JP2014116170A - Charged particle beam device - Google Patents

Charged particle beam device Download PDF

Info

Publication number
JP2014116170A
JP2014116170A JP2012268945A JP2012268945A JP2014116170A JP 2014116170 A JP2014116170 A JP 2014116170A JP 2012268945 A JP2012268945 A JP 2012268945A JP 2012268945 A JP2012268945 A JP 2012268945A JP 2014116170 A JP2014116170 A JP 2014116170A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
preliminary exhaust
exhaust chamber
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012268945A
Other languages
Japanese (ja)
Other versions
JP6138471B2 (en
Inventor
Minoru Sasaki
佐々木  実
Hideki Itai
秀樹 板井
Shuichi Nakagawa
周一 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012268945A priority Critical patent/JP6138471B2/en
Publication of JP2014116170A publication Critical patent/JP2014116170A/en
Application granted granted Critical
Publication of JP6138471B2 publication Critical patent/JP6138471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a charged particle beam device in which a desired position can be irradiated accurately with a charged particle beam, even if the pressure state of a preliminary exhaust chamber changes.SOLUTION: A charged particle beam device includes a charged particle beam optical system for irradiating a sample with a charged particle beam, a vacuum chamber for maintaining the atmosphere around the sample, irradiated with the charged particle beam, in vacuum state, a preliminary exhaust chamber for evacuating the atmosphere around the sample after being introduced into the vacuum chamber, and a controller for controlling the charged particle beam optical system. A deflector for deflecting the irradiation position of the charged particle beam is also provided. During preliminary exhaust operation and/or leakage of the preliminary exhaust chamber, the controller controls the deflector so as to deflect the charged particle beam based on predetermined conditions.

Description

本発明は、試料に荷電粒子ビームを照射する荷電粒子線装置に係り、特に試料雰囲気を真空にする予備排気室を備えた荷電粒子線装置に関する。   The present invention relates to a charged particle beam apparatus that irradiates a sample with a charged particle beam, and more particularly to a charged particle beam apparatus including a preliminary exhaust chamber that evacuates a sample atmosphere.

半導体市場では、半導体デバイス等の高集積化や微細化が進み、これら試料の観察、測定、検査を行う荷電粒子線装置の性能改善が求められている。例えば、荷電粒子線装置の一態様である走査型電子顕微鏡(SEM(Scanning Electron Microscope)には、高い分解能や測定再現性が要求されている。   In the semiconductor market, semiconductor devices and the like have been highly integrated and miniaturized, and there has been a demand for improved performance of charged particle beam apparatuses that perform observation, measurement, and inspection of these samples. For example, a scanning electron microscope (SEM) which is an embodiment of a charged particle beam apparatus is required to have high resolution and measurement reproducibility.

SEMは、電子線を試料に照射し、試料表面の原子を励起して放出されるエネルギーの低い二次電子を発生させる。半導体の回路パターンのように凹凸を持った試料のエッジ部分に電子線が照射されると、エッジ効果によって発生する二次電子量が増大し、凹凸に依存するコントラストを持った像が形成されるが、二次電子信号は非常に微弱なため1回の電子線の試料面上に照射したときに得られる像はノイズを多く含んだものとなる。そのため複数回、同一箇所を走査し、そのとき得られる信号像を加算平均することによりノイズを除去し、鮮明な像が得られるようにしている。   SEM irradiates a sample with an electron beam to excite atoms on the surface of the sample and generate secondary electrons with low energy that are emitted. When an electron beam is applied to the edge of a sample with irregularities such as a semiconductor circuit pattern, the amount of secondary electrons generated by the edge effect increases, and an image with a contrast depending on the irregularities is formed. However, since the secondary electron signal is very weak, the image obtained when the sample surface of the electron beam is irradiated once contains a lot of noise. Therefore, the same portion is scanned a plurality of times, and the signal image obtained at that time is averaged to remove noise and obtain a clear image.

この時、同一箇所で電子線を照射できない場合、その時得られる画像は走査位置のずれ分がボケとなり、分解能劣化、または、測長値の差となってしまう。   At this time, if the electron beam cannot be irradiated at the same location, the image obtained at that time will be blurred due to the shift of the scanning position, resulting in a resolution degradation or a difference in length measurement value.

また、製造ライン中におけるこれらの装置には処理速度も同時に求められている。そのため、検査対象となるウェハを計測、検査中に次のウェハがすぐ検査できるよう準備するような構成および制御がなされている。   In addition, the processing speed of these apparatuses in the production line is also required at the same time. Therefore, a configuration and control are made so that a wafer to be inspected is prepared so that the next wafer can be inspected immediately during measurement and inspection.

SEMでは電子線を試料上に照射するため。試料室および電子光学系を含む鏡体内は真空に保たれている。また、次のウェハを無駄時間なく、計測検査済みのウェハと交換するため、予備排気室を設け観察中に大気解放、ウェハ交換、真空排気処理を行っている。   To irradiate the sample with an electron beam in SEM. The body including the sample chamber and the electron optical system is kept in a vacuum. Also, in order to replace the next wafer with a wafer that has been measured and inspected without wasting time, a preliminary exhaust chamber is provided to perform air release, wafer replacement, and vacuum exhaust processing during observation.

予備排気室における予備排気時には、予備排気のために真空ポンプが稼動しているため、真空ポンプの振動が測定に影響を与えないように、特許文献1には、測定のためのビーム走査を停止させる手法が開示されている。しかし、このビーム走査停止時間は、無駄時間となり、処理速度の低下要因の一つとなる。   At the time of preliminary exhaust in the preliminary exhaust chamber, since the vacuum pump is operating for preliminary exhaust, Patent Document 1 stops beam scanning for measurement so that the vibration of the vacuum pump does not affect the measurement. The technique to make it disclosed is disclosed. However, this beam scanning stop time is a dead time and becomes one of the causes of a decrease in processing speed.

特許文献2は、真空排気時、或いはリーク時に、予備排気室が圧力変化により、変形し、ビーム照射位置が変化してしまうという課題に対する解決手段を提案している。具体的には、予備排気室の圧力変化によって生じる電子顕微鏡鏡体(カラム)の傾きを、試料室を傾けることで相殺する手法が特許文献2に開示されている。   Patent Document 2 proposes a solution to the problem that the pre-exhaust chamber is deformed by a pressure change and the beam irradiation position is changed during vacuum exhaust or leak. Specifically, Patent Document 2 discloses a technique for canceling the tilt of the electron microscope body (column) caused by the pressure change in the preliminary exhaust chamber by tilting the sample chamber.

特開平3−156849号公報Japanese Patent Laid-Open No. 3-1556849 特開2002−352760号公報JP 2002-352760 A

特許文献1に開示されているように、真空ポンプ稼動中にビーム走査を止めてしまうと、その分、無駄時間が生ずることになるため、処理速度が低下する。また、特許文献2に開示されているように、予備排気室の圧力の変形に伴う鏡体の傾きを、試料室を逆に傾斜させキャンセルするような方法もあるが、近年のnm以下の高精度の測定では機構系での対応だけでは難しくより高精度が必要となっている。   As disclosed in Patent Document 1, if the beam scanning is stopped while the vacuum pump is operating, a wasteful time will be generated accordingly, and the processing speed is reduced. Further, as disclosed in Patent Document 2, there is a method of canceling the tilt of the mirror body accompanying the deformation of the pressure in the preliminary exhaust chamber by reversely tilting the sample chamber. In measuring accuracy, it is difficult to deal with mechanical systems alone, and higher accuracy is required.

さらに、試料室内の試料ステージの位置により、装置全体の重心位置がかわり、それに伴い、鏡体の傾き量が変わる。このステージ位置による照射位置のずれ量の変化としては数nm程度であるが、高精度が求められる近年の測定では無視できなくなってきている。   Furthermore, the position of the center of gravity of the entire apparatus changes depending on the position of the sample stage in the sample chamber, and the tilt amount of the mirror body changes accordingly. The change in the amount of deviation of the irradiation position due to the stage position is about several nanometers, but it cannot be ignored in recent measurements that require high accuracy.

以下に、予備排気室圧力状態が変化しても、所望の位置に正確に荷電粒子ビームを照射することを目的とする荷電粒子線装置を提案する。   In the following, a charged particle beam apparatus is proposed that aims to accurately irradiate a desired position with a charged particle beam even if the pressure in the preliminary exhaust chamber changes.

上記目的を達成するための一態様として、以下に試料に対して荷電粒子ビームを照射する荷電粒子ビーム光学系と、荷電粒子ビームが照射される試料周囲の雰囲気を真空に維持する真空室と、当該真空室に導入する試料周囲の雰囲気を真空排気する予備排気室と、前記荷電粒子ビーム光学系を制御する制御装置を備えた荷電粒子線装置であって、前記荷電粒子ビームの照射位置を偏向する偏向器を備え、前記制御装置は、前記予備排気室の予備排気時、及び/又はリーク時に、予め定められた条件に基づいて前記荷電粒子ビームを偏向するように、前記偏向器を制御する荷電粒子線装置を提案する。   As one aspect for achieving the above object, a charged particle beam optical system for irradiating a charged particle beam to a sample below, a vacuum chamber for maintaining an atmosphere around the sample irradiated with the charged particle beam in a vacuum, A charged particle beam apparatus comprising a preliminary exhaust chamber for evacuating an atmosphere around a sample to be introduced into the vacuum chamber and a control device for controlling the charged particle beam optical system, wherein the irradiation position of the charged particle beam is deflected And the control device controls the deflector so as to deflect the charged particle beam based on a predetermined condition at the time of preliminary exhaust and / or leakage of the preliminary exhaust chamber. A charged particle beam system is proposed.

上記構成によれば、予備排気室内の圧力変化時であっても、所望の位置の正確に荷電粒子ビームを照射することが可能となる。   According to the above configuration, it is possible to accurately irradiate a charged particle beam at a desired position even when the pressure in the preliminary exhaust chamber changes.

走査型電子顕微鏡システムの実施形態を示す図。The figure which shows embodiment of a scanning electron microscope system. 予備排気室の圧力が変化したときの鏡体傾斜と、それに伴って発生する荷電粒子ビームの照射位置ずれを示す図。The figure which shows the mirror body inclination when the pressure of a preliminary exhaust chamber changes, and the irradiation position shift of the charged particle beam which generate | occur | produces in connection with it. ビーム照射位置の変化をモニタするためのマークが設けられた試料ステージの一例を示す図。The figure which shows an example of the sample stage provided with the mark for monitoring the change of a beam irradiation position. ビーム照射位置補正量算出工程を示すフローチャート。The flowchart which shows a beam irradiation position correction amount calculation process. ビーム照射位置補正を実行しつつ、電子顕微鏡像を取得する工程を示すフローチャート。The flowchart which shows the process of acquiring an electron microscope image, performing beam irradiation position correction | amendment. ビーム照射位置校正を自動で実行する工程を示すフローチャート。The flowchart which shows the process of performing beam irradiation position calibration automatically. 予備排気時の予備排気室の圧力変化に伴って視野内にて移動するマークの軌跡を示す図。The figure which shows the locus | trajectory of the mark which moves within a visual field with the pressure change of the preliminary exhaust chamber at the time of preliminary exhaust.

以下に、荷電粒子線の照射によって得られる信号に基づいて、パターンを測定または観察する装置であって、試料を観察するために試料を試料室に出入するために排気、大気解放を行う予備排気室を有する荷電粒子線装置について説明する。特に、予備排気室内の圧力が変化しても、試料上に照射する荷電粒子照射位置が目的の位置からずれない荷電粒子線装置について説明する。   The following is an apparatus for measuring or observing a pattern based on a signal obtained by irradiation with a charged particle beam, in order to observe the sample, exhaust to enter and exit the sample chamber, and preliminary exhaust to release the atmosphere A charged particle beam apparatus having a chamber will be described. In particular, a charged particle beam apparatus will be described in which the charged particle irradiation position irradiated on the sample does not deviate from the target position even when the pressure in the preliminary exhaust chamber changes.

予備排気室の圧力の変化は、予備排気室と試料室間を隔てている壁を変形させ、その影響で試料室上面も変形し、その結果、試料室上に設置されている電子源、電子光学系を含む鏡体が傾き、電子線の照射位置ずれが発生してしまう場合がある。そのために、以下に説明する実施例では、試料ステージ位置に依存せず、電子線を試料上の目標の位置に正確に照射し、良好な二次電子像を検出可能とすべく、予備排気室真空状態の変化と試料ステージ位置と試料面に照射される電子線の位置の変化の相関をあらかじめ計測しておき、真空状態と資料ステージ位置にあわせて計測結果にて得られた相関より電子線の電子線の照射位置を視野移動用偏向器(電磁偏向器や静電偏向器)によって補正する。   The change in the pressure of the pre-exhaust chamber deforms the wall separating the pre-exhaust chamber and the sample chamber, and as a result, the upper surface of the sample chamber is also deformed. As a result, the electron source and electron installed in the sample chamber In some cases, the mirror including the optical system is tilted and the irradiation position shift of the electron beam occurs. Therefore, in the embodiment described below, a preliminary exhaust chamber is provided so as to accurately irradiate a target position on the sample and detect a good secondary electron image without depending on the position of the sample stage. The correlation between the change in the vacuum state, the position of the sample stage and the change in the position of the electron beam applied to the sample surface is measured in advance, and the electron beam is obtained from the correlation obtained from the measurement results according to the vacuum state and the position of the sample stage The electron beam irradiation position is corrected by a field movement deflector (electromagnetic deflector or electrostatic deflector).

上記、補正方法として電子線の照射位置を補正するのではなく、取得した画像を加算平均する場合に上記相関から画像を移動させ加算平均し、計測、検査用の画像としてもよい。   Instead of correcting the irradiation position of the electron beam as the correction method, when the acquired images are added and averaged, the images may be moved and averaged from the correlation to obtain an image for measurement and inspection.

また、鏡体の傾きと真空度の関係は機構的なものであるから、時間とともに変化する可能性がある。そのため、通常の測定観察において、予備排気室の真空度が一定の時の測定観察点での取得画像での走査開始第一フレームと走査最終フレームでの画像の位置ずれと予備排気室が排気またはリーク時の測定観察点での取得画像での走査開始第一フレームと走査最終フレームでの画像の位置ずれを比較し、許容値を超えた場合、再度予備排気室真空状態の変化と試料ステージ位置と試料面に照射される電子線の位置の変化の相関を再計測し相関を求め直し補正を行うことにより常に良好な状態で二次電子像が検出可能になる。   In addition, since the relationship between the tilt of the mirror and the degree of vacuum is mechanistic, it may change with time. For this reason, in normal measurement observation, when the vacuum level of the preliminary exhaust chamber is constant, the image displacement in the first scan start frame and the final scan frame at the measurement observation point at the measurement observation point and the preliminary exhaust chamber exhaust or Compare the image misalignment between the first frame and the last frame of the scan in the acquired image at the measurement observation point at the time of the leak. The secondary electron image can always be detected in a good state by re-measuring the correlation between the change in the position of the electron beam irradiated onto the sample surface, recalculating the correlation, and performing correction.

本実施例によれば、予備排気室の圧力が変化しても試料上に照射する電子線の位置ずれが発生しないため、予備排気室圧力変化時でも良好な二次電子画像を得ることができ無駄時間を短縮し、処理時間の向上が可能となる
以下、荷電粒子線装置の一態様であるSEMに予備排気室が設けられた装置を図1を用いて説明する。主要な構成部材は試料室26と鏡体1、予備排気室27であり、これらは除振器25を介して、据え付け台28に保持されることにより、所定の場所に設置される。
According to this embodiment, even when the pressure in the preliminary exhaust chamber changes, the position of the electron beam irradiated onto the sample does not shift, so that a good secondary electron image can be obtained even when the pressure in the preliminary exhaust chamber changes. The dead time can be shortened and the processing time can be improved. Hereinafter, an apparatus in which a preliminary exhaust chamber is provided in an SEM that is one embodiment of the charged particle beam apparatus will be described with reference to FIG. The main constituent members are the sample chamber 26, the mirror body 1, and the preliminary exhaust chamber 27, which are installed in a predetermined place by being held on the mounting table 28 via the vibration isolator 25.

試料室26は密閉した空間を形成し、内部が高真空に保持できるよう構成されている。この天板には鏡体1が、側壁部には予備排気室27が取り付けられている。またその内部は試料ステージ17が設けられている。   The sample chamber 26 forms a sealed space and is configured so that the inside can be maintained at a high vacuum. The mirror body 1 is attached to the top plate, and the preliminary exhaust chamber 27 is attached to the side wall. A sample stage 17 is provided in the interior.

鏡体1(荷電粒子ビーム光学系)は試料室26上部に直立して取り付けられ、内部に連通した底の無い筒状の部材でつくられ、内部の頂部近傍に電子源2をそなえ一次加速電極3により加速された一次電子4はコンデンサレンズ5にて収束され、絞り6により、必要な電流に制限され、対物レンズ19で試料ステージ17上のウェハ9に焦点を合わせられ照射される。   The mirror 1 (charged particle beam optical system) is mounted upright on the upper part of the sample chamber 26, is made of a cylindrical member without a bottom communicating with the inside, and has an electron source 2 near the top of the interior, and a primary acceleration electrode. The primary electrons 4 accelerated by 3 are converged by the condenser lens 5, limited to a necessary current by the diaphragm 6, focused on the wafer 9 on the sample stage 17 by the objective lens 19, and irradiated.

ウェハ9の搭載が可能な試料ステージ17は一次電子4の中心軸に対して垂直な面内、つまり水平面内で任意の方位に任意量移動できるように構成してある。この試料ステージ17により、ウェハ9上の任意の位置に、一次電子が照射できるようになる。   The sample stage 17 on which the wafer 9 can be mounted is configured to be able to move an arbitrary amount in an arbitrary direction in a plane perpendicular to the central axis of the primary electrons 4, that is, in a horizontal plane. The sample stage 17 makes it possible to irradiate an arbitrary position on the wafer 9 with primary electrons.

しかし、試料ステージ9は数nmの精度で位置決めすることはできないため、試料ステージ9の位置決め誤差分を補正するため、イメージシフトコイル8(視野移動用偏向器)を用いる。この場合、例えばアドレッシングと呼ばれる視野特定法を用いて、視野補正を行う。アドレッシングとは測定対象となるパターンに対して相対的に大きく、且つユニークな形状のパターン(アドレッシングパターン)を低倍率像の中から、パターンマッチング法等を用いて探索する手法である。アドレッシングパターンの位置を特定後、アドレッシングパターンと既知の位置関係にある測定対象パターンへ偏向器による視野移動を行うことによって、ステージの誤差分を補正する。これにより、所望の照射個所に正確にビーム照射を行うことが可能になる。   However, since the sample stage 9 cannot be positioned with an accuracy of several nanometers, the image shift coil 8 (field shift deflector) is used to correct the positioning error of the sample stage 9. In this case, for example, visual field correction is performed using a visual field specifying method called addressing. Addressing is a technique for searching a pattern (addressing pattern) that is relatively large with respect to a pattern to be measured and has a unique shape from a low-magnification image using a pattern matching method or the like. After the position of the addressing pattern is specified, the stage error is corrected by moving the visual field by the deflector to the measurement target pattern having a known positional relationship with the addressing pattern. This makes it possible to accurately perform beam irradiation at a desired irradiation location.

正確に測定対象個所が特定された後、走査コイル7により一次電子4を測定観察領域に走査する。このときウェハ9より2次電子16が発生する。発生する2次電子16は、エッジ効果により、平坦な試料表面よりビームに対して傾斜した面を持つエッジ部分により多く発生するため、エッジ部分が明るい画像を形成することができる。ウェハ9から放出された2次電子16を、検出器10で検出し、画像処理12で処理し、走査XY信号との関係から表面形状を表す画像を形成することができる。   After the location to be measured is accurately identified, the scanning coil 7 scans the primary electron 4 in the measurement observation area. At this time, secondary electrons 16 are generated from the wafer 9. The generated secondary electrons 16 are generated more in the edge portion having a surface inclined with respect to the beam than in the flat sample surface due to the edge effect, so that an image with a bright edge portion can be formed. The secondary electrons 16 emitted from the wafer 9 can be detected by the detector 10 and processed by the image processing 12 to form an image representing the surface shape from the relationship with the scanning XY signal.

このようにして取得された画像は表示装置13に表示することも可能であるし、制御計算機14に取り込み、寸法の計測、パターン位置の計測、や異物の観察等に用いることもできる。   The image acquired in this way can be displayed on the display device 13 or can be taken into the control computer 14 and used for measurement of dimensions, measurement of pattern positions, observation of foreign matter, and the like.

予備排気室27と試料室26との間に設けられているゲートバルブ23は開閉可能に構成されており、予備排気室27を大気から真空に排気している途中、或いはリーク時のような試料室26と予備排気室27との間に圧力差がある場合に、閉じられるように構成されている。予備排気室27には、排気装置21とリークバルブ22が設けてあり、排気装置21は真空排気を行うときに、リークバルブ22は真空状態から大気に戻すときに用いられる。また、予備排気室27内の圧力をモニタするための真空ゲージ24が設けられている。   The gate valve 23 provided between the preliminary exhaust chamber 27 and the sample chamber 26 is configured to be openable and closable, and the sample is being exhausted while the preliminary exhaust chamber 27 is being evacuated from the atmosphere to the vacuum, or during a leak. It is configured to be closed when there is a pressure difference between the chamber 26 and the preliminary exhaust chamber 27. The preliminary exhaust chamber 27 is provided with an exhaust device 21 and a leak valve 22. The exhaust device 21 is used when performing vacuum exhaust, and the leak valve 22 is used when returning from the vacuum state to the atmosphere. A vacuum gauge 24 for monitoring the pressure in the preliminary exhaust chamber 27 is provided.

この予備排気室27には次に検査されるウェハが搬入されて、試料室に搬入されたウェハ9の観察検査が終了した後、ゲートバルブ23を開くことにより、予備排気室のウェハと試料室のウェハ9が交換される。   The preliminary exhaust chamber 27 is loaded with a wafer to be inspected next, and after the observation inspection of the wafer 9 carried into the sample chamber is completed, the gate valve 23 is opened to open the wafer in the preliminary exhaust chamber and the sample chamber. The wafer 9 is replaced.

ここで、予備排気室27に外部からウェハを搬送もしくは予備排気室からウェハを取り出すには、試料室26間のゲートバルブ23を閉じ、リークバルブ22にて予備排気室27をエアリークし、大気圧に戻し実行する。試料室26の間のゲートバルブ23を開くには予備排気室27は真空にしておく。   Here, in order to transfer the wafer from the outside to the preliminary exhaust chamber 27 or to take out the wafer from the preliminary exhaust chamber, the gate valve 23 between the sample chambers 26 is closed, and the preliminary exhaust chamber 27 is air leaked by the leak valve 22, and the atmospheric pressure. Execute again. In order to open the gate valve 23 between the sample chambers 26, the preliminary exhaust chamber 27 is kept in vacuum.

図2は予備排気室27内が真空変化した際に生じる各部の変化の様子を示したものである。ここでは予備排気室27と試料室26間の壁の変形に伴い、試料室26の天板部が主に変形し、図示のように鏡体1が図の左側に傾斜した例を示している。この鏡体1の傾きは、ステージ17の位置が移動することにより、装置全体の重心位置がかわってしまう。その影響で除振器25上に搭載されている試料室26全体が傾斜する影響により、傾き量がかわってしまう。このように鏡体1が傾いてしまうと、一次電子4のウェハ9への照射位置が元の位置からずれてしまい、このずれは画面表示上では二次電子像が移動することを示しており、このままでは、測定精度や誤検査の恐れが生じてしまう。   FIG. 2 shows how each part changes when the inside of the preliminary exhaust chamber 27 changes in vacuum. Here, as the wall between the preliminary exhaust chamber 27 and the sample chamber 26 is deformed, the top plate portion of the sample chamber 26 is mainly deformed, and the mirror body 1 is inclined to the left side of the drawing as shown in the figure. . The inclination of the mirror body 1 changes the position of the center of gravity of the entire apparatus as the position of the stage 17 moves. As a result, the amount of tilt changes due to the tilt of the entire sample chamber 26 mounted on the vibration isolator 25. When the mirror 1 is tilted in this way, the irradiation position of the primary electrons 4 on the wafer 9 is shifted from the original position, and this shift indicates that the secondary electron image moves on the screen display. If this is the case, there is a risk of measurement accuracy and erroneous inspection.

このような装置において、前記、一次電子4のウェハ9への照射位置ずれ補正を行うためのデータの収集方法を図4に示し、図5に本補正データを用いた実際の観察検査フローを示す。   In such an apparatus, the data collection method for correcting the irradiation position deviation of the primary electrons 4 on the wafer 9 is shown in FIG. 4, and the actual observation inspection flow using the correction data is shown in FIG. .

図3に示すように、ステージ9上に計測用マーク29を複数個あらかじめ設置しておく。それぞれのマークの座標は(Xi,Yi)(i=1,2,・・・)は既知の座標であり、マークの形状は一次電子4のXY、それぞれの移動量が計測しやすいものとする。本例では十字パターンとしてあるが、他に移動量がわかるものであればドット形状でもかまわない。   As shown in FIG. 3, a plurality of measurement marks 29 are set in advance on the stage 9. The coordinates of each mark (Xi, Yi) (i = 1, 2,...) Are known coordinates, and the shape of the mark is XY of the primary electrons 4 and the amount of movement of each is easy to measure. . In this example, a cross pattern is used, but a dot shape may be used as long as the amount of movement is known.

最初にステージ17を計測用マーク29座標(X1,Y1)が一次電子4の直下にくるように移動させる(S101)。その後、予備排気室の真空排気を停止し、リーク弁をあけリークを開始する(S102)。開始後、マーク上を一次電子にて、マークが観察できるよう2次元状に走査し、その時の画像を取り込む(S103)。次に予備排気室の真空度Plと時刻tlを取り込む(S104)。予備排気室のリークが完了するまで一次電子走査、画像取り込みを繰り返す(S105)。   First, the stage 17 is moved so that the measurement mark 29 coordinates (X1, Y1) are directly below the primary electrons 4 (S101). Thereafter, the vacuum exhaust of the preliminary exhaust chamber is stopped, the leak valve is opened, and the leak is started (S102). After the start, the mark is scanned two-dimensionally with primary electrons so that the mark can be observed, and an image at that time is captured (S103). Next, the vacuum degree Pl and time tl of the preliminary exhaust chamber are taken in (S104). The primary electron scanning and the image capturing are repeated until the preliminary exhaust chamber leaks (S105).

次にリーク弁を閉じ、ポンプを動作させ、排気を開始する(S106)。その後、リーク時と同じように、マーク上を一次電子にて、マークが観察できるよう2次元状に走査し、その時の画像を取り込む(S107)。次に予備排気室の真空度Peと時刻teを取り込む(S108)。予備排気室の真空が目標真空に達して排気が完了するまで一次電子走査、画像取り込みを繰り返す(S109)。   Next, the leak valve is closed, the pump is operated, and exhaust is started (S106). After that, as in the case of the leak, the mark is scanned with a primary electron in a two-dimensional manner so that the mark can be observed, and an image at that time is captured (S107). Next, the degree of vacuum Pe and time te in the preliminary exhaust chamber are taken in (S108). The primary electron scanning and image capture are repeated until the vacuum in the preliminary exhaust chamber reaches the target vacuum and exhaust is completed (S109).

このようにして得られた画像からそれぞれの画像でのマークの見え方から画像マッチング処理等によりマークの画像上での移動量をリーク時の(dxl,dyl)と排気時の(dxe,dye)を算出する。算出した値より真空度Pl、Peと以下の関係を求める(S110)。   From the images thus obtained, the amount of movement of the mark on the image by the image matching process or the like based on the appearance of the mark in each image is (dxl, dyl) at the time of leak and (dxe, dye) at the time of exhaust. Is calculated. From the calculated values, the degree of vacuum Pl and Pe and the following relationship are obtained (S110).

(dxl,dyl)=F1(Pl)・・・〔式1〕
(dxe, dye)=G1(Pe)・・・〔式2〕
を求める。関係は近似式でも、テーブル形式でも良い。
(Dxl, dyl) = F1 (Pl) (Formula 1)
(Dxe, dye) = G1 (Pe) (Equation 2)
Ask for. The relationship may be an approximate expression or a table format.

次にステージを次のマーク(X2,Y2)が一次電子ビーム直下にくるように移動させ(S101)、同様の処理を実施し、同じように移動量と圧力の関係であるF2,G2を求める。   Next, the stage is moved so that the next mark (X2, Y2) is directly below the primary electron beam (S101), the same processing is performed, and F2 and G2 that are the relationship between the moving amount and the pressure are obtained in the same manner. .

このようにしてステージ上にある全マークn個分の関係Fn,Gnを求める。このようにして算出された値は、制御計算機14等に内蔵されている記憶媒体に記憶される。以上のようにして算出された(F1,F2・・・Fn),(G1,G2・・・Gn)を利用して実際に像を観察する時のフローを図5に示す。   In this way, the relations Fn and Gn for all n marks on the stage are obtained. The value calculated in this way is stored in a storage medium built in the control computer 14 or the like. FIG. 5 shows a flow when an image is actually observed using (F1, F2... Fn) and (G1, G2... Gn) calculated as described above.

観察すべき場所が一次電子の直下にくるようにステージを観察座標(X,Y)に移動させる(S201)。次に補正処理プログラムに対して補正処理を開始するよう要求する(S202)。補正処理プログラムは補正処理開始待ち(S206)を解除し、現在、予備排気室が、大気状態か真空状態か、排気状態か、リーク状態かといった状態と、予備排気室の真空度を取り込む(S207)。補正処理は、リーク状態であれば、現在のステージ座標と(F1,F2・・・Fn)と現在の真空度から補正量を算出する。   The stage is moved to the observation coordinates (X, Y) so that the place to be observed is directly below the primary electrons (S201). Next, the correction processing program is requested to start the correction processing (S202). The correction processing program cancels the correction processing start waiting (S206), and takes in the state of whether the preliminary exhaust chamber is in the atmospheric state, the vacuum state, the exhaust state, the leak state, and the vacuum degree of the preliminary exhaust chamber (S207). ). If the correction process is in a leak state, the correction amount is calculated from the current stage coordinates, (F1, F2,... Fn) and the current degree of vacuum.

最初に(F1,F2・・・Fn)と現在の真空度からそれぞれのマーク座標における補正量を算出する。次に観察座標(X,Y)と計測用マーク29の座標(Xn,Yn)の関係から補正量を補間にて算出し決定する(S209)。排気状態であれば、現在のステージ座標と(G1,G2・・・Gn)と現在の真空度から補正量を算出する。補正量の算出は排気状態と同様の計算にて実施する(S210)。   First, a correction amount at each mark coordinate is calculated from (F1, F2... Fn) and the current degree of vacuum. Next, the correction amount is calculated by interpolation from the relationship between the observation coordinates (X, Y) and the coordinates (Xn, Yn) of the measurement mark 29 (S209). In the exhaust state, the correction amount is calculated from the current stage coordinates, (G1, G2,... Gn) and the current degree of vacuum. The correction amount is calculated by the same calculation as in the exhaust state (S210).

真空状態の場合は、補正は実施しない。大気状態の場合は(F1,F2・・・Fn)もしくは(G1,G2・・・Gn)の関係を用い、真空状態時と大気状態での位置の差分(オフセット分)をあらかじめ算出しておく。次に観察座標(X,Y)と計測用マーク29の座標(Xn,Yn)の関係から補正量を補間にて算出し決定する(S211)。このような走査時の一定量の加算は走査時の像ずれには影響しないが、観察検査への目標位値に対しての走査および観察検査対象物を画像およびステージ座標から算出した結果において真空中と大気中で差となるので、補正をしておく。   In the case of a vacuum, no correction is performed. In the case of the atmospheric state, the difference (offset) between the position in the vacuum state and the atmospheric state is calculated in advance using the relationship of (F1, F2... Fn) or (G1, G2... Gn). . Next, a correction amount is calculated by interpolation from the relationship between the observation coordinates (X, Y) and the coordinates (Xn, Yn) of the measurement mark 29 (S211). Although a certain amount of addition during scanning does not affect image displacement during scanning, the result of scanning the target position value for observation inspection and the observation inspection object from the image and stage coordinates is a vacuum. Since it becomes a difference between the inside and the atmosphere, it is corrected.

このようにして算出された補正量をイメージシフトコイル8に対して補正量分移動するように電流を流すように制御回路15(制御装置)にて制御する(S212)。   The control circuit 15 (control device) controls the current so that the correction amount calculated in this way is moved by the correction amount with respect to the image shift coil 8 (S212).

本処理を観察検査処理から終了要求がくるまで繰り返す。一方観察検査処理側では、補正開始要求を行ったのち、通常と同様に観察検査の為の電子線の走査および2次電子像をとりこむ(S203)。   This process is repeated until an end request is received from the observation inspection process. On the other hand, on the observation inspection processing side, after making a correction start request, scanning of an electron beam and a secondary electron image for observation inspection are taken in as usual (S203).

このように制御することにより、観察走査時に予備排気室の排気、リークを行っても一次電子は試料上の観察検査対象上をずれることなく走査することができる。   By controlling in this way, even if the preliminary exhaust chamber is exhausted or leaked during observation scanning, the primary electrons can be scanned without being shifted on the observation inspection target on the sample.

観察検査処理はその後、補正処理に対して、補正終了要求を発行する(S204)。補正処理は本要求を受け補正処理を終了し、再度補正処理開始要求待ち状態になる。   Thereafter, the observation inspection process issues a correction end request to the correction process (S204). The correction process receives this request, ends the correction process, and waits for a correction process start request again.

観察検査処理は2次電子像を画像処理部にて加算平均等を行い、観察検査処理を実施する(S205)。   In the observation inspection process, the secondary electron image is averaged by the image processing unit and the observation inspection process is performed (S205).

本実施例によれば予備排気室がリーク、もしくは排気中でも予備排気室の真空度が一定のときと同等の画像を取得することができる。本実施例装置は予備排気室27の真空排気時(大気から所定の真空に至るまでの期間)、或いはリーク時に選択的に上述のような補正量に基づく視野位置補正を行うものである。本実施例では、真空ゲージ24(圧力計)の検出結果とその際の補正量を予め求めておくことによって、予備排気室の圧力変化時の視野補正を可能としているが、例えば排気時間(リーク時間)と補正量との関係を示す演算式、或いはテーブルを用いて、補正を行うようにしても良い。但し、真空排気時にガスが発生する試料も存在するため、試料室26の変形に応じて正確な視野補正を行うためには、上述の実施例のように、圧力検出に基づく視野補正を行うことが望ましい。   According to the present embodiment, it is possible to acquire an image equivalent to when the preliminary exhaust chamber leaks or the vacuum degree of the preliminary exhaust chamber is constant even during exhaust. The apparatus of this embodiment selectively corrects the visual field position based on the correction amount as described above at the time of evacuation of the preliminary exhaust chamber 27 (a period from the atmosphere to a predetermined vacuum) or at the time of leakage. In this embodiment, the detection result of the vacuum gauge 24 (pressure gauge) and the correction amount at that time are obtained in advance, thereby making it possible to correct the visual field when the pressure in the preliminary exhaust chamber changes. Correction may be performed using an arithmetic expression or a table indicating the relationship between (time) and the correction amount. However, since there are samples that generate gas during evacuation, in order to perform accurate visual field correction according to deformation of the sample chamber 26, visual field correction based on pressure detection is performed as in the above-described embodiment. Is desirable.

更に、図7に例示するように、ビーム照射位置の移動軌道701が直線的ではない場合には、単位圧力値(時間)ごとのパターン位置704を求め、当該パターン位置を曲線近似することで、ビームの移動軌道を求めるようにしても良い。マーク702は、真空排気前(リーク前)のマーク位置であり、マーク703は、真空排気後(リーク後)のマーク位置である。この移動軌道に沿って反転するように視野補正を行うことによって、正確な視野補正を行うことが可能となる。時間ごとの移動量が異なる場合には、時間ごとの移動速度に応じて補正を行うようにすると良い。   Furthermore, as illustrated in FIG. 7, when the movement trajectory 701 of the beam irradiation position is not linear, a pattern position 704 for each unit pressure value (time) is obtained, and the pattern position is approximated by a curve. The beam trajectory may be obtained. A mark 702 is a mark position before evacuation (before leakage), and a mark 703 is a mark position after evacuation (after leakage). By performing the visual field correction so as to be reversed along the moving trajectory, it is possible to perform an accurate visual field correction. When the amount of movement for each time differs, it is preferable to perform correction according to the movement speed for each time.

予備排気室27の排気やリークといった処理に伴う鏡体1の傾きは、機械的なものであり、時間とともに変化する可能性がある。そこで、通常の検査観察時において自動的に校正するためのフローを図6に示す。   The inclination of the mirror body 1 due to processing such as exhaust or leakage of the preliminary exhaust chamber 27 is mechanical and may change with time. Accordingly, FIG. 6 shows a flow for automatically calibrating during normal inspection observation.

レシピによる自動計測ではレシピ内に格納されている観察検査点に対して処理を行うが、最初にレシピ内で指定されているウェハ上の座標に移動し図5で示す観察検査処理を行う(S301)。このとき取得した、走査開始時の画像と、走査最終画像から、目標とする観察検査対象の位置ずれ量(dx、dy)を画像処理にて算出する(S302)。予備排気室の状態により、リーク中ずれ(sdxl,sdyl), 真空排気中ずれ(sdxe,sdye),定常ずれ(sdxn,sdyn)に加算する。   In the automatic measurement by the recipe, processing is performed on the observation inspection points stored in the recipe, but first, the observation inspection processing shown in FIG. 5 is performed by moving to the coordinates on the wafer specified in the recipe (S301). ). From the acquired image at the start of scanning and the final scanned image obtained at this time, the positional deviation amount (dx, dy) of the target observation inspection object is calculated by image processing (S302). Depending on the state of the preliminary exhaust chamber, it is added to the deviation during leak (sdxl, sdyl), the deviation during vacuum exhaust (sdxe, sdy), and the steady deviation (sdxn, sdyn).

全観察検査点が完了するまで観察検査処理(S301)からくりかえす。このようにして算出されたずれ量の加算値からそれぞれの状態での平均ずれ量を算出する(S308)。算出されたずれ量の平均値で、定常ずれの平均とリーク中ずれ, 真空排気中ずれを比較し、あらかじめ設定してある許容値を超えた場合、図4に示す補正量算出処理を実行する(S310)。定常時のずれ量と比較するのはウェハ製造プロセスにより一次電子照射に伴い帯電が発生し、像がドリフトする可能性があるため、プロセス起因の像ドリフトと、予備排気室起因の像ドリフトを区別するためである。   The observation inspection process (S301) is repeated until all observation inspection points are completed. The average deviation amount in each state is calculated from the added value of the deviation amounts thus calculated (S308). The average value of the calculated deviation amounts is compared with the average of the steady deviation, the deviation during leak, and the deviation during vacuum exhaust. When the preset allowable value is exceeded, the correction amount calculation process shown in FIG. 4 is executed. (S310). Compared to the steady-state deviation amount, the wafer manufacturing process is charged with primary electron irradiation and the image may drift, so the image drift caused by the process and the image drift caused by the preliminary exhaust chamber are distinguished. It is to do.

1・・・鏡体、2・・・電子源、3・・・一次電子加速電極、4・・・一次電子、5・・・コンデンサレンズ、6・・・絞り、7・・・走査コイル、8・・・イメージシフトコイル、9・・・ウェーハ(試料)、10・・・検出機、11・・・増幅器、12・・・画像処理プロセッサ、13・・・画像表示装置、14・・・制御用計算機、15・・・制御回路、16・・・反射電子、17・・・ステージ、18・・・一次電子加速電源、19・・・対物レンズ、20・・・ポンプ、21・・・排気装置、22・・・リークバルブ、23・・・ゲートバルブ、24・・・真空ゲージ、25・・・除振器、26・・・試料室、27・・・予備排気室、28・・・据え付け台、29・・・計測用マーク DESCRIPTION OF SYMBOLS 1 ... Mirror body, 2 ... Electron source, 3 ... Primary electron acceleration electrode, 4 ... Primary electron, 5 ... Condenser lens, 6 ... Aperture, 7 ... Scanning coil, DESCRIPTION OF SYMBOLS 8 ... Image shift coil, 9 ... Wafer (sample), 10 ... Detector, 11 ... Amplifier, 12 ... Image processor, 13 ... Image display apparatus, 14 ... Control computer, 15 ... control circuit, 16 ... backscattered electrons, 17 ... stage, 18 ... primary electron acceleration power source, 19 ... objective lens, 20 ... pump, 21 ... Exhaust device, 22 ... leak valve, 23 ... gate valve, 24 ... vacuum gauge, 25 ... vibration isolator, 26 ... sample chamber, 27 ... preliminary exhaust chamber, 28 ...・ Mounting base, 29 ... Mark for measurement

Claims (8)

荷電粒子ビームを照射する荷電粒子ビーム光学系と、荷電粒子ビームが照射される試料周囲の雰囲気を真空に維持する真空室と、当該真空室に導入する試料周囲の雰囲気を真空排気する予備排気室と、前記荷電粒子ビーム光学系を制御する制御装置を備えた荷電粒子線装置において、
前記荷電粒子ビームの照射位置を偏向する偏向器を備え、前記制御装置は、前記予備排気室の予備排気時、及び/又はリーク時に、予め定められた条件に基づいて前記荷電粒子ビームを偏向するように、前記偏向器を制御することを特徴とする荷電粒子線装置。
A charged particle beam optical system for irradiating a charged particle beam, a vacuum chamber for maintaining the atmosphere around the sample irradiated with the charged particle beam in a vacuum, and a preliminary exhaust chamber for evacuating the atmosphere around the sample introduced into the vacuum chamber And a charged particle beam apparatus comprising a control device for controlling the charged particle beam optical system,
A deflector for deflecting the irradiation position of the charged particle beam is provided, and the control device deflects the charged particle beam based on a predetermined condition at the time of preliminary exhaust and / or leak of the preliminary exhaust chamber. Thus, the charged particle beam apparatus is characterized by controlling the deflector.
請求項1において、
前記制御装置は、前記予備排気室の予備排気時、及び/又はリーク時の予備排気室の圧力に応じて、前記荷電粒子ビームを偏向するように、前記偏向器を制御することを特徴とする荷電粒子線装置。
In claim 1,
The control device controls the deflector so as to deflect the charged particle beam according to the pressure of the preliminary exhaust chamber at the time of preliminary exhaust in the preliminary exhaust chamber and / or at the time of leakage. Charged particle beam device.
請求項1において、
前記制御装置は、前記予備排気室の予備排気時間、及び/又はリーク時間に応じて、前記荷電粒子ビームを偏向するように、前記偏向器を制御することを特徴とする荷電粒子線装置。
In claim 1,
The charged particle beam apparatus according to claim 1, wherein the control device controls the deflector so as to deflect the charged particle beam according to a preliminary exhaust time and / or a leak time of the preliminary exhaust chamber.
請求項1において、
前記制御装置は、前記予備排気室の圧力、或いは圧力の変化時間に因らず、前記荷電粒子ビームの走査位置が一定となるように、前記偏向器を制御することを特徴とする荷電粒子線装置。
In claim 1,
The control device controls the deflector so that the scanning position of the charged particle beam is constant regardless of the pressure of the preliminary exhaust chamber or the pressure change time. apparatus.
請求項1において、
前記真空室内には試料を配置するための試料ステージが設けられ、当該試料ステージには、前記荷電粒子線の走査によって画像化が可能なマークが設けられていることを特徴とする荷電粒子線装置。
In claim 1,
A charged particle beam apparatus characterized in that a sample stage for arranging a sample is provided in the vacuum chamber, and the sample stage is provided with a mark that can be imaged by scanning the charged particle beam. .
請求項5において、
前記制御装置は、前記前記予備排気室の予備排気時、及び/又はリーク時の前記マークの移動に基づいて、前記偏向器の偏向条件を求めることを特徴とする荷電粒子線装置。
In claim 5,
The charged particle beam apparatus according to claim 1, wherein the control device obtains a deflection condition of the deflector based on movement of the mark at the time of preliminary exhaust of the preliminary exhaust chamber and / or at the time of leakage.
請求項1において、
前記制御装置は、前記予め定められた条件に基づいて前記荷電粒子ビームを偏向することによって得られる複数の画像を加算平均することを特徴とする荷電粒子線装置。
In claim 1,
The charged particle beam apparatus, wherein the control device adds and averages a plurality of images obtained by deflecting the charged particle beam based on the predetermined condition.
請求項1において、
前記荷電粒子ビームを走査する走査偏向器を備え、
前記制御装置は、当該走査偏向器による走査中であって、前記予備排気室の圧力変化中の前記荷電粒子ビームの走査位置の変化が許容範囲を超える場合に、前記偏向器の偏向条件を求めることを特徴とする荷電粒子線装置。
In claim 1,
A scanning deflector for scanning the charged particle beam;
The control device obtains a deflection condition of the deflector when scanning by the scanning deflector is being performed and the change in the scanning position of the charged particle beam exceeds the allowable range while the pressure in the preliminary exhaust chamber is changing. A charged particle beam apparatus characterized by that.
JP2012268945A 2012-12-10 2012-12-10 Charged particle beam equipment Expired - Fee Related JP6138471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012268945A JP6138471B2 (en) 2012-12-10 2012-12-10 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268945A JP6138471B2 (en) 2012-12-10 2012-12-10 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2014116170A true JP2014116170A (en) 2014-06-26
JP6138471B2 JP6138471B2 (en) 2017-05-31

Family

ID=51171967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268945A Expired - Fee Related JP6138471B2 (en) 2012-12-10 2012-12-10 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP6138471B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352760A (en) * 2001-05-22 2002-12-06 Hitachi Ltd Scanning electron microscope
JP2006114599A (en) * 2004-10-13 2006-04-27 Toshiba Corp Correction apparatus, correction method, correction program, and semiconductor device manufacturing method
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device
JP2007324044A (en) * 2006-06-02 2007-12-13 Hitachi High-Technologies Corp Scanning charged particle beam device, image display method of same, and scanning microscope
JP2009027190A (en) * 2008-10-02 2009-02-05 Hitachi High-Technologies Corp Inspection method of circuit pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352760A (en) * 2001-05-22 2002-12-06 Hitachi Ltd Scanning electron microscope
JP2006114599A (en) * 2004-10-13 2006-04-27 Toshiba Corp Correction apparatus, correction method, correction program, and semiconductor device manufacturing method
JP2006318831A (en) * 2005-05-16 2006-11-24 Hitachi High-Technologies Corp Electron beam calibration method and electron beam device
JP2007324044A (en) * 2006-06-02 2007-12-13 Hitachi High-Technologies Corp Scanning charged particle beam device, image display method of same, and scanning microscope
JP2009027190A (en) * 2008-10-02 2009-02-05 Hitachi High-Technologies Corp Inspection method of circuit pattern

Also Published As

Publication number Publication date
JP6138471B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
US9136091B2 (en) Electron beam apparatus for inspecting a pattern on a sample using multiple electron beams
JP4895569B2 (en) CHARGE CONTROL DEVICE AND MEASURING DEVICE PROVIDED WITH CHARGE CONTROL DEVICE
JP6604704B2 (en) Substrate inspection device, substrate inspection method, large area substrate inspection device, and operation method thereof
US20060284088A1 (en) Focus correction method for inspection of circuit patterns
JP5202136B2 (en) Charged particle beam equipment
JP2010087070A (en) Diagnostic device of recipe used for scanning electron microscope
JP4359232B2 (en) Charged particle beam equipment
JP2021119565A (en) Automatic limit dimension measurement method on display manufacturing substrate, display manufacturing large area substrate inspection method, display manufacturing large area substrate inspection device, and operation method thereof
JP2010123354A (en) Charged particle beam device
KR102477184B1 (en) Method for inspecting a sample with a charged particle beam device, and charged particle beam device
JP2006173038A (en) Charged particle beam device, sample image display method, and image shift sensitivity measuring method
JP2011003480A (en) Scanning electron microscope type visual inspection device and its image signal processing method
JP4988905B2 (en) Charged particle beam equipment
JP6138471B2 (en) Charged particle beam equipment
JP2008010269A (en) Low vacuum electronic-optical-system image forming device and low vacuum electronic-optical-system image forming method
JP7192117B2 (en) Method of critical dimension measurement on substrates and apparatus for inspecting and cutting electronic devices on substrates
TW202221752A (en) Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device
US20240186103A1 (en) Transmission Electron Microscope
JP2019012766A (en) Inspection equipment
JP7493101B2 (en) Transmission electron microscope
JP5506202B2 (en) Charged particle beam equipment
JP2020177924A (en) Charged particle beam device
JPH1187445A (en) Semiconductor inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6138471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees