JP2014112474A - Solid electrolyte - Google Patents

Solid electrolyte Download PDF

Info

Publication number
JP2014112474A
JP2014112474A JP2012266030A JP2012266030A JP2014112474A JP 2014112474 A JP2014112474 A JP 2014112474A JP 2012266030 A JP2012266030 A JP 2012266030A JP 2012266030 A JP2012266030 A JP 2012266030A JP 2014112474 A JP2014112474 A JP 2014112474A
Authority
JP
Japan
Prior art keywords
solid electrolyte
oxygen
sr12a7
sintered body
mayenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012266030A
Other languages
Japanese (ja)
Inventor
Satoru Fujita
悟 藤田
Masahiko Asaoka
賢彦 朝岡
Katsuro Hayashi
克郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2012266030A priority Critical patent/JP2014112474A/en
Priority to DE102013005888.0A priority patent/DE102013005888B4/en
Publication of JP2014112474A publication Critical patent/JP2014112474A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel solid electrolyte having high oxygen-ion conduction properties.SOLUTION: A solid electrolyte comprises a sintered body of strontium aluminate (SrAlO:Sr12A7) having a structure in which oxygen ions (O) are included. The solid electrolyte may be used as an oxygen-ion (O) conductor. The solid electrolyte may be used also as an electrolyte of a solid oxide fuel cell (SOFC).

Description

本発明は、固体電解質に関し、さらに詳しくは、マイエナイト型化合物の一種であるストロンチウムアルミネート(Sr12Al1433:Sr12A7)の焼結体からなる固体電解質に関する。 The present invention relates to a solid electrolyte, and more particularly to a solid electrolyte made of a sintered body of strontium aluminate (Sr 12 Al 14 O 33 : Sr12A7) which is a kind of mayenite type compound.

燃料電池は、環境問題・エネルギー問題を解決するための有力な手段の一つである。特に、固体酸化物型燃料電池(SOFC)は、(1)発電効率が高い、(2)多様な燃料に対応可能である、(3)小型分散電源から大規模火力代替システムまで幅広い適応性を持つ、(4)Pt触媒を必要としない、等の利点がある。
しかし、本格的な市場拡大のためには、(1)作動温度の低温下(1000℃から600℃以下)、(2)耐久性(熱的・機械的強度の確保、緊急停止繰り返し等)の向上、(3)セル構造の最適化、等が必要条件となっている。
A fuel cell is one of the effective means for solving environmental problems and energy problems. In particular, solid oxide fuel cells (SOFC) are (1) high power generation efficiency, (2) compatible with various fuels, and (3) wide applicability from small distributed power sources to large-scale thermal power alternative systems. (4) It does not require a Pt catalyst.
However, for full-scale market expansion, (1) under low operating temperature (1000 ° C to 600 ° C or less), (2) durability (ensure thermal and mechanical strength, repeated emergency stop, etc.) Improvements, (3) optimization of the cell structure, etc. are necessary conditions.

特に、作動温度を低温下させるためには、電解質、アノード・カソード、触媒等の材料設計は重要である。現在、電解質材料として、イットリア安定化ジルコニア(YSZ)、ランタンガレート等が知られている。しかしながら、600℃での高伝導化(〜0.1S/cm)が達成された例は、従来にはない。   In particular, in order to lower the operating temperature, the material design of the electrolyte, anode / cathode, catalyst, etc. is important. Currently, yttria stabilized zirconia (YSZ), lanthanum gallate, and the like are known as electrolyte materials. However, there is no example in which high conductivity (˜0.1 S / cm) at 600 ° C. has been achieved.

一方、マイエナイト(Ca12Al1433:C12A7)は、Al−O四面体骨格から構成されるケージ(ナノ細孔)と、ケージ内に包摂されたCaイオン及び酸素イオンとを備えた材料である。ナノ細孔は、酸素イオンや電子の伝導チャンネルとして機能すると考えられている。そのため、マイエナイト及びこれに類似の構造を備えた化合物(マイエナイト型化合物)の導電性に関し、従来から種々の検討が行われている。 On the other hand, mayenite (Ca 12 Al 14 O 33 : C12A7) is a material comprising a cage (nanopore) composed of an Al—O tetrahedral skeleton, and Ca ions and oxygen ions included in the cage. is there. Nanopores are thought to function as conduction channels for oxygen ions and electrons. For this reason, various studies have been conventionally conducted on the conductivity of mayenite and a compound (mayenite type compound) having a similar structure.

