JP2004281804A - Circuit board - Google Patents

Circuit board Download PDF

Info

Publication number
JP2004281804A
JP2004281804A JP2003072425A JP2003072425A JP2004281804A JP 2004281804 A JP2004281804 A JP 2004281804A JP 2003072425 A JP2003072425 A JP 2003072425A JP 2003072425 A JP2003072425 A JP 2003072425A JP 2004281804 A JP2004281804 A JP 2004281804A
Authority
JP
Japan
Prior art keywords
circuit board
hole
power circuit
power
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003072425A
Other languages
Japanese (ja)
Inventor
Yoichiro Baba
陽一郎 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003072425A priority Critical patent/JP2004281804A/en
Publication of JP2004281804A publication Critical patent/JP2004281804A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10295Metallic connector elements partly mounted in a hole of the PCB
    • H05K2201/10303Pin-in-hole mounted pins

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the area of a power circuit board increases and a power module as a whole becomes large-scale, because a terminal block connecting the power circuit board to a control circuit board is erected on the power circuit board via solder bonding in forming a conventional circuit board composed of the power circuit board and the control circuit board, and arranged in layer. <P>SOLUTION: There is provided a circuit board 1 having a power circuit board 10 on which a power element 14 is mounted. The power circuit board 10 comprises a heat insulating board 11 having a hole 11a on one side face thereof, an insulating film 12 made to fill the hole 11a and is formed on the one side face of the heat insulating board 11, a conductive wiring 13 forming a power circuit on the insulating film 12, and the power element 14 mounted on the conductive wiring 13. A conductive pin member 33 is erected in the hole 11a filled with the insulating film 12, and connects the conductive wiring 13 of the power circuit board 10 to a control circuit board 20. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、インバータ用等のパワーモジュールを構成し、発熱素子が実装されたパワー回路用基板を具備する回路基板の構成に関し、特に、パワー回路用基板と他の回路部材との接続構造に関する。
【0002】
【従来の技術】
インバータ用IGBT(insulated gate bipolar transistor)モジュールなどの制御機能を有するパワーモジュールでは、放熱の問題などから、発熱素子が実装されたパワーモジュール部であるパワー回路用基板と、非発熱素子が実装される制御回路用基板とが分離配置される場合が多い。
パワーモジュールの回路基板を構成するパワー回路用基板と制御回路用基板とを分離配置する場合、省スペース化を図るためなどの理由により、該パワー回路用基板と制御回路用基板とを上下二段に積層配置することがある。(特許文献1参照)
【0003】
例えば、図5に示すように、パワーモジュールにおける回路基板101のパワー回路用基板110は、放熱板111の上面に絶縁膜112を形成し、該絶縁膜112の上面に導電性配線113を形成するとともに、導電性配線113が形成された上面側に発熱素子114を実装して構成されている。一方、制御回路用基板210は、基板211に非発熱素子212を実装して構成されている。
そして、パワー回路用基板110の導電性配線113上に端子台330の基端部330aをはんだ付けにて立設し、該端子台330の上部330bに制御回路用基板210を接続することで、積層配置されるパワー回路用基板110と制御回路用基板210とが接続されている。(特許文献2参照)
また、図6に示すように、パワー回路用基板1と制御回路用基板210との端子台330は、樹脂部材にて構成される筐体410を介して、パワー回路用基板110の導電性配線113上に立設されることもある。
【0004】
【特許文献1】
特開2001−230512号公報
【特許文献2】
特開平10−229261号公報
【0005】
【発明が解決しようとする課題】
しかし、前述の如く、積層配置されるパワー回路用基板110と制御回路用基板210とを接続する端子台330を、はんだ付けにてパワー回路用基板110上に立設するように構成した場合は、平面方向に屈曲された端子台330の基端部330aを、パワー回路用基板110の導電性配線113にはんだ付けするスペースが必要となるため、パワー回路用基板110の面積が大きくなり、パワーモジュールが全体として大型化してしまうという問題がある。
また、端子台330をはんだ付けにてパワー回路用基板110に立設するのでは、高い取付位置精度を得ることができないため位置ずれが生じ易くなる。取付位置がずれた端子台330を制御回路用基板210と接続すると、該端子台330のパワー回路用基板110及び制御回路用基板210との接続部に応力がかかることとなって、耐久信頼性の低下を招く恐れがある。特に、複数の端子台330にてパワー回路用基板110と制御回路用基板210とを接続する場合には、各端子台330間の位置ずれが加わるため、耐久信頼性の低下が顕著となる。
【0006】
また、端子台330を、筐体410を介してパワー回路用基板110に立設した場合は、はんだ付けにて端子台330を立設した場合に比べて耐久信頼性の問題が発生しにくいが、部品点数が増加してコスト高となる。
【0007】
【課題を解決するための手段】
上記課題を解決する本発明のめっき被覆部材及びその製造方法は、以下の特徴を有する。
