin-Etsu Chemical Co Ltd Heat-conductive silicone rubber composite sheet
JP2011098566A (en) * 2009-10-08 2011-05-19 Shin-Etsu Chemical Co Ltd Thermal conductive silicone rubber composite sheet
JP2011153252A (en) * 2010-01-28 2011-08-11 Dow Corning Toray Co Ltd Heat-conductive silicone rubber composition
JP2013124257A (en) * 2011-12-13 2013-06-24 Shin-Etsu Chemical Co Ltd Thermally conductive silicone composition and cured product of the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018182222A1 (en) * 2017-03-31 2018-10-04 주식회사 케이씨씨 Heat-dissipating gel-type silicone rubber composition
WO2020084860A1 (en) * 2018-10-26 2020-04-30 信越化学工業株式会社 Thermally conductive silicone composition and cured product thereof
WO2021112070A1 (en) * 2019-12-02 2021-06-10 信越化学工業株式会社 Wafer processing temporary adhesive, wafer laminate, thin wafer manufacturing method
JPWO2021112070A1 (en) * 2019-12-02 2021-06-10
WO2022049816A1 (en) * 2020-09-03 2022-03-10 富士高分子工業株式会社 Heat conductive silicone composition and method for producing same
WO2022049817A1 (en) * 2020-09-03 2022-03-10 富士高分子工業株式会社 Thermally conductive silicone composition and method for producing same
JP7055255B1 (en) * 2020-09-03 2022-04-15 富士高分子工業株式会社 Method for Producing Thermally Conductive Silicone Composition
JP7055254B1 (en) * 2020-09-03 2022-04-15 富士高分子工業株式会社 Method for Producing Thermally Conductive Silicone Composition
WO2022071707A1 (en) * 2020-09-29 2022-04-07 주식회사 엘지에너지솔루션 Curable composition and two-liquid-type curable composition

Also Published As

Publication number Publication date
WO2014098204A1 (en) 2014-06-26
TW201428057A (en) 2014-07-16
JP6339761B2 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6339761B2 (en) Thermally conductive silicone composition and thermally conductive member
JP5534837B2 (en) Thermally conductive silicone rubber composition
TWI755437B (en) One-liquid curable thermal conductive silicone grease composition and electric/electronic article
JP6610429B2 (en) Thermally conductive silicone composition, cured product thereof and method for producing the same
JP6705919B2 (en) Gel type thermal interface material
JP5372388B2 (en) Thermally conductive silicone grease composition
KR102477726B1 (en) Silicone composition containing filler
JP6654593B2 (en) Silicone resin composition for die bonding and cured product
KR20110017864A (en) Thermally conductive silicone composition and electronic device
JP2010059237A (en) Thermally conductive silicone composition and semiconductor device
JP6791815B2 (en) Thermally conductive silicone resin composition
CN112867765B (en) Heat-conductive silicone composition and cured product thereof
KR102479137B1 (en) thermally conductive composition
TWI798283B (en) Addition hardening polysiloxane composition, cured product, optical element
JP2009235279A (en) Heat-conductive molding and manufacturing method therefor
TW202200711A (en) Thermally conductive silicone composition and cured product of same
JP3758176B2 (en) Thermally conductive silicone rubber and composition thereof
JP2004083905A (en) Thermally conductive filler, thermally conductive silicone elastomer composition and semiconductor device
JP5648290B2 (en) Electronic device and manufacturing method thereof
JP6656509B1 (en) Method for producing conductive filler, conductive addition-curable silicone composition, and semiconductor device
JP2018027997A (en) Thermally conductive silicone resin composition and method for curing the same
TW202313855A (en) Thermal conductive silicone composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151111

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20151218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180511

R150 Certificate of patent or registration of utility model

Ref document number: 6339761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250