JP2014117106A - Conduction heat dissipation structure of power supply device - Google Patents

Conduction heat dissipation structure of power supply device Download PDF

Info

Publication number
JP2014117106A
JP2014117106A JP2012270859A JP2012270859A JP2014117106A JP 2014117106 A JP2014117106 A JP 2014117106A JP 2012270859 A JP2012270859 A JP 2012270859A JP 2012270859 A JP2012270859 A JP 2012270859A JP 2014117106 A JP2014117106 A JP 2014117106A
Authority
JP
Japan
Prior art keywords
substrate
heat
power supply
generating component
circuit pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012270859A
Other languages
Japanese (ja)
Inventor
Izumi Kumada
泉実 熊田
Isato Nakatsubo
勇人 中坪
Yoshiaki Shimizu
義明 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosel Co Ltd
Original Assignee
Cosel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosel Co Ltd filed Critical Cosel Co Ltd
Priority to JP2012270859A priority Critical patent/JP2014117106A/en
Publication of JP2014117106A publication Critical patent/JP2014117106A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow for thermal separation, without impairing continuity of a circuit pattern assuming a single substrate, by arranging a plurality of substrates separately in the vertical direction, thereby separating high heat-generating components and low heat-generating components to different substrates.SOLUTION: A first circuit pattern on which low heat-generating components, such as an electrolytic capacitor C14, excepting high heat-generating components in a power supply circuit, are arranged is formed on a first substrate 10, and a second substrate 12 is arranged to face the first substrate 10 separately therefrom. A second circuit pattern on which high heat-generating components, such as a switching element Q, are arranged separately from the first circuit pattern is formed on the second substrate 12. Connection pin members 18a-18m are arranged between the first substrate 10 and second substrate 12, and the second circuit pattern of the second substrate 12 on which high heat-generating components are arranged is connected electrically with the first circuit pattern of the first substrate 10 on which only the low heat-generating components are arranged.

Description

本発明は、パワー半導体などの発熱部品と電解コンデンサなどの非発熱部品で回路を構成する電源装置の伝導放熱構造に関する。
The present invention relates to a conduction heat dissipation structure of a power supply device in which a circuit is constituted by a heat generating component such as a power semiconductor and a non-heat generating component such as an electrolytic capacitor.

従来、商用交流電力を所定電圧の直流電力に変換して出力するスイッチング電源装置にあっては、単一の基板上に、電源回路を構成するMOS−FETやダイオードなどのパワー半導体、入力フィルタ、パワー半導体用制御回路、電解コンデンサなどを実装している。   Conventionally, in a switching power supply device that converts commercial AC power into DC power of a predetermined voltage and outputs it, on a single substrate, a power semiconductor such as a MOS-FET or a diode that constitutes a power circuit, an input filter, Power semiconductor control circuit, electrolytic capacitor, etc. are mounted.

電源回路に使用するパワー半導体は高熱を発生する高発熱部品であり、一方、入力フィルタ、パワー半導体用制御回路、電解コンデンサなどはそれ自身では発熱の少ない低発熱部品であり、同じ基板上に実装した場合、高発熱部品の熱が基板全体に伝達され、低発熱部品の放熱が阻害され、例えば寿命部品である電解コンデンサの温度が上昇すると、寿命が短くなる問題がある。   Power semiconductors used in power circuits are high heat generating components that generate high heat, while input filters, power semiconductor control circuits, electrolytic capacitors, etc. are low heat generating components that themselves generate little heat and are mounted on the same board. In such a case, the heat of the high heat-generating component is transmitted to the entire substrate, and the heat dissipation of the low heat-generating component is obstructed. For example, when the temperature of the electrolytic capacitor that is a life component rises, the life is shortened.

このような高発熱部品の発熱による低発熱部品の放熱阻害を抑制するため例えば図6に示す伝導放熱構造(冷却構造)が提案されている。   In order to suppress the heat radiation inhibition of the low heat-generating component due to the heat generated by such a high heat-generating component, for example, a conduction heat radiation structure (cooling structure) shown in FIG. 6 has been proposed.

図6において、105は高熱伝導性の基板であり、基板105の上面には、高発熱部品103を含む高発熱回路Mが形成されている。106は低熱伝導性の基板であり、基板106の上面には、低発熱部品(非発熱部品)104を含む低発熱回路Nが形成されている。金属ケース101の底板には高台部111が設けられ、高台部111の周囲には低台部112が形成されている。   In FIG. 6, reference numeral 105 denotes a highly heat conductive substrate, and a high heat generation circuit M including a high heat generation component 103 is formed on the upper surface of the substrate 105. Reference numeral 106 denotes a low heat conductive substrate, and a low heat generation circuit N including a low heat generation component (non-heat generation component) 104 is formed on the upper surface of the substrate 106. The bottom plate of the metal case 101 is provided with a high platform 111, and a low platform 112 is formed around the high platform 111.

金属ケース101の金属カバー102には、高台部111に対向して凹部121を設け、凹部121の底板部には基板105に実装した高発熱部品103の直上にそれぞれ孔122を穿孔してある。基板105は金属ケース101の高台部111の上面に密着させている。基板106は金属ケース101の低台部112の表面に密着させている。金属カバー102の凹部121に高熱伝導性樹脂130をポッテングして充填することで孔122を経て基板105側に流出させ、高発熱部品103の表面に被着した状態で硬化している。   The metal cover 102 of the metal case 101 is provided with a recess 121 facing the pedestal 111, and holes 122 are formed in the bottom plate portion of the recess 121 directly above the high heat generating component 103 mounted on the substrate 105. The substrate 105 is in close contact with the upper surface of the hill portion 111 of the metal case 101. The substrate 106 is brought into close contact with the surface of the lower base 112 of the metal case 101. By filling the concave portion 121 of the metal cover 102 with the high thermal conductive resin 130, it flows out to the substrate 105 side through the hole 122, and is cured in a state of being attached to the surface of the high heat generating component 103.

このような冷却構造によれば、高発熱部品103の熱は、高熱伝導性樹脂130を介して金属カバー102に伝達され、金属カバー102から外部に放出されると共に、基板105を介して金属ケース101の高台部111にも伝達され、金属ケース101から外部に放出され、このため基板105の高発熱部品103の熱が基板106に拡散することが殆どなく、低発熱部品104の放熱を妨げることがない。
また、高台部111、低台部112、金属ケース101と接触するように放熱器を取り付けることで高発熱回路Mの発熱を効率よく装置外へ放熱することができる。
According to such a cooling structure, the heat of the high heat generating component 103 is transmitted to the metal cover 102 via the high thermal conductive resin 130 and released to the outside from the metal cover 102, and the metal case via the substrate 105. 101 is also transmitted to the hill part 111 of the board 101 and released to the outside from the metal case 101. Therefore, the heat of the high heat generating component 103 of the substrate 105 hardly diffuses to the substrate 106, thereby preventing the heat dissipation of the low heat generating component 104. There is no.
Further, by attaching a radiator so as to be in contact with the high platform 111, the low platform 112, and the metal case 101, the heat generated by the high heat generation circuit M can be efficiently radiated to the outside of the apparatus.