即ち、請求項1においては、発熱素子が実装されたパワー回路用基板を具備する回路基板であって、パワー回路用基板を、一側面に穴が形成された放熱板と、該放熱板の穴に充填されるとともに放熱板の一側面に形成される絶縁膜と、該絶縁膜上にパワー回路を形成する導電性配線と、該導電性配線上に実装される発熱素子とで構成し、絶縁膜が充填された放熱板の穴に、導電性のピン部材を立設して、該ピン部材にて、パワー回路用基板の導電性配線と、他の回路部材とを接続した。この放熱板に形成される穴は、放熱板を貫通しない穴であると、放熱板を貫通する貫通孔であるとを問わない。
これにより、パワー回路用基板と他の回路部材とを容易に積層状態で接続して立体配線構造をとることができ、省スペース化を図ることができる。
また、放熱板の穴部分の絶縁膜に開けられる、配線ピンを挿入するためのピン挿入穴は、NCドリル等により高い位置精度で開けることができるため、配線ピンの立設位置精度を向上することができる。
そして、高い位置精度で立設した配線ピンに他の回路部材を接続することとなるため、配線ピンとパワー回路用基板及び他の回路部材との接続部に応力がかかることがなく、回路基板の耐久信頼性を向上させることができる。
【0008】
また、請求項2においては、前記他の回路部材は、非発熱素子が実装され、パワー回路用基板と分離配置された制御回路用基板である。
これにより、パワー回路用基板と他の回路部材とを容易に積層状態で接続して立体配線構造をとることができ、省スペース化を図ることができる。
【0009】
また、請求項3においては、前記放熱板の穴は該放熱板を貫通しており、前記他の回路部材は、パワー回路用基板における発熱素子実装面の反対側面に配置される。
これにより、放熱板の発熱素子実装面の反対側面における、無駄なスペースを有効利用することができて、パワー回路用基板の面積を小さくすることができる。そして、前記回路基板が用いられるパワーモジュール等の半導体装置を全体的に小型化することができ、省スペース化を図ることができる。
【0010】
また、請求項4においては、前記絶縁膜は、絶縁樹脂部材の成型品を放熱板の穴に埋設するとともに、絶縁樹脂部材を放熱板面上に塗布又は貼付して形成される。
これにより、ペースト状又は液状の絶縁樹脂を、例えば貫通孔に形成された放熱板の穴へ充填する場合でも、絶縁樹脂の溢れや漏れが生じる恐れもなく、樹脂充填作業が行い易くなる。
【0011】
【発明の実施の形態】
次に、本発明の実施の形態を添付の図面を用いて説明する。
図1は第一の実施形態における回路基板の全体構成を示す側面図、図2は同じく回路基板のパワー回路用基板を示す平面図、図3は第二の実施形態における回路基板を示す側面図、図4は貫通孔が形成された放熱板に対する絶縁膜の形成手順を示す図であって、(a)は貫通孔が形成された放熱板を示す図、(b)は貫通孔に固形の樹脂プラグを埋め込んだ状態を示す図、(c)は樹脂プラグを埋め込んだ後に放熱板の一側面にペースト状又は液状の絶縁樹脂を塗布又は貼り付けした状態を示す図、図5はパワー回路用基板と制御回路用基板とを上下に積層配置して構成した従来の回路基板の一例を示す側面図、図6はパワー回路用基板と制御回路用基板とを上下に積層配置して構成した従来の回路基板の他の例を示す側面図である。
【0012】
まず、第一の実施形態について説明する。
図1に示す回路基板1は、インバータ用IGBTモジュールなどのパワーモジュールに用いられる回路基板であり、発熱素子が実装されるパワー回路用基板10とともに、非発熱素子が実装される制御回路用基板20を他の回路部材として備えている。
【0013】
図1、図2に示すパワー回路用基板10は、上側面に穴11aが形成された放熱板11と、該放熱板11の穴11aに充填されるとともに、放熱板11の上側面に形成される絶縁膜12と、該絶縁膜12上にパワー回路を形成する導電性配線13と、該導電性配線13上に実装されるIGBT等のパワー素子14とで構成されている。
なお、放熱板11に形成される穴11aは、放熱板11を貫通しない穴であると、放熱板11を貫通する貫通孔であるとを問わない。また、パワー素子14は、動作に伴い発熱する素子である。
【0014】
放熱板11は、パワー素子14で発生した熱を効率良く放熱し、上面に形成される絶縁膜12との密着を保持すること等が必要であるため、熱伝導率、剛性、及び線膨張率を考慮して材質を選定する必要があり、例えば、銅(Cu)、アルミニウム(Al)、銅−モリブデン(Cu−Mo)、銅タングステン(W)、又はアルシック(AlSiC)が用いられている。
【0015】
絶縁膜12は、放熱板11に対する密着性や、放熱板11に用いられる金属の熱膨張に耐え得るだけの延性を有していることが必要であり、例えば、エポキシ樹脂、ポリイミド樹脂、又はシリコン樹脂が用いられる。
【0016】
導電性配線13は、実装されるパワー素子14や絶縁膜12との線膨張率を考慮する必要があり、パワー素子14が実装される実装部13aには、素材として例えば銅−モリブデン(Cu−Mo)が用いられている。
一方、パワー素子14が実装されない非実装部13bには、パワー素子14との線膨張率を考慮する必要がないので、例えば、銅−モリブデン(Cu−Mo)よりも安価な銅(Cu)が、素材として用いられている。
【0017】
なお、導電性配線13上に実装されるパワー素子14はベアチップに構成され、はんだ付けにて実装されている。
また、図1における制御回路用基板20は、基板21に非発熱素子である制御用素子22を実装して構成されている。
【0018】
絶縁膜12の穴11aへ充填された部分には、ピン挿入穴12hが形成されており、該ピン挿入穴12hには配線ピン33の下端部33aを挿入して、該配線ピン33をパワー回路用基板10に対して立設している。
パワー回路用基板10には複数の配線ピン33が立設されており、各配線ピン33の上部33bは、それぞれ前記制御回路用基板20と接続されている。
【0019】
また、ピン挿入穴12hに挿入される配線ピン33の下端部33aは、パワー回路用基板10の導電性配線13と接続されており、パワー回路用基板10と制御回路用基板20とは配線ピン33を介して電気的に接続されている。
なお、パワー回路用基板10と制御回路用基板20とを接続する配線ピン33の数は、必要に応じて増減することが可能である。
【0020】
このように構成される回路基板1のパワー回路用基板10は、例えば次のように製造される。
まず、銅−モリブデン等の素材を鍛造にて板状に成型して、放熱板11を形成する。この場合、鍛造型における、放熱板11の穴11aが形成される部分に相当する箇所に、穴11aの形状に合わせた凸部を設けておき、鍛造型による放熱板11の形成と同時に穴11aも形成するようにしている。
【0021】
次に、放熱板11に絶縁膜12を形成する。絶縁膜の形成は、始めに、穴11aに液状又はペースト状の絶縁樹脂を充填し、その後、放熱板11における穴11aが形成された側の全面に、同じく液状又はペースト状の絶縁樹脂を塗布する。絶縁樹脂の放熱板11面への塗布は、例えばスクリーン印刷により行い、該絶縁樹脂は熱硬化性の樹脂を用いる。
【0022】
絶縁樹脂の充填及び塗布が終了した放熱板11の絶縁樹脂塗布面には、導電性配線13が貼り付けられ、導電性配線13を貼り付けた放熱板11を、加熱して絶縁樹脂を硬化させる。
絶縁樹脂を硬化させた後、放熱板11の穴11aの部分における導電性配線13及び絶縁膜12に、ピン挿入穴12hを開ける。
【0023】
そして、必要な寸法に切断した配線ピン33の下端部33aをピン挿入穴12hに挿入して、該配線ピン33と配線ピン33挿入部の導電性配線13とを、はんだ付け接続する。
なお、絶縁膜12に形成されるピン挿入穴12hは、挿入した配線ピン33が放熱板11と接触しない深さに形成されており、該配線ピン33と放熱板11とは絶縁されている。
また、放熱板11に形成される穴11aの径は、ピン挿入穴12hの径よりも大きく構成されており、配線ピン33の挿入位置を穴11aの径の範囲内で調節することが可能となっている。
