JP2014118329A - Method for manufacturing an olivine-type silicate compound including a transition metal - Google Patents

Method for manufacturing an olivine-type silicate compound including a transition metal Download PDF

Info

Publication number
JP2014118329A
JP2014118329A JP2012275447A JP2012275447A JP2014118329A JP 2014118329 A JP2014118329 A JP 2014118329A JP 2012275447 A JP2012275447 A JP 2012275447A JP 2012275447 A JP2012275447 A JP 2012275447A JP 2014118329 A JP2014118329 A JP 2014118329A
Authority
JP
Japan
Prior art keywords
compound
olivine
transition metal
lithium
silicate compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012275447A
Other languages
Japanese (ja)
Other versions
JP5928954B2 (en
Inventor
Takeaki Ogami
剛章 大神
Norihiko Misaki
紀彦 三崎
Shiho Ishihara
四穂 石原
Tsutomu Suzuki
務 鈴木
Kiyoshi Kanemura
聖志 金村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Original Assignee
Taiheiyo Cement Corp
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Tokyo Metropolitan Public University Corp filed Critical Taiheiyo Cement Corp
Priority to JP2012275447A priority Critical patent/JP5928954B2/en
Publication of JP2014118329A publication Critical patent/JP2014118329A/en
Application granted granted Critical
Publication of JP5928954B2 publication Critical patent/JP5928954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide, in a high purity and a high yield based on an inexpensive and simple means, an olivine-type silicate compound having finer and homogeneous particle diameters and a homogeneous composition.SOLUTION: In the provided method for manufacturing an olivine-type silicate compound other than lithium iron silicate including a transition metal (M), an admixture slurry including (A) a transition metal (M) compound (M expresses Fe, Ni, Co, Al, Zn, V, Zr, or Mn), (B) a silicate compound, (C) a lithium compound, and (D) water is hydrothermally reacted within a steam-type autoclave using, as a heat source, a saturated steam manufactured by heating water having a dissolved oxygen concentration of 1.0 mg/L or below.

Description

本発明は、リチウムイオン二次電池の正極材料として有用な、遷移金属を含むケイ酸鉄リチウム以外のオリビン型シリケート化合物の製造法に関する。   The present invention relates to a method for producing an olivine-type silicate compound other than lithium iron silicate containing a transition metal, which is useful as a positive electrode material for a lithium ion secondary battery.

携帯電子機器、ハイブリッド自動車、電気自動車等に用いられる二次電池の開発が行われており、特にリチウムイオン二次電池が広く知られている。当該リチウムイオン電池は、基本的に正極、負極、非水電解質及びセパレータからなり、正極材料としてはLiCoO2が広く用いられ、さらにLiNiO2、LiMn24などが開発されている。しかし、これらのリチウム系金属酸化物は、高電圧ではある容量が低いという問題がある。 Secondary batteries used for portable electronic devices, hybrid cars, electric cars, and the like have been developed, and lithium ion secondary batteries are particularly widely known. The lithium ion battery basically includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator. LiCoO 2 is widely used as a positive electrode material, and LiNiO 2 , LiMn 2 O 4 and the like have been developed. However, these lithium-based metal oxides have a problem that a certain capacity is low at a high voltage.

これらに対し、最近になって、オリビン構造を有するリン酸鉄リチウムやケイ酸鉄リチウム等のオリビン型シリケート化合物を正極に用いることが提案されている。しかしながら、このリン酸鉄リチウムやケイ酸鉄リチウムの合成法は固相法であり、不活性ガス雰囲気下で焼成と粉砕を行う必要があり、操作が複雑であった。   On the other hand, recently, it has been proposed to use an olivine-type silicate compound such as lithium iron phosphate or lithium iron silicate having an olivine structure for the positive electrode. However, this method of synthesizing lithium iron phosphate and lithium iron silicate is a solid phase method, and it is necessary to perform firing and pulverization in an inert gas atmosphere, and the operation is complicated.

そこで、リン酸鉄リチウムやケイ酸鉄リチウムを水熱反応で製造する試みがなされている(特許文献1及び2、非特許文献1)。これらの方法は、リチウム化合物、鉄化合物、リン酸化合物を耐圧容器内で水熱反応させるというものである。   Therefore, attempts have been made to produce lithium iron phosphate and lithium iron silicate by a hydrothermal reaction (Patent Documents 1 and 2, Non-Patent Document 1). In these methods, a lithium compound, an iron compound, and a phosphoric acid compound are hydrothermally reacted in a pressure resistant vessel.

特開2002−151082号公報JP 2002-151082 A 特開2004−95385号公報JP 2004-95385 A

Electrochemistry Communications 3(2001)505−508Electrochemistry Communications 3 (2001) 505-508

これら従来の水熱反応によるオリビン型シリケート化合物の製造法によれば、固相法に比べて粒径が均一なものが得られるものの、水熱反応中に鉄が酸化されてしまい、得られる正極材料の電池性能が低下するという問題がある。かかる問題を解決すべく、特許文献1では、耐圧容器中に窒素やアルゴン等の不活性ガスを封入して反応を行っている。しかし、不活性ガスの封入には時間がかかるとともに、多量の不活性ガスが必要となるため得られる正極材料の価格が上昇するという問題がある。
従って、安価かつ簡便な手段で、より微細で均一な粒径を有するオリビン型シリケート化合物を高純度かつ高収率で製造する方法が望まれていた。
According to these conventional methods for producing an olivine-type silicate compound by hydrothermal reaction, although a uniform particle size can be obtained as compared with the solid phase method, iron is oxidized during the hydrothermal reaction, and the resulting positive electrode There is a problem that the battery performance of the material is lowered. In order to solve such a problem, in Patent Document 1, an inert gas such as nitrogen or argon is sealed in a pressure vessel to carry out the reaction. However, it takes time to enclose the inert gas, and a large amount of inert gas is required, so that there is a problem that the price of the obtained positive electrode material increases.
Accordingly, there has been a demand for a method for producing an olivine-type silicate compound having a finer and uniform particle size with high purity and high yield by an inexpensive and simple means.