特開平5−47968号公報JP-A-5-47968

しかしながら、このような放熱構造を備えた従来の電源装置にあっては、高発熱部品103を実装した基板105と低発熱部品104を実装した基板106を分離しているが、共に同じ金属ケース101の底面に実装しており、高発熱部品104からの熱は金属ケース101に拡散して低発熱部品104を加熱することとなり、また高発熱部品103と低発熱部品104は、金属ケース101と金属カバー102で覆われた同じ空間に位置しているため、高発熱部品103からの輻射熱を受けて加熱される。このため高発熱部品103の熱から低発熱部品104は十分に隔離できておらず、例えば低発熱部品として電解コンデンサを搭載した場合には、寿命部品である電解コンデンサの温度が上昇し、長寿命化することができない問題がある。   However, in the conventional power supply device having such a heat dissipation structure, the substrate 105 on which the high heat generating component 103 is mounted and the substrate 106 on which the low heat generating component 104 is mounted are separated. The heat from the high heat generating component 104 is diffused into the metal case 101 to heat the low heat generating component 104, and the high heat generating component 103 and the low heat generating component 104 are connected to the metal case 101 and the metal. Since it is located in the same space covered with the cover 102, it is heated by receiving radiant heat from the high heat-generating component 103. For this reason, the low heat-generating component 104 is not sufficiently isolated from the heat of the high heat-generating component 103. For example, when an electrolytic capacitor is mounted as a low heat-generating component, the temperature of the electrolytic capacitor, which is a life component, rises, resulting in a long service life. There is a problem that cannot be made.

このような問題を解決するためには、高発熱部品103を実装した基板105と、低発熱部品104を実装した基板106を、例えば上下に分離して配置する放熱構造が考えられる。   In order to solve such a problem, a heat dissipating structure is conceivable in which the substrate 105 on which the high heat generating component 103 is mounted and the substrate 106 on which the low heat generating component 104 is mounted are separated from each other, for example.

しかしながら、高発熱部品と低発熱部品は、基本的に単一の基板上に回路部品を実装することを前提に回路パターンを基板上に形成して配置しており、図6のように、2枚の基板105,106に分けて段差をもって分離した場合、分離した基板は二次元的な配置の範疇にあり、分離部分に配線を使用して接続することで、回路パターンを単一基板上に形成した場合との差は殆どなく、単一基板を想定した回路パターンの連続性を損なうことない。   However, the high heat generating component and the low heat generating component are basically arranged by forming a circuit pattern on the substrate on the assumption that the circuit component is mounted on a single substrate. When separated into a plurality of substrates 105 and 106 with a step, the separated substrates are in the category of two-dimensional arrangement, and the circuit pattern can be placed on a single substrate by connecting the separated portions using wiring. There is almost no difference from the case where it is formed, and the continuity of the circuit pattern assuming a single substrate is not impaired.

しかし、2枚の基板を上下に分離して配置する放熱構造とした場合には、回路部品が二次元ではなく、三次元にも配置されるため、単一基板上に形成することを前提とした回路パターンを、回路部品を含めてどのように分離し、且つ分離した後にどのように電気的な接続を3次元で行うかが課題として残っており、その具体的な解決が必要となる。   However, in the case of a heat dissipation structure in which two substrates are separated from each other, circuit components are arranged in three dimensions instead of two dimensions, so it is assumed that they are formed on a single substrate. How to separate the circuit pattern including the circuit components and how to perform electrical connection in three dimensions after the separation remains as a problem, and a specific solution is required.

本発明は、単一基板を想定した回路パターンの連続性を損なうことなく、複数の基板を上下方向に分離配置して高発熱部品と低発熱負部品を別々の基板に分けて熱的な隔離を可能とする電源装置の伝導放熱構造を提供することを目的とする。
The present invention provides thermal isolation by separating a plurality of substrates in the vertical direction and separating high heat-generating components and low heat-generating negative components on separate substrates without impairing the continuity of the circuit pattern assuming a single substrate. It is an object of the present invention to provide a conductive heat dissipation structure for a power supply device that enables the above.

(スイッチング電源装置)
本発明は、所定の高発熱部品と所定の低発熱部品を含む部品で電源回路を構成した電源装置の伝導放熱構造に於いて、
電源回路における高発熱部品を除く低発熱部品を配置する第1回路パターンを形成して低発熱部品のみを配置した第1基板と、
第1基板に相対して分離配置され、第1回路パターンから分離した高発熱部品を配置する1又は複数の第2回路パターンを形成して高発熱部品を配置した第2基板と、
第1基板と第2基板との間に配置され、第1基板の前記低発熱部品のみを配置した第1回路パターンに、第2基板の前記高発熱部品を配置した第2回路パターンを電気的に接続する接続部材と、
を備えたことを特徴とする。
(Switching power supply)
The present invention relates to a conductive heat dissipation structure of a power supply device in which a power supply circuit is configured with parts including a predetermined high heat generating component and a predetermined low heat generating component.
A first substrate on which only a low heat-generating component is formed by forming a first circuit pattern in which low-heat generating components excluding high heat generating components in a power supply circuit are disposed;
A second substrate on which one or a plurality of second circuit patterns are arranged to dispose a high heat-generating component separated from the first circuit pattern and disposed on the first circuit pattern;
A second circuit pattern in which the high heat-generating component of the second substrate is arranged electrically is arranged on the first circuit pattern that is arranged between the first substrate and the second substrate and in which only the low heat-generating component of the first substrate is arranged. A connecting member to be connected to,
It is provided with.

(基板の熱伝導率)
第1基板は、低誘電率もつ基板であり、第2基板に相対する面の反対面又は両面に低発熱部品のみを実装し、
第2基板は、低誘電率且つ高熱伝導率をもつ基板であり、第1基板に相対した面に発熱部品を実装すると共に反対面に放熱面とする。
(Thermal conductivity of the substrate)
The first substrate is a substrate having a low dielectric constant, and only the low heat-generating component is mounted on the opposite surface or both surfaces of the second substrate.
The second substrate is a substrate having a low dielectric constant and a high thermal conductivity, and a heat-generating component is mounted on a surface facing the first substrate and a heat radiating surface is provided on the opposite surface.

(高発熱部品と低発熱部品)
第1基板は、低発熱部品として、少なくとも電解コンデンサ、入力フィルタ、パワー半導体用制御回路を配置し、
第2基板は、高発熱部品として、少なくともパワー半導体を配置する。
(High heat generation parts and low heat generation parts)
The first substrate has at least an electrolytic capacitor, an input filter, and a power semiconductor control circuit as low heat generation components,
On the second substrate, at least a power semiconductor is disposed as a highly heat-generating component.

(接続部材)
第1基板と第2基板を接続する接続部材は、電気導電性の高い金属材料で作られたピン部材又はバー部材である。
(Connecting member)
The connection member that connects the first substrate and the second substrate is a pin member or a bar member made of a metal material having high electrical conductivity.

(基板サイズの規格化)
第1基板及び第2基板は、少なくとも一方がインチ寸法で規格化された所定の矩形サイズを有し、他方は上記のインチ寸法で規格化された所定の矩形サイズより小型、もしくは同等の外形を有する。
(Standardization of board size)
At least one of the first substrate and the second substrate has a predetermined rectangular size standardized by inch dimensions, and the other has a smaller or equivalent outer shape than the predetermined rectangular size standardized by the inch dimensions. Have.

(第3基板の配置)
第1基板に相対して第2基板の反対側に第3基板を分離配置し、
第3基板に第1回路パターンから分離した高発熱部品を配置する第3回路パターンを形成し、
第1基板の第1回路パターンに、接続部材により、第3基板の高発熱部品を配置した第3回路パターンを電気的に接続する。
(Disposition of the third substrate)
Separating and arranging a third substrate on the opposite side of the second substrate relative to the first substrate;
Forming a third circuit pattern for disposing a high heat generating component separated from the first circuit pattern on the third substrate;
A third circuit pattern in which high heat-generating components of the third substrate are arranged is electrically connected to the first circuit pattern of the first substrate by a connecting member.