【0024】
このようにしてパワー回路用基板10に立設された配線ピン33の上部33bに制御回路用基板20を接続することで、該パワー回路用基板10と制御回路用基板20とを容易に積層状態で接続して立体配線構造をとることができ、省スペース化を図ることができる。
特に、パワー回路用基板10と制御回路用基板20との接続を、パワー回路用基板10のピン挿入穴12hに挿入して立設される配線ピン33にて行っているので、平面方向に屈曲された基端部を導電性配線13にはんだ付けすることで立設される端子台にてパワー回路用基板10と制御回路用基板20とを接続した場合に比べて、該パワー回路用基板10の面積を小さくすることができ、回路基板1が用いられるパワーモジュールを全体的に小型化することができる。
【0025】
また、前述の端子台をはんだ付けにて立設した場合は、はんだ付け時に位置ずれが生じて高い取付位置精度を得ることができないが、配線ピン33を挿入するピン挿入穴12hは、NC(numerical control)ドリル等により高い位置精度で開けることができるため、配線ピン33の立設位置精度も向上できる。
そして、パワー回路用基板10へ高い位置精度で取り付けた配線ピン33に制御回路用基板20を接続した場合は、配線ピン33とパワー回路用基板10及び制御回路用基板20との接続部に応力がかかることがなく、回路基板1の耐久信頼性を向上させることができる。
【0026】
次に、第二の実施形態について説明する。
図3に示す回路基板5は、パワー回路用基板50へ他の回路部材としてのコネクタ70を接続するとともに、冷却器72を取り付けて構成されている。
【0027】
パワー回路用基板50は、上下に貫通する貫通孔51aが形成された放熱板51と、該放熱板51の貫通孔51aに充填されるとともに、放熱板51の上側面に形成される絶縁膜52と、該絶縁膜52上にパワー回路を形成する導電性配線53と、放熱板51の導電性配線53上に実装される前記パワー素子14とで構成されている。
【0028】
放熱板51、絶縁膜52及び導電性配線53は、それぞれ第一の実施形態における放熱板11、絶縁膜12及び導電性配線13と同様の材質にて構成されており、導電性配線53上には前記パワー素子14がはんだ付けにて実装されている。
【0029】
絶縁膜52の貫通孔51aへ充填された部分には、ピン挿入孔52hが形成されており、該ピン挿入孔52hには配線ピン63が挿入されている。配線ピン63はピン挿入孔52hを貫通しており、その下部63aは水平方向に屈曲されて、コネクタ70と接続されている。また、配線ピン63の上部63bは、導電性配線53とはんだ接続されている。
【0030】
放熱板51上に実装されているパワー素子14は、作動時に発熱した熱を、放熱板51を通じて放熱しているが、放熱板51におけるパワー素子14の実装面とは反対側の面に、放熱板51からの放熱効率を高めて該放熱板51を冷却するための冷却器72が取り付けられている(図5では放熱板51の上面にパワー素子14が実装され、下面に冷却器72が取り付けられている)。
【0031】
下面に取り付けられる冷却器72は、パワー素子14の実装箇所に対応した位置(図3にてパワー素子14の下方に相当する位置)に配置されており、前記コネクタ70はパワー素子14が実装されていない部分に配置されている。
つまり、発熱体であるパワー素子14が実装されている部分の裏面には放熱を行うための冷却器72の取り付けが必要であるが、パワー素子14が実装されておらず導電性配線53が形成されているだけの部分は、特に放熱を必要とせず冷却器72も取り付けなくてよい。
【0032】
従って、放熱板51の下面側に取り付けられるコネクタ70を、この冷却器72を取り付ける必要がない部分に配置して、無駄なスペースを有効活用するようにしている。
これにより、回路基板5を全体的に小さく構成することが可能となり、省スペース化を図ることができる。
【0033】
このように構成される回路基板5は、以下のように製造することができる。
まず、放熱板51に貫通孔51aを形成し、ペースト状又は液状の絶縁樹脂をその貫通孔51aに充填するとともに、放熱板51の一側面にスクリーン印刷等により塗布する。
貫通孔51aは、放熱板51の形成後に開けても、放熱板51の形成と同時に開けてもよい。
【0034】
絶縁樹脂52の充填及び塗布が終了した放熱板51の絶縁樹脂塗布面に、導電性配線53を貼り付け、導電性配線53が貼り付けられた放熱板51を、加熱して絶縁樹脂を硬化させる。
絶縁樹脂を硬化させた後、放熱板51の貫通孔51aの部分における導電性配線53及び絶縁膜52に、ピン挿入孔52hを開けて貫通させる。
【0035】
そして、下部63aにコネクタ70が接続された配線ピン63を、放熱板51の下面側からピン挿入孔12hに挿入し、該配線ピン63の上部63bと、配線ピン63を挿入した部分の導電性配線53とを、はんだ付け接続する。
【0036】
なお、ピン挿入孔52hに挿入される配線ピン63と放熱板51とは接触しないように構成されており、該配線ピン63と放熱板51とは絶縁されている。
また、放熱板51に形成される貫通孔51aの径は、ピン挿入孔52hの径よりも大きく構成されており、配線ピン63の挿入位置を貫通孔51aの径の範囲内で調節することが可能となっている。
【0037】
このように、放熱板51の貫通孔51aを通じて、上面側の導電性配線53と下面側に配置されるコネクタ70とを配線ピン63にて接続する構造をとることで、放熱板51をコネクタ70等の回路部材を取り付けるための構造部材として利用することが可能となっている。
【0038】
また、絶縁膜52を形成する絶縁樹脂の貫通孔51aへの充填は、次のように行うこともできる。
即ち、図4(a)に示すように、放熱板51に貫通孔51aを形成しておき、図4(b)に示すように、その貫通孔51aに、予め絶縁樹脂により成型された固形の樹脂プラグ52cを埋め込む。その後、放熱板51の一側面にペースト状又は液状の絶縁樹脂を塗布又は貼り付けして、絶縁樹脂を加熱硬化させ、図4(c)に示すように絶縁膜52を形成する。
【0039】
このように、固形の樹脂プラグ52c等の絶縁樹脂部材の成型品を貫通孔51aへ埋め込んで絶縁膜52を形成することで、ペースト状又は液状の絶縁樹脂を貫通孔51aへ充填する場合のように、絶縁樹脂の溢れや漏れが生じる恐れもなく、樹脂充填作業が行い易くなる。
【0040】
【発明の効果】
以上のように、本発明によれば、
パワー回路用基板と他の回路部材とを容易に積層状態で接続して立体配線構造をとることができる。また、放熱板の無駄なスペースを有効利用してパワー回路用基板の面積を小さくしてパワーモジュール等の半導体装置を全体的に小型化することができる。これにより、省スペース化を図ることができる。
さらに、配線ピンの立設位置精度を向上して、回路基板の耐久信頼性を向上させることができる。
また、放熱板の穴へ絶縁膜を充填する場合の、樹脂充填作業を行い易くすることができる。
【図面の簡単な説明】
【図1】第一の実施形態における回路基板の全体構成を示す側面図である。
【図2】同じく回路基板のパワー回路用基板を示す平面図である。
【図3】第二の実施形態における回路基板を示す側面図である。
【図4】貫通孔が形成された放熱板に対する絶縁膜の形成手順を示す図であって、(a)は貫通孔が形成された放熱板を示す図、(b)は貫通孔に固形の樹脂プラグを埋め込んだ状態を示す図、(c)は樹脂プラグを埋め込んだ後に放熱板の一側面にペースト状又は液状の絶縁樹脂を塗布又は貼り付けした状態を示す図である。
【図5】パワー回路用基板と制御回路用基板とを上下に積層配置して構成した従来の回路基板の一例を示す側面図である。
【図6】パワー回路用基板と制御回路用基板とを上下に積層配置して構成した従来の回路基板の他の例を示す側面図である。
【符号の説明】
1 回路基板
10パワー回路用基板
11 放熱板
11a 穴
12 絶縁膜
20 制御回路用基板