そこで本発明者は、遷移金属化合物の水熱反応条件について種々検討した結果、熱源が溶存酸素濃度1.0mg/L以下の水を加熱して製造された飽和蒸気である蒸気式オートクレーブ内で水熱反応を行えば、オートクレーブ内に不活性ガスを充填する必要がなく、鉄の酸化が防止でき、より安価で簡便に、粒径が小さく均一な遷移金属を含むオリビン型シリケート化合物が得られること、さらには得られた生成物を正極材料として用いれば、高容量で充放電特性に優れたリチウムイオン二次電池が得られることを見出し、本発明を完成した。   Therefore, as a result of various studies on the hydrothermal reaction conditions of the transition metal compound, the present inventor has found that the heat source is water in a steam type autoclave that is saturated steam produced by heating water having a dissolved oxygen concentration of 1.0 mg / L or less. If the thermal reaction is carried out, it is not necessary to fill the autoclave with an inert gas, iron oxidation can be prevented, and an olivine-type silicate compound containing a transition metal with a small and uniform particle size can be obtained at a lower cost and with ease. Furthermore, it was found that a lithium-ion secondary battery having a high capacity and excellent charge / discharge characteristics can be obtained by using the obtained product as a positive electrode material, and the present invention was completed.

すなわち、本発明は、(A)遷移金属(M)化合物(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す)、(B)ケイ酸化合物、(C)リチウム化合物、及び(D)水を含有する混合物スラリーを、熱源が溶存酸素濃度1.0mg/L以下の水を加熱して製造された飽和蒸気である蒸気式オートクレーブ内で水熱反応させることを特徴とする、遷移金属(M)を含むケイ酸鉄リチウム以外のオリビン型シリケート化合物の製造法を提供するものである。
また、本発明は、上記の製造法により得られた遷移金属(M)を含むケイ酸鉄リチウム以外のオリビン型シリケート化合物を正極材料として含有するリチウムイオン二次電池を提供するものである。
That is, the present invention provides (A) a transition metal (M) compound (M represents Fe, Ni, Co, Al, Zn, V, Zr or Mn), (B) a silicate compound, and (C) a lithium compound. And (D) the mixture slurry containing water is hydrothermally reacted in a steam autoclave which is a saturated steam produced by heating water having a dissolved oxygen concentration of 1.0 mg / L or less. The present invention provides a method for producing an olivine-type silicate compound other than lithium iron silicate containing a transition metal (M).
Moreover, this invention provides the lithium ion secondary battery which contains olivine type silicate compounds other than lithium iron silicate containing the transition metal (M) obtained by said manufacturing method as positive electrode material.

本発明の製造法によれば、不活性ガスを多量に使用することなく、粒径が小さく、均一な遷移金属(M)を含むオリビン型シリケート化合物が簡便な水熱合成反応により得られる。また、得られたオリビン型シリケート化合物を、正極材料として含むリチウムイオン二次電池は、高容量で充放電特性に優れる。
なお、本発明の製造法により得られる遷移金属(M)を含むオリビン型シリケート化合物には、ケイ酸鉄リチウムは含まれない。
According to the production method of the present invention, an olivine-type silicate compound having a small particle size and containing a uniform transition metal (M) can be obtained by a simple hydrothermal synthesis reaction without using a large amount of inert gas. Moreover, the lithium ion secondary battery containing the obtained olivine type silicate compound as a positive electrode material has a high capacity and excellent charge / discharge characteristics.
The olivine-type silicate compound containing the transition metal (M) obtained by the production method of the present invention does not contain lithium iron silicate.

本発明方法に用いる蒸気式オートクレーブの概略図を示す。The schematic of the vapor | steam autoclave used for this invention method is shown. 実施例1及び比較例1で得られたオリビン型シリケート化合物粉末のSEM像を示す。The SEM image of the olivine type | mold silicate compound powder obtained in Example 1 and Comparative Example 1 is shown. 実施例1及び比較例1で得られたオリビン型シリケート化合物粉末のXRDチャートを示す。The XRD chart of the olivine type | mold silicate compound powder obtained in Example 1 and Comparative Example 1 is shown. 実施例2及び比較例2で得られたオリビン型シリケート化合物粉末のSEM像を示す。The SEM image of the olivine type silicate compound powder obtained in Example 2 and Comparative Example 2 is shown. 実施例2及び比較例2で得られたオリビン型シリケート化合物粉末のXRDチャートを示す。The XRD chart of the olivine type | mold silicate compound powder obtained in Example 2 and Comparative Example 2 is shown. 実施例3及び比較例3で得られたオリビン型シリケート化合物粉末のSEM像を示す。The SEM image of the olivine type | mold silicate compound powder obtained in Example 3 and Comparative Example 3 is shown. 実施例3及び比較例3で得られたオリビン型シリケート化合物粉末のXRDチャートを示す。The XRD chart of the olivine type | mold silicate compound powder obtained in Example 3 and Comparative Example 3 is shown. 実施例4及び比較例4で得られた電池の充放電容量曲線を示す。The charge / discharge capacity curve of the battery obtained in Example 4 and Comparative Example 4 is shown. 実施例5及び比較例5で得られた電池の充放電容量曲線を示す。The charging / discharging capacity curve of the battery obtained in Example 5 and Comparative Example 5 is shown. 実施例6及び比較例6で得られた電池の充放電容量曲線を示す。The charging / discharging capacity curve of the battery obtained in Example 6 and Comparative Example 6 is shown.

本発明の遷移金属(M)を含むオリビン型シリケート化合物の製造法は、(A)遷移金属(M)化合物(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す)、(B)ケイ酸化合物、(C)リチウム化合物、及び(D)水を含有する混合物スラリーを熱源が溶存酸素濃度1.0mg/L以下の水を加熱して製造された飽和蒸気であるオートクレーブ内で水熱反応させる方法である。   The manufacturing method of the olivine type silicate compound containing the transition metal (M) of the present invention is as follows: (A) Transition metal (M) compound (M represents Fe, Ni, Co, Al, Zn, V, Zr or Mn) , (B) Silica compound, (C) Lithium compound, and (D) Autoclave which is a saturated steam produced by heating water having a dissolved oxygen concentration of 1.0 mg / L or less to a mixture slurry containing water This is a method of hydrothermal reaction.

(A)遷移金属(M)化合物としては、鉄化合物、ニッケル化合物、コバルト化合物、アルミニウム化合物、亜鉛化合物、バナジウム化合物、ジルコニウム化合物又はマンガン化合物を用いればよい。   (A) As a transition metal (M) compound, an iron compound, a nickel compound, a cobalt compound, an aluminum compound, a zinc compound, a vanadium compound, a zirconium compound, or a manganese compound may be used.