(基本的な効果)
本発明による電源装置の伝導放熱構造は、第1基板に、電源回路における高発熱部品を除く低発熱部品を配置接続する第1回路パターンを形成して低発熱部品のみを配置し、第2基板を第1基板に相対して分離配置し、第2基板には、第1回路パターンから分離した高発熱部品を配置接続する第2回路パターンを形成して高発熱部品を配置し、第1基板と第2基板との間に接続部材を配置して第1基板の第1回路パターンに、第2基板の第2回路パターンを電気的に接続するようにしたため、高発熱部品の熱は実装した第2基板に伝導して放熱され、空間を介して分離配置している第1基板に伝導することはなく、第2基板に実装している発熱部品に相対する第1基板の反対面に実装している低発熱部品については、高発熱部品からの輻射熱も第1基板で遮られて到達せず、第2基板と第1基板の間の雰囲気も発熱部品の熱で加熱されるが、同様に第1基板に遮られてその反対面に実装している低発熱部品には到達せず、低発熱部品を高発熱部品から熱的に隔離すると共に高発熱部品の放熱が十分に行われ、低発熱部品として例えば電解コンデンサを実装していた場合には、電解コンデンサを低温度に保つことを可能とし、電解コンデンサの長寿命化とパワー半導体などの高発熱部品の伝導放熱の効率化を両立することができる。
(Basic effect)
In the conductive heat dissipation structure of the power supply device according to the present invention, the first circuit pattern for arranging and connecting the low heat generation components except the high heat generation components in the power supply circuit is formed on the first substrate, and only the low heat generation components are arranged. Are arranged separately from the first substrate, and a second circuit pattern for arranging and connecting the high heat generating components separated from the first circuit pattern is formed on the second substrate to arrange the high heat generating components. Since the connecting member is disposed between the first substrate and the second substrate so that the second circuit pattern of the second substrate is electrically connected to the first circuit pattern of the first substrate, the heat of the high heat generating component is mounted. Conducted to the second substrate and dissipated, and not conducted to the first substrate separated through the space, but mounted on the opposite surface of the first substrate relative to the heat generating component mounted on the second substrate For low-heat-generating parts, radiant heat from high-heat-generating parts Although it is blocked by the first substrate and does not reach, the atmosphere between the second substrate and the first substrate is also heated by the heat of the heat-generating component, but is also blocked by the first substrate and mounted on the opposite surface. When the low heat-generating component is not reached, the low heat-generating component is thermally isolated from the high heat-generating component, and the high heat-generating component is sufficiently radiated. It is possible to keep the electrolytic capacitor at a low temperature, and it is possible to achieve both the long life of the electrolytic capacitor and the efficiency of conduction heat dissipation of high heat-generating components such as power semiconductors.

(基板の熱伝導率による効果)
また、第1基板は、低誘電率もつ基板であり、第2基板に相対する面の反対面又は両面に低発熱部品のみを実装し、第2基板は、低誘電率且つ高熱伝導率をもつ基板であり、第1基板に相対した面に高発熱部品を実装すると共に反対面を放熱面としたため、高発熱部品の熱に対する低発熱部品の熱的な隔離を完全にすると共に、高発熱部品の伝導放熱を確実に行うことを可能とする。
(Effect due to thermal conductivity of substrate)
Further, the first substrate is a substrate having a low dielectric constant, and only the low heat-generating component is mounted on the opposite surface or both surfaces of the surface facing the second substrate, and the second substrate has a low dielectric constant and a high thermal conductivity. Since the high heat-generating component is mounted on the surface facing the first substrate and the opposite surface is used as the heat dissipation surface, the thermal isolation of the low heat generation component with respect to the heat of the high heat generation component is completed and the high heat generation component It is possible to reliably conduct heat dissipation.

(高発熱部品と低発熱部品の具体例に対する効果)
第1基板は、低発熱部品として、少なくとも電解コンデンサ、入力フィルタ、パワー半導体用制御回路を配置し、第2基板は、高発熱部品として、少なくともパワー半導体を配置することで、電解コンデンサ、入力フィルタ、パワー半導体用制御回路を低温度に保つと共に、パワー半導体の伝導放熱を十分に行い、それぞれの安定性と耐久性を向上できる。
(Effects on specific examples of high heat generation parts and low heat generation parts)
The first substrate includes at least an electrolytic capacitor, an input filter, and a power semiconductor control circuit as low heat generation components, and the second substrate includes at least a power semiconductor as a high heat generation component, thereby providing an electrolytic capacitor and an input filter. In addition to maintaining the power semiconductor control circuit at a low temperature, the power semiconductor can sufficiently conduct and dissipate heat to improve the stability and durability of each.

(接続部材による効果)
また、第1基板と第2基板を接続する接続部材は、電気導電性の高い金属材料で作られたピン部材又はバー部材としたため、高発熱部品を除いた第1基板の第1回路パターンに対し、第2基板に分離した高発熱部品を配置する第2回路パターンの上下方向の電気的な接続を直接行うことで、第1基板と第2基板に対する回路パターンの分離と3次元的な配置を容易に行うことを可能とする。
(Effects of connecting members)
In addition, since the connecting member for connecting the first substrate and the second substrate is a pin member or a bar member made of a metal material having high electrical conductivity, the first circuit pattern of the first substrate excluding the high heat generation component is used. On the other hand, the circuit pattern is separated and three-dimensionally arranged on the first substrate and the second substrate by directly connecting the second circuit pattern in which the high heat-generating component separated on the second substrate is arranged in the vertical direction. Can be easily performed.

(基板サイズの規格化による効果)
また、第1基板及び第2基板の少なくとも一方は、インチ寸法で規格化された所定の矩形サイズを有するため、高発熱部品と低発熱部品の回路パターンに分離して別々の基板に実装して上下に配置することで、インチ寸法で規格化されたサイズに適合した外形サイズの電源装置を作ることができる。
(Effect of standardization of board size)
In addition, since at least one of the first substrate and the second substrate has a predetermined rectangular size standardized in inch dimensions, the circuit patterns of the high heat generation component and the low heat generation component are separated and mounted on separate substrates. By arranging them vertically, it is possible to make a power supply device having an external size that conforms to the size standardized in inches.

(第3基板の配置による効果)
また、第1基板に相対して第2基板の反対側に第3基板を分離配置し、第3基板に記第1回路パターンから分離した高発熱部品及び又は低発熱部品を配置接続する第3回路パターンを形成し、第1基板の第1回路パターンに、接続部材により、第3基板の第3回路パターンに配置接続した高発熱部品及び又は低発熱部品を電気的に接続するようにしたため、分離する高発熱部品及び又は低発熱部品が多い場合には、第3基板を追加することで、低発熱部品の熱的な隔離と高発熱部品の伝導放熱を確保しながら、インチ寸法で規格化された外形を有する基板単体型スイッチング電源装置に適合した外形サイズのスイッチング電源装置を作ることを可能とする。
(Effects of arrangement of third substrate)
In addition, a third substrate is disposed separately on the opposite side of the second substrate relative to the first substrate, and a high heat generating component and / or a low heat generating component separated from the first circuit pattern is disposed and connected to the third substrate. Since the circuit pattern is formed and the high heat generation component and / or the low heat generation component arranged and connected to the third circuit pattern of the third substrate are electrically connected to the first circuit pattern of the first substrate by the connection member, When there are many high heat generation parts and / or low heat generation parts to be separated, the third board is added to standardize in inch dimensions while ensuring thermal isolation of low heat generation parts and conduction heat dissipation of high heat generation parts. Therefore, it is possible to produce a switching power supply having an outer size suitable for a single substrate type switching power supply having the outer shape.