33 配線ピン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circuit board including a power circuit board on which a heating element is mounted, which constitutes a power module for an inverter or the like, and particularly relates to a connection structure between a power circuit board and another circuit member.
[0002]
[Prior art]
In a power module having a control function such as an IGBT (insulated gate bipolar transistor) module for an inverter, a power circuit substrate, which is a power module part on which a heat generating element is mounted, and a non-heat generating element are mounted due to a heat radiation problem or the like. In many cases, the control circuit board is separately provided.
When the power circuit board and the control circuit board that constitute the circuit board of the power module are separately arranged, the power circuit board and the control circuit board are vertically arranged in two stages for reasons such as space saving. In some cases. (See Patent Document 1)
[0003]
For example, as shown in FIG. 5, a power circuit board 110 of a circuit board 101 in a power module has an insulating film 112 formed on an upper surface of a heat sink 111 and a conductive wiring 113 formed on an upper surface of the insulating film 112. In addition, a heating element 114 is mounted on the upper surface side on which the conductive wiring 113 is formed. On the other hand, the control circuit board 210 is configured by mounting the non-heating element 212 on the board 211.
Then, the base end 330a of the terminal block 330 is erected by soldering on the conductive wiring 113 of the power circuit board 110, and the control circuit board 210 is connected to the upper part 330b of the terminal block 330, The power circuit board 110 and the control circuit board 210 which are stacked and connected are connected. (See Patent Document 2)
As shown in FIG. 6, a terminal board 330 of the power circuit board 1 and the control circuit board 210 is connected to a conductive wiring of the power circuit board 110 via a housing 410 made of a resin member. It may be erected on 113.
[0004]
[Patent Document 1]
JP 2001-230512 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 10-229261
[Problems to be solved by the invention]
However, as described above, when the terminal block 330 that connects the power circuit board 110 and the control circuit board 210 that are stacked is configured to be erected on the power circuit board 110 by soldering. In addition, a space is required for soldering the base end 330a of the terminal block 330 bent in the plane direction to the conductive wiring 113 of the power circuit board 110, so that the area of the power circuit board 110 increases, There is a problem that the module becomes large as a whole.
Further, when the terminal block 330 is erected on the power circuit board 110 by soldering, a high mounting position accuracy cannot be obtained, so that a positional deviation is likely to occur. When the terminal block 330 whose mounting position is displaced is connected to the control circuit board 210, stress is applied to the connection portion of the terminal block 330 with the power circuit board 110 and the control circuit board 210, and the durability is improved. May be reduced. In particular, in the case where the power circuit board 110 and the control circuit board 210 are connected by the plurality of terminal blocks 330, a positional shift between the terminal blocks 330 is added, so that the durability reliability is significantly reduced.