鉄化合物、ニッケル化合物、コバルト化合物、マンガン化合物、亜鉛化合物としては、2価の鉄化合物、2価のニッケル化合物、2価のコバルト化合物、2価のマンガン化合物、2価の亜鉛化合物であればよく、例えば、ハロゲン化鉄、ハロゲン化ニッケル、ハロゲン化コバルト、ハロゲン化マンガン、ハロゲン化亜鉛等のハロゲン化物、硫酸鉄、硫酸ニッケル、硫酸コバルト、硫酸マンガン、硫酸亜鉛等の硫酸塩、シュウ酸鉄、酢酸鉄、酢酸ニッケル、酢酸コバルト、酢酸マンガン、酢酸亜鉛等の有機酸塩が挙げられる。   The iron compound, nickel compound, cobalt compound, manganese compound, and zinc compound may be any divalent iron compound, divalent nickel compound, divalent cobalt compound, divalent manganese compound, or divalent zinc compound. , For example, halides such as iron halide, nickel halide, cobalt halide, manganese halide, zinc halide, iron sulfate, nickel sulfate, cobalt sulfate, manganese sulfate, zinc sulfate and other sulfates, iron oxalate, Examples thereof include organic acid salts such as iron acetate, nickel acetate, cobalt acetate, manganese acetate, and zinc acetate.

アルミニウム化合物としては、3価の化合物であればよく、例えば、ハロゲン化アルミニウム等のハロゲン化物、硫酸アルミニウム等の金属硫酸塩、酢酸アルミニウム、乳酸アルミニウム等の金属有機酸塩が挙げられる。   The aluminum compound may be a trivalent compound, and examples thereof include halides such as aluminum halide, metal sulfates such as aluminum sulfate, and metal organic acid salts such as aluminum acetate and aluminum lactate.

ジルコニウム化合物としては、4価の化合物であればよく、例えば、ハロゲン化ジルコニウム、硫酸ジルコニウム、二酢酸酸化ジルコニウム、オクタン酸ジルコニウム、ラウリン酸酸化ジルコニウム等の有機酸塩が挙げられる。   The zirconium compound may be a tetravalent compound, and examples thereof include organic acid salts such as zirconium halide, zirconium sulfate, zirconium diacetate oxide, zirconium octoate, and zirconium laurate oxide.

(B)ケイ酸化合物としては、反応性のあるシリカ化合物であれば特に限定されず、非晶質シリカ、Na4SiO4(例えばNa4SiO4・H2O)等が用いられる。 (B) The silicic acid compound is not particularly limited as long as it is a reactive silica compound, and amorphous silica, Na 4 SiO 4 (for example, Na 4 SiO 4 .H 2 O) or the like is used.

(C)リチウム化合物としては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム等のリチウム金属塩、水酸化リチウム、炭酸リチウム等が挙げられるが、炭酸リチウムを使用するのが安価である点で好ましい。   (C) Examples of the lithium compound include lithium metal salts such as lithium fluoride, lithium chloride, lithium bromide and lithium iodide, lithium hydroxide, lithium carbonate, etc., but it is inexpensive to use lithium carbonate. This is preferable.

(A)遷移金属(M)化合物と、(B)ケイ酸化合物と、(C)リチウム化合物を使用するにあたり、(A)遷移金属(M)化合物と(C)リチウム化合物との使用モル比率は、遷移金属(M)化合物とリチウムイオン換算で1:2〜1:3が好ましく、1:2〜1:2.5とするのがより好ましい。また、(C)リチウム化合物及び(B)ケイ酸化合物の使用モル比は、リチウムイオン及びケイ酸イオン換算で2:1〜3:1が好ましく、2:1〜2.5:1とするのがより好ましい。   In using (A) transition metal (M) compound, (B) silicic acid compound, and (C) lithium compound, the molar ratio of (A) transition metal (M) compound and (C) lithium compound used is 1: 2 to 1: 3 are preferable in terms of the transition metal (M) compound and lithium ion, and more preferably 1: 2 to 1: 2.5. The molar ratio of (C) lithium compound and (B) silicate compound used is preferably 2: 1 to 3: 1 in terms of lithium ion and silicate ion, and is preferably 2: 1 to 2.5: 1. Is more preferable.

水の使用量は、原料化合物の溶解性、撹拌の容易性、合成の効率等の点から、ケイ酸化合物のケイ酸イオン1モルに対して10〜50モルが好ましく、さらに13〜30モルが好ましく、特に15〜20モルが好ましい。   The amount of water used is preferably from 10 to 50 mol, more preferably from 13 to 30 mol, based on 1 mol of silicate ion of the silicate compound, from the viewpoints of solubility of the raw material compound, ease of stirring, synthesis efficiency, and the like. Particularly preferred is 15 to 20 mol.

上記各原料の添加順序は特に制限されない。また、混合物スラリー中には、必要により酸化防止剤を添加してもよく、酸化防止剤としては、ハイドロサルファイトナトリウム(Na224)、アンモニア水、亜硫酸ナトリウム等が使用できる。水分散液中の酸化防止剤の含有量は、多量に添加すると遷移金属(M)を含むオリビン型シリケート化合物の生成を抑制してしまうため、遷移金属に対して等モル量以下が好ましく、鉄イオンに対してモル比で0.5以下がさらに好ましい。 The order of adding the respective raw materials is not particularly limited. In addition, an antioxidant may be added to the mixture slurry as necessary, and as the antioxidant, hydrosulfite sodium (Na 2 S 2 O 4 ), aqueous ammonia, sodium sulfite and the like can be used. The content of the antioxidant in the aqueous dispersion is preferably equal to or less than the equimolar amount with respect to the transition metal because it suppresses the formation of the olivine-type silicate compound containing the transition metal (M) when added in a large amount. The molar ratio with respect to ions is more preferably 0.5 or less.

これらの成分の混合物スラリーは、塩基性とするのが副反応を防止し、ケイ酸化合物を溶解するうえで好ましい。混合物スラリーのpHは、塩基性であればよいが、12.0〜13.5であるのが副反応(遷移金属酸化物等の生成)の防止、ケイ酸化合物の溶解性及び反応の進行の点で特に好ましい。該混合物スラリーのpHの調整は、塩基、例えば、水酸化ナトリウムを添加することにより行ってもよいが、ケイ酸化合物としてNa4SiO4を用いるのが特に好ましい。 It is preferable that the mixture slurry of these components is basic in order to prevent side reactions and dissolve the silicate compound. The pH of the mixture slurry may be basic, but it is 12.0 to 13.5 to prevent side reactions (generation of transition metal oxides, etc.), solubility of silicate compounds, and progress of the reaction. Particularly preferred in terms. The pH of the mixture slurry may be adjusted by adding a base such as sodium hydroxide, but it is particularly preferable to use Na 4 SiO 4 as the silicate compound.