例えば、特許文献1には、
(1)炭酸カルシウム:酸化アルミニウム=12:7の混合物を大気雰囲気下、1300℃で6時間保持し、
(2)得られた焼結物(C12A7)を粉砕して平均粒径が50μmの粉末Aとし、
(3)粉末Aに炭素粉末を加えて成形し、成形体を酸素濃度0.6体積%の窒素ガス雰囲気下において、1300℃で2時間保持する
ことにより得られる導電性マイエナイト型化合物が開示されている。
同文献には、粉末Aは絶縁体であるのに対し、導電性マイエナイト型化合物の電子密度は1.5×1020/cm3である点(すなわち、電子伝導体として機能する点)が記載されている。
For example, Patent Document 1 discloses that
(1) A mixture of calcium carbonate: aluminum oxide = 12: 7 is held at 1300 ° C. for 6 hours in an air atmosphere,
(2) The obtained sintered product (C12A7) is pulverized into a powder A having an average particle size of 50 μm,
(3) Disclosed is a conductive mayenite type compound obtained by adding carbon powder to powder A and molding and holding the molded body at 1300 ° C. for 2 hours in a nitrogen gas atmosphere having an oxygen concentration of 0.6 vol%. ing.
This document describes that powder A is an insulator, whereas the electron density of the conductive mayenite type compound is 1.5 × 10 20 / cm 3 (that is, it functions as an electron conductor). Has been.

また、特許文献2には、Cu/Ca比が0.05又は0.025であるアルミノケイ酸カルシウム(Ca12(Al14-xSix)O33+0.5x、0<x≦4)のCu置換体からなる粉末、及び、Cr/Ca比が0.05であるアルミノケイ酸カルシウムのCr置換体からなる粉末が開示されている。
同文献には、
(1)アルミノケイ酸カルシウム(マイエナイト)は、構造中に酸化物イオン(O2 -)が包蔵されている点、及び、
(2)アルミノケイ酸カルシウムのCaの一部をCu又はCrで置換すると、酸素貯蔵能が増大する点、
が記載されている。
Patent Document 2 discloses Cu of calcium aluminosilicate (Ca 12 (Al 14 -x Si x ) O 33 + 0.5x , 0 <x ≦ 4) having a Cu / Ca ratio of 0.05 or 0.025. Disclosed are powders made of substitution products and powders made of Cr substitution products of calcium aluminosilicate having a Cr / Ca ratio of 0.05.
In the same document,
(1) Calcium aluminosilicate (mayenite) contains oxide ions (O 2 ) in its structure, and
(2) When a part of Ca of calcium aluminosilicate is replaced with Cu or Cr, the oxygen storage capacity increases.
Is described.

さらに、特許文献3には、
(1)水酸化ストロンチウムとγ−アルミナの混合粉末を成形し、
(2)成形体を大気中で、800℃で2時間焼成して固相反応させ、
(3)その後、室温まで約100℃/秒の速度で急冷し、
(4)さらに、得られた化合物を、酸素1気圧の乾燥雰囲気中で、550℃で12時間再焼成する
ことにより得られる12SrO・7Al23化合物が開示されている。
同文献には、得られた化合物には、4×1019/cm3のO2 -ラジカルと、1×1019/cm3のO-ラジカルが含まれている点が記載されている。
Furthermore, Patent Document 3 includes:
(1) Molding a mixed powder of strontium hydroxide and γ-alumina,
(2) The molded body is fired at 800 ° C. for 2 hours in the air to cause a solid phase reaction,
(3) After that, rapidly cool to room temperature at a rate of about 100 ° C./second
(4) Further, a 12SrO · 7Al 2 O 3 compound obtained by re-baking the obtained compound at 550 ° C. for 12 hours in a dry atmosphere of 1 atmosphere of oxygen is disclosed.
The same document, the resulting compound of 4 × 10 19 / cm 3 O 2 - radical, of 1 × 10 19 / cm 3 O - is that it contains a radical is described.

上述した文献に記載されているように、マイエナイトを還元処理したり、あるいは、マイエナイトのCaサイト又はAlサイトの一部を他の元素で置換すると、マイエナイトの伝導特性が変化することが知られている。しかしながら、YSZと同等以上の酸素イオン伝導特性を持つマイエナイト型化合物からなる固体電解質が提案された例は、従来にはない。   As described in the above-mentioned documents, it is known that when mayenite is reduced or a part of Ca site or Al site of mayenite is replaced with another element, the conduction property of mayenite changes. Yes. However, there has never been an example in which a solid electrolyte made of a mayenite type compound having oxygen ion conduction characteristics equivalent to or better than YSZ has been proposed.

国際公開第2006/129675号International Publication No. 2006/129675 特開2007−083126号公報Japanese Patent Laid-Open No. 2007-083126 特許第4105447号公報Japanese Patent No. 4105447

本発明が解決しようとする課題は、高い酸素イオン伝導特性を持つ新規な固体電解質を提供することにある。   The problem to be solved by the present invention is to provide a novel solid electrolyte having high oxygen ion conductivity.

上記課題を解決するために本発明に係る固体電解質は、構造中に酸素イオン(O2-)が包摂されたストロンチウムアルミネート(Sr12Al1433:Sr12A7)の焼結体からなる。 In order to solve the above problems, the solid electrolyte according to the present invention is composed of a sintered body of strontium aluminate (Sr 12 Al 14 O 33 : Sr12A7) in which oxygen ions (O 2− ) are included in the structure.

SrイオンはCaイオンに比べてイオン半径が大きい。そのため、C12A7のCaサイトのすべてをSrで置換すると、格子定数が大きくなり、それに伴って構造内のイオンチャンネルも大きくなる。その結果、Sr12A7は、C12A7に比べて高いイオン伝導度を示す。このようなSr12A7の焼結体を、例えばSOFCの電解質として用いると、C12A7を用いた場合に比べて、高い効率が得られる。   Sr ions have a larger ion radius than Ca ions. Therefore, when all of the Ca sites of C12A7 are replaced with Sr, the lattice constant increases, and the ion channel in the structure increases accordingly. As a result, Sr12A7 exhibits higher ionic conductivity than C12A7. When such a sintered body of Sr12A7 is used as, for example, an SOFC electrolyte, high efficiency can be obtained as compared with the case of using C12A7.

マイエナイト(C12Al1433:C12A7)の結晶構造の模式図である。Mayenite (C 12 Al 14 O 33: C12A7) is a schematic view of the crystal structure of. Sr12A7とC12A7の格子定数の温度依存性を示す図である。It is a figure which shows the temperature dependence of the lattice constant of Sr12A7 and C12A7. 各種材料のイオン伝導度の温度依存性を示す図である。It is a figure which shows the temperature dependence of the ionic conductivity of various materials. Sr12Al1433(左上図:相対密度52%)及びCa12Al1433(右上図:相対密度50%、右下図:相対密度95%)の断面写真である。It is a cross-sectional photograph of Sr 12 Al 14 O 33 (upper left figure: relative density 52%) and Ca 12 Al 14 O 33 (upper right figure: relative density 50%, lower right figure: relative density 95%).

以下、本発明の一実施の形態について詳細に説明する。
[1. 固体電解質]
本発明に係る固体電解質は、構造中に酸素イオン(O2-)が包摂されたストロンチウムアルミネート(Sr12Al1433:Sr12A7)の焼結体からなる。
Hereinafter, an embodiment of the present invention will be described in detail.
[1. Solid electrolyte]
The solid electrolyte according to the present invention is made of a sintered body of strontium aluminate (Sr 12 Al 14 O 33 : Sr12A7) in which oxygen ions (O 2− ) are included in the structure.

[1.1. 結晶構造]
図1に、マイエナイト(C12Al1433:C12A7)の結晶構造の模式図を示す。マイエナイトは、ゼオライト様構造をとり、Al−O四面体骨格と、その骨格から構成される0.6nmのケージ(細孔)を有する。そのケージ内には、Caイオンと酸素イオンが包摂されている。YSZのような酸素欠損サイトを介した酸素移動に比べて、マイエナイトは、既に酸素イオンが通るイオンチャンネルを備えているため、ケージ間(ナノ細孔を介したイオンチャンネル)における酸素イオンモビリティーの方が大きいものと予想される。
[1.1. Crystal structure]
1, mayenite: shows a schematic view of the crystal structure of (C 12 Al 14 O 33 C12A7 ). The mayenite has a zeolite-like structure and has an Al—O tetrahedral skeleton and a cage (pore) of 0.6 nm composed of the skeleton. The cage contains Ca ions and oxygen ions. Compared to oxygen transfer through oxygen deficient sites such as YSZ, mayenite already has ion channels through which oxygen ions pass, so oxygen ion mobility between cages (ion channels through nanopores) Is expected to be large.

本発明は、マイエナイトの酸素移動をさらに容易化するために、マイエナイトのCaサイトのすべてをSrで置換したことを特徴とする。すなわち、本発明に係る固体電解質は、ストロンチウムアルミネート(Sr12Al1433:Sr12A7)の焼結体からなる。Sr12A7は、C12A7と同様に、その構造中に酸素イオン(O2-)が包摂されている。Sr12A7からなる焼結体は、従来のSOFC用固体電解質であるYSZと同等以上の電気伝導度を示す可能性がある。 The present invention is characterized in that all of the Ca sites of the mayenite are substituted with Sr in order to further facilitate the oxygen transfer of the mayenite. That is, the solid electrolyte according to the present invention is made of a sintered body of strontium aluminate (Sr 12 Al 14 O 33 : Sr12A7). Similar to C12A7, Sr12A7 includes oxygen ions (O 2− ) in its structure. There is a possibility that a sintered body made of Sr12A7 has an electric conductivity equal to or higher than that of YSZ, which is a conventional solid electrolyte for SOFC.

[1.2. 相対密度]
一般に、固体電解質は、焼結密度が高くなるほど、伝導度が増大する。後述する方法を用いて本発明に係る固体電解質を製造すると、焼結体の相対密度は、50%以上となる。
[1.2. Relative density]
In general, the conductivity of a solid electrolyte increases as the sintered density increases. When the solid electrolyte according to the present invention is manufactured using a method described later, the relative density of the sintered body is 50% or more.

[1.3. 用途]
本発明に係る固体電解質は、酸素イオン(O2-)伝導体として用いることができる。また、本発明に係る固体電解質は、固体酸化物型燃料電池(SOFC)の電解質として用いることができる。
[1.3. Application]
The solid electrolyte according to the present invention can be used as an oxygen ion (O 2− ) conductor. The solid electrolyte according to the present invention can be used as an electrolyte for a solid oxide fuel cell (SOFC).

[2. 固体電解質の製造方法]
本発明に係る固体電解質は、
(1)Sr源及びAl源を所定の比率で混合し(混合工程)、
(2)混合物を成形し(成形工程)、
(3)成形体を焼結させる(焼結工程)
ことにより製造することができる。
[2. Method for producing solid electrolyte]
The solid electrolyte according to the present invention is:
(1) Sr source and Al source are mixed at a predetermined ratio (mixing step),
(2) Molding the mixture (molding process)
(3) Sintering the compact (sintering process)
Can be manufactured.

[2.1. 混合工程]
混合工程は、Sr源及びAl源を所定の比率で混合する工程である。使用する原料は、Sr12A7を製造可能なものであれば良く、特に限定されない。
Sr源としては、例えば、炭酸ストロンチウム、酸化ストロンチウム、水酸化ストロンチウム、塩化ストロンチウム、酢酸ストロンチウム、硝酸ストロンチウムなどがある。
Al源としては、例えば、γアルミナ、αアルミナ、アルミナゾル、水酸化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウム、窒化アルミニウム、ボーキサイトなどがある。
[2.1. Mixing process]
The mixing step is a step of mixing the Sr source and the Al source at a predetermined ratio. The raw material to be used is not particularly limited as long as it can produce Sr12A7.
Examples of the Sr source include strontium carbonate, strontium oxide, strontium hydroxide, strontium chloride, strontium acetate, and strontium nitrate.
Examples of the Al source include γ alumina, α alumina, alumina sol, aluminum hydroxide, aluminum nitrate, aluminum sulfate, aluminum chloride, aluminum nitride, and bauxite.