[0006]
Further, when the terminal block 330 is erected on the power circuit board 110 via the housing 410, the problem of durability and reliability is less likely to occur than when the terminal block 330 is erected by soldering. However, the number of parts increases and the cost increases.
[0007]
[Means for Solving the Problems]
MEANS TO SOLVE THE PROBLEM The plating coating member of this invention which solves the said subject, and its manufacturing method have the following characteristics.
That is, according to claim 1, a circuit board comprising a power circuit board on which a heating element is mounted, wherein the power circuit board is provided with a heat radiating plate having a hole formed on one side, and a hole of the heat radiating plate. And an insulating film formed on one side of the heat sink, a conductive wiring forming a power circuit on the insulating film, and a heating element mounted on the conductive wiring. A conductive pin member was erected in the hole of the heat sink filled with the film, and the pin member was used to connect the conductive wiring of the power circuit board to another circuit member. The hole formed in the heat sink may be a hole that does not penetrate the heat sink or a through hole that penetrates the heat sink.
This makes it possible to easily connect the power circuit substrate and other circuit members in a laminated state to form a three-dimensional wiring structure, and to save space.
Further, the pin insertion hole for inserting the wiring pin, which is formed in the insulating film in the hole portion of the heat sink, can be formed with high positional accuracy by using an NC drill or the like, so that the standing position accuracy of the wiring pin is improved. be able to.
Further, since other circuit members are connected to the wiring pins that are erected with high positional accuracy, stress is not applied to the connection portions between the wiring pins and the power circuit board and other circuit members, and the Durability reliability can be improved.
[0008]
In another embodiment, the other circuit member is a control circuit board on which a non-heat-generating element is mounted and which is separated from the power circuit board.
This makes it possible to easily connect the power circuit substrate and other circuit members in a laminated state to form a three-dimensional wiring structure, and to save space.
[0009]
According to a third aspect of the present invention, the hole of the heat radiating plate penetrates the heat radiating plate, and the other circuit member is disposed on a side of the power circuit board opposite to the surface on which the heat generating element is mounted.
This makes it possible to effectively use a wasteful space on the side of the heat sink opposite to the surface on which the heat generating element is mounted, and to reduce the area of the power circuit board. Further, a semiconductor device such as a power module using the circuit board can be reduced in size as a whole, and space can be saved.
[0010]
According to a fourth aspect of the present invention, the insulating film is formed by embedding a molded product of an insulating resin member in a hole of a heat radiating plate and applying or affixing the insulating resin member on a surface of the heat radiating plate.
Accordingly, even when the paste or liquid insulating resin is filled into, for example, the holes of the heat sink formed in the through holes, the resin filling operation can be easily performed without the possibility of the insulating resin overflowing or leaking.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings.
1 is a side view showing the entire configuration of a circuit board according to the first embodiment, FIG. 2 is a plan view showing a power circuit board of the circuit board, and FIG. 3 is a side view showing a circuit board according to the second embodiment. 4A and 4B are diagrams showing a procedure of forming an insulating film on a heat sink having a through hole formed therein, wherein FIG. 4A is a diagram showing a heat sink having a through hole formed therein, and FIG. FIG. 5C is a view showing a state in which a resin plug is embedded, FIG. 5C is a view showing a state in which a paste-like or liquid insulating resin is applied or pasted on one side of a heat sink after the resin plug is embedded, and FIG. FIG. 6 is a side view showing an example of a conventional circuit board in which a substrate and a control circuit board are vertically stacked, and FIG. 6 is a conventional circuit board in which a power circuit board and a control circuit board are vertically stacked. FIG. 6 is a side view showing another example of the circuit board of FIG.
[0012]
First, a first embodiment will be described.
The circuit board 1 shown in FIG. 1 is a circuit board used for a power module such as an IGBT module for an inverter, and includes a power circuit board 10 on which a heating element is mounted and a control circuit board 20 on which a non-heating element is mounted. Is provided as another circuit member.
[0013]
The power circuit board 10 shown in FIGS. 1 and 2 has a heat radiating plate 11 having an upper surface formed with a hole 11a, a hole 11a formed in the heat radiating plate 11, and a heat radiating plate 11 formed on the upper surface. An insulating film 12, a conductive wiring 13 forming a power circuit on the insulating film 12, and a power element 14 such as an IGBT mounted on the conductive wiring 13.
The hole 11 a formed in the heat radiating plate 11 may be a hole that does not penetrate the heat radiating plate 11 or a through hole that penetrates the heat radiating plate 11. The power element 14 is an element that generates heat with operation.
[0014]
Since the heat radiating plate 11 needs to efficiently radiate the heat generated by the power element 14 and maintain close contact with the insulating film 12 formed on the upper surface, the thermal conductivity, the rigidity, and the linear expansion coefficient are required. It is necessary to select a material in consideration of, for example, copper (Cu), aluminum (Al), copper-molybdenum (Cu-Mo), copper tungsten (W), or Alsic (AlSiC) is used.
[0015]
The insulating film 12 needs to have adhesiveness to the heat sink 11 and ductility enough to withstand the thermal expansion of the metal used for the heat sink 11, for example, epoxy resin, polyimide resin, or silicon. Resin is used.
[0016]
It is necessary to consider the coefficient of linear expansion between the conductive element 13 and the power element 14 or the insulating film 12 to be mounted. For example, copper-molybdenum (Cu- Mo) is used.
On the other hand, in the non-mounting portion 13b on which the power element 14 is not mounted, it is not necessary to consider the linear expansion coefficient with the power element 14, and therefore, for example, copper (Cu) which is cheaper than copper-molybdenum (Cu-Mo) is used. , Is used as a material.
[0017]
The power element 14 mounted on the conductive wiring 13 is configured as a bare chip and mounted by soldering.
The control circuit board 20 in FIG. 1 is configured by mounting a control element 22 which is a non-heating element on a board 21.
[0018]
A pin insertion hole 12h is formed in a portion of the insulating film 12 filled in the hole 11a, and a lower end 33a of the wiring pin 33 is inserted into the pin insertion hole 12h to connect the wiring pin 33 to a power circuit. It stands on the substrate 10 for use.
A plurality of wiring pins 33 are provided upright on the power circuit board 10, and upper portions 33 b of the wiring pins 33 are connected to the control circuit board 20, respectively.
[0019]
The lower end 33a of the wiring pin 33 inserted into the pin insertion hole 12h is connected to the conductive wiring 13 of the power circuit board 10, and the power circuit board 10 and the control circuit board 20 are connected to each other by the wiring pin. 33, it is electrically connected.
The number of wiring pins 33 connecting the power circuit board 10 and the control circuit board 20 can be increased or decreased as necessary.
[0020]
The power circuit board 10 of the circuit board 1 thus configured is manufactured, for example, as follows.
First, a material such as copper-molybdenum is formed into a plate shape by forging to form a heat sink 11. In this case, a protrusion corresponding to the shape of the hole 11a is provided at a position corresponding to the portion of the heat sink 11 where the hole 11a is formed in the forging die, and the hole 11a is formed simultaneously with the formation of the heat sink 11 by the forging die. Is also formed.
[0021]
Next, the insulating film 12 is formed on the heat sink 11. The insulating film is formed by first filling the hole 11a with a liquid or paste-like insulating resin, and then applying the same liquid or paste-like insulating resin to the entire surface of the heat sink 11 on which the hole 11a is formed. I do. The application of the insulating resin to the surface of the heat radiating plate 11 is performed by, for example, screen printing, and a thermosetting resin is used as the insulating resin.
[0022]
The conductive wiring 13 is attached to the insulating resin applied surface of the heat radiating plate 11 on which the filling and application of the insulating resin is completed, and the heat radiating plate 11 to which the conductive wiring 13 is attached is heated to cure the insulating resin. .
After the insulating resin is cured, a pin insertion hole 12h is formed in the conductive wiring 13 and the insulating film 12 in the hole 11a of the heat sink 11.
[0023]
Then, the lower end 33a of the wiring pin 33 cut to a required size is inserted into the pin insertion hole 12h, and the wiring pin 33 and the conductive wiring 13 of the wiring pin 33 insertion portion are connected by soldering.
The pin insertion hole 12h formed in the insulating film 12 is formed at a depth at which the inserted wiring pin 33 does not contact the heat sink 11, and the wiring pin 33 and the heat sink 11 are insulated.
Further, the diameter of the hole 11a formed in the heat sink 11 is configured to be larger than the diameter of the pin insertion hole 12h, so that the insertion position of the wiring pin 33 can be adjusted within the range of the diameter of the hole 11a. Has become.
[0024]
By connecting the control circuit board 20 to the upper portions 33b of the wiring pins 33 erected on the power circuit board 10 in this manner, the power circuit board 10 and the control circuit board 20 are easily laminated. , A three-dimensional wiring structure can be obtained, and space can be saved.
In particular, since the connection between the power circuit board 10 and the control circuit board 20 is performed by the wiring pins 33 that are inserted into the pin insertion holes 12h of the power circuit board 10 and are provided upright, the connection is bent in the plane direction. The power circuit board 10 and the control circuit board 20 are connected by a terminal block which is erected by soldering the base end thus formed to the conductive wiring 13. Of the power module in which the circuit board 1 is used can be reduced in size as a whole.
[0025]
In addition, when the above-mentioned terminal block is erected by soldering, a positional shift occurs at the time of soldering, and high mounting position accuracy cannot be obtained. However, the pin insertion hole 12h for inserting the wiring pin 33 is provided with an NC ( Since the hole can be opened with high positional accuracy by a numerical control drill or the like, the standing position accuracy of the wiring pin 33 can be improved.
When the control circuit board 20 is connected to the wiring pins 33 attached to the power circuit board 10 with high positional accuracy, a stress is applied to the connection between the wiring pins 33 and the power circuit board 10 and the control circuit board 20. However, the durability reliability of the circuit board 1 can be improved.
[0026]
Next, a second embodiment will be described.
The circuit board 5 shown in FIG. 3 is configured by connecting a connector 70 as another circuit member to the power circuit board 50 and attaching a cooler 72 thereto.
[0027]
The power circuit board 50 includes a radiator plate 51 having a through hole 51a penetrating vertically, and an insulating film 52 formed on the upper surface of the radiator plate 51 while being filled in the through hole 51a of the radiator plate 51. And a conductive wiring 53 for forming a power circuit on the insulating film 52; and the power element 14 mounted on the conductive wiring 53 of the heat sink 51.
[0028]
The heat sink 51, the insulating film 52, and the conductive wiring 53 are made of the same material as the heat sink 11, the insulating film 12, and the conductive wiring 13 in the first embodiment, respectively. The power element 14 is mounted by soldering.
[0029]
A pin insertion hole 52h is formed in a portion of the insulating film 52 filled in the through hole 51a, and a wiring pin 63 is inserted into the pin insertion hole 52h. The wiring pin 63 penetrates the pin insertion hole 52h, and the lower portion 63a is bent in the horizontal direction and is connected to the connector 70. The upper portion 63b of the wiring pin 63 is connected to the conductive wiring 53 by soldering.
[0030]
The power element 14 mounted on the heat radiating plate 51 radiates heat generated during operation through the heat radiating plate 51, and the heat radiating plate 51 has a heat radiating surface opposite to the mounting surface of the power element 14. A cooler 72 is mounted for cooling the heat radiating plate 51 by increasing the heat radiation efficiency from the plate 51 (in FIG. 5, the power element 14 is mounted on the upper surface of the heat radiating plate 51 and the cooler 72 is mounted on the lower surface. Has been).