本発明方法においては、前記混合物スラリーを、熱源が溶存酸素濃度1.0mg/L以下の水を加熱して製造された飽和蒸気であるオートクレーブ中で水熱反応させる。すなわち、例えば図1に示すように、蒸気式オートクレーブを用いて水熱反応を行う。蒸気式オートクレーブは、飽和蒸気を受け入れて加圧・加熱しているので、蒸気式オートクレーブ内は飽和蒸気で満たされている。飽和蒸気は水を加熱して作られるが、水を加熱するためのボイラーに使用する水は脱酸しておくのが好ましい。この蒸気を製造する水は、溶存酸素濃度1.0mg/L以下であるのが好ましく、溶存酸素濃度0.5mg/L以下であるのが特に好ましい。このような脱酸した水は、例えば水に窒素ガスをバブリングすることや膜分離装置を用いることで容易に製造することができる。   In the method of the present invention, the mixture slurry is hydrothermally reacted in an autoclave, which is a saturated steam produced by heating water having a dissolved oxygen concentration of 1.0 mg / L or less. That is, for example, as shown in FIG. 1, a hydrothermal reaction is performed using a steam autoclave. Since the steam autoclave receives saturated steam and pressurizes and heats, the steam autoclave is filled with saturated steam. Saturated steam is produced by heating water, but it is preferable to deoxidize the water used in the boiler for heating the water. The water for producing the steam preferably has a dissolved oxygen concentration of 1.0 mg / L or less, and particularly preferably has a dissolved oxygen concentration of 0.5 mg / L or less. Such deoxidized water can be easily produced by, for example, bubbling nitrogen gas in water or using a membrane separation device.

飽和蒸気の製造に用いる水が酸素を含まないため、水熱合成時にオートクレーブ内で遷移金属の酸化を防止することができる。また飽和蒸気は、冷却されても水(ドレン水)以外を発生しないので、その過程でも鉄は酸化されない。オートクレーブ内に飽和蒸気を導入して加熱を開始する際、オートクレーブ内の空気を飽和蒸気で押し出す(置換する)操作を行い、オートクレーブ内に残留する酸素をさらに低減することが好ましい。   Since water used for the production of saturated steam does not contain oxygen, oxidation of the transition metal can be prevented in the autoclave during hydrothermal synthesis. Further, even if the saturated steam is cooled, no water (drain water) is generated, so that iron is not oxidized in the process. When the saturated steam is introduced into the autoclave and heating is started, it is preferable to further reduce the oxygen remaining in the autoclave by performing an operation to push out (replace) the air in the autoclave with the saturated steam.

水熱反応は、蒸気式オートクレーブ中で密封して130℃以上に加熱すればよい。より好ましい反応温度は130〜220℃であり、さらに好ましくは140〜200℃である。圧力は、オートクレーブ中密封して蒸気で加熱するのみでよく、理論上1.0〜1.6MPa程度になる。加熱時間は1〜24時間が好ましく、さらに2〜12時間が好ましい。   The hydrothermal reaction may be sealed in a steam autoclave and heated to 130 ° C. or higher. A more preferable reaction temperature is 130 to 220 ° C, and further preferably 140 to 200 ° C. The pressure only needs to be sealed in an autoclave and heated with steam, and is theoretically about 1.0 to 1.6 MPa. The heating time is preferably 1 to 24 hours, more preferably 2 to 12 hours.

水熱反応終了後、生成したオリビン型シリケート化合物をろ過により採取し、洗浄するのが好ましい。洗浄は、ケーキ洗浄機能を有したろ過装置を用いて水で行うのが好ましい。得られた結晶は、必要により乾燥する。乾燥手段は、噴霧乾燥、真空乾燥、凍結乾燥等が挙げられる。   After completion of the hydrothermal reaction, the produced olivine-type silicate compound is preferably collected by filtration and washed. Washing is preferably performed with water using a filtration device having a cake washing function. The obtained crystals are dried if necessary. Examples of the drying means include spray drying, vacuum drying, freeze drying and the like.

得られる遷移金属(M)を含むオリビン型シリケート化合物は、具体的には下記式(1)〜(5)のいずれかで表わされる。なお、かかるオリビン型シリケート化合物にLi2FeSiO4は含まれない。
Li2M'SiO4 ・・・(1)
(式中、M'はNi、Co及びMnから選ばれる1種又は2種以上を示す。)
Lia'FexMnyAlzSiO4 ・・・(2)
(式中、a'、x、y及びzは、1<a'≦2、0≦x<1、0≦y<1、0<z<2/3、a'+2x+2y+3z=4、及びx+y≠0を満たす数を示す。)
Lia"FexMnyz'SiO4 ・・・(3)
(式中、a"、x、y及びz'は、1<a"≦2、0≦x<1、0≦y<1、0<z'<1、a"+2x+2y+(2〜5)z'=4、及びx+y≠0を満たす数を示す。)
Lia"FexMnyZrz"SiO4 ・・・(4)
(式中、a"、x、y及びz"は、1<a"≦2、0≦x<1、0≦y<1、0<z"<0.5、a"+2x+2y+4z"=4、及びx+y≠0を満たす数を示す。)
Li2FexMnyZnqSiO4 ・・・(5)
(式中、x、y及びqは、0≦x<1、0≦y<1、0<q<1、x+y+q=1、及びx+y≠0を満たす数を示す。)
The olivine-type silicate compound containing the obtained transition metal (M) is specifically represented by any of the following formulas (1) to (5). In addition, Li 2 FeSiO 4 is not included in the olivine type silicate compound.
Li 2 M'SiO 4 (1)
(In the formula, M ′ represents one or more selected from Ni, Co and Mn.)
Li a 'Fe x Mn y Al z SiO 4 ··· (2)
(Where, a ′, x, y and z are 1 <a ′ ≦ 2, 0 ≦ x <1, 0 ≦ y <1, 0 <z <2/3, a ′ + 2x + 2y + 3z = 4, and x + y ≠ Indicates a number satisfying 0.)
Li a "Fe x Mn y V z 'SiO 4 ··· (3)
(Where a " , x, y and z 'are 1 <a " ≤2, 0≤x <1, 0≤y <1, 0 <z'<1, a " + 2x + 2y + (2-5) z '= 4 and a number satisfying x + y ≠ 0.)
Li a "Fe x Mn y Zr z" SiO 4 ··· (4)
(Where a " , x, y and z " are 1 <a " ≤2, 0≤x <1, 0≤y <1, 0 <z " <0.5, a " + 2x + 2y + 4z " = 4, And a number satisfying x + y ≠ 0.)
Li 2 Fe x Mn y Zn q SiO 4 ··· (5)
(In the formula, x, y, and q represent numbers satisfying 0 ≦ x <1, 0 ≦ y <1, 0 <q <1, x + y + q = 1, and x + y ≠ 0.)