本発明による放熱構造の実施形態を示した側面図The side view which showed embodiment of the thermal radiation structure by this invention 図1の第1基板を取出して示した平面図The top view which extracted and showed the 1st board | substrate of FIG. 図1の第2基板を取出して示した平面図The top view which extracted and showed the 2nd board | substrate of FIG. 第1基板と第2基板に分離して実装する電源回路の実施形態を示した回路図Circuit diagram showing an embodiment of a power supply circuit that is mounted separately on a first substrate and a second substrate 第3基板を追加した他の実施形態を示した側面図The side view which showed other embodiment which added the 3rd board | substrate. 従来の放熱構造を示した説明図Explanatory drawing showing conventional heat dissipation structure

[2段階の基板構造]
図1乃至図4を参照して本発明による電源装置の伝導放熱構造の実施形態を説明すると次のようになる。
[Two-stage substrate structure]
An embodiment of the conductive heat dissipation structure of the power supply apparatus according to the present invention will be described with reference to FIGS. 1 to 4 as follows.

図1に示すように、本実施形態の伝導放熱構造は、第1基板10と第2基板12に分離して上下2段に配置した構造を基本とする。第1基板10は例えば両面基板であり、パターン面10a、絶縁体10b及びパターン面10cを備え、低誘電率のガラスエポキシ基板として知られたFR4基板やCEM3基板などを使用する。ここで、FR4基板は、ガラス繊維を編んだ布にエポキシ樹脂を含浸したものを絶縁体10bとし、また、CEM基板は、ガラス繊維とエポキシ樹脂を混合したものを絶縁体10bとしている。   As shown in FIG. 1, the conduction heat dissipation structure of this embodiment is basically a structure in which a first substrate 10 and a second substrate 12 are separated and arranged in two upper and lower stages. The first substrate 10 is, for example, a double-sided substrate, and includes a pattern surface 10a, an insulator 10b, and a pattern surface 10c, and uses an FR4 substrate or a CEM3 substrate known as a low dielectric constant glass epoxy substrate. Here, the FR4 substrate is made by impregnating a glass fiber woven cloth with an epoxy resin as an insulator 10b, and the CEM substrate is made by mixing glass fiber and an epoxy resin as an insulator 10b.

第1基板10のパターン面10aには、図4に示す電源回路における所定の高発熱部品を除く所定の低発熱部品のみを配置する第1回路パターンを分離して形成し、第1回路パターンに対し所定の低発熱部品としてインダクタンスL11,L12、ヒューズF12、コンデンサC13、サーマル抵抗(温度ヒューズ付抵抗)TH11、電解コンデンサC14などを配置している。また第1基板10の裏面となるパターン面10cには図4に示す電源回路の所定の低発熱部品に含まれる制御チップIC11,IC12を配置している。   On the pattern surface 10a of the first substrate 10, a first circuit pattern for disposing only predetermined low heat generation components excluding the predetermined high heat generation components in the power supply circuit shown in FIG. On the other hand, inductances L11 and L12, a fuse F12, a capacitor C13, a thermal resistor (resistance with temperature fuse) TH11, an electrolytic capacitor C14, and the like are arranged as predetermined low heat-generating components. Further, control chips IC11 and IC12 included in predetermined low heat generating components of the power supply circuit shown in FIG. 4 are arranged on the pattern surface 10c which is the back surface of the first substrate 10.

第2基板12はパターン面12aと絶縁体12bを備え、低誘電率で高熱伝導率を持つ基板であり、例えばアルミベースプレート基板などの金属ベース基板やセラミック基板などを使用する。なお、第2基板12としては、2層以上の多層構造をもつFR4基板やCEM3基板などを使用してもよい。   The second substrate 12 is a substrate having a pattern surface 12a and an insulator 12b and having a low dielectric constant and high thermal conductivity. For example, a metal base substrate such as an aluminum base plate substrate or a ceramic substrate is used. As the second substrate 12, an FR4 substrate or a CEM3 substrate having a multilayer structure of two or more layers may be used.

第2基板12の第1基板10に相対したパターン面12aには、図4に示す電源回路における所定の高発熱部品を配置する第2回路パターンを分離して形成し、第2回路パターンに対し所定の高発熱部品として、例えばダイオードブリッジSS11、スイッチング素子Q12、整流ダイオードQ14などを配置している。   On the pattern surface 12a of the second substrate 12 facing the first substrate 10, a second circuit pattern in which predetermined high heat generating components in the power supply circuit shown in FIG. For example, a diode bridge SS11, a switching element Q12, a rectifier diode Q14, and the like are arranged as the predetermined high heat generating components.

ダイオードブリッジSS11、スイッチング素子Q12、整流ダイオードQ14などの高発熱部品は、電源回路の動作に伴う電力損失により高温となって高い熱を発生し、この熱は高熱伝導率をもつ絶縁体12bに伝わり、絶縁体12bの下側の面は放熱面を形成することから、絶縁体12bに伝わった熱を放熱面から効率良く放熱する。   High heat-generating components such as the diode bridge SS11, the switching element Q12, and the rectifier diode Q14 generate high heat due to power loss accompanying the operation of the power supply circuit, and this heat is transmitted to the insulator 12b having high thermal conductivity. Since the lower surface of the insulator 12b forms a heat radiating surface, the heat transmitted to the insulator 12b is efficiently radiated from the heat radiating surface.

第2基板12に実装したダイオードブリッジSS11、スイッチング素子Q12、整流ダイオードQ14などの高発熱部品は、第2基板12のパターン面12aに形成した第2回路パターンの所定位置に起立した電気伝導率の良い接続ピン部材18a〜18m又は銅バー部材(図示せず)により、第1基板10のパターン面10aに形成した第1回路パターンの対応位置に電気的に接続される。   High heat-generating components such as the diode bridge SS11, the switching element Q12, and the rectifier diode Q14 mounted on the second substrate 12 have electrical conductivity upright at predetermined positions of the second circuit pattern formed on the pattern surface 12a of the second substrate 12. It is electrically connected to the corresponding position of the first circuit pattern formed on the pattern surface 10a of the first substrate 10 by good connection pin members 18a to 18m or a copper bar member (not shown).

(第1基板と第2基板に対応した回路の分離配置)
次に図4の電源回路から第1基板10と第2基板12に回路部品及び回路パターンを分離して(抜き出して)配置する点を説明する。
(Separate arrangement of circuits corresponding to the first substrate and the second substrate)
Next, the point that circuit components and circuit patterns are separated (extracted) from the power supply circuit of FIG. 4 on the first substrate 10 and the second substrate 12 will be described.

図4に示す電源回路について、一点鎖線で囲んだ2箇所の第2基板実装部50−1,50−2とそれ以外の第1基板実装部40に予め分離する。第2基板実装部50−1,50−2は高発熱部品を含む回路部分を抜き出して分離している。   The power supply circuit shown in FIG. 4 is preliminarily separated into two second substrate mounting portions 50-1 and 50-2 surrounded by a one-dot chain line and the other first substrate mounting portions 40. The second board mounting portions 50-1 and 50-2 are separated by extracting a circuit portion including a high heat generation component.

本実施形態では、第2基板実装部50−1には、ダイオードブリッジS11とその回路接続を行う第2回路パターンを含め、また第2基板実装部50−2には、MOS−FETを用いたスイッチング素子Q1,Q2、トランスT11、MOS−FETを用いた整流用ダイオードQ13,Q14、チョークコイルL13、コンデンサC15,C16とその回路接続を行う第2回路パターンを含めている。   In the present embodiment, the second substrate mounting unit 50-1 includes a second circuit pattern for connecting the diode bridge S11 and its circuit, and the second substrate mounting unit 50-2 uses a MOS-FET. The switching elements Q1 and Q2, the transformer T11, the rectifying diodes Q13 and Q14 using MOS-FET, the choke coil L13, and the capacitors C15 and C16 and the second circuit pattern for connecting the circuits are included.

このうち電源回路を動作した場合に最も高温となるのはパワー半導体となるスイッチング素子Q11,Q12であり、次に高いのは同じくパワー半導体となる整流用ダイオードQ13,Q14やダイオードブリッジS11となる。またトランスT11やチョークコイルL13もスイッチング素子Q11,Q12のスイッチング動作で流れる電流により発熱する。   Among them, when the power supply circuit is operated, the switching elements Q11 and Q12 that are the power semiconductors have the highest temperature, and the next highest are the rectifying diodes Q13 and Q14 and the diode bridge S11 that are also the power semiconductors. Further, the transformer T11 and the choke coil L13 also generate heat due to the current flowing through the switching operation of the switching elements Q11 and Q12.

これに対しコンデンサC15,C16は発熱の少ない低発熱部品であるが、トランスT11やチョークコイルL13に付帯する部品であり、第1基板10に残すと接続ピン部材や銅バー部材による上下方向の接続構造が複雑になることから、低発熱部品であるが第2基板実装部50−2に含めている。   On the other hand, the capacitors C15 and C16 are low heat generation components with little heat generation, but are components attached to the transformer T11 and the choke coil L13, and when left on the first substrate 10, they are connected in the vertical direction by connection pin members or copper bar members. Since the structure is complicated, it is a low heat generating component, but is included in the second board mounting portion 50-2.

第1基板実装部40には、第2基板実装部50−1,50−2の回路部品及びこれらを接続する第2回路パターンを除く回路部品及びこれらを接続する第1回路パターンを含む部分を分離している。第1基板実装部40に含まれる回路部品は低発熱部品のみであり、高発熱部品は全て除外している。   The first board mounting part 40 includes circuit parts other than the circuit parts of the second board mounting parts 50-1 and 50-2 and the second circuit pattern for connecting them, and the portion including the first circuit pattern for connecting them. It is separated. The circuit components included in the first board mounting portion 40 are only low heat generation components, and all high heat generation components are excluded.

第1基板実装部40に含まれる低発熱部品は、入力側から見ると、入力端子L,N、ヒューズF11,F12、コンデンサC11,C12、インダクタンスL11,L12及びサージアブソーバSK11となり、これにより入力フィルタを構成する。続いて、コンデンサC13、サーマル抵抗TH11、電解コンデンサC14、駆動用IC11、制御用IC12となり、直流入力回路部とスイッチング制御部を構成する。更に出力端子Vo+,Vo−側に設けた整流用の電解コンデンサC17となる。なお、コンデンサC18,C19,C20はフレームグランド端子FGに対する平衡回路を形成する結合コンデンサである。   When viewed from the input side, the low heat generation components included in the first board mounting part 40 are input terminals L and N, fuses F11 and F12, capacitors C11 and C12, inductances L11 and L12, and a surge absorber SK11. Configure. Subsequently, the capacitor C13, the thermal resistor TH11, the electrolytic capacitor C14, the driving IC 11, and the control IC 12 constitute a DC input circuit unit and a switching control unit. Further, the rectifying electrolytic capacitor C17 is provided on the output terminals Vo + and Vo− side. Capacitors C18, C19, and C20 are coupling capacitors that form a balanced circuit for the frame ground terminal FG.

このように第1基板実装部40に含まれる回路部品は、それ自身では発熱がないか、発熱があっても熱量の少ない低発熱部品であり、特に、寿命部品であり、温度が高くなると長寿命化が損なわれる低発熱部品として電解コンデンサC14、C17が含まれている。   As described above, the circuit components included in the first board mounting portion 40 do not generate heat by themselves, or are low heat generation components with a small amount of heat even if heat is generated. Electrolytic capacitors C14 and C17 are included as low heat-generating components whose life is impaired.

図4に示した第1基板実装部40に対応し、図2に示す第1基板10の上側となるパターン面10aには、低発熱部品となる入力端子L,N、ヒューズF11,F12、コンデンサC11,C12、C13、インダクタンスL11,L12、サージアブソーバSK11、サーマル抵抗TH11、電解コンデンサC14(2部品を並列接続)、出力端子Vo+,Vo−を実装している。また第1基板10の裏面となるパターン面10cには、点線で示すように駆動用IC11と制御用IC12を実装している。なお、第1基板10には、第2基板12に実装したトランスT11を通す矩形の切欠12dを設けている。   Corresponding to the first substrate mounting portion 40 shown in FIG. 4, the input surface L, N, fuses F11 and F12, which are low heat-generating components, and a capacitor are formed on the pattern surface 10a on the upper side of the first substrate 10 shown in FIG. C11, C12, C13, inductances L11, L12, surge absorber SK11, thermal resistance TH11, electrolytic capacitor C14 (two components connected in parallel), and output terminals Vo +, Vo− are mounted. A driving IC 11 and a control IC 12 are mounted on the pattern surface 10c, which is the back surface of the first substrate 10, as indicated by a dotted line. The first substrate 10 is provided with a rectangular notch 12d through which the transformer T11 mounted on the second substrate 12 passes.

また図4に示した第2基板実装部50−1,50−2に対応し、図3に示す第2基板12の上側のパターン面12aには、高発熱部品として、ダイオードブリッジSS11、スイッチング素子Q11,Q12、トランスT11、整流用ダイオードQ13,Q14(2部品を並列接続)、チョークコイルL13を実装し、併せて低発熱部品となるコンデンサC15,C16も実装している。なお、コンデンサC18〜C20は図示を省略している。   Further, corresponding to the second substrate mounting portions 50-1 and 50-2 shown in FIG. 4, the upper pattern surface 12a of the second substrate 12 shown in FIG. Q11, Q12, transformer T11, rectifying diodes Q13, Q14 (two components connected in parallel) and choke coil L13 are mounted, and capacitors C15, C16 that are low heat generating components are also mounted. The capacitors C18 to C20 are not shown.

また図4の電源回路における第1基板実装部40と第2基板実装部50−1,50−2との回路パターンの連結部をランドa〜mで示しており、ランドa〜mに対応して図2の第1基板10には、ピン挿入孔20a〜20mを形成し、また図3の第2基板12には、第1基板10のピン挿入孔20a〜20mに相対した位置に接続ピン部材18a〜18mを起立している。   Also, the connection portions of the circuit patterns of the first board mounting portion 40 and the second board mounting portions 50-1 and 50-2 in the power supply circuit of FIG. 4 are indicated by lands a to m, corresponding to the lands a to m. 2 are formed with pin insertion holes 20a to 20m, and the second substrate 12 of FIG. 3 is connected to the second substrate 12 at positions corresponding to the pin insertion holes 20a to 20m of the first substrate 10. The members 18a to 18m are erected.

これにより図1に示すように、支持ポスト14を介して第1基板10と第2基板12を上下に組み付けた場合、接続ピン部材20a〜20mにより第1基板10と第2基板12に分離配置した第1回路パターンと第2回路パターンを電気的に接続し、図4に示した単一基板を想定した電源回路を2段の基板構造で実現する。   As a result, as shown in FIG. 1, when the first substrate 10 and the second substrate 12 are assembled up and down via the support post 14, the first and second substrates 10 and 12 are separated from each other by the connection pin members 20a to 20m. The first circuit pattern and the second circuit pattern thus connected are electrically connected to realize the power supply circuit assuming a single substrate shown in FIG. 4 with a two-stage substrate structure.