[0031]
The cooler 72 attached to the lower surface is disposed at a position corresponding to the mounting position of the power element 14 (a position corresponding to a position below the power element 14 in FIG. 3), and the connector 70 is mounted with the power element 14. Not located on the part.
That is, it is necessary to attach the cooler 72 for radiating heat to the back surface of the portion where the power element 14 as the heating element is mounted, but the power element 14 is not mounted and the conductive wiring 53 is formed. Only the parts that are provided do not need to dissipate heat and do not need to attach the cooler 72.
[0032]
Therefore, the connector 70 attached to the lower surface of the heat radiating plate 51 is arranged at a portion where the cooler 72 does not need to be attached, so that a useless space is effectively used.
As a result, the circuit board 5 can be made smaller as a whole, and space can be saved.
[0033]
The circuit board 5 configured as described above can be manufactured as follows.
First, a through hole 51a is formed in the heat radiating plate 51, and a paste or liquid insulating resin is filled in the through hole 51a and applied to one side surface of the heat radiating plate 51 by screen printing or the like.
The through hole 51 a may be opened after the formation of the heat sink 51 or may be opened at the same time as the formation of the heat sink 51.
[0034]
The conductive wiring 53 is attached to the insulating resin applied surface of the heat radiating plate 51 on which the filling and application of the insulating resin 52 is completed, and the heat radiating plate 51 to which the conductive wiring 53 is attached is heated to cure the insulating resin. .
After the insulating resin is cured, a pin insertion hole 52h is made to penetrate through the conductive wiring 53 and the insulating film 52 in the through hole 51a of the heat sink 51.
[0035]
Then, the wiring pin 63 having the connector 70 connected to the lower portion 63a is inserted into the pin insertion hole 12h from the lower surface side of the radiator plate 51, and the upper portion 63b of the wiring pin 63 and the conductive property of the portion where the wiring pin 63 is inserted. The wiring 53 is connected by soldering.
[0036]
The wiring pins 63 inserted into the pin insertion holes 52h are configured so as not to contact the heat sink 51, and the wiring pins 63 and the heat sink 51 are insulated.
Further, the diameter of the through hole 51a formed in the heat sink 51 is configured to be larger than the diameter of the pin insertion hole 52h, and the insertion position of the wiring pin 63 can be adjusted within the range of the diameter of the through hole 51a. It is possible.
[0037]
In this way, by adopting a structure in which the conductive wiring 53 on the upper surface side and the connector 70 disposed on the lower surface side are connected by the wiring pins 63 through the through holes 51 a of the heat sink 51, the heat sink 51 is connected to the connector 70. It can be used as a structural member for attaching circuit members such as.
[0038]
The filling of the insulating resin forming the insulating film 52 into the through-holes 51a can also be performed as follows.
That is, as shown in FIG. 4 (a), a through hole 51a is formed in the heat sink 51, and as shown in FIG. 4 (b), a solid hole molded in advance with an insulating resin is formed in the through hole 51a. The resin plug 52c is embedded. Thereafter, a paste or liquid insulating resin is applied or pasted on one side surface of the heat radiating plate 51, and the insulating resin is heated and cured to form an insulating film 52 as shown in FIG.
[0039]
As described above, by embedding a molded product of an insulating resin member such as a solid resin plug 52c into the through hole 51a to form the insulating film 52, a paste or liquid insulating resin is filled into the through hole 51a. In addition, there is no possibility that the insulating resin overflows or leaks, and the resin filling operation can be easily performed.
[0040]
【The invention's effect】
As described above, according to the present invention,
The three-dimensional wiring structure can be obtained by easily connecting the power circuit board and other circuit members in a laminated state. In addition, the area of the power circuit board can be reduced by effectively using the wasted space of the heat sink, and the semiconductor device such as the power module can be reduced in size as a whole. Thereby, space saving can be achieved.
Further, the standing position accuracy of the wiring pins can be improved, and the durability reliability of the circuit board can be improved.
In addition, it is possible to easily perform the resin filling operation when filling the hole of the heat sink with the insulating film.
[Brief description of the drawings]
FIG. 1 is a side view illustrating an overall configuration of a circuit board according to a first embodiment.
FIG. 2 is a plan view showing a power circuit board of the circuit board.
FIG. 3 is a side view showing a circuit board according to a second embodiment.
4A and 4B are diagrams showing a procedure of forming an insulating film on a heat sink having a through hole formed therein, wherein FIG. 4A is a diagram showing a heat sink having a through hole formed therein, and FIG. FIG. 3C is a view showing a state in which a resin plug is embedded, and FIG. 2C is a view showing a state in which a paste-like or liquid insulating resin is applied or pasted on one side surface of the heat sink after the resin plug is embedded.
FIG. 5 is a side view showing an example of a conventional circuit board in which a power circuit board and a control circuit board are vertically stacked.
FIG. 6 is a side view showing another example of a conventional circuit board in which a power circuit board and a control circuit board are vertically stacked.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 circuit board 10 power circuit board 11 heat sink 11 a hole 12 insulating film 20 control circuit board 33 wiring pin

Claims (4)

発熱素子が実装されたパワー回路用基板を具備する回路基板であって、
パワー回路用基板を、一側面に穴が形成された放熱板と、該放熱板の穴に充填されるとともに放熱板の一側面に形成される絶縁膜と、該絶縁膜上にパワー回路を形成する導電性配線と、該導電性配線上に実装される発熱素子とで構成し、
絶縁膜が充填された放熱板の穴に、導電性のピン部材を立設して、
該ピン部材にて、パワー回路用基板の導電性配線と、他の回路部材とを接続したことを特徴とする回路基板。
A circuit board comprising a power circuit board on which a heating element is mounted,
A power circuit board is formed by forming a heat sink having a hole formed on one side surface, an insulating film filled in the hole of the heat sink and formed on one side surface of the heat sink, and a power circuit formed on the insulating film. And a heating element mounted on the conductive wiring,
In the hole of the heat sink filled with the insulating film, set up a conductive pin member,
A circuit board, wherein the conductive member of the power circuit board and another circuit member are connected by the pin member.
前記他の回路部材は、非発熱素子が実装され、パワー回路用基板と分離配置された制御回路用基板であることを特徴とする請求項1に記載の回路基板。2. The circuit board according to claim 1, wherein the other circuit member is a control circuit board on which a non-heating element is mounted and separated from the power circuit board. 3. 前記放熱板の穴は該放熱板を貫通しており、前記他の回路部材は、パワー回路用基板における発熱素子実装面の反対側面に配置されることを特徴とする請求項1に記載の回路基板。2. The circuit according to claim 1, wherein the hole of the heat radiating plate penetrates the heat radiating plate, and the other circuit member is disposed on a side of the power circuit board opposite to a surface on which the heating element is mounted. substrate. 前記絶縁膜は、絶縁樹脂部材の成型品を放熱板の穴に埋設するとともに、絶縁樹脂部材を放熱板面上に塗布又は貼付して形成されることを特徴とする請求項1乃至請求項3の何れかに記載の回路基板。4. The insulating film is formed by embedding a molded product of an insulating resin member in a hole of a radiator plate and applying or affixing the insulating resin member on a surface of the radiator plate. The circuit board according to any one of the above.
JP2003072425A 2003-03-17 2003-03-17 Circuit board Pending JP2004281804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003072425A JP2004281804A (en) 2003-03-17 2003-03-17 Circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003072425A JP2004281804A (en) 2003-03-17 2003-03-17 Circuit board

Publications (1)

Publication Number Publication Date
JP2004281804A true JP2004281804A (en) 2004-10-07

Family

ID=33288621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003072425A Pending JP2004281804A (en) 2003-03-17 2003-03-17 Circuit board

Country Status (1)

Country Link
JP (1) JP2004281804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021207A (en) * 2007-03-16 2009-01-29 Momo Alliance Co Ltd Lighting system
JP2011165829A (en) * 2010-02-08 2011-08-25 Denki Kagaku Kogyo Kk Electronic component
JP2014117106A (en) * 2012-12-12 2014-06-26 Cosel Co Ltd Conduction heat dissipation structure of power supply device
CN109890138A (en) * 2018-12-26 2019-06-14 锦霸工贸有限公司 A kind of circuit board with IGBT power tube
CN112640100A (en) * 2018-09-03 2021-04-09 株式会社自动网络技术研究所 Circuit structure and electrical connection box
JP2021112002A (en) * 2020-01-08 2021-08-02 三菱電機株式会社 Power conversion device
WO2023016715A1 (en) * 2021-08-11 2023-02-16 Zf Friedrichshafen Ag Half bridge for an inverter for operating an electric vehicle drive, power module comprising a plurality of half bridges, inverter, and method for producing an inverter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021207A (en) * 2007-03-16 2009-01-29 Momo Alliance Co Ltd Lighting system
JP2011165829A (en) * 2010-02-08 2011-08-25 Denki Kagaku Kogyo Kk Electronic component
JP2014117106A (en) * 2012-12-12 2014-06-26 Cosel Co Ltd Conduction heat dissipation structure of power supply device
CN112640100A (en) * 2018-09-03 2021-04-09 株式会社自动网络技术研究所 Circuit structure and electrical connection box
CN109890138A (en) * 2018-12-26 2019-06-14 锦霸工贸有限公司 A kind of circuit board with IGBT power tube
CN109890138B (en) * 2018-12-26 2024-04-09 锦霸科技股份有限公司 Circuit board with IGBT power tube
JP2021112002A (en) * 2020-01-08 2021-08-02 三菱電機株式会社 Power conversion device
WO2023016715A1 (en) * 2021-08-11 2023-02-16 Zf Friedrichshafen Ag Half bridge for an inverter for operating an electric vehicle drive, power module comprising a plurality of half bridges, inverter, and method for producing an inverter

Similar Documents

Publication Publication Date Title
US7440282B2 (en) Heat sink electronic package having compliant pedestal
JP4438489B2 (en) Semiconductor device
US9202798B2 (en) Power module package and method for manufacturing the same
CN104051376A (en) Power overlay structure and method of making same
US10446462B2 (en) Heat transfer plate having small cavities for taking up a thermal transfer material
EP3659177B1 (en) Semiconductor module and method for manufacturing the same
JP2004179309A (en) Heat dissipating structure for printed circuit board and method for manufacturing the same
US20090194859A1 (en) Semiconductor package and methods of fabricating the same
JP2008060172A (en) Semiconductor device
US11915999B2 (en) Semiconductor device having a carrier, semiconductor chip packages mounted on the carrier and a cooling element
KR101561934B1 (en) Semiconductor package and method for fabricating the same
KR20200050406A (en) Semiconductor package and method of fabricating a semiconductor package
JP4284636B2 (en) Metal substrate
JP2008251671A (en) Heat dissipating substrate, manufacturing method therefor, and electronic component module
US20210265248A1 (en) Housings for semiconductor packages and related methods
JP2017123360A (en) Semiconductor module
JP2004281804A (en) Circuit board
TWI459512B (en) Vertically packaged mosfet and ic power devices as integrated module using 3d interconnected laminates
KR20160038440A (en) Power module package and method of fabricating thereof
CN105280564B (en) Carrier, semiconductor module and preparation method thereof
US20120025358A1 (en) Semiconductor element with semiconductor die and lead frames
JP7236930B2 (en) Heat dissipation device
CN110838475A (en) Chip assembly and manufacturing method thereof
JP2007042738A (en) Semiconductor device
US20160225699A1 (en) Integrated electronic device having a dissipative package, in particular dual side cooling package