得られた遷移金属(M)を含むオリビン型シリケート化合物は、カーボン担持し、次いで焼成することにより、リチウムイオン電池用正極材料とすることができる。カーボン担持は、オリビン型シリケート化合物に常法により、グルコース、フルクトース、ポリエチレングリコール、ポリビニルアルコール、カルボキシメチルセルロース、サッカロース、デンプン、デキストリン、クエン酸等の炭素源及び水を添加し、次いで焼成すればよい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。かかる処理によりオリビン型シリケート化合物表面にカーボンが担持された正極材料とすることができる。炭素源の使用量は、Li2FeSiO4 100質量部に対し、炭素源に含まれる炭素として3〜15質量部が好ましく、炭素源に含まれる炭素として5〜10質量部がさらに好ましい。 The obtained olivine-type silicate compound containing a transition metal (M) can be used as a positive electrode material for a lithium ion battery by supporting carbon and then firing it. For carbon support, a carbon source such as glucose, fructose, polyethylene glycol, polyvinyl alcohol, carboxymethylcellulose, saccharose, starch, dextrin, citric acid, and the like may be added to an olivine-type silicate compound and then calcined. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions. By this treatment, a positive electrode material in which carbon is supported on the olivine type silicate compound surface can be obtained. The amount of the carbon source used is preferably 3 to 15 parts by mass as carbon contained in the carbon source and more preferably 5 to 10 parts by mass as carbon contained in the carbon source with respect to 100 parts by mass of Li 2 FeSiO 4 .

本発明方法により得られる遷移金属(M)を含むオリビン型シリケート化合物は、粒径が微細で均一であることから、リチウムイオン二次電池の正極材料として有用である。次に本発明方法で得られたオリビン型シリケート化合物を正極材料として含有するリチウムイオン二次電池について説明する。   The olivine-type silicate compound containing the transition metal (M) obtained by the method of the present invention is useful as a positive electrode material for a lithium ion secondary battery because the particle size is fine and uniform. Next, a lithium ion secondary battery containing the olivine type silicate compound obtained by the method of the present invention as a positive electrode material will be described.

本発明の正極材料を適用できるリチウムイオン二次電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The lithium ion secondary battery to which the positive electrode material of the present invention can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、負極については、リチウムイオンを充電時には吸蔵し、かつ放電時には放出することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。たとえば、リチウム金属、グラファイト又は非晶質炭素等の炭素材料等である。そしてリチウムを電気化学的に吸蔵・放出し得るインターカレート材料で形成された電極、特に炭素材料を用いることが好ましい。   Here, as long as lithium ions can be occluded at the time of charging and released at the time of discharging, the material structure is not particularly limited, and a known material structure can be used. For example, a carbon material such as lithium metal, graphite, or amorphous carbon. It is preferable to use an electrode formed of an intercalating material capable of electrochemically inserting and extracting lithium, particularly a carbon material.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 type of these.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to this.

[実施例1]
LiOH・H2O 420g(10mol)、Na4SiO4・nH2O 140g(5mol)にイオン交換水7500cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水300g(5mol)にイオン交換水7500cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 626g(2.25mol)、MnSO4・5H2O 542g(2.25mol)及びZr(SO42・4H2O 71g(0.25mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液を図1の蒸気加熱式オートクレーブ内に設置した合成容器に投入した。オートクレーブ内は、隔膜分離装置により溶存酸素濃度0.5mg/L未満とした水を加熱して得た飽和蒸気を用いて、150℃で12時間加熱した。加熱中も容器内のスラリーの攪拌を続けた。オートクレーブ内の圧力は、0.48MPaであった。生成した結晶をろ過し、次いで水により洗浄した。洗浄した結晶を60℃1Torrの条件で真空乾燥した。得られた粉末を8.4g分取し、これにグルコース(炭素濃度として10%)及び超純水10cm3を加え、還元雰囲気下で600℃で1hr焼成した。得られた粉末(Li2Fe0.45Mn0.45Zr0.05SiO4 )のSEM像を図2に、XRDチャートを図3に示す。得られたオリビン型シリケート化合物の一次粒子径は40〜70nmの範囲であり、粒子径が均一であった。また、得られた結晶は、Li2Fe0.45Mn0.45Zr0.05SiO4の単一相であった。
[Example 1]
LiOH · H 2 O 420g (10mol ), Na 4 SiO 4 · nH 2 O 140g (5mol) of ion-exchanged water 7500Cm 3 was added to, and stirred for 12 hours to obtain dispersion (A). Also, 7500 cm 3 of ion exchange water was added to 300 g (5 mol) of 28% ammonia water, and after bubbling nitrogen gas, 626 g (2.25 mol) of FeSO 4 .7H 2 O, 542 g (2.25 mol) of MnSO 4 .5H 2 O And 71 g (0.25 mol) of Zr (SO 4 ) 2 .4H 2 O were added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the synthesis container installed in the steam heating type autoclave of FIG. The inside of the autoclave was heated at 150 ° C. for 12 hours using saturated steam obtained by heating water with a dissolved oxygen concentration of less than 0.5 mg / L by a membrane separator. The stirring of the slurry in the container was continued during the heating. The pressure in the autoclave was 0.48 MPa. The formed crystals were filtered and then washed with water. The washed crystal was vacuum dried at 60 ° C. and 1 Torr. 8.4 g of the obtained powder was taken, glucose (10% as carbon concentration) and 10 cm 3 of ultrapure water were added thereto, and calcined at 600 ° C. for 1 hr in a reducing atmosphere. FIG. 2 shows an SEM image of the obtained powder (Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 ), and FIG. 3 shows an XRD chart. The primary particle size of the obtained olivine type silicate compound was in the range of 40 to 70 nm, and the particle size was uniform. Moreover, the obtained crystal was a single phase of Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 .

[比較例1]
実施例1と同様の手順で原料スラリーを調製し、蒸気加熱式オートクレーブ内に設置した合成容器に投入した。次いで溶存酸素低減処理を施さない水(溶存酸素濃度8〜10mg/L)を用いて発生させた飽和蒸気をオートクレーブに導入し、150℃で12時間加熱した。生成した結晶を実施例1と同様の手順で処理を行い、オリビン型シリケート化合物の粉末を得た。得られた粉末(Li2Fe0.45Mn0.45Zr0.05SiO4 )のSEM像を図2に、XRDチャートを図3に示す。得られたオリビン型シリケート化合物は不均一な粒子形状を呈しており、また得られたオリビン型シリケート化合物は不純物相を含んでおり、単一相の合成物は得られなかった。
[Comparative Example 1]
A raw material slurry was prepared in the same procedure as in Example 1, and charged into a synthesis container installed in a steam heating autoclave. Next, saturated steam generated using water not subjected to a dissolved oxygen reduction treatment (dissolved oxygen concentration of 8 to 10 mg / L) was introduced into an autoclave and heated at 150 ° C. for 12 hours. The produced crystal was treated in the same procedure as in Example 1 to obtain an olivine-type silicate compound powder. FIG. 2 shows an SEM image of the obtained powder (Li 2 Fe 0.45 Mn 0.45 Zr 0.05 SiO 4 ), and FIG. 3 shows an XRD chart. The obtained olivine-type silicate compound had a non-uniform particle shape, and the obtained olivine-type silicate compound contained an impurity phase, and a single-phase composition was not obtained.

[実施例2]
LiOH・H2O 420g(10mol)、Na4SiO4・nH2O 140g(5mol)にイオン交換水7500cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水300g(5mol)にイオン交換水7500cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 626g(2.25mol)、MnSO4・5H2O 542g(2.25mol)及びZnSO4・7H2O 131g(0.5mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液を図1の蒸気加熱式オートクレーブ内に設置した合成容器に投入した。オートクレーブ内は、隔膜分離装置により溶存酸素濃度0.5mg/L未満とした水を加熱して得た飽和蒸気を用いて、150℃で12時間加熱した。加熱中も容器内のスラリーの攪拌を続けた。オートクレーブ内の圧力は、0.48MPaであった。生成した結晶をろ過し、次いで水により洗浄した。洗浄した結晶を60℃1Torrの条件で真空乾燥した。得られた粉末を8.4g分取し、これにグルコース(炭素濃度として10%)及び超純水10cm3を加え、還元雰囲気下で600℃で1hr焼成した。得られた粉末(Li2Fe0.45Mn0.45Zn0.05SiO4)のSEM像を図4に、XRDチャートを図5に示す。得られたオリビン型シリケート化合物の粒子径は60〜90nmの範囲であり、粒子径が均一であった。また、得られた結晶は、Li2Fe0.45Mn0.45Zn0.05SiO4の単一相であった。
[Example 2]
LiOH · H 2 O 420g (10mol ), Na 4 SiO 4 · nH 2 O 140g (5mol) of ion-exchanged water 7500Cm 3 was added to, and stirred for 12 hours to obtain dispersion (A). Also, 7500 cm 3 of ion exchange water was added to 300 g (5 mol) of 28% ammonia water, and after bubbling nitrogen gas, 626 g (2.25 mol) of FeSO 4 .7H 2 O, 542 g (2.25 mol) of MnSO 4 .5H 2 O And 131 g (0.5 mol) of ZnSO 4 .7H 2 O was added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the synthesis container installed in the steam heating type autoclave of FIG. The inside of the autoclave was heated at 150 ° C. for 12 hours using saturated steam obtained by heating water with a dissolved oxygen concentration of less than 0.5 mg / L by a membrane separator. The stirring of the slurry in the container was continued during the heating. The pressure in the autoclave was 0.48 MPa. The formed crystals were filtered and then washed with water. The washed crystal was vacuum dried at 60 ° C. and 1 Torr. 8.4 g of the obtained powder was taken, glucose (10% as carbon concentration) and 10 cm 3 of ultrapure water were added thereto, and calcined at 600 ° C. for 1 hr in a reducing atmosphere. FIG. 4 shows an SEM image of the obtained powder (Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 ), and FIG. 5 shows an XRD chart. The obtained olivine-type silicate compound had a particle size in the range of 60 to 90 nm and a uniform particle size. The obtained crystal was a single phase of Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 .

[比較例2]
実施例2と同様の手順で原料スラリーを調製し、蒸気加熱式オートクレーブ内に設置した合成容器に投入した。次いで溶存酸素低減処理を施さない水(溶存酸素濃度8〜10mg/L)を用いて発生させた飽和蒸気をオートクレーブに導入し、150℃で12時間加熱した。生成した結晶を実施例2と同様の手順で処理を行い、オリビン型シリケート化合物の粉末を得た。得られた粉末(Li2Fe0.45Mn0.45Zn0.05SiO4 )のSEM像を図4に、XRDチャートを図5に示す。得られたオリビン型シリケート化合物は不均一な粒子形状を呈しており、また得られたオリビン型シリケート化合物は不純物相を含んでおり、単一相の合成物は得られなかった。
[Comparative Example 2]
A raw material slurry was prepared in the same procedure as in Example 2, and charged into a synthesis container installed in a steam heating autoclave. Next, saturated steam generated using water not subjected to a dissolved oxygen reduction treatment (dissolved oxygen concentration of 8 to 10 mg / L) was introduced into an autoclave and heated at 150 ° C. for 12 hours. The produced crystal was treated in the same procedure as in Example 2 to obtain an olivine-type silicate compound powder. FIG. 4 shows an SEM image of the obtained powder (Li 2 Fe 0.45 Mn 0.45 Zn 0.05 SiO 4 ), and FIG. 5 shows an XRD chart. The obtained olivine-type silicate compound had a non-uniform particle shape, and the obtained olivine-type silicate compound contained an impurity phase, and a single-phase composition was not obtained.

[実施例3]
LiOH・H2O 420g(10mol)、Na4SiO4・nH2O 140g(5mol)、及びAl(OH)3 25.7g(0.33mol)にイオン交換水7500cm3を加え、12時間撹拌し、分散液(A)を得た。また28%アンモニア水300g(5mol)にイオン交換水7500cm3を加え、窒素ガスをバブリングした後、FeSO4・7H2O 1390g(5mol)、及びMnSO4・5H2O 844g(3.5mol)を添加して0.5時間撹拌し、分散液(B)を得た。次いで、分散液(A)と分散液(B)とを混合し、窒素ガスをバブリングしながら10分間攪拌した。得られた混合液を図1の蒸気加熱式オートクレーブ内に設置した合成容器に投入した。オートクレーブ内は、隔膜分離装置により溶存酸素濃度0.5mg/L未満とした水を加熱して得た飽和蒸気を用いて、170℃で9時間加熱した。加熱中も容器内のスラリーの攪拌を続けた。オートクレーブの内圧は0.8MPaであった。生成した結晶をろ過し、次いで水により洗浄した。洗浄した結晶を60℃1Torrの条件で真空乾燥した。得られた粉末を8.4g分取し、これにグルコース(炭素濃度として10%)及び超純水10cm3を加え、還元雰囲気下で600℃で1hr焼成した。得られた粉末(Li2Fe0.3Mn0.7Al0.066SiO4)のSEM像を図6に、XRDチャートを図7に示す。得られたオリビン型シリケート化合物の粒子径は50〜80nmの範囲であり、粒子径が均一であった。また、得られた結晶は、Li2Fe0.3Mn0.7Al0.066SiO4の単一相であった。
[Example 3]
LiOH · H 2 O 420g (10mol ), Na 4 SiO 4 · nH 2 O 140g (5mol), and Al (OH) 3 of ion-exchanged water 7500Cm 3 was added to 25.7 g (0.33 mol), and stirred for 12 hours A dispersion (A) was obtained. Also, 7500 cm 3 of ion exchange water was added to 300 g (5 mol) of 28% ammonia water, and after bubbling nitrogen gas, 1390 g (5 mol) of FeSO 4 .7H 2 O and 844 g (3.5 mol) of MnSO 4 .5H 2 O were added. The mixture was added and stirred for 0.5 hour to obtain a dispersion (B). Next, the dispersion (A) and the dispersion (B) were mixed and stirred for 10 minutes while bubbling nitrogen gas. The obtained liquid mixture was thrown into the synthesis container installed in the steam heating type autoclave of FIG. The inside of the autoclave was heated at 170 ° C. for 9 hours using saturated steam obtained by heating water having a dissolved oxygen concentration of less than 0.5 mg / L using a membrane separator. The stirring of the slurry in the container was continued during the heating. The internal pressure of the autoclave was 0.8 MPa. The formed crystals were filtered and then washed with water. The washed crystal was vacuum dried at 60 ° C. and 1 Torr. 8.4 g of the obtained powder was taken, glucose (10% as carbon concentration) and 10 cm 3 of ultrapure water were added thereto, and calcined at 600 ° C. for 1 hr in a reducing atmosphere. FIG. 6 shows an SEM image of the obtained powder (Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 ), and FIG. 7 shows an XRD chart. The obtained olivine-type silicate compound had a particle size in the range of 50 to 80 nm and a uniform particle size. The obtained crystal was a single phase of Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 .