原料の混合比率は、Sr12A7が得られる比率とする。混合方法は、特に限定されるものではなく、均一な原料混合物が得られる方法であれば良い。   The mixing ratio of the raw materials is a ratio at which Sr12A7 is obtained. The mixing method is not particularly limited as long as a uniform raw material mixture can be obtained.

[2.2. 成形工程]
成形工程は、混合物を成形する工程である。成形方法及び成形条件は、特に限定されるものではなく、高密度の成形体が得られる方法及び条件であればよい。
[2.2. Molding process]
The forming step is a step of forming the mixture. The molding method and molding conditions are not particularly limited as long as they are methods and conditions for obtaining a high-density molded body.

[2.3. 焼結工程]
焼結工程は、成形体を焼結させる工程である。焼結方法及び焼結条件は、特に限定されるものではなく、相対的に密度の高い焼結体が得られる方法及び条件であればよい。
[2.3. Sintering process]
A sintering process is a process of sintering a molded object. The sintering method and sintering conditions are not particularly limited, and may be any method and conditions that can obtain a sintered body having a relatively high density.

[3. 作用]
SrイオンはCaイオンに比べてイオン半径が大きい。そのため、C12A7のCaサイトのすべてをSrで置換すると、格子定数が大きくなり、それに伴って構造内のイオンチャンネルも大きくなる。その結果、Sr12A7は、C12A7に比べて高いイオン伝導度を示す。このようなSr12A7の焼結体を、例えばSOFCの電解質として用いると、C12A7を用いた場合に比べて、高い効率が得られる。
[3. Action]
Sr ions have a larger ion radius than Ca ions. Therefore, when all of the Ca sites of C12A7 are replaced with Sr, the lattice constant increases, and the ion channel in the structure increases accordingly. As a result, Sr12A7 exhibits higher ionic conductivity than C12A7. When such a sintered body of Sr12A7 is used as, for example, an SOFC electrolyte, high efficiency can be obtained as compared with the case of using C12A7.

(実施例1、比較例1〜3)
[1. 試料の作製(実施例1)]
Sr(OH)2・8H2O粉末((株)高純度化学研究所製)と、γ−Al23((株)高純度化学研究所製)をモル比で12:7となる比率で、総量約20gを秤量した。これを容積500mLのナイロンポット製の容器に入れ、さらに容器にジルコニアボール約60g、及び、エタノール約150mLを加えて封止した。遊星ボールミル装置(三庄インダストリー(株)製)を用いて、200rpmで2時間混合粉砕した。
(Example 1, Comparative Examples 1-3)
[1. Preparation of sample (Example 1)]
Sr (OH) 2 · 8H 2 O powder and (Co. Kojundo Chemical Laboratory, Ltd.), γ-Al 2 O 3 in (Co. Kojundo Chemical Laboratory, Ltd.) molar ratio of 12: 7 to become Ratio The total amount of about 20 g was weighed. This was put into a nylon pot container having a volume of 500 mL, and further, about 60 g of zirconia balls and about 150 mL of ethanol were added to the container and sealed. Using a planetary ball mill apparatus (manufactured by Sanjo Industry Co., Ltd.), the mixture was pulverized at 200 rpm for 2 hours.

乾燥した混合粉末約1.2gを直径20mmの金型を用いて40MPaの片押し成型の後、300MPaの冷間静水圧プレスを施して円盤状の圧粉体を得た。これを蒸留水が入った洗瓶を通すことで得られる加湿アルゴンガス又は窒素の気流中で、800℃で6時間の条件で焼結を行い、炉冷してSr12A7焼結体を得た。   About 1.2 g of the dried mixed powder was pressed at 40 MPa using a die having a diameter of 20 mm, and then subjected to a 300 MPa cold isostatic press to obtain a disk-shaped green compact. This was sintered in a humidified argon gas or nitrogen stream obtained by passing it through a washing bottle containing distilled water at 800 ° C. for 6 hours, and cooled in a furnace to obtain an Sr12A7 sintered body.

[2. 試料の作製(比較例1〜3)]
炭酸カルシウム(18.7g)及びγアルミナ(11.1g)を原料に用いた以外は、実施例1と同様にして、混合粉砕粉を作製した。次いで、混合粉砕粉の仮焼を行った。なお、仮焼条件は、1100℃×15時間とした。
次に、得られた仮焼粉を用いて焼結体(C12A7)を作製した。焼結条件は、1350℃×12時間、大気雰囲気中(比較例1)、又は、1350℃×12時間、酸素100%雰囲気中(比較例2)とした。
さらに、市販のYSZ(ZrO2−8mol%Y23)をそのまま試験に供した(比較例3)。
[2. Preparation of sample (Comparative Examples 1 to 3)]
A mixed pulverized powder was produced in the same manner as in Example 1 except that calcium carbonate (18.7 g) and γ-alumina (11.1 g) were used as raw materials. Subsequently, the mixed pulverized powder was calcined. The calcining conditions were 1100 ° C. × 15 hours.
Next, a sintered body (C12A7) was produced using the obtained calcined powder. The sintering conditions were 1350 ° C. × 12 hours in an air atmosphere (Comparative Example 1) or 1350 ° C. × 12 hours in an oxygen 100% atmosphere (Comparative Example 2).
Furthermore, commercially available YSZ (ZrO 2 -8 mol% Y 2 O 3 ) was used for the test as it was (Comparative Example 3).

[3. 試験方法]
[3.1. 格子定数]
得られた焼結体について、X線回折を行った。測定温度は、室温から1000℃とした。回折ピークから格子定数を算出した。
[3.2. 相対密度]
得られた焼結体の体積及び重量を測定し、密度を算出した。これを理論密度(Sr12A7の場合は、3.44g/cm3)で除して、相対密度とした。
[3.3. 伝導度測定]
焼結体の上下面に白金電極を付け、LCRメーターを用いて、2端子で膜厚方向のコンダクタンスを評価した。測定は、100%のO2雰囲気下において、最高900℃まで行った。
[3. Test method]
[3.1. Lattice constant]
The obtained sintered body was subjected to X-ray diffraction. The measurement temperature was from room temperature to 1000 ° C. The lattice constant was calculated from the diffraction peak.
[3.2. Relative density]
The volume and weight of the obtained sintered body were measured, and the density was calculated. This was divided by the theoretical density (3.44 g / cm 3 in the case of Sr12A7) to obtain a relative density.
[3.3. Conductivity measurement]
Platinum electrodes were attached to the upper and lower surfaces of the sintered body, and the conductance in the film thickness direction was evaluated with two terminals using an LCR meter. The measurement was performed up to 900 ° C. in a 100% O 2 atmosphere.

[4. 結果]
[4.1. 格子定数]
図2に、Sr12A7とC12A7の格子定数の温度依存性を示す。図2より、Sr12A7は、C12A7に比べて格子定数が大きいことがわかる。これは、Srイオンのイオン半径がCaイオンより大きいためである。
[4. result]
[4.1. Lattice constant]
FIG. 2 shows the temperature dependence of the lattice constants of Sr12A7 and C12A7. FIG. 2 shows that Sr12A7 has a larger lattice constant than C12A7. This is because the ionic radius of Sr ions is larger than Ca ions.

[4.2. 相対密度]
実施例1の焼結体の相対密度は、52%であった。一方、比較例1、2の焼結体の相対密度は、それぞれ、50%及び95%であった。
[4.2. Relative density]
The relative density of the sintered body of Example 1 was 52%. On the other hand, the relative densities of the sintered bodies of Comparative Examples 1 and 2 were 50% and 95%, respectively.

[4.3. 伝導度]
図3に、各種材料のイオン伝導度の温度依存性を示す。なお、図3中の()内の数値は、相対密度(%)を表す。また、図4に、Sr12Al1433(左上図:相対密度52%)及びCa12Al1433(右上図:相対密度50%、右下図:相対密度95%)の断面写真を示す。図3及び図4より、以下のことが分かる。
(1)相対密度が同等(約50%)である場合、Sr12Al1433の伝導度は、Ca12Al1433より高い。
(2)相対密度が52%であるSr12Al1433の伝導度は、相対密度が95%であるCa12Al1433とほぼ同等の伝導度を示す。
[4.3. Conductivity]
FIG. 3 shows the temperature dependence of the ionic conductivity of various materials. In addition, the numerical value in () in FIG. 3 represents a relative density (%). FIG. 4 shows cross-sectional photographs of Sr 12 Al 14 O 33 (upper left: relative density 52%) and Ca 12 Al 14 O 33 (upper right: relative density 50%, lower right: 95% relative density). . 3 and 4 show the following.
(1) When the relative density is equivalent (about 50%), the conductivity of Sr 12 Al 14 O 33 is higher than that of Ca 12 Al 14 O 33 .
(2) The conductivity of Sr 12 Al 14 O 33 having a relative density of 52% is almost the same as that of Ca 12 Al 14 O 33 having a relative density of 95%.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係る固体電解質は、燃料電池用の電解質膜、酸素センサー、酸化触媒(排ガス浄化触媒、燃焼触媒、部分酸化触媒)などに使用することができる。   The solid electrolyte according to the present invention can be used for an electrolyte membrane for a fuel cell, an oxygen sensor, an oxidation catalyst (exhaust gas purification catalyst, combustion catalyst, partial oxidation catalyst) and the like.

Claims (3)

構造中に酸素イオン(O2-)が包摂されたストロンチウムアルミネート(Sr12Al1433:Sr12A7)の焼結体からなる固体電解質。 A solid electrolyte comprising a sintered body of strontium aluminate (Sr 12 Al 14 O 33 : Sr12A7) in which oxygen ions (O 2− ) are included in the structure. 酸素イオン(O2-)伝導体として用いられる請求項1に記載の固体電解質。 The solid electrolyte according to claim 1, which is used as an oxygen ion (O 2− ) conductor. 固体酸化物型燃料電池(SOFC)の電解質として用いられる請求項1に記載の固体電解質。   The solid electrolyte according to claim 1, which is used as an electrolyte of a solid oxide fuel cell (SOFC).
JP2012266030A 2012-04-05 2012-12-05 Solid electrolyte Pending JP2014112474A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012266030A JP2014112474A (en) 2012-12-05 2012-12-05 Solid electrolyte
DE102013005888.0A DE102013005888B4 (en) 2012-04-05 2013-04-05 solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266030A JP2014112474A (en) 2012-12-05 2012-12-05 Solid electrolyte

Publications (1)

Publication Number Publication Date
JP2014112474A true JP2014112474A (en) 2014-06-19

Family

ID=51169483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266030A Pending JP2014112474A (en) 2012-04-05 2012-12-05 Solid electrolyte

Country Status (1)

Country Link
JP (1) JP2014112474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105948A1 (en) * 2021-12-08 2023-06-15 Agc株式会社 Sealing material, and sofc or soec having sealing material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003238149A (en) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO/7AL2O3 COMPOUND AND ITS SYNTHESIZING METHOD
WO2004082050A1 (en) * 2003-03-14 2004-09-23 Thinktank Phoenix Ltd. Honeycomb type solid electrolytic fuel cell
JP2006080006A (en) * 2004-09-10 2006-03-23 Think Tank Phoenix:Kk Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell
JP2006133039A (en) * 2004-11-04 2006-05-25 Riken Corp Nitrogen oxide sensor
JP2012025279A (en) * 2010-07-23 2012-02-09 Oxy Japan:Kk Air cleaner, and filter unit
US20120153806A1 (en) * 2009-08-25 2012-06-21 Asahi Glass Company, Limited Electrode for discharge lamp, method of manufacturing electrode for discharge lamp, and discharge lamp
JP2012119327A (en) * 2012-01-23 2012-06-21 Toho Gas Co Ltd High ion-conductivity solid electrolytic material, sintered compact, and solid electrolyte fuel battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128415A (en) * 2001-10-18 2003-05-08 Japan Science & Technology Corp 12CaO-7Al2O3 COMPOUND AND METHOD FOR PREPARING THE SAME
JP2003238149A (en) * 2002-02-21 2003-08-27 Japan Science & Technology Corp 12SrO/7AL2O3 COMPOUND AND ITS SYNTHESIZING METHOD
WO2004082050A1 (en) * 2003-03-14 2004-09-23 Thinktank Phoenix Ltd. Honeycomb type solid electrolytic fuel cell
JP2006080006A (en) * 2004-09-10 2006-03-23 Think Tank Phoenix:Kk Internal cooling regenerating type honeycomb-shaped solid oxide fuel cell
JP2006133039A (en) * 2004-11-04 2006-05-25 Riken Corp Nitrogen oxide sensor
US20120153806A1 (en) * 2009-08-25 2012-06-21 Asahi Glass Company, Limited Electrode for discharge lamp, method of manufacturing electrode for discharge lamp, and discharge lamp
JP2012025279A (en) * 2010-07-23 2012-02-09 Oxy Japan:Kk Air cleaner, and filter unit
JP2012119327A (en) * 2012-01-23 2012-06-21 Toho Gas Co Ltd High ion-conductivity solid electrolytic material, sintered compact, and solid electrolyte fuel battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105948A1 (en) * 2021-12-08 2023-06-15 Agc株式会社 Sealing material, and sofc or soec having sealing material

Similar Documents

Publication Publication Date Title
Simonenko et al. Synthesis of BaCe0. 9-xZrxY0. 1O3-δ nanopowders and the study of proton conductors fabricated on their basis by low-temperature spark plasma sintering
Shuk et al. Hydrothermal synthesis and properties of mixed conductors based on Ce1− xPrxO2− δ solid solutions
Khan et al. Synthesize and characterization of ceria based nano-composite materials for low temperature solid oxide fuel cell
EP3309797B1 (en) Solid electrolyte
JP5717067B2 (en) Composite cathode material for solid oxide fuel cell operating at medium and low temperature, composite cathode for solid oxide fuel cell, and method for producing electrolyte-composite cathode structure for solid oxide fuel cell
JP2012104308A (en) Method of producing dense material of electrolyte for solid oxide fuel cell
JP3661676B2 (en) Solid oxide fuel cell
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
Dong et al. Crystal structure and electrical conductivity of {(ZrO2) 0.92 (Y2O3) 0.08} 1-x (CuO) x (x= 0, 0.1, 0.2 and 0.3)
Zhang et al. High-temperature proton conductor Sr (Ce0. 6Zr0. 4) 0.9 Y0. 1O3− δ: Preparation, sintering and electrical properties
Wang et al. New Understanding and Improvement in Sintering Behavior of Cerium‐Rich Perovskite‐Type Protonic Electrolytes
JP2014112474A (en) Solid electrolyte
JP2000044340A (en) Sintered lanthanum gallate, its production and fuel cell produced by using the gallate as solid electrolyte
JP3121993B2 (en) Method for producing conductive ceramics
JP5617865B2 (en) Solid electrolyte
KR101666713B1 (en) High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
RU2774865C1 (en) Method for producing an anode material based on cerium aluminate
WO2023079892A1 (en) Oxide ion–conducting solid electrolyte
EP4398269A1 (en) Oxide ion conductive solid electrolyte
WO2023032584A1 (en) Oxide ion-conducting solid electrolyte
WO2023079877A1 (en) Oxide ion–conducting solid electrolyte
JP2004292177A (en) Solid electrolytic material
JP7058866B2 (en) Anode for solid oxide fuel cell and solid oxide fuel cell using this anode
JP2002316872A (en) Lanthanum gallate-base solid electrolytic material, method for manufacturing the same and solid electrolyte type fuel battery
Yang et al. Co-precipitation process as an effective and viable route for proton-conducting solid oxide fuel cell applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131