[放熱作用]
次に本実施形態における電源装置を動作している場合の放熱作用を説明する。
[Heat dissipation]
Next, the heat dissipation action when the power supply device according to this embodiment is operating will be described.

図4に示す電源回路が動作した場合、駆動用IC12によるスイッチング素子Q11のオン、スイッチング素子Q12のオフでコンデンサC14からトランスT11の1次巻線に電流を流して、2次側へ電流を流し、整流用ダイオードQ14、コンデンサC16、チョークコイルL13、電解コンデンサC17で整流平滑される。この時コンデンサC15に、トランスT11との接続点の電圧が高くなるようにエネルギーを蓄える。次にスイッチング素子Q11のオフ,Q12のオンでコンデンサC15に蓄えたエネルギーを放出して2次側に電流を流し、整流用ダイオードQ13、コンデンサC16、チョークコイルL13、電解コンデンサC17で整流平滑し、制御用IC12により出力電圧を所定値に保つようにスイッチング素子Q11,Q12の動作周波数を制御している。   When the power supply circuit shown in FIG. 4 operates, when the switching element Q11 is turned on and the switching element Q12 is turned off by the driving IC 12, a current flows from the capacitor C14 to the primary winding of the transformer T11, and a current flows to the secondary side. Rectifying and smoothing is performed by the rectifying diode Q14, the capacitor C16, the choke coil L13, and the electrolytic capacitor C17. At this time, energy is stored in the capacitor C15 so that the voltage at the connection point with the transformer T11 is increased. Next, when the switching element Q11 is turned off and Q12 is turned on, the energy stored in the capacitor C15 is released and a current flows to the secondary side, and the current is rectified and smoothed by the rectifier diode Q13, capacitor C16, choke coil L13, and electrolytic capacitor C17. The operating frequency of the switching elements Q11 and Q12 is controlled by the control IC 12 so as to keep the output voltage at a predetermined value.

このような電源回路の動作に伴いスイッチング素子Q11,Q12がスイッチング動作に伴う電力損失による熱を発生して高温となり、スイッチング素子Q11,Q12は高熱伝導率の第2基板12に配置しているため、発生した熱は第2基板12に伝わり下側の放熱面から放熱される。   With such operation of the power supply circuit, the switching elements Q11 and Q12 generate heat due to power loss accompanying the switching operation and become high temperature, and the switching elements Q11 and Q12 are disposed on the second substrate 12 having high thermal conductivity. The generated heat is transferred to the second substrate 12 and radiated from the lower heat radiating surface.

これにより第2基板12の温度が高くなるが、第1基板10は第2基板12に対し分離配置しており、支持ポスト14による熱伝達は殆どなく、また接続ピン部材18a〜18mによる熱伝導もごく僅かであり、第2基板12から熱的に隔離されており、熱伝導による温度上昇は少ない。   As a result, the temperature of the second substrate 12 is increased, but the first substrate 10 is arranged separately from the second substrate 12, there is almost no heat transfer by the support posts 14, and heat conduction by the connection pin members 18a to 18m. The temperature is extremely small and is thermally isolated from the second substrate 12, and the temperature rise due to heat conduction is small.

また第2基板12に配置したスイッチング素子Q11,Q12の加熱による輻射熱及び雰囲気は第1基板10に遮られ、反対側のパターン面10aに配置している電解コンデンサC14,C17などの低発熱部品を加熱することはない。この点は、第2基板12に配置している他の高発熱部品となるダイオードブリッジS11、トランスT11、整流用ダイオードQ13,Q14、チョークコイルL13の発熱についても同様となる。   Further, the radiation heat and atmosphere due to the heating of the switching elements Q11 and Q12 disposed on the second substrate 12 are blocked by the first substrate 10, and low heat-generating components such as electrolytic capacitors C14 and C17 disposed on the opposite pattern surface 10a are provided. There is no heating. This also applies to the heat generation of the diode bridge S11, the transformer T11, the rectifying diodes Q13 and Q14, and the choke coil L13, which are other high heat generating components arranged on the second substrate 12.

このように第2基板12に配置した高発熱部品から第1基板10配置した低発熱部品を熱的に隔離すると共に第2基板12の高発熱部品の放熱が十分に行われ、特に、第1基板10に低発熱部品として実装している電解コンデンサC14,C17を低温度に保つことを可能とし、電解コンデンサC14,C17を長寿命化することができる。   In this way, the low heat generating component disposed on the first substrate 10 is thermally isolated from the high heat generating component disposed on the second substrate 12 and the high heat generating component on the second substrate 12 is sufficiently radiated. It is possible to keep the electrolytic capacitors C14 and C17 mounted on the substrate 10 as low heat-generating components at a low temperature, and to extend the life of the electrolytic capacitors C14 and C17.

[外形サイズの規格化]
ここで第1基板10とついて、図2に示すように、縦寸法をL1、横寸法をL2とすると、図3に示す第2基板12も同じ縦横寸法(L1×L2)かそれよりも小型の寸法としている。この第1基板10の縦横寸法(L1×L2)は、例えば(3インチ×5インチ)、(2インチ×4インチ)、(2インチ×3インチ)等のインチ寸法で規格化された外形を有する基板単体型スイッチング電源装置で一般に使用される規格化サイズに合わせており、これにより本実施形態の2段基板の基板構造は、そのままインチ寸法で規格化された外形を有する基板単体型スイッチング電源装置の規格サイズに適合する製品として対応することができる。また上記の第1基板10と第2基板12の関係は逆としてもよい。
[Standardization of external size]
Here, with respect to the first substrate 10, as shown in FIG. 2, when the vertical dimension is L1 and the horizontal dimension is L2, the second substrate 12 shown in FIG. 3 is also the same vertical and horizontal dimension (L1 × L2) or smaller than that. The dimensions are as follows. The vertical and horizontal dimensions (L1 × L2) of the first substrate 10 are standardized by an inch size such as (3 inches × 5 inches), (2 inches × 4 inches), (2 inches × 3 inches), etc. In accordance with a standardized size generally used in a single substrate type switching power supply apparatus having the substrate structure of the two-stage substrate according to this embodiment, the single substrate type switching power source having an external shape standardized in inches. It can be handled as a product that conforms to the standard size of the device. The relationship between the first substrate 10 and the second substrate 12 may be reversed.

[第3基板を備えた実施形態]
図5において、本実施形態にあっては、図1に示した第1基板10と第2基板12を備えた基板構造に対し、更に第3基板30を設けたことを特徴とし、第1基板10に相対して第2基板12の反対側に第3基板30を分離配置している。
[Embodiment including third substrate]
5, the present embodiment is characterized in that a third substrate 30 is further provided to the substrate structure including the first substrate 10 and the second substrate 12 shown in FIG. The third substrate 30 is separated from the second substrate 12 on the opposite side of the second substrate 12.

第3基板30は、パターン面30aと絶縁体30bを備え、第2基板12の場合と同様に、低誘電率で高熱伝導率を持つ基板であり、例えばアルミベースプレート基板などの金属ベース基板やセラミック基板などを使用する。   The third substrate 30 includes a pattern surface 30a and an insulator 30b, and is a substrate having a low dielectric constant and a high thermal conductivity as in the case of the second substrate 12. For example, a metal base substrate such as an aluminum base plate substrate or a ceramic Use a substrate.

第3基板13の第1基板10に相対したパターン面30aには、図4の電源回路から分離した高発熱部品として例えばスイッチング素子Q11を配置すると共に、低発熱部品として例えば駆動用IC11を配置している。   On the pattern surface 30a of the third substrate 13 facing the first substrate 10, for example, a switching element Q11 is disposed as a high heat generating component separated from the power supply circuit of FIG. 4, and for example, a driving IC 11 is disposed as a low heat generating component. ing.

第3基板30に配置したスイッチング素子Q11、駆動用IC11に対しては第1基板10のパターン面10aに接続部材として銅バー32部材又は接続ピン部材(図示せず)を起立した状態で両端を半田接続することで、電気的に接続する。なお、銅バー部材32は例えばバー本体の両端を屈曲して半田接続部としている。   Both ends of the switching element Q11 and the driving IC 11 disposed on the third substrate 30 are placed with the copper bar 32 member or the connection pin member (not shown) standing on the pattern surface 10a of the first substrate 10 as a connection member. It is electrically connected by soldering. For example, the copper bar member 32 is bent at both ends of the bar body to form a solder connection portion.

このような第3基板30の追加配置は、第2基板12に対する高発熱部品の配置スペースが不足する場合や、放熱量が不足する場合などに、新たに設けた第3基板30に高発熱部品を配置する。また第1基板10に対する低発熱部品の配置スペースが不足する場合などにも、新たに設けた第3基板30に低発熱部品を配置する。   Such an additional arrangement of the third substrate 30 is such that when the arrangement space of the high heat-generating component with respect to the second substrate 12 is insufficient or the amount of heat radiation is insufficient, the newly provided third substrate 30 has a high heat-generating component. Place. In addition, when the space for arranging the low heat generation component relative to the first substrate 10 is insufficient, the low heat generation component is arranged on the newly provided third substrate 30.

このような第3基板30も第1基板10と第2基板12との外形に関する関係と同様に、インチ寸法で規格化された外形をとしてもよいし、第1基板10と第2基板12がインチ寸法で規格化された外形を有する場合にそれより小型の外形とすることにより、基板の縦横寸法(L1×L2)を、(3インチ×5インチ)、(2インチ×4インチ)、(2インチ×3インチ)等のインチ寸法で規格化された外形を有する基板単体型スイッチング電源装置の規格化サイズに容易に合わせることを可能とする。   Such a third substrate 30 may have an outer shape standardized in inch dimensions, as in the relationship regarding the outer shape of the first substrate 10 and the second substrate 12, or the first substrate 10 and the second substrate 12 may be When the outer shape is standardized by inch dimensions, the vertical and horizontal dimensions (L1 × L2) of the substrate are (3 inches × 5 inches), (2 inches × 4 inches), ( It is possible to easily match the standardized size of a single substrate type switching power supply device having an outer shape standardized in inch dimensions such as 2 inches × 3 inches.

[本発明の変形例]
上記の実施形態は、交流電力を所定電圧の直流電力に変換して出力するスイッチング電源装置を例にとるものであったが、これは一例であり、これに力率改善回路を組み合わせたスイッチング電源装置としても良い。力率改善回路(PFC回路)は、図4のコンデンサC13と電解コンデンサC14との間に設け、パワー半導体を用いたスイッチング素子、トランス、整流用ダイオードなどを備え、この場合にも、力率改善回路に設けているパワー半導体などの高発熱部品は第2基板12に分離して配置し、第1基板10には高発熱部品を除く低発熱部品のみを配置すれば良い。
[Modification of the present invention]
The above embodiment is an example of a switching power supply device that converts alternating current power into direct current power of a predetermined voltage and outputs it. However, this is an example, and a switching power supply that combines this with a power factor correction circuit. It is good also as an apparatus. The power factor correction circuit (PFC circuit) is provided between the capacitor C13 and the electrolytic capacitor C14 in FIG. 4 and includes a switching element using a power semiconductor, a transformer, a rectifier diode, and the like. A high heat-generating component such as a power semiconductor provided in the circuit may be disposed separately on the second substrate 12, and only the low heat-generating component excluding the high heat-generating component may be disposed on the first substrate 10.

また、上記の実施形態にあっては、スイッチング素子などの高発熱部品とこれに付属する低発熱部品を第2基板に分離配置しているが、低発熱部品は第1基板に残し、スイッチング素子などの高発熱部品のみを第2基板に分離配置し、高発熱部品から全ての低発熱部品を熱的に隔離して低い温度に保つようにしても良い。   In the above embodiment, the high heat-generating component such as the switching element and the low heat-generating component attached thereto are separately disposed on the second substrate. However, the low heat-generating component is left on the first substrate, and the switching element. Alternatively, only the high heat generating components such as the above may be separately arranged on the second substrate, and all the low heat generating components may be thermally isolated from the high heat generating components and kept at a low temperature.

また、上記の実施形態にあっては、電源回路において、高発熱部品を備えた第2基板実装部を2箇所で抜き出して分離し、それぞれ第2基板に実装しているが、1箇所を抜き出して第2基板に実装しても良いし、3箇所以上に分けて抜き出して第2基板に実装しても良い。   Further, in the above embodiment, in the power supply circuit, the second board mounting portion provided with the high heat generation component is extracted and separated at two places, and each is mounted on the second board. May be mounted on the second substrate, or may be extracted in three or more locations and mounted on the second substrate.

また、本発明はその目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
The present invention includes appropriate modifications without impairing the object and advantages thereof, and is not limited by the numerical values shown in the above embodiments.

10:第1基板
10a,10c,12a,30a:パターン面
10b,12b,30b:絶縁体
12:第2基板
14:支持ポスト
18a〜18m:接続ピン部材
20a〜20m:ピン挿入孔
30:第3基板
32:銅バー部材
40:第1基板実装部
50−1,50−2:第2基板実装部
10: 1st board | substrate 10a, 10c, 12a, 30a: Pattern surface 10b, 12b, 30b: Insulator 12: 2nd board | substrate 14: Support post 18a-18m: Connection pin member 20a-20m: Pin insertion hole 30: 3rd Substrate 32: Copper bar member 40: First substrate mounting portion 50-1, 50-2: Second substrate mounting portion

Claims (6)

所定の高発熱部品と所定の低発熱部品を含む部品で電源回路を構成した電源装置の伝導放熱構造に於いて、
前記電源回路における前記高発熱部品を除く前記低発熱部品を配置する第1回路パターンを形成して前記低発熱部品のみを配置した第1基板と、
前記第1基板に相対して分離配置され、前記第1回路パターンから分離した前記高発熱部品を配置する1又は複数の第2回路パターンを形成して前記高発熱部品を配置した第2基板と、
前記第1基板と第2基板との間に配置され、前記第1基板の前記低発熱部品のみを配置した第1回路パターンに、前記第2基板の前記高発熱部品を配置した第2回路パターンを電気的に接続する接続部材と、
を備えたことを特徴とする電源装置の伝導放熱構造。
In a conduction heat dissipation structure of a power supply device in which a power supply circuit is configured with parts including predetermined high heat generation parts and predetermined low heat generation parts,
A first substrate on which only the low heat generating component is disposed by forming a first circuit pattern in which the low heat generating component excluding the high heat generating component in the power supply circuit is disposed;
A second substrate on which the one or a plurality of second circuit patterns are arranged to dispose the high-heat-generating component, and the high-heat-generating component is arranged separately from the first substrate and arranged from the first circuit pattern; ,
A second circuit pattern in which the high heat generation component of the second substrate is arranged on the first circuit pattern which is arranged between the first substrate and the second substrate and in which only the low heat generation component of the first substrate is arranged. A connecting member for electrically connecting,
A conduction heat dissipation structure for a power supply device, comprising:
請求項1記載の電源装置の伝導放熱構造に於いて、
前記第1基板は、低誘電率もつ基板であり、前記第2基板に相対する面の反対面又は両面に前記低発熱部品のみを実装し、
前記第2基板は、低誘電率且つ高熱伝導率をもつ基板であり、前記第1基板に相対した面に前記発熱部品を実装すると共に反対面に放熱面としたことを特徴とする電源装置の伝導放熱構造。
In the conduction heat dissipation structure of the power supply device according to claim 1,
The first substrate is a substrate having a low dielectric constant, and only the low heat-generating component is mounted on the opposite surface or both surfaces of the surface facing the second substrate,
The second substrate is a substrate having a low dielectric constant and high thermal conductivity, wherein the heat generating component is mounted on a surface opposite to the first substrate and a heat radiating surface is provided on the opposite surface. Conductive heat dissipation structure.
請求項1記載の電源装置の伝導放熱構造に於いて、
前記第1基板は、前記低発熱部品として、少なくとも電解コンデンサ、入力フィルタ、パワー半導体用制御回路を配置し、
前記第2基板は、前記高発熱部品として、少なくともパワー半導体を配置したことを特徴とする電源装置の伝導放熱構造。
In the conduction heat dissipation structure of the power supply device according to claim 1,
The first substrate includes at least an electrolytic capacitor, an input filter, and a power semiconductor control circuit as the low heat generation component,
The conductive heat dissipation structure for a power supply device, wherein the second substrate includes at least a power semiconductor as the high heat-generating component.
請求項1記載の電源装置の伝導放熱構造に於いて、前記第1基板と第2基板を接続する接続部材は、電気導電性の高い金属材料で作られたピン部材又はバー部材であることを特徴とする電源装置の伝導放熱構造。
The conductive heat dissipation structure for a power supply device according to claim 1, wherein the connecting member for connecting the first substrate and the second substrate is a pin member or a bar member made of a metal material having high electrical conductivity. A conduction heat dissipation structure for a power supply device.
請求項1記載の電源装置の伝導放熱構造に於いて、
第1基板及び第2基板は、少なくとも一方がインチ寸法で規格化された所定の矩形サイズを有し、他方は上記のインチ寸法で規格化された所定の矩形サイズより小型、もしくは同等の外形を有する。
In the conduction heat dissipation structure of the power supply device according to claim 1,
At least one of the first substrate and the second substrate has a predetermined rectangular size standardized by inch dimensions, and the other has a smaller or equivalent outer shape than the predetermined rectangular size standardized by the inch dimensions. Have.
請求項1記載の電源装置の伝導放熱構造に於いて、
前記第1基板に相対して前記第2基板の反対側に第3基板を分離配置し、
前記第3基板に前記第1回路パターンから分離した高発熱部品を配置する第3回路パターンを形成し、
前記第1基板の第1回路パターンに、接続部材により、前記第3基板の前記高発熱部品を配置した第3回路パターンを電気的に接続することを特徴とする電源装置の伝導放熱構造。
In the conduction heat dissipation structure of the power supply device according to claim 1,
Separating and arranging a third substrate on the opposite side of the second substrate relative to the first substrate;
Forming a third circuit pattern for disposing a high heat-generating component separated from the first circuit pattern on the third substrate;
A conductive heat dissipation structure for a power supply device, wherein a third circuit pattern in which the high heat-generating component of the third substrate is arranged is electrically connected to the first circuit pattern of the first substrate by a connecting member.
JP2012270859A 2012-12-12 2012-12-12 Conduction heat dissipation structure of power supply device Pending JP2014117106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012270859A JP2014117106A (en) 2012-12-12 2012-12-12 Conduction heat dissipation structure of power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012270859A JP2014117106A (en) 2012-12-12 2012-12-12 Conduction heat dissipation structure of power supply device

Publications (1)

Publication Number Publication Date
JP2014117106A true JP2014117106A (en) 2014-06-26

Family

ID=51172576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012270859A Pending JP2014117106A (en) 2012-12-12 2012-12-12 Conduction heat dissipation structure of power supply device

Country Status (1)

Country Link
JP (1) JP2014117106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236562A (en) * 2013-05-31 2014-12-15 株式会社豊田自動織機 Inverter device
JP2017098168A (en) * 2015-11-27 2017-06-01 岩崎電気株式会社 LED lighting device and LED lighting device
WO2023108954A1 (en) * 2021-12-13 2023-06-22 探维科技(北京)有限公司 Laser transmitter, laser radar apparatus and terminal device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290098A (en) * 1989-02-10 1990-11-29 Fuji Electric Co Ltd Cooling device for inverter apparatus
JPH04295065A (en) * 1991-03-22 1992-10-20 Murata Mfg Co Ltd Manufacture of ceramic-metal joined body
JPH0547968A (en) * 1991-08-20 1993-02-26 Fujitsu Ltd Cooling structure of electronic device
JPH07297561A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Housing of electronic device
JP2004281804A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Circuit board
JP2011078309A (en) * 2006-01-16 2011-04-14 Mitsubishi Electric Corp Motor drive circuit and outdoor unit for air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290098A (en) * 1989-02-10 1990-11-29 Fuji Electric Co Ltd Cooling device for inverter apparatus
JPH04295065A (en) * 1991-03-22 1992-10-20 Murata Mfg Co Ltd Manufacture of ceramic-metal joined body
JPH0547968A (en) * 1991-08-20 1993-02-26 Fujitsu Ltd Cooling structure of electronic device
JPH07297561A (en) * 1994-04-21 1995-11-10 Mitsubishi Electric Corp Housing of electronic device
JP2004281804A (en) * 2003-03-17 2004-10-07 Toyota Motor Corp Circuit board
JP2011078309A (en) * 2006-01-16 2011-04-14 Mitsubishi Electric Corp Motor drive circuit and outdoor unit for air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236562A (en) * 2013-05-31 2014-12-15 株式会社豊田自動織機 Inverter device
US9385631B2 (en) 2013-05-31 2016-07-05 Kabushiki Kaisha Toyota Jidoshokki Inverter unit
JP2017098168A (en) * 2015-11-27 2017-06-01 岩崎電気株式会社 LED lighting device and LED lighting device
WO2023108954A1 (en) * 2021-12-13 2023-06-22 探维科技(北京)有限公司 Laser transmitter, laser radar apparatus and terminal device

Similar Documents

Publication Publication Date Title
US8619428B2 (en) Electronic package structure
US20140306791A1 (en) Power converter
US8724337B2 (en) Compact server power supply having high power density
TWI449136B (en) Metal core printed circuit board and electronic package structure
US20200323101A1 (en) Switching power supply device
CN106684076B (en) Encapsulating structure and its manufacturing method
JP2017022337A (en) Power conversion device
JP2014117106A (en) Conduction heat dissipation structure of power supply device
US10959319B2 (en) Cooling package and power module
JP5103445B2 (en) Induction heating cooker
JP2012156298A (en) Dc/dc converter module
JP5318071B2 (en) Switching power supply
JPH04355907A (en) Current or voltage feed circuit device for electronic equipment, etc
CN110634813B (en) Packaging structure
JP2009283840A (en) Electronic circuit module
JP3259576B2 (en) Assembly structure of rectifier for switching power supply
JP3744206B2 (en) Power switching device
CN111064344B (en) Power module with bottom metal heat dissipation substrate
JP2005109005A (en) Heat dissipation structure of module
JP2020043710A (en) Snubber circuit and power semiconductor module and power supply device for induction heating
JP2010251582A (en) Dc-dc converter
JP6213356B2 (en) Power supply
JP2002369528A (en) Dc-dc converter
JP2019067920A (en) Power supply device and network device including the same
CN216217695U (en) PCB structure of switching power supply module and switching power supply module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170111