[比較例3]
実施例1と同様の手順で原料スラリーを調製し、蒸気加熱式オートクレーブ内に設置した合成容器に投入した。次いで溶存酸素低減処理を施さない水(溶存酸素濃度8〜10mg/L)を用いて発生させた飽和蒸気をオートクレーブに導入し、170℃で9時間加熱した。生成した結晶を実施例3と同様の手順で処理を行い、オリビン型シリケート化合物の粉末を得た。得られた粉末(Li2Fe0.3Mn0.7Al0.066SiO4)のSEM像を図6に、XRDチャートを図7に示す。得られたオリビン型シリケート化合物は不均一な粒子形状を呈しており、また得られたオリビン型シリケート化合物は不純物相を含んでおり、単一相の合成物は得られなかった。
[Comparative Example 3]
A raw material slurry was prepared in the same procedure as in Example 1, and charged into a synthesis container installed in a steam heating autoclave. Next, saturated steam generated using water not subjected to the dissolved oxygen reduction treatment (dissolved oxygen concentration of 8 to 10 mg / L) was introduced into the autoclave and heated at 170 ° C. for 9 hours. The produced crystal was treated in the same procedure as in Example 3 to obtain an olivine-type silicate compound powder. FIG. 6 shows an SEM image of the obtained powder (Li 2 Fe 0.3 Mn 0.7 Al 0.066 SiO 4 ), and FIG. 7 shows an XRD chart. The obtained olivine-type silicate compound had a non-uniform particle shape, and the obtained olivine-type silicate compound contained an impurity phase, and a single-phase composition was not obtained.

[実施例4、比較例4]
実施例1、比較例1で得られた材料を各々正極材料に用いて、実施例4、比較例4の各電池を作製した。
実施例1及び比較例1で得られた焼成物、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比75:15:10の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、正極スラリーを調製した。正極スラリーを厚さ20μmのアルミニウム箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、正極とした。
次いで、上記の正極を用いてコイン型リチウムイオン二次電池を構築した。負極には、φ15mmに打ち抜いたリチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。
製造したリチウムイオン二次電池を用いて定電流密度での充放電試験を行った。このときの充電条件は電流0.1CA(33mAg)、電圧4.5Vの定電流充電とし、放電条件を電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
充放電試験の結果の中から放電特性を図8に示す。その結果、実施例1の正極材料を用いた実施例4の電池は優れた充放電容量を示したが、比較例1の材料を用いた比較例4の電池の充放電容量は十分でなかった。
[Example 4, Comparative Example 4]
Using the materials obtained in Example 1 and Comparative Example 1 as positive electrode materials, the batteries of Example 4 and Comparative Example 4 were produced.
The fired product obtained in Example 1 and Comparative Example 1, ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a mixing ratio of 75:15:10, and this was mixed with N-methyl. -2-Pyrrolidone was added and sufficiently kneaded to prepare a positive electrode slurry. The positive electrode slurry was applied to a current collector made of an aluminum foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a positive electrode.
Next, a coin-type lithium ion secondary battery was constructed using the positive electrode. A lithium foil punched to φ15 mm was used for the negative electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).
A charge / discharge test at a constant current density was performed using the manufactured lithium ion secondary battery. The charging conditions at this time were constant current charging with a current of 0.1 CA (33 mAg) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The discharge characteristics are shown in FIG. 8 from the results of the charge / discharge test. As a result, the battery of Example 4 using the positive electrode material of Example 1 showed excellent charge / discharge capacity, but the charge / discharge capacity of the battery of Comparative Example 4 using the material of Comparative Example 1 was not sufficient. .

[実施例5、比較例5]
実施例2、比較例2で得られた材料を正極材料に用いて実施例4と同様にして、実施例5、比較例5の各電池を作製した。充電条件を、電流0.1CA(33mAg)、電圧4.5Vの定電流充電とし、放電条件を電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
充放電試験の結果の中から放電特性を図9に示す。その結果、実施例2の正極材料を用いた実施例5の電池は優れた充放電容量を示したが、比較例2の材料を用いた比較例5の電池の充放電容量は十分でなかった。
[Example 5, Comparative Example 5]
The batteries obtained in Example 5 and Comparative Example 5 were fabricated in the same manner as in Example 4 using the materials obtained in Example 2 and Comparative Example 2 as the positive electrode material. The charging conditions were constant current charging with a current of 0.1 CA (33 mAg) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
FIG. 9 shows the discharge characteristics from the results of the charge / discharge test. As a result, the battery of Example 5 using the positive electrode material of Example 2 showed excellent charge / discharge capacity, but the charge / discharge capacity of the battery of Comparative Example 5 using the material of Comparative Example 2 was not sufficient. .

[実施例6、比較例6]
実施例3、比較例3で得られた材料を正極材料に用いて実施例4と同様にして、実施例5、比較例5の各電池を作製した。充電条件を、電流0.1CA(33mAg)、電圧4.5Vの定電流充電とし、放電条件を電流0.1CA、終止電圧1.5Vの定電流放電とした。温度は全て30℃とした。
充放電試験の結果の中から放電特性を図10に示す。その結果、実施例2の正極材料を用いた実施例5の電池は優れた充放電容量を示したが、比較例2の材料を用いた比較例5の電池の充放電容量は十分でなかった。
[Example 6, Comparative Example 6]
The batteries obtained in Example 5 and Comparative Example 5 were fabricated in the same manner as in Example 4 using the materials obtained in Example 3 and Comparative Example 3 as the positive electrode material. The charging conditions were constant current charging with a current of 0.1 CA (33 mAg) and a voltage of 4.5 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 1.5 V. All temperatures were 30 ° C.
The discharge characteristics are shown in FIG. 10 from the results of the charge / discharge test. As a result, the battery of Example 5 using the positive electrode material of Example 2 showed excellent charge / discharge capacity, but the charge / discharge capacity of the battery of Comparative Example 5 using the material of Comparative Example 2 was not sufficient. .

Claims (4)

(A)遷移金属(M)化合物(Mは、Fe、Ni、Co、Al、Zn、V、Zr又はMnを示す)、(B)ケイ酸化合物、(C)リチウム化合物、及び(D)水を含有する混合物スラリーを、熱源が溶存酸素濃度1.0mg/L以下の水を加熱して製造された飽和蒸気である蒸気式オートクレーブ内で水熱反応させることを特徴とする、遷移金属(M)を含むケイ酸鉄リチウム以外のオリビン型シリケート化合物の製造法。   (A) transition metal (M) compound (M represents Fe, Ni, Co, Al, Zn, V, Zr or Mn), (B) silicate compound, (C) lithium compound, and (D) water A transition metal (M), characterized in that a mixture slurry containing a hydrothermal reaction in a steam autoclave which is a saturated steam produced by heating water having a dissolved oxygen concentration of 1.0 mg / L or less as a heat source. ) Containing olivine-type silicate compounds other than lithium iron silicate. 前記混合スラリー中の溶存酸素濃度が1.0mg/L以下である請求項1記載の製造法。   The manufacturing method according to claim 1 whose dissolved oxygen concentration in said mixed slurry is 1.0 mg / L or less. 水熱反応が、130〜220℃の条件である請求項1又は2記載の製造法。   The method according to claim 1 or 2, wherein the hydrothermal reaction is performed under conditions of 130 to 220 ° C. 請求項1〜3のいずれか1項記載の製造法により得られた遷移金属(M)を含むケイ酸鉄リチウム以外のオリビン型シリケート化合物を正極材料として含有するリチウムイオン二次電池。   A lithium ion secondary battery containing, as a positive electrode material, an olivine-type silicate compound other than lithium iron silicate containing the transition metal (M) obtained by the production method according to claim 1.
JP2012275447A 2012-12-18 2012-12-18 Process for producing olivine-type silicate compounds containing transition metals Expired - Fee Related JP5928954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012275447A JP5928954B2 (en) 2012-12-18 2012-12-18 Process for producing olivine-type silicate compounds containing transition metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012275447A JP5928954B2 (en) 2012-12-18 2012-12-18 Process for producing olivine-type silicate compounds containing transition metals

Publications (2)

Publication Number Publication Date
JP2014118329A true JP2014118329A (en) 2014-06-30
JP5928954B2 JP5928954B2 (en) 2016-06-01

Family

ID=51173496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012275447A Expired - Fee Related JP5928954B2 (en) 2012-12-18 2012-12-18 Process for producing olivine-type silicate compounds containing transition metals

Country Status (1)

Country Link
JP (1) JP5928954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994793A (en) * 2017-12-29 2019-07-09 山东锂想新能源科技有限公司 A kind of separation method of lithium battery collector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314119A (en) * 1986-07-04 1988-01-21 Toyo Contact Lens Co Ltd Material for soft contact lens
JPH02116610A (en) * 1988-10-26 1990-05-01 Asahi Keisan Kogyo Kk Process and apparatus for producing calcium silicate filament
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery
JP2004509058A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for synthesizing a substance mainly composed of LIXM1-YM'Y (XO4) N
JP2012193088A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2012193087A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314119A (en) * 1986-07-04 1988-01-21 Toyo Contact Lens Co Ltd Material for soft contact lens
JPH02116610A (en) * 1988-10-26 1990-05-01 Asahi Keisan Kogyo Kk Process and apparatus for producing calcium silicate filament
JP2004509058A (en) * 2000-09-26 2004-03-25 ハイドロ−ケベック Method for synthesizing a substance mainly composed of LIXM1-YM'Y (XO4) N
JP2002151082A (en) * 2000-11-10 2002-05-24 Kansai Research Institute Iron phosphate lithium, its manufacturing method, and secondary battery using it
JP2004095385A (en) * 2002-08-30 2004-03-25 Sumitomo Osaka Cement Co Ltd Method of manufacturing positive electrode material for lithium ion battery and lithium ion battery
JP2012193088A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery
JP2012193087A (en) * 2011-03-17 2012-10-11 Taiheiyo Cement Corp Method for manufacturing positive electrode active material for lithium-ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994793A (en) * 2017-12-29 2019-07-09 山东锂想新能源科技有限公司 A kind of separation method of lithium battery collector

Also Published As

Publication number Publication date
JP5928954B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
JP2012193088A (en) Method for manufacturing positive electrode active material for lithium-ion battery
JP5531298B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5531304B2 (en) Method for producing positive electrode active material for secondary battery
JP5725456B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP5509423B2 (en) Method for producing zirconium-containing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP5611167B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5765811B2 (en) Method for producing lithium iron phosphate positive electrode active material
JP6180070B2 (en) Method for producing lithium iron phosphate
JP5709136B2 (en) Method for producing lithium iron phosphate and method for producing lithium iron phosphate-based positive electrode active material
JP5765810B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5511873B2 (en) Potassium tetratitanate and hydrated tetratitanate compounds
JP5649068B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5928954B2 (en) Process for producing olivine-type silicate compounds containing transition metals
JP5546971B2 (en) Lithium titanium composite oxide, method for producing the same, and lithium ion secondary battery using the same
JP5521180B2 (en) Method for producing lithium iron phosphate or lithium iron silicate
JP5928953B2 (en) Process for producing olivine-type silicate compounds containing transition metals
JP5649067B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5759968B2 (en) Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5937151B2 (en) Zirconium-containing olivine-type positive electrode material and method for producing the same
JP5825573B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5649069B2 (en) Cathode active material for lithium ion battery and method for producing the same
JP5531247B2 (en) Method for producing lithium iron phosphate or lithium iron silicate
JP5665788B2 (en) Method for producing positive electrode active material precursor for secondary battery
JP5673953B2 (en) Cathode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160415

R150 Certificate of patent or registration of utility model

Ref document number: 5928954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees