JP2014112013A - Exhaust gas heat exchanger - Google Patents

Exhaust gas heat exchanger Download PDF

Info

Publication number
JP2014112013A
JP2014112013A JP2012266552A JP2012266552A JP2014112013A JP 2014112013 A JP2014112013 A JP 2014112013A JP 2012266552 A JP2012266552 A JP 2012266552A JP 2012266552 A JP2012266552 A JP 2012266552A JP 2014112013 A JP2014112013 A JP 2014112013A
Authority
JP
Japan
Prior art keywords
exhaust gas
peripheral surface
cooling medium
heat transfer
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012266552A
Other languages
Japanese (ja)
Other versions
JP6092603B2 (en
Inventor
Akihiro Sawamura
晶寛 澤村
Yasufumi Sakakibara
康文 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Original Assignee
Maruyasu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd filed Critical Maruyasu Industries Co Ltd
Priority to JP2012266552A priority Critical patent/JP6092603B2/en
Publication of JP2014112013A publication Critical patent/JP2014112013A/en
Application granted granted Critical
Publication of JP6092603B2 publication Critical patent/JP6092603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas heat exchanger capable of reducing a risk of corrosion by sulfuric acid included in condensate water of an exhaust gas while suppressing increase in cost, improving brazing property, and reducing concentration of stress on a joining portion.SOLUTION: In an exhaust gas heat exchanger 1, an outer case 2 accommodating a heat transfer pipe aggregate 7, is formed by joining a cooling medium circulating portion formation part 3, an exhaust gas lead-in portion 4, and an exhaust gas lead-out portion 5, a first joining portion 61 as a joining portion of the heat transfer pipe aggregate 7 and the exhaust gas lead-in portion 4 is shifted to a downstream side in the exhaust gas flowing direction, with respect to a third joining portion 63 as a joining portion of the cooling medium circulating portion formation part 3 and the exhaust gas lead-in portion 4, and a second joining portion 62 as a joining portion of the heat transfer pipe aggregate 7 and the exhaust gas lead-out portion 5, is shifted to an upstream side in the exhaust gas flowing direction, with respect to a fourth joining portion 64 as a joining portion of the cooling medium circulating portion formation part 3 and the exhaust gas lead-out portion 5.

Description

本発明は、排気ガスを水等の冷却媒体を用いて冷却する排気ガス熱交換器に関し、特に、ヘッダープレートを用いない所謂ヘッダープレートレス構造とした排気ガス再循環(EGR;Exhaust Gas Recirculation)用熱交換器に適した排気ガス熱交換器に関する。   The present invention relates to an exhaust gas heat exchanger that cools exhaust gas using a cooling medium such as water, and more particularly to an exhaust gas recirculation (EGR) having a so-called header plateless structure that does not use a header plate. The present invention relates to an exhaust gas heat exchanger suitable for a heat exchanger.

従来から、組み立て作業性を改善して生産性を向上させるため、両端が拡張された複数の伝熱管を積層して、伝熱管同士をその両端部で互いに接合して、伝熱管の積層体を形成するとともに、その積層体の両端部外周面をアウターケース内周面に接合することにより、それらの接合部で排気ガスの流路と冷却媒体の流路とを仕切ることとして、ヘッダープレート(チューブシートともいう。)を用いないこととした所謂ヘッダープレートレス構造のEGR用熱交換器が知られている(例えば、特許文献1,2参照。)。   Conventionally, in order to improve assembly workability and improve productivity, a plurality of heat transfer tubes whose both ends are expanded are stacked, and the heat transfer tubes are joined to each other at both ends to form a stack of heat transfer tubes. And forming the header plate (tube) by partitioning the outer peripheral surface of both end portions of the laminate to the inner peripheral surface of the outer case, thereby partitioning the exhaust gas flow path and the cooling medium flow path at the joint portion. A heat exchanger for EGR having a so-called header plateless structure in which no sheet is used is known (see, for example, Patent Documents 1 and 2).

特開2007−225190号公報JP 2007-225190 A 特開2011−2133号公報JP 2011-2133 A

特許文献1記載のEGR用熱交換器は、アウターケースに一体的に排気ガス導入部と排気ガス導出部を形成しているが、精製度の低いガソリンを用いた内燃機関の排気ガス等、硫黄酸化物を多く含む排気ガスの場合には、排気ガスが冷却されて発生する凝縮水に含まれる硫酸により、アウターケースの凝縮水に触れる部分である排気ガス導入部及び排気ガス導出部が腐食する虞があった。そして、かかる腐食を防止するために、アウターケースを、例えばスーパーSUS(スーパーステンレス鋼)と称される高ニッケル高クロム高モリブデン鋼等、硫酸に対する耐食性の高い材料で形成すると、コストが増大するという問題があった。   The heat exchanger for EGR described in Patent Document 1 has an exhaust gas inlet and an exhaust gas outlet integrally formed in an outer case. However, sulfur such as exhaust gas of an internal combustion engine using gasoline with a low degree of purification is used. In the case of exhaust gas containing a large amount of oxide, the exhaust gas introduction part and the exhaust gas lead-out part, which are parts that come into contact with the condensed water in the outer case, are corroded by sulfuric acid contained in the condensed water generated by cooling the exhaust gas. There was a fear. In order to prevent such corrosion, the outer case is formed of a material having high corrosion resistance against sulfuric acid, such as high nickel high chromium high molybdenum steel called super SUS (super stainless steel). There was a problem.

また、かかる問題は、図11に示すように、排気ガス導入部104及び排気ガス導出部(図示せず)を、アウターケースの冷却媒体が流通する部分を形成する冷却媒体流通部形成部102とは別体としたEGR用熱交換器でも、生じる虞があった。図11に示すEGR用熱交換器では、冷却媒体流通部形成部102の入口側端部102aの内周面に、排気ガス導入部104の外周面を接合するとともに、排気ガス導入部104よりも下流側に間隔を置いて、伝熱管積層体107の入口側端部107aの外周面を接合していた。なお、図示はしないが、冷却媒体流通部形成部102の出口側端部も同様の構造とされていた。したがって、冷却媒体流通部形成部102の内面に、排気ガス延いてはその凝縮水に触れる部分103があるため、硫酸による腐食の虞があり、これを避けるために、冷却媒体流通部形成部102を硫酸に対する耐食性の高い材料で形成すると、コストが上昇するという問題があった。   Further, as shown in FIG. 11, the problem is that the exhaust gas introduction part 104 and the exhaust gas lead-out part (not shown) are connected to a cooling medium circulation part forming part 102 that forms a part through which the cooling medium of the outer case circulates. May occur even in a separate EGR heat exchanger. In the EGR heat exchanger shown in FIG. 11, the outer peripheral surface of the exhaust gas introducing portion 104 is joined to the inner peripheral surface of the inlet side end portion 102 a of the cooling medium flow portion forming portion 102 and more than the exhaust gas introducing portion 104. The outer peripheral surface of the inlet side end portion 107a of the heat transfer tube laminated body 107 was joined at an interval on the downstream side. Although not shown, the outlet side end portion of the cooling medium circulation portion forming portion 102 has the same structure. Therefore, since there is a portion 103 that contacts the exhaust gas and the condensed water on the inner surface of the cooling medium circulation portion forming portion 102, there is a risk of corrosion due to sulfuric acid. To avoid this, the cooling medium circulation portion forming portion 102 is provided. If the material is made of a material having high corrosion resistance to sulfuric acid, there is a problem that the cost increases.

また、特許文献2記載のEGR用熱交換器は、冷却媒体流通部形成部に相当する冷却媒体タンク部と、排気ガス導入部及び排気ガス導出部に相当するガスタンク部とを、別体としているが、冷却媒体タンク部とガスタンク部とチューブの拡張部とを、三重に重ねて接合して、ガスタンク部と冷却媒体タンク部の境目である仕切り部を、全周に亘ってガスタンク部または冷却媒体タンク部の厚さよりも2倍以上厚い部位で形成することにより、仕切り部に発生する熱歪みの低減を図っていた(要約参照)。   Further, the EGR heat exchanger described in Patent Document 2 includes a cooling medium tank portion corresponding to the cooling medium circulation portion forming portion and a gas tank portion corresponding to the exhaust gas introducing portion and the exhaust gas outlet portion as separate bodies. However, the cooling medium tank part, the gas tank part, and the tube expansion part are overlapped and joined in triplicate, and the partition part that is the boundary between the gas tank part and the cooling medium tank part is connected to the gas tank part or the cooling medium over the entire circumference. The heat distortion generated in the partition portion was reduced by forming the portion at least twice as thick as the thickness of the tank portion (see summary).

しかしながら、冷却媒体タンク部とガスタンク部とチューブの拡張部とを、三重に重ねてロウ付けする場合、ガスタンク部の同一部位の両側を寸法精度良く成形することにより、それぞれの側でロウ付けに適したクリアランスを確保しなければならないが、通常プレス加工により成形されるガスタンク部の同一部位の両側で高い寸法精度を出すことは困難であった。このため、クリアランス管理が容易でなく、ロウ付け不良を招く虞があった。また、断面形状が、薄い一重部分から仕切り部(接合部)における厚い三重部分に急激に変化することから(同文献の図5参照)、車両の振動等による応力が接合部に集中し、接合部が破断する虞があった。   However, when brazing the coolant tank part, the gas tank part, and the tube extension part in triplicate, by molding both sides of the same part of the gas tank part with high dimensional accuracy, it is suitable for brazing on each side However, it is difficult to obtain high dimensional accuracy on both sides of the same portion of the gas tank portion that is usually formed by press working. For this reason, the clearance management is not easy, and there is a possibility of causing a brazing defect. In addition, since the cross-sectional shape suddenly changes from a thin single part to a thick triple part in the partition part (joint part) (see FIG. 5 of the same document), stress due to vehicle vibration or the like concentrates on the joint part and joins. There was a risk that the part would break.

なお、特許文献2は、排気ガスの凝縮水に含まれる硫酸による腐食の問題については、何ら言及してない。   In addition, patent document 2 does not mention at all about the problem of the corrosion by the sulfuric acid contained in the condensed water of exhaust gas.

本発明は、上述した問題を解決するものであり、コストの上昇を抑制しつつ排気ガスの凝縮水に含まれる硫酸による腐食の虞を減少可能であり、ロウ付け性を改善可能であるとともに、接合部への応力集中を緩和可能な排気ガス熱交換器を提供することを目的とする。   The present invention solves the above-mentioned problems, can reduce the risk of corrosion due to sulfuric acid contained in the condensed water of the exhaust gas while suppressing an increase in cost, and can improve brazing properties, It is an object of the present invention to provide an exhaust gas heat exchanger that can relieve stress concentration on a joint.

本発明の排気ガス熱交換器は、排気ガスが流通する複数の伝熱管を集合させて形成されて一端部に前記各伝熱管の排気ガス入口が開口し他端部に前記各伝熱管の排気ガス出口が開口する伝熱管集合体と、前記伝熱管集合体を収容するアウターケースとを備え、前記伝熱管集合体の前記一端部及び前記他端部の外周面を、前記アウターケースの内周面に接合することにより、前記アウターケースの内部が、排気ガスが流通する排気ガス流通部と、排気ガスを冷却するための冷却媒体が流通する冷却媒体流通部とに区分された排気ガス熱交換器において、前記アウターケースが、冷却媒体の入口と冷却媒体の出口とが形成されて前記冷却媒体流通部を囲繞する冷却媒体流通部形成部と、排気ガス導入口が形成されて前記排気ガス流通部の前記伝熱管集合体より上流側を囲繞する排気ガス導入部と、排気ガス導出口が形成されて前記排気ガス流通部の前記伝熱管集合体より下流側を囲繞する排気ガス導出部とを備えて、前記冷却媒体流通部形成部の一端部に前記排気ガス導入部を接合し、前記冷却媒体流通部形成部の他端部に前記排気ガス導出部を接合することにより形成され、前記伝熱管集合体の前記一端部の外周面が、前記排気ガス導入部の内周面に接合されることにより、第1の接合部が形成され、前記伝熱管集合体の前記他端部の外周面が、前記排気ガス導出部の内周面に接合されることにより、第2の接合部が形成され、前記冷却媒体流通部形成部の前記一端部の内周面が、前記排気ガス導入部の外周面に接合されることにより、第3の接合部が形成され、前記冷却媒体流通部形成部の前記他端部の内周面が、前記排気ガス導出部の外周面に接合されることにより、第4の接合部が形成され、前記第1の接合部が、前記第3の接合部に対し、排気ガスの流れ方向における上流側または下流側にずれて配置され、前記第2の接合部が、前記第4の接合部に対し、前記上流側または前記下流側にずれて配置されていることを特徴とする。   The exhaust gas heat exchanger of the present invention is formed by assembling a plurality of heat transfer tubes through which exhaust gas flows, the exhaust gas inlet of each heat transfer tube is opened at one end, and the exhaust of each heat transfer tube at the other end A heat transfer tube assembly in which a gas outlet is opened; and an outer case that accommodates the heat transfer tube assembly; and an outer peripheral surface of the one end portion and the other end portion of the heat transfer tube assembly is defined as an inner periphery of the outer case. Exhaust gas heat exchange in which the inside of the outer case is divided into an exhaust gas circulation part through which exhaust gas circulates and a cooling medium circulation part through which a cooling medium for cooling the exhaust gas circulates by joining to a surface In the apparatus, the outer case is formed with an inlet for the cooling medium and an outlet for the cooling medium so as to surround the cooling medium circulation part, and an exhaust gas inlet is formed to form the exhaust gas circulation. Heat transfer of the part An exhaust gas introduction part that surrounds the upstream side of the assembly, and an exhaust gas lead-out part that is formed with an exhaust gas outlet and surrounds the downstream side of the heat transfer tube assembly of the exhaust gas circulation part. The exhaust gas introduction part is joined to one end part of the medium circulation part forming part, and the exhaust gas outlet part is joined to the other end part of the cooling medium circulation part formation part, and the heat transfer tube assembly The outer peripheral surface of the one end is joined to the inner peripheral surface of the exhaust gas introducing portion to form a first joint portion, and the outer peripheral surface of the other end portion of the heat transfer tube assembly is the exhaust gas. By joining to the inner peripheral surface of the lead-out portion, a second joint portion is formed, and the inner peripheral surface of the one end portion of the cooling medium circulation portion forming portion is joined to the outer peripheral surface of the exhaust gas introducing portion. A third joint portion is formed, and the cooling medium circulation portion The inner peripheral surface of the other end portion of the forming portion is joined to the outer peripheral surface of the exhaust gas lead-out portion, whereby a fourth joint portion is formed, and the first joint portion is the third joint. And the second joint portion is disposed to be shifted to the upstream side or the downstream side with respect to the fourth joint portion. It is characterized by.

これによれば、冷却媒体流通部形成部は、一端部の内周面が排気ガス導入部の外周面に接合され、他端部の内周面が排気ガス導出部の外周面に接合されている。そして、伝熱管集合体は、一端部の外周面が排気ガス導入部の内周面に接合され、他端部の外周面が排気ガス導出部の内周面に接合されている。したがって、排気ガス導入部に導入された排気ガスは、冷却媒体流通部形成部に触れることなく、排気ガス導入部から伝熱管集合体の各伝熱管に入り、各伝熱管を通過して排気ガス導出部内に流出し、排気ガス導出部から外部に流出する。このため、排気ガス導入部、排気ガス導出部、及び、各伝熱管を、硫酸に対する耐食性が高い材料で形成する一方、冷却媒体流通部形成部は、硫酸に対する耐食性が低い材料で形成することができ、コストの上昇を抑制しつつ、排気ガスの凝縮水に含まれる硫酸による腐食の虞を減少可能である。   According to this, the cooling medium circulation portion forming portion has an inner peripheral surface at one end joined to the outer peripheral surface of the exhaust gas introduction portion, and an inner peripheral surface at the other end joined to the outer peripheral surface of the exhaust gas outlet portion. Yes. In the heat transfer tube assembly, the outer peripheral surface of one end is joined to the inner peripheral surface of the exhaust gas introducing portion, and the outer peripheral surface of the other end is joined to the inner peripheral surface of the exhaust gas outlet portion. Therefore, the exhaust gas introduced into the exhaust gas introduction part enters each heat transfer tube of the heat transfer tube assembly from the exhaust gas introduction part without touching the cooling medium circulation part forming part, and passes through each heat transfer pipe to exhaust gas. It flows out into the lead-out part and flows out from the exhaust gas lead-out part. For this reason, the exhaust gas introduction part, the exhaust gas lead-out part, and each heat transfer tube are formed of a material having high corrosion resistance to sulfuric acid, while the cooling medium flow part forming part may be formed of a material having low corrosion resistance to sulfuric acid. It is possible to reduce the risk of corrosion due to sulfuric acid contained in the condensed water of the exhaust gas while suppressing an increase in cost.

そして、伝熱管集合体と排気ガス導入部との接合部である第1の接合部と、排気ガス導入部と冷却媒体流通部形成部との接合部である第3の接合部とがずれて配置されるとともに、伝熱管集合体と排気ガス導出部との接合部である第2の接合部と、排気ガス導出部と冷却媒体流通部形成部との接合部である第4の接合部とがずれて配置されているため、排気ガス導入部は、第1の接合部では内周面の、第3の接合部では外周面の寸法精度を高くすればよく、排気ガス導出部は、第2の接合部では内周面の、第4の接合部では外周面の寸法精度を高くすればよい。このように片側の面のみの寸法精度を高くすることは容易であるため、クリアランス管理が容易となり、ロウ付け性を改善可能である。   And the 1st junction part which is a junction part of a heat exchanger tube aggregate and an exhaust gas introduction part, and the 3rd junction part which is a junction part of an exhaust gas introduction part and a cooling-medium circulation part formation part have shifted. And a second joint that is a joint between the heat transfer tube assembly and the exhaust gas lead-out part, and a fourth joint that is a joint between the exhaust gas lead-out part and the cooling medium flow part forming part. Therefore, the exhaust gas introduction portion may have a high dimensional accuracy on the inner peripheral surface at the first joint portion and the outer peripheral surface at the third joint portion. It is only necessary to increase the dimensional accuracy of the inner peripheral surface at the joint portion 2 and the outer peripheral surface at the fourth joint portion. As described above, since it is easy to increase the dimensional accuracy of only one surface, clearance management becomes easy and brazing can be improved.

そしてさらに、各接合部は二重となるので、各接合部付近における急激な断面変化を抑制できることから、各接合部への応力集中を緩和可能である。   Furthermore, since each joint is doubled, a rapid change in cross section near each joint can be suppressed, so stress concentration at each joint can be alleviated.

ここで、本発明の排気ガス熱交換器においては、前記第1の接合部が、前記第3の接合部に対し、前記下流側にずれて配置され、前記第2の接合部が、前記第4の接合部に対し、前記上流側にずれて配置されていることが好ましい。   Here, in the exhaust gas heat exchanger according to the present invention, the first joint portion is disposed so as to be shifted to the downstream side with respect to the third joint portion, and the second joint portion is disposed on the first joint. It is preferable that the four joints are arranged shifted to the upstream side.

これによれば、伝熱管集合体の排気ガス導入部及び排気ガス導出部への差し込み量が少なくて済むので、組み付けが容易である。   According to this, since the amount of insertion of the heat transfer tube assembly into the exhaust gas introduction part and the exhaust gas lead-out part can be small, assembly is easy.

また、前記排気ガス導入部が、前記排気ガス導入口が形成された導入部本体部と、前記導入部本体部に接合されて前記導入部本体部の前記下流側に延設された筒状の導入部延設部とを備え、前記排気ガス導出部が、前記排気ガス導出口が形成された導出部本体部と、前記導出部本体部に接合されて前記導出部本体部の前記上流側に延設された筒状の導出部延設部とを備え、前記冷却媒体流通部形成部の前記一端部の内周面が、前記導入部延設部の外周面に接合されることにより、前記第3の接合部が形成され、前記冷却媒体流通部形成部の前記他端部の内周面が、前記導出部延設部の外周面に接合されることにより、前記第4の接合部が形成されていることとすることもできる。   In addition, the exhaust gas introduction part includes an introduction part main body part in which the exhaust gas introduction port is formed, and a cylindrical shape that is joined to the introduction part main body part and extends to the downstream side of the introduction part main body part. The exhaust gas lead-out part is connected to the lead-out part main body part on the upstream side of the lead-out part main body part. An extended cylindrical lead-out portion extending portion, and an inner peripheral surface of the one end portion of the cooling medium circulation portion forming portion is joined to an outer peripheral surface of the introduction portion extending portion, thereby A third joint portion is formed, and the inner peripheral surface of the other end portion of the cooling medium flow portion forming portion is joined to the outer peripheral surface of the lead-out portion extending portion, whereby the fourth joint portion is It can also be formed.

これによれば、排気ガスの流れ方向における長さが短い従来の排気ガス導入部及び排気ガス導出部を、それぞれ、導入部本体部及び導出部本体部として用いることとして、それぞれ、導入部延設部及び導出部延設部を接合することにより、排気ガスの流れ方向における長さを長くでき、第1の接合部と第3の接合部とをずらして配置することが可能となるとともに、第2の接合部と第4の接合部とをずらして配置することが可能となる。   According to this, the conventional exhaust gas introduction part and the exhaust gas lead-out part having a short length in the exhaust gas flow direction are used as the lead-in part main part and the lead-out part main part, respectively. By joining the extension portion and the lead-out portion extension portion, the length in the flow direction of the exhaust gas can be increased, and the first joint portion and the third joint portion can be shifted and disposed. It is possible to dispose the second joint and the fourth joint in a shifted manner.

本発明の第1実施形態に係る排気ガス熱交換器の斜視図である。1 is a perspective view of an exhaust gas heat exchanger according to a first embodiment of the present invention. 同排気ガス熱交換器の分解斜視図である。It is a disassembled perspective view of the exhaust gas heat exchanger. 同排気ガス熱交換器の右側面図である。It is a right view of the same exhaust gas heat exchanger. 同排気ガス熱交換器の正面図である。It is a front view of the exhaust gas heat exchanger. 同排気ガス熱交換器の平面図である。It is a top view of the exhaust gas heat exchanger. 図4のVI-VI線断面図及び要部拡大断面図である。FIG. 5 is a cross-sectional view taken along the line VI-VI in FIG. 図5のVII-VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 本発明の第1実施形態の排気ガス熱交換器の変形例の要部断面図である。It is principal part sectional drawing of the modification of the exhaust gas heat exchanger of 1st Embodiment of this invention. 本発明の第2実施形態に係る排気ガス熱交換器の分解斜視図である。It is a disassembled perspective view of the exhaust gas heat exchanger which concerns on 2nd Embodiment of this invention. 第2実施形態に係る排気ガス熱交換器の要部断面図である。It is principal part sectional drawing of the exhaust gas heat exchanger which concerns on 2nd Embodiment. 従来のEGR用熱交換器の要部断面図である。It is principal part sectional drawing of the conventional heat exchanger for EGR.

以下、本発明の各実施形態を図面に基づいて説明する。   Hereinafter, each embodiment of the present invention will be described with reference to the drawings.

第1実施形態の排気ガス熱交換器(以下、「熱交換器」と略す。)1は、自動車のEGR用熱交換器として使用されるものであり、図1,2に示すように、伝熱管集合体7と、伝熱管集合体7を収容するアウターケース2とを備えて構成されている。なお、以下の説明においては、図1〜4に示すように、後述する冷却媒体入口33及び冷却媒体出口34が設けられている側を上、後述する入口側フランジ8が設けられている側を左、図3紙面左側を前とする。   An exhaust gas heat exchanger (hereinafter abbreviated as “heat exchanger”) 1 according to the first embodiment is used as an EGR heat exchanger of an automobile, and as shown in FIGS. A heat tube assembly 7 and an outer case 2 that accommodates the heat transfer tube assembly 7 are provided. In the following description, as shown in FIGS. 1 to 4, the side on which the cooling medium inlet 33 and the cooling medium outlet 34 to be described later are provided, and the side on which the inlet side flange 8 to be described later is provided. Left, the left side of FIG. 3 is the front.

アウターケース2は、それぞれ別部材である冷却媒体流通部形成部3と排気ガス導入部4と排気ガス導出部5とから構成され、さらに冷却媒体流通部形成部3は、それぞれ別部材である第1形成部材31と第2形成部材32とから構成されている。   The outer case 2 is composed of a cooling medium flow part forming part 3, an exhaust gas introducing part 4, and an exhaust gas deriving part 5, which are separate members, and the cooling medium flow part forming part 3 is a separate member. The first forming member 31 and the second forming member 32 are configured.

冷却媒体流通部形成部3は、後述する冷却媒体流通部22を囲繞する部材であり、第1形成部材31と第2形成部材32は、いずれも一般ステンレス鋼(本実施形態では、SUS304)で形成されている。   The cooling medium circulation part forming part 3 is a member surrounding a cooling medium circulation part 22 to be described later, and both the first forming member 31 and the second forming member 32 are made of general stainless steel (SUS304 in this embodiment). Is formed.

第1形成部材31は、上壁部31aと前壁部31bと下壁部31cとを有する断面コ字形状に形成され、上壁部31aの左側部に、冷却媒体の入口となる円形状の冷却媒体入口33が形成されるとともに、上壁部31aの右側部に、冷却媒体の出口となる円形状の冷却媒体出口34が形成されている。なお、本実施形態では、冷却媒体は水である。冷却媒体入口33、冷却媒体出口34には、それぞれ、円筒形状の流入管35、流出管36が連結されている。また、上壁部31aの後端部に段部31dが形成され、下壁部31cの後端部に段部31eが形成されることにより、第1形成部材31は後端部の上下方向の幅が拡幅されている。   The first forming member 31 is formed in a U-shaped cross section having an upper wall portion 31a, a front wall portion 31b, and a lower wall portion 31c, and has a circular shape serving as an inlet for a cooling medium on the left side of the upper wall portion 31a. A cooling medium inlet 33 is formed, and a circular cooling medium outlet 34 serving as a cooling medium outlet is formed on the right side of the upper wall portion 31a. In the present embodiment, the cooling medium is water. A cylindrical inlet pipe 35 and an outlet pipe 36 are connected to the cooling medium inlet 33 and the cooling medium outlet 34, respectively. Further, a step portion 31d is formed at the rear end portion of the upper wall portion 31a, and a step portion 31e is formed at the rear end portion of the lower wall portion 31c, so that the first forming member 31 is arranged in the vertical direction of the rear end portion. The width is widened.

第2形成部材32は、上壁部32aと後壁部32bと下壁部32cとを有する断面コ字形状に形成されている。上壁部32a及び下壁部32cは、第1形成部材31の上壁部31a及び下壁部31cよりも前後方向の長さが短くされている。   The second forming member 32 is formed in a U-shaped cross section having an upper wall portion 32a, a rear wall portion 32b, and a lower wall portion 32c. The length of the upper wall part 32a and the lower wall part 32c is shorter than the upper wall part 31a and the lower wall part 31c of the first forming member 31 in the front-rear direction.

第1形成部材31と第2形成部材32は、左右方向の長さが同一とされ、左右の両端を揃えて、第1形成部材31の後端部に第2形成部材32の前端部を嵌合すると、上壁部32aの前端部外面及び下壁部32cの前端部外面が、それぞれ、段部31d,31eの内面に接しつつ嵌合するように構成されている。そして、そのように第1形成部材31と第2形成部材32とを嵌合して接合することにより、略角筒状をなす冷却媒体流通部形成部3が形成される。   The first forming member 31 and the second forming member 32 have the same length in the left-right direction, the left and right ends are aligned, and the front end of the second forming member 32 is fitted to the rear end of the first forming member 31. In this case, the front end portion outer surface of the upper wall portion 32a and the front end portion outer surface of the lower wall portion 32c are configured to fit in contact with the inner surfaces of the step portions 31d and 31e, respectively. Then, by fitting and joining the first forming member 31 and the second forming member 32 as described above, the cooling medium flow portion forming portion 3 having a substantially rectangular tube shape is formed.

冷却媒体流通部形成部3の中央部39は、縮径されて、中央部39の上壁部39a及び下壁部39bが、後述する第1ケース71の壁部71b,71bの長手方向中央部に形成された膨出部71c,71c、及び、第2ケース72の壁部72b,72bの長手方向中央部に形成された膨出部72c,72cに沿うような形状とされている。また、冷却媒体流通部形成部3の一端部である左端部37及び他端部である右端部38は、縮径されて、略短角筒状をなしている。なお、短角筒状とは、軸方向に直交する面で切断したときの断面が多角形(本実施形態では、四角形)をなす短筒状をいう。   The central part 39 of the cooling medium circulation part forming part 3 is reduced in diameter, and the upper wall part 39a and the lower wall part 39b of the central part 39 are longitudinally central parts of the wall parts 71b and 71b of the first case 71 described later. And the bulging portions 71c and 71c formed in the second case 72 and the bulging portions 72c and 72c formed in the center portion in the longitudinal direction of the wall portions 72b and 72b of the second case 72. Further, the left end portion 37 that is one end portion of the cooling medium circulation portion forming portion 3 and the right end portion 38 that is the other end portion are reduced in diameter to form a substantially short rectangular tube shape. In addition, a short angle cylinder shape means the short cylinder shape where the cross section when cut | disconnecting in the surface orthogonal to an axial direction makes a polygon (this embodiment square).

排気ガス導入部4は、後述する排気ガス流通部21における伝熱管集合体7より上流側の上流部21aを囲繞する部材であり、スーパーSUSで形成されている。なお、スーパーSUSとは、上述したように、一般ステンレス鋼(例えば、SUS304、SUS316)よりもニッケル、クロム及びモリブデンの含有量を高めたステンレス鋼であり、実施形態では、硫酸に対する耐食性の高いスーパーSUSを用いている。また、本明細書でいう上流、下流とは、排気ガスの流れ方向における上流、下流をいい、本実施形態では、熱交換器1内で排気ガスは左から右に流れるため、左側が上流側、右側が下流側となる。   The exhaust gas introduction part 4 is a member surrounding the upstream part 21a upstream of the heat transfer tube assembly 7 in the exhaust gas circulation part 21 described later, and is formed of super SUS. As described above, the super SUS is a stainless steel in which the contents of nickel, chromium, and molybdenum are higher than those of general stainless steel (for example, SUS304, SUS316). SUS is used. Further, the upstream and downstream in this specification refer to the upstream and downstream in the flow direction of the exhaust gas. In this embodiment, the exhaust gas flows from the left to the right in the heat exchanger 1, and therefore the left side is the upstream side. The right side is the downstream side.

図2,6,7に示すように、排気ガス導入部4は、左側部が、左端部が窄まった略角型漏斗形状をなす漏斗状部41とされ、右側部が、段付きの略角筒状をなす角筒状部42とされている。そして、角筒状部42は、漏斗状部41の右端に連続する略短角筒状の第1短角筒状部42aと、第1短角筒状部42aの右側に傾斜部42bを経て連続する略短角筒状の第2短角筒状部42cとを有し(図6の円内の要部拡大図参照)、第2短角筒状部42cは、第1短角筒状部42aよりも拡径され、すなわち、前後方向及び上下方向の幅が第1短角筒状部42aよりも拡張されている。第2短角筒状部42cの右端、すなわち、排気ガス導入部4の右端は、略矩形状に開口する右端開口部43とされている。漏斗状部41の左端部すなわち排気ガス導入部4の左端部には、排気ガスの入口となる円形状の排気ガス導入口45が形成されている。排気ガス導入口45には、入口側フランジ8が取り付けられている。   As shown in FIGS. 2, 6, and 7, the exhaust gas introduction portion 4 has a left side portion formed as a funnel-like portion 41 having a substantially square funnel shape with a left end portion narrowed, and a right side portion substantially a stepped shape. It is set as the rectangular tube-shaped part 42 which makes a rectangular tube shape. Then, the rectangular tubular part 42 passes through the right short side of the first short rectangular cylindrical part 42a and the first short rectangular cylindrical part 42a which is substantially short rectangular cylindrical continuous with the right end of the funnel-like part 41, and the inclined part 42b. The second short-angle cylindrical portion 42c is a first short-angle cylindrical shape. The second short-angle cylindrical portion 42c has a continuous substantially short-angle cylindrical shape (see an enlarged view of the main part in the circle in FIG. 6). The diameter is larger than that of the portion 42a, that is, the width in the front-rear direction and the up-down direction is larger than that of the first short tubular portion 42a. The right end of the second short-angle cylindrical portion 42c, that is, the right end of the exhaust gas introduction portion 4 is a right end opening 43 that opens in a substantially rectangular shape. A circular exhaust gas inlet 45 serving as an exhaust gas inlet is formed at the left end of the funnel-shaped portion 41, that is, the left end of the exhaust gas inlet 4. An inlet flange 8 is attached to the exhaust gas inlet 45.

排気ガス導出部5は、排気ガス導入部4と同じスーパーSUSで排気ガス導入部4と同形に形成されており、すなわち、排気ガス導入部4と同部材であるが、排気ガス導入部4とは左右対称的に配置されて、後述する排気ガス流通部21における伝熱管集合体7より下流側の下流部21bを囲繞する。   The exhaust gas deriving unit 5 is formed of the same super SUS as the exhaust gas introducing unit 4 and in the same shape as the exhaust gas introducing unit 4. That is, the exhaust gas deriving unit 5 is the same member as the exhaust gas introducing unit 4. Are arranged symmetrically and surround a downstream portion 21b on the downstream side of the heat transfer tube assembly 7 in the exhaust gas circulation portion 21 described later.

排気ガス導出部5は、右側部が、右端部が窄まった略角型漏斗形状をなす漏斗状部51とされ、左側部が、段付きの略角筒状をなす角筒状部52とされている。そして、角筒状部52は、漏斗状部51の左端に連続する略短角筒状の第1短角筒状部52aと、第1短角筒状部52aの左側に傾斜部52bを経て連続する略短角筒状の第2短角筒状部52cとを有し、第2短角筒状部52cは、第1短角筒状部52aよりも拡径されている。第2短角筒状部52cの左端、すなわち、排気ガス導出部5の左端は、略矩形状に開口する左端開口部53とされている。排気ガス導出部5の右端部には、排気ガスの出口となる円形状の排気ガス導出口55が形成されている。排気ガス導出口55には、出口側フランジ9が取り付けられている。   The exhaust gas lead-out part 5 has a right-side portion formed as a funnel-shaped portion 51 having a substantially square funnel shape with a right end portion narrowed, and a left-side portion formed as a step-shaped substantially rectangular tube-shaped portion 52 Has been. Then, the rectangular tubular portion 52 is connected to the left end of the funnel-shaped portion 51 through a first short rectangular tubular portion 52a having a substantially short rectangular tubular shape, and an inclined portion 52b on the left side of the first short rectangular tubular portion 52a. The second short-angle cylindrical portion 52c has a continuous substantially short-angle cylindrical shape, and the second short-angle cylindrical portion 52c is larger in diameter than the first short-angle cylindrical portion 52a. The left end of the second short-angle cylindrical portion 52c, that is, the left end of the exhaust gas deriving portion 5 is a left end opening 53 that opens in a substantially rectangular shape. A circular exhaust gas outlet 55 serving as an exhaust gas outlet is formed at the right end of the exhaust gas outlet 5. An outlet side flange 9 is attached to the exhaust gas outlet 55.

そして、冷却媒体流通部形成部3の左端部37及び右端部38の内周面は、左右方向に直交する面で切断したときの断面(以下、「縦断面」という。)が、第1短角筒状部42a,52aの外周面の縦断面と略同形の略矩形状をなし、左端部37の内周面が第1短角筒状部42aの外周面に、右端部38の内周面が第1短角筒状部52aの外周面に接合されることにより、冷却媒体流通部形成部3の左端部37に排気ガス導入部4が、冷却媒体流通部形成部3の右端部38に排気ガス導出部5が接合されて、アウターケース2が形成される。   The inner peripheral surfaces of the left end portion 37 and the right end portion 38 of the cooling medium flow portion forming portion 3 have a first short cross section (hereinafter referred to as a “longitudinal cross section”) when cut along a plane orthogonal to the left-right direction. The rectangular cylindrical portions 42a and 52a have a substantially rectangular shape substantially the same as the longitudinal section of the outer peripheral surface of the square cylindrical portions 42a, 52a, the inner peripheral surface of the left end portion 37 is the outer peripheral surface of the first short rectangular cylindrical portion 42a, and the inner periphery of the right end portion 38. When the surface is joined to the outer peripheral surface of the first short cylindrical portion 52 a, the exhaust gas introduction part 4 is connected to the left end part 37 of the cooling medium circulation part forming part 3, and the right end part 38 of the cooling medium circulation part forming part 3. The exhaust gas outlet 5 is joined to the outer case 2 to form the outer case 2.

伝熱管集合体7は、複数(実施形態では、6個)の伝熱管70を集合させて形成され、図6に示すように、伝熱管集合体7の一端部7aには、各伝熱管70の排気ガス入口70aが開口し、伝熱管集合体7の他端部7bには、各伝熱管70の排気ガス出口70bが開口している。   The heat transfer tube assembly 7 is formed by assembling a plurality (six in the embodiment) of heat transfer tubes 70, and as shown in FIG. 6, each heat transfer tube 70 is provided at one end 7 a of the heat transfer tube assembly 7. The exhaust gas inlet 70a of each heat transfer tube 70 is opened at the other end 7b of the heat transfer tube assembly 7.

詳しくは、各伝熱管70は、図2,6に示すように、いずれもスーパーSUS製の薄板から形成された第1ケース71、第2ケース72、及び、伝熱フィン73(図3参照。図3以外では図示省略。)から構成され、第1ケース71と第2ケース72とで形成された管の中に、伝熱フィン73が配置されたものである。なお、第1ケース71、第2ケース72、及び、伝熱フィン73は、排気ガス導入部4と同じく、硫酸に対する耐食性が高いスーパーSUS製であるが、排気ガス導入部4よりも厚みの薄い薄板で形成され、さらに伝熱フィン73は、第1ケース71及び第2ケース72よりも厚みが薄い薄板で形成されている。より具体的には、冷却媒体流通部形成部3の板厚は約0.8〜1.2mm、排気ガス導入部4及び排気ガス導出部5の板厚は約0.8〜1.2mm、第1ケース71及び第2ケース72の板厚は約0.3〜0.4mm、伝熱フィン73の板厚は約0.1〜0.2mmの範囲内の所定厚さとされている。   Specifically, as shown in FIGS. 2 and 6, each heat transfer tube 70 includes a first case 71, a second case 72, and heat transfer fins 73 (see FIG. 3) each formed from a thin plate made of Super SUS. The heat transfer fins 73 are arranged in a pipe formed by the first case 71 and the second case 72. The first case 71, the second case 72, and the heat transfer fins 73 are made of Super SUS having high corrosion resistance against sulfuric acid, like the exhaust gas introduction part 4, but are thinner than the exhaust gas introduction part 4. The heat transfer fin 73 is formed of a thin plate and is thinner than the first case 71 and the second case 72. More specifically, the plate thickness of the coolant circulation part forming unit 3 is about 0.8 to 1.2 mm, and the plate thicknesses of the exhaust gas introducing unit 4 and the exhaust gas deriving unit 5 are about 0.8 to 1.2 mm. The plate thickness of the first case 71 and the second case 72 is about 0.3 to 0.4 mm, and the plate thickness of the heat transfer fins 73 is a predetermined thickness in the range of about 0.1 to 0.2 mm.

第1ケース71及び第2ケース72は、図5〜7に示すように、略平板状の平板部71a,72aの両側に壁部71b,72bがそれぞれ立設された断面略コ字形状に形成され、伝熱フィン73は、断面略コ字形状の凹部と凸部が連続する波板状に形成されている。第1ケース71の壁部71b,71b間は、第2ケース72の壁部72b,72b間よりも、若干幅が狭くされている。そして、第1ケース71と第2ケース72との間に伝熱フィン73を挟むようにして、壁部71b,71bが壁部72b,72bの内側に接するように、第1ケース71を第2ケース72に嵌合することにより、第1ケース71と第2ケース72とで、縦断面が扁平な略矩形状をなす管が形成され、その管の中に伝熱フィン73が配置されて、伝熱管70が形成され、各伝熱管70は、長手方向(管軸方向)の一端部に排気ガス入口70a、他端部に排気ガス出口70bを有することとなる。   As shown in FIGS. 5 to 7, the first case 71 and the second case 72 are formed in a substantially U-shaped cross section in which wall portions 71 b and 72 b are respectively erected on both sides of the substantially flat plate portions 71 a and 72 a. The heat transfer fin 73 is formed in a corrugated plate shape in which a concave portion and a convex portion having a substantially U-shaped cross section are continuous. The width between the wall portions 71 b and 71 b of the first case 71 is slightly narrower than that between the wall portions 72 b and 72 b of the second case 72. The first case 71 and the second case 72 are arranged such that the heat transfer fins 73 are sandwiched between the first case 71 and the second case 72 so that the walls 71b and 71b are in contact with the insides of the walls 72b and 72b. The first case 71 and the second case 72 form a substantially rectangular tube with a flat vertical cross section, and the heat transfer fins 73 are arranged in the tube, so that the heat transfer tube 70 is formed, and each heat transfer tube 70 has an exhaust gas inlet 70a at one end in the longitudinal direction (tube axis direction) and an exhaust gas outlet 70b at the other end.

また、図6に示すように、各伝熱管70における平板部71a,72aは、左端部及び右端部に、それぞれ、互いに離間するように傾斜する傾斜部71d,72dを有し、各伝熱管70の長手方向の両端部は、それぞれ前後方向の幅が拡張されて、拡張部74をなしている。なお、図6紙面上の上下方向が熱交換器1の前後方向に相当し、各伝熱管70についても、熱交換器1の前後方向に相当する方向を前後方向として説明する。そして、これら6個の伝熱管70を、長手方向(左右方向に相当。)の両端が揃うように前後方向に重ね合わせて、隣接する伝熱管70の拡張部74同士を接合することにより、伝熱管集合体7が形成され、隣り合う伝熱管70の非拡張部75同士の間には、隙間22aが形成される。なお、非拡張部75とは、各伝熱管70における、左右の拡張部74,74間の、前後方向の幅が拡張部74よりも狭くなった部分をいう。隙間22aは、後述する冷却媒体流通部22の一部をなす。   Further, as shown in FIG. 6, the flat plate portions 71 a and 72 a in each heat transfer tube 70 have inclined portions 71 d and 72 d that are inclined so as to be separated from each other at the left end portion and the right end portion, respectively. Both end portions in the longitudinal direction are expanded in width in the front-rear direction to form expanded portions 74. In addition, the up-down direction on the paper surface of FIG. 6 is equivalent to the front-back direction of the heat exchanger 1, and also about each heat exchanger tube 70, the direction equivalent to the front-back direction of the heat exchanger 1 is demonstrated as the front-back direction. Then, these six heat transfer tubes 70 are overlapped in the front-rear direction so that both ends in the longitudinal direction (corresponding to the left-right direction) are aligned, and the expanded portions 74 of the adjacent heat transfer tubes 70 are joined together. The heat pipe assembly 7 is formed, and a gap 22 a is formed between the non-expanded portions 75 of the adjacent heat transfer tubes 70. The non-expanded portion 75 is a portion where the width in the front-rear direction between the left and right expanded portions 74 and 74 in each heat transfer tube 70 is narrower than that of the expanded portion 74. The gap 22a forms a part of a cooling medium circulation part 22 to be described later.

拡張部74は、縦断面が扁平な略矩形状をなし、伝熱管集合体7の一端部7a及び他端部7bは、複数の拡張部74が縦断面における長辺部分を重ね合わされて接合されることにより形成されているため、一端部7a及び他端部7bの外周面は、縦断面が略矩形状をなしている。   The extended portion 74 has a substantially rectangular shape with a flat vertical cross section, and the one end portion 7a and the other end portion 7b of the heat transfer tube assembly 7 are joined by overlapping a plurality of extended portions 74 with long side portions in the vertical cross section. Therefore, the outer peripheral surfaces of the one end portion 7a and the other end portion 7b are substantially rectangular in longitudinal section.

また、上述した第2短角筒状部42c,52cの内周面の縦断面は、上述した一端部7a及び他端部7bの外周面の縦断面と略同形の略矩形状をなしている。そして、上述したように冷却媒体流通部形成部3と排気ガス導入部4と排気ガス導出部5とを接合するとともに、一端部7aの外周面を第2短角筒状部42cの内周面に接合し、他端部7bの外周面を第2短角筒状部52cの内周面に接合することにより、アウターケース2が形成されるとともに、一端部7aと第2短角筒状部42cとの接合部である後述する第1の接合部61、及び、他端部7bと第2短角筒状部52cとの接合部である後述する第2の接合部62が境界となって、アウターケース2の内部が、排気ガスが流通する排気ガス流通部21と、冷却媒体が流通する冷却媒体流通部22とに区分され、排気ガス流通部21は、伝熱管集合体7よりも上流側の上流部21aと、伝熱管集合体7よりも下流側の下流部21bと、伝熱管集合体7を構成する各伝熱管70の内部である管内流路21cとから構成される。また、冷却媒体流通部22は、伝熱管70同士の隙間22aと、伝熱管集合体7を取り巻く周囲部22bとから構成される。   In addition, the vertical cross section of the inner peripheral surface of the second short-angle cylindrical portions 42c and 52c described above has a substantially rectangular shape that is substantially the same shape as the vertical cross sections of the outer peripheral surfaces of the one end portion 7a and the other end portion 7b described above. . And as mentioned above, while joining the cooling-medium distribution | circulation part formation part 3, the exhaust gas introducing | transducing part 4, and the exhaust gas derivation | leading-out part 5, the outer peripheral surface of the one end part 7a is used as the inner peripheral surface of the 2nd short angle cylindrical part 42c. The outer case 2 is formed by joining the outer peripheral surface of the other end portion 7b to the inner peripheral surface of the second short rectangular tubular portion 52c, and the one end portion 7a and the second short rectangular cylindrical portion are formed. The first joint 61 described later, which is a joint with 42c, and the second joint 62 described later, which is a joint between the other end 7b and the second short cylindrical portion 52c, serve as boundaries. The inside of the outer case 2 is divided into an exhaust gas circulation part 21 through which exhaust gas circulates and a cooling medium circulation part 22 through which a cooling medium circulates, and the exhaust gas circulation part 21 is upstream of the heat transfer tube assembly 7. Upstream portion 21a, downstream portion 21b downstream of heat transfer tube assembly 7, and heat transfer Composed of a pipe flow path 21c is inside of each heat transfer tube 70 constituting the aggregate 7. Further, the cooling medium circulation part 22 includes a gap 22 a between the heat transfer tubes 70 and a peripheral part 22 b surrounding the heat transfer tube assembly 7.

ここで、排気ガス導入部4の第2短角筒状部42cは第1短角筒状部42aよりも下流側に位置し、排気ガス導出部5の第2短角筒状部52cは第1短角筒状部52aよりも上流側に位置している。したがって、伝熱管集合体7の一端部7aの外周面と第2短角筒状部42cの内周面との接合部を第1の接合部61、伝熱管集合体7の他端部7bの外周面と第2短角筒状部52cの内周面との接合部を第2の接合部62、冷却媒体流通部形成部3の左端部37の内周面と第1短角筒状部42aの外周面との接合部を第3の接合部63、冷却媒体流通部形成部3の右端部38の内周面と第1短角筒状部52aの外周面との接合部を第4の接合部64とした場合、第1の接合部61は第3の接合部63に対し、下流側にずれて配置され(図6の円内の要部拡大図参照)、第2の接合部62は第4の接合部64に対し、上流側にずれて配置されることとなる。   Here, the second short-angle cylindrical portion 42c of the exhaust gas introducing portion 4 is located downstream of the first short-angle cylindrical portion 42a, and the second short-angle cylindrical portion 52c of the exhaust gas outlet portion 5 is the first It is located on the upstream side of the 1 short rectangular tubular portion 52a. Therefore, the joint portion between the outer peripheral surface of the one end portion 7a of the heat transfer tube assembly 7 and the inner peripheral surface of the second short-angle cylindrical portion 42c is the first joint portion 61 and the other end portion 7b of the heat transfer tube assembly 7. The joint portion between the outer peripheral surface and the inner peripheral surface of the second short-angle cylindrical portion 52c is the second joint portion 62, the inner peripheral surface of the left end portion 37 of the cooling medium flow portion forming portion 3 and the first short-angle cylindrical portion. The joint portion between the outer peripheral surface of 42a is the third joint portion 63, and the joint portion between the inner peripheral surface of the right end portion 38 of the cooling medium flow portion forming portion 3 and the outer peripheral surface of the first short tubular portion 52a is the fourth. In this case, the first joining portion 61 is arranged to be shifted to the downstream side with respect to the third joining portion 63 (see an enlarged view of the main part in the circle in FIG. 6), and the second joining portion. 62 is displaced from the fourth joint 64 on the upstream side.

次に、熱交換器1の組み立て及びロウ付け工程について説明する。なお、組み立て及びロウ付けは、図2,6等に示す前後方向を上下方向として行う。第1形成部材31、第2形成部材32、排気ガス導入部4、排気ガス導出部5、各第1ケース71、各第2ケース72、及び、各伝熱フィン73は、多段のプレス加工により、予め成形しておく。   Next, the assembly and brazing process of the heat exchanger 1 will be described. The assembly and brazing are performed with the front-rear direction shown in FIGS. The first forming member 31, the second forming member 32, the exhaust gas introducing unit 4, the exhaust gas deriving unit 5, each first case 71, each second case 72, and each heat transfer fin 73 are formed by multistage pressing. , Pre-molded.

まず、各伝熱管70を組み立てる。詳しくは、第1ケース71、第2ケース272の内面にロウ材を塗布し、伝熱フィン73を第2ケース72内に収容する。そして、壁部71b,71bが壁部72b,72bの内側に接するように、第1ケース71を第2ケース72に嵌合することにより、伝熱管70を組み立てる。互いに接する壁部71bと壁部72bとの間には、ロウ材を塗布する。   First, each heat transfer tube 70 is assembled. Specifically, a brazing material is applied to the inner surfaces of the first case 71 and the second case 272, and the heat transfer fins 73 are accommodated in the second case 72. Then, the heat transfer tube 70 is assembled by fitting the first case 71 to the second case 72 so that the wall portions 71b and 71b are in contact with the inside of the wall portions 72b and 72b. A brazing material is applied between the wall portion 71b and the wall portion 72b that are in contact with each other.

次に、上記のように組み立てられた各伝熱管70の拡張部74,74の外周面全面に、ロウ材を塗布し、図2,6に示すように、管軸方向の両端が揃うように各伝熱管70を積層することにより、伝熱管集合体7を形成する。なお、この積層の際には、図2,6に示す前後方向を上下方向として、上下方向に積層する。隣り合う伝熱管70は、拡張部74同士が接し、非拡張部75同士の間には隙間22aが形成されることとなる。   Next, a brazing material is applied to the entire outer peripheral surfaces of the expansion portions 74 and 74 of the heat transfer tubes 70 assembled as described above, so that both ends in the tube axis direction are aligned as shown in FIGS. The heat transfer tube assembly 7 is formed by stacking the heat transfer tubes 70. In this lamination, the front and rear directions shown in FIGS. The adjacent heat transfer tubes 70 are in contact with the expanded portions 74, and a gap 22 a is formed between the non-expanded portions 75.

伝熱管集合体7の一端部7aの外周面は、各伝熱管70の拡張部74の外周面により形成されるため、ロウ材が塗布された状態である。この状態で、一端部7aを、排気ガス導入部4の右端開口部43から排気ガス導入部4の内部に嵌合する。すると、一端部7aの外周面の縦断面は、第2短角筒状部42cの内周面の縦断面と略同形の略矩形状をなし、第2短角筒状部42cより左方の傾斜部42b及び第1短角筒状部42aは、第2短角筒状部42cよりも縮径されているため、一端部7aは、外周面が第2短角筒状部42cの内周面に接した状態で、それ以上左方に入り込むことなく、排気ガス導入部4に嵌合される。   Since the outer peripheral surface of the one end portion 7 a of the heat transfer tube assembly 7 is formed by the outer peripheral surface of the extended portion 74 of each heat transfer tube 70, the brazing material is applied. In this state, the one end portion 7 a is fitted into the exhaust gas introduction portion 4 from the right end opening 43 of the exhaust gas introduction portion 4. Then, the longitudinal section of the outer peripheral surface of the one end portion 7a has a substantially rectangular shape substantially the same shape as the longitudinal section of the inner peripheral surface of the second short-angle cylindrical portion 42c, and is located on the left side of the second short-angle cylindrical portion 42c. Since the inclined portion 42b and the first short-angle cylindrical portion 42a are smaller in diameter than the second short-angle cylindrical portion 42c, the outer peripheral surface of the one end portion 7a is the inner periphery of the second short-angle cylindrical portion 42c. In the state of being in contact with the surface, it is fitted into the exhaust gas introduction part 4 without entering further to the left.

同様に、伝熱管集合体7の他端部7bの外周面も、ロウ材が塗布された状態であり、この状態で、他端部7bを、排気ガス導出部5の左端開口部53から排気ガス導出部5の内部に嵌合すると、他端部7bは、外周面が第2短角筒状部52cの内周面に接した状態で、それ以上右方に入り込むことなく、排気ガス導出部5に嵌合される。   Similarly, the outer peripheral surface of the other end portion 7 b of the heat transfer tube assembly 7 is also in a state where a brazing material is applied. In this state, the other end portion 7 b is exhausted from the left end opening 53 of the exhaust gas outlet portion 5. When fitted inside the gas lead-out part 5, the other end part 7b is in the state where the outer peripheral surface is in contact with the inner peripheral surface of the second short-angled cylindrical part 52c, and does not enter the right side any more and exhausts the exhaust gas. It is fitted to the part 5.

また、流入管35の基端部35a及び流出管36の基端部36a(図7参照)にロウ材を塗布し、基端部35aを冷却媒体入口33に、基端部36aを冷却媒体出口34に嵌合することにより、流入管35及び流出管36を第1形成部材31に組み付ける。   Further, a brazing material is applied to the base end portion 35a of the inflow pipe 35 and the base end portion 36a (see FIG. 7) of the outflow pipe 36, the base end portion 35a serves as the cooling medium inlet 33, and the base end portion 36a serves as the cooling medium outlet. 34, the inflow pipe 35 and the outflow pipe 36 are assembled to the first forming member 31.

次に、第1形成部材31の左端部31f、右端部31g、及び、段部31d,31eの各々の内面、及び、第2形成部材32の左端部32d及び右端部32eの各々の内面に、ロウ材を塗布する。そして、第1形成部材31と第2形成部材32の左右方向の両端を揃えて、第1形成部材31の段部31d,31e間に第2形成部材32の前端部(図2の前後方向を上下方向としたときの上端部)を嵌合し、第1形成部材31と第2形成部材32とで形成される冷却媒体流通部形成部3の内部に、伝熱管集合体7を収容するとともに、左端部31fと左端部32dとで形成される冷却媒体流通部形成部3の左端部37を、第1短角筒状部42aに嵌合し、右端部31gと右端部32eとで形成される冷却媒体流通部形成部3の右端部38を、第1短角筒状部52aに嵌合する。   Next, on the inner surfaces of the left end portion 31f, the right end portion 31g, and the step portions 31d and 31e of the first forming member 31, and the inner surfaces of the left end portion 32d and the right end portion 32e of the second forming member 32, Apply brazing material. Then, the left and right ends of the first forming member 31 and the second forming member 32 are aligned, and the front end portion of the second forming member 32 (the front-rear direction in FIG. 2 is defined between the step portions 31d and 31e of the first forming member 31). And the heat transfer tube assembly 7 is accommodated inside the cooling medium flow part forming part 3 formed by the first forming member 31 and the second forming member 32. The left end portion 37 of the cooling medium circulation portion forming portion 3 formed by the left end portion 31f and the left end portion 32d is fitted to the first short-angle cylindrical portion 42a, and is formed by the right end portion 31g and the right end portion 32e. The right end portion 38 of the cooling medium flow portion forming portion 3 is fitted into the first short-angle cylindrical portion 52a.

また、排気ガス導入部4の排気ガス導入口45の周囲にロウ材を塗布して、入口側フランジ8を嵌合し、排気ガス導出部5の排気ガス導出口55の周囲にロウ材を塗布して、出口側フランジ9を嵌合する。   In addition, a brazing material is applied around the exhaust gas inlet 45 of the exhaust gas inlet 4, the inlet flange 8 is fitted, and a brazing material is applied around the exhaust gas outlet 55 of the exhaust gas outlet 5. Then, the outlet side flange 9 is fitted.

以上のように製品形状まで組み立てられた熱交換器1は、炉中ロウ付けにより、ロウ材が塗布された各部位が接合される。すなわち、伝熱管集合体7の一端部7aの外周面が、排気ガス導入部4の第2短角筒状部42cの内周面に接合されることにより、第1の接合部61が形成され、伝熱管集合体7の他端部7bの外周面が、排気ガス導出部5の第2短角筒状部52cの内周面に接合されることにより、第2の接合部62が形成され、冷却媒体流通部形成部3の左端部37の内周面が、排気ガス導入部4の第1短角筒状部42aの外周面に接合されることにより、第3の接合部63が形成され、冷却媒体流通部形成部3の右端部38の内周面が、排気ガス導出部5の第1短角筒状部52aの外周面に接合されることにより、第4の接合部64が形成される。なお、第1の接合部61は、第3の接合部63に対し下流側にずれて配置され、第2の接合部62は、第4の接合部64に対し、上流側にずれて配置される。   As described above, in the heat exchanger 1 assembled to the product shape, the parts to which the brazing material is applied are joined by brazing in the furnace. That is, the outer peripheral surface of the one end portion 7 a of the heat transfer tube assembly 7 is bonded to the inner peripheral surface of the second short-angle cylindrical portion 42 c of the exhaust gas introducing portion 4, thereby forming the first joint portion 61. Then, the outer peripheral surface of the other end portion 7b of the heat transfer tube assembly 7 is bonded to the inner peripheral surface of the second short-angle cylindrical portion 52c of the exhaust gas deriving portion 5, whereby the second joint portion 62 is formed. The inner peripheral surface of the left end portion 37 of the cooling medium circulation portion forming portion 3 is joined to the outer peripheral surface of the first short-angle cylindrical portion 42a of the exhaust gas introducing portion 4, thereby forming the third joint portion 63. Then, the inner peripheral surface of the right end portion 38 of the cooling medium circulation portion forming portion 3 is joined to the outer peripheral surface of the first short-angle tubular portion 52a of the exhaust gas deriving portion 5, whereby the fourth joint portion 64 is formed. It is formed. Note that the first joint 61 is disposed on the downstream side with respect to the third joint 63, and the second joint 62 is disposed on the upstream side with respect to the fourth joint 64. The

そして、各伝熱管70の第1ケース71と第2ケース72との接合部、第1の接合部61、第2の接合部62、第3の接合部63及び第4の接合部64が、気密性を有することとなり、アウターケース2の内部に、排気ガスが流通する排気ガス流通部21が形成されるとともに、各伝熱管70を囲繞するように、冷却媒体が流通する冷却媒体流通部22が形成される。   And the junction part of the 1st case 71 and the 2nd case 72 of each heat exchanger tube 70, the 1st junction part 61, the 2nd junction part 62, the 3rd junction part 63, and the 4th junction part 64, The exhaust gas circulation part 21 through which the exhaust gas circulates is formed inside the outer case 2, and the cooling medium circulation part 22 through which the cooling medium circulates so as to surround each heat transfer tube 70. Is formed.

次に、以上のように構成された熱交換器1の作用について説明する。熱交換器1には、排気ガス導入口45から排気ガスが導入される。排気ガスは、排気ガス導入部4で囲繞された上流部21aを通って、各伝熱管70の管内流路21cに入る。一方、冷却媒体である水が、流入管35から冷却媒体入口33を介して冷却媒体流通部形成部3内に供給される。この水は、冷却媒体流通部形成部3内の冷却媒体流通部22を流通し、管内流路21c内の排気ガスと熱交換を行って、排気ガスを冷却する。そして、冷却媒体出口34を介して流出管36から冷却媒体流通部形成部3外に流出する。管内流路21c内で冷却された排気ガスは、排気ガス導出部5で囲繞された下流部21bに入り、排気ガス導出口55から熱交換器1外に流出する。   Next, the operation of the heat exchanger 1 configured as described above will be described. Exhaust gas is introduced into the heat exchanger 1 from the exhaust gas inlet 45. The exhaust gas passes through the upstream portion 21 a surrounded by the exhaust gas introduction portion 4 and enters the in-tube flow path 21 c of each heat transfer tube 70. On the other hand, water, which is a cooling medium, is supplied from the inflow pipe 35 into the cooling medium circulation part forming part 3 through the cooling medium inlet 33. This water flows through the cooling medium flow part 22 in the cooling medium flow part forming part 3, and performs heat exchange with the exhaust gas in the pipe flow path 21c to cool the exhaust gas. Then, it flows out of the cooling medium circulation part forming part 3 from the outflow pipe 36 via the cooling medium outlet 34. The exhaust gas cooled in the pipe flow path 21 c enters the downstream portion 21 b surrounded by the exhaust gas outlet portion 5 and flows out of the heat exchanger 1 from the exhaust gas outlet port 55.

上述したように、熱交換器1によれば、冷却媒体流通部形成部3は、左端部37の内周面が排気ガス導入部4の外周面に接合され、右端部38の内周面が排気ガス導出部5の外周面に接合されている。そして、伝熱管集合体7の一端部7aの外周面は、排気ガス導入部4の内周面に接合され、伝熱管集合体7の他端部7bの外周面は、排気ガス導出部5の内周面に接合されている。したがって、排気ガス導入口45から排気ガス導入部4に導入された排気ガスは、冷却媒体流通部形成部3に触れることなく、排気ガス導入部4から各伝熱管70に入り、各伝熱管70を通過して排気ガス導出部5内に流出し、排気ガス導出部5の排気ガス導出口55から熱交換器1外に流出する。したがって、排気ガス導入部4、排気ガス導出部5、及び、各伝熱管70を、硫酸に対する耐食性が高い材料(例えば、スーパーSUS)で形成する一方、冷却媒体流通部形成部3は、排気ガス導入部4、排気ガス導出部5、及び、各伝熱管70を形成する材料よりも硫酸に対する耐食性が低い材料(例えば、一般SUS)で形成することができ、コストの上昇を抑制しつつ、排気ガスの凝縮水に含まれる硫酸による腐食の虞を減少可能である。   As described above, according to the heat exchanger 1, the coolant circulation part forming unit 3 has the inner peripheral surface of the left end 37 joined to the outer peripheral surface of the exhaust gas introduction unit 4 and the inner peripheral surface of the right end 38. It is joined to the outer peripheral surface of the exhaust gas outlet 5. The outer peripheral surface of one end portion 7 a of the heat transfer tube assembly 7 is joined to the inner peripheral surface of the exhaust gas introducing portion 4, and the outer peripheral surface of the other end portion 7 b of the heat transfer tube assembly 7 is connected to the exhaust gas deriving portion 5. It is joined to the inner peripheral surface. Accordingly, the exhaust gas introduced into the exhaust gas introduction part 4 from the exhaust gas introduction port 45 enters each heat transfer pipe 70 from the exhaust gas introduction part 4 without touching the cooling medium circulation part forming part 3, and each heat transfer pipe 70. And flows out into the exhaust gas outlet 5 and out of the heat exchanger 1 through the exhaust gas outlet 55 of the exhaust gas outlet 5. Therefore, the exhaust gas introduction unit 4, the exhaust gas lead-out unit 5, and each heat transfer tube 70 are formed of a material having high corrosion resistance to sulfuric acid (for example, super SUS), while the cooling medium circulation unit formation unit 3 It can be formed of a material (for example, general SUS) having a lower corrosion resistance to sulfuric acid than the material forming the introduction unit 4, the exhaust gas deriving unit 5, and the heat transfer pipes 70. The possibility of corrosion due to sulfuric acid contained in the condensed water of the gas can be reduced.

そして、伝熱管集合体7と排気ガス導入部4との接合部である第1の接合部61と、排気ガス導入部4と冷却媒体流通部形成部3との接合部である第3の接合部63とがずれて配置されているので、排気ガス導入部4は、第1の接合部61では内周面の、第3の接合部63では外周面の寸法精度を高くすればよい。同様に、排気ガス導出部5における第2の接合部62と第4の接合部64もずれて配置されているため、排気ガス導出部5は、第2の接合部62では内周面の、第4の接合部64では外周面の寸法精度を高くすればよい。このように片側の面のみの寸法精度を高くすることは容易であるため、熱交換器1は、クリアランス管理が容易であり、ロウ付け性を改善可能である。   And the 1st junction part 61 which is a junction part of the heat exchanger tube aggregate 7 and the exhaust gas introduction part 4, and the 3rd junction which is a junction part of the exhaust gas introduction part 4 and the cooling-medium circulation part formation part 3 Since the portion 63 is displaced from the portion 63, the exhaust gas introduction portion 4 only needs to increase the dimensional accuracy of the inner peripheral surface of the first joint portion 61 and the outer peripheral surface of the third joint portion 63. Similarly, since the second joint portion 62 and the fourth joint portion 64 in the exhaust gas lead-out portion 5 are also shifted from each other, the exhaust gas lead-out portion 5 is disposed on the inner peripheral surface of the second joint portion 62. In the fourth joint portion 64, the dimensional accuracy of the outer peripheral surface may be increased. As described above, since it is easy to increase the dimensional accuracy of only one surface, the heat exchanger 1 can easily manage the clearance and improve the brazing property.

そしてさらに、第1の接合部61、第2の接合部62、第3の接合部63、及び、第4の接合部64は、いずれも二重であり、各接合部付近における急激な断面変化を抑制できることから、各接合部への応力集中を緩和可能である。   Furthermore, the first joint 61, the second joint 62, the third joint 63, and the fourth joint 64 are all double, and a sudden change in cross section near each joint. Therefore, it is possible to reduce stress concentration at each joint.

また、熱交換器1では、第1の接合部61が第3の接合部63に対し下流側にずれて配置され、第2の接合部62が第4の接合部64に対し上流側にずれて配置されている。すなわち、第1の接合部61は第3の接合部63よりも、排気ガス導入部4の右端開口部43に近く、第2の接合部62は第4の接合部64よりも、排気ガス導出部5の左端開口部53に近いことから、伝熱管集合体7の排気ガス導入部4内への差し込み量及び排気ガス導出部5内への差し込み量が少なくて済み、組み付けが容易である。   Further, in the heat exchanger 1, the first joint 61 is arranged to be shifted downstream with respect to the third joint 63, and the second joint 62 is shifted upstream with respect to the fourth joint 64. Are arranged. That is, the first joining portion 61 is closer to the right end opening 43 of the exhaust gas introducing portion 4 than the third joining portion 63, and the second joining portion 62 is more exhausted than the fourth joining portion 64. Since it is close to the left end opening 53 of the portion 5, the amount of insertion of the heat transfer tube assembly 7 into the exhaust gas introduction portion 4 and the amount of insertion into the exhaust gas lead-out portion 5 can be reduced, and assembly is easy.

なお、この点を考慮しなければ、図8に示すように、第1の接合部61を第3の接合部63に対し上流側にずらして配置し、第2の接合部62を第4の接合部64に対し下流側にずらして配置してもよい。なお、図8には、図8が排気ガス導出部5側の要部断面図である場合の符号を括弧内に示している。   If this point is not taken into consideration, as shown in FIG. 8, the first joint 61 is shifted from the third joint 63 on the upstream side, and the second joint 62 is replaced with the fourth joint 62. You may shift | deviate and arrange | position downstream with respect to the junction part 64. FIG. In FIG. 8, reference numerals in parentheses are shown in the case where FIG. 8 is a cross-sectional view of the main part on the exhaust gas deriving unit 5 side.

図8は、熱交換器1の変形例の要部断面図である。この変形例では、排気ガス導入部4の角筒状部42が段の無い略角筒状とされ、角筒状部42の内周面の縦断面は、伝熱管集合体7の一端部7aの外周面の縦断面と略同形の略矩形状とされ、角筒状部42の外周面の縦断面は、冷却媒体流通部形成部3の左端部37の内周面の縦断面と略同形の略矩形状とされている。また、冷却媒体流通部形成部3は、左右方向の長さが図1〜7に示したものより短くされている。そして、角筒状部42の内周面に伝熱管集合体7の一端部7aの外周面が接合されて、第1の接合部61が形成され、角筒状部42の外周面に冷却媒体流通部形成部3の左端部37の内周面が接合されて、第3の接合部63が形成され、第1の接合部61は第3の接合部63よりも上流側にずれて配置されている。排気ガス導出部5側も、同様に構成され、第2の接合部62は第4の接合部64よりも下流側にずれて配置されている。   FIG. 8 is a cross-sectional view of a main part of a modification of the heat exchanger 1. In this modification, the rectangular tubular portion 42 of the exhaust gas introducing portion 4 is formed into a substantially rectangular tubular shape without a step, and the longitudinal section of the inner peripheral surface of the rectangular tubular portion 42 is one end portion 7 a of the heat transfer tube assembly 7. The vertical cross section of the outer peripheral surface of the rectangular tube-shaped portion 42 is substantially the same shape as the vertical cross section of the inner peripheral surface of the left end portion 37 of the cooling medium flow portion forming portion 3. It is made into the substantially rectangular shape. Moreover, the cooling medium distribution | circulation part formation part 3 is made shorter in the left-right direction than what was shown in FIGS. Then, the outer peripheral surface of the one end portion 7 a of the heat transfer tube assembly 7 is joined to the inner peripheral surface of the rectangular tube-shaped portion 42 to form the first bonded portion 61, and the cooling medium is formed on the outer peripheral surface of the rectangular tube-shaped portion 42. The inner peripheral surface of the left end part 37 of the flow part forming part 3 is joined to form a third joined part 63, and the first joined part 61 is arranged so as to be shifted upstream from the third joined part 63. ing. The exhaust gas lead-out portion 5 side is also configured in the same manner, and the second joint portion 62 is shifted from the fourth joint portion 64 to the downstream side.

図8に示す変形例では、排気ガス導入部4内に差し込んだときの、伝熱管集合体7の一端部7aの左方への(排気ガス導入口45側への)移動が、角筒状部42よりも縮径された漏斗状部41により規制され、同様に、排気ガス導出部5内に差し込んだときの、伝熱管集合体7の他端部7bの右方への(排気ガス導出口55側への)移動が、角筒状部52よりも縮径された漏斗状部51により規制されるため、排気ガス導入部4の角筒状部42、及び、排気ガス導出部5の角筒状部52を、段付きとしなくてもよい。   In the modification shown in FIG. 8, the movement of the one end portion 7a of the heat transfer tube assembly 7 to the left (toward the exhaust gas introduction port 45) when inserted into the exhaust gas introduction portion 4 is a rectangular tube shape. It is regulated by a funnel-like portion 41 having a diameter smaller than that of the portion 42, and similarly, when inserted into the exhaust gas deriving portion 5, the exhaust gas guide 7 (to the right side of the other end portion 7b of the heat transfer tube assembly 7). The movement (to the outlet 55 side) is restricted by the funnel-shaped portion 51 having a diameter smaller than that of the rectangular tube-shaped portion 52, so that the rectangular tube-shaped portion 42 of the exhaust gas introducing portion 4 and the exhaust gas deriving portion 5 The rectangular tubular portion 52 may not be stepped.

次に、第2実施形態の熱交換器1Bについて、図9,10に基づいて説明する。なお、第1実施形態の熱交換器1と同様の部分については、同じ符号を用い、その説明及び図示を適宜省略する。なお、図10には、図10が熱交換器1Bの排気ガス導出部5側の要部断面図である場合の符号を、括弧内に示している。   Next, the heat exchanger 1B of 2nd Embodiment is demonstrated based on FIG. In addition, about the part similar to the heat exchanger 1 of 1st Embodiment, the same code | symbol is used and the description and illustration are abbreviate | omitted suitably. In FIG. 10, reference numerals in parentheses are shown in FIG. 10, where FIG. 10 is a cross-sectional view of the main part of the heat exchanger 1 </ b> B on the exhaust gas outlet 5 side.

熱交換器1Bは、排気ガス導入部4が、それぞれ別体の導入部本体部46と導入部延設部47とから構成され、排気ガス導出部5が、それぞれ別体の導出部本体部56と導出部延設部57とから構成されている点が、熱交換器1と大きく異なる点である。導入部本体部46、導入部延設部47、導出部本体部56、及び、導出部延設部57は、いずれも、硫酸に対する耐食性が高いスーパーSUS製の薄板を、プレス加工することにより形成されている。なお、導入部本体部46と導出部本体部56は同形(同部材)であり、導出部本体部56と導出部延設部57は同形(同部材)であって、熱交換器1Bにおいて左右対称に配置されているだけである。   In the heat exchanger 1B, the exhaust gas introduction part 4 is composed of a separate introduction part main part 46 and an introduction part extension part 47, and the exhaust gas lead-out part 5 is a separate lead-out part main part 56, respectively. And the lead-out portion extending portion 57 are significantly different from the heat exchanger 1. The introduction part main body part 46, the introduction part extension part 47, the lead part main part 56, and the lead part extension part 57 are all formed by pressing a thin plate made of Super SUS having high corrosion resistance against sulfuric acid. Has been. In addition, the introducing | transducing part main-body part 46 and the derivation | leading-out part main-body part 56 are the same shape (same member), the derivation | leading-out part main-body part 56 and the derivation | leading-out extension part 57 are the same shape (same member), They are only arranged symmetrically.

詳しくは、導入部本体部46は、左側部が、左端部に排気ガス導入口45が形成された略角型漏斗形状の漏斗状部41とされ、右側部が、漏斗状部41の右端に連続して段の無い略短角筒状をなす短角筒状部48とされている。   Specifically, the introduction main body 46 has a left side portion that is a substantially square funnel-shaped funnel-like portion 41 having an exhaust gas introduction port 45 formed at the left end portion, and a right-side portion that is at the right end of the funnel-like portion 41. It is a short-angle cylindrical portion 48 having a substantially short-angle cylindrical shape having no steps.

導入部延設部47は、段付きの角筒状に形成され、略短角筒状の第1短角筒状部47aと、第1短角筒状部47aの右側に傾斜部47bを経て第1短角筒状部47aよりも縮径して連続する略短角筒状の第2短角筒状部47cと、第2短角筒状部47cの右側に傾斜部47dを経て第2短角筒状部47cよりも縮径して連続する略短角筒状の第3短角筒状部47eとを有している。第3短角筒状部47eの右端は、右端開口部43とされている。   The introduction portion extending portion 47 is formed in a stepped square tube shape, and has a first short angle tubular portion 47a having a substantially short angle tube shape, and an inclined portion 47b on the right side of the first short angle tubular portion 47a. The second short-angle cylindrical portion 47c, which is substantially short-angle cylindrical and has a diameter smaller than that of the first short-angle cylindrical portion 47a, and the second short-angle cylindrical portion 47c on the right side through the inclined portion 47d. A third short-angle cylindrical portion 47e having a substantially short-angle cylindrical shape that is continuous with a smaller diameter than the short-angle cylindrical portion 47c. The right end of the third short tubular portion 47 e is a right end opening 43.

そして、第1短角筒状部47aの内周面が短角筒状部48の外周面に接合されて、導入部延設部47が導入部本体部46の下流側に延設され、排気ガス導入部4が形成される。   Then, the inner peripheral surface of the first short cylindrical portion 47a is joined to the outer peripheral surface of the short rectangular tubular portion 48, and the introduction portion extending portion 47 is extended to the downstream side of the introduction portion main body portion 46. A gas introduction part 4 is formed.

導出部本体部56は、右側部が、右端部に排気ガス導出口55が形成された略角型漏斗形状の漏斗状部51とされ、左側部が、漏斗状部51の左端に連続して段の無い略短角筒状をなす短角筒状部58とされている。   The lead-out portion main body portion 56 has a right side portion that is a substantially square funnel-shaped funnel-like portion 51 in which an exhaust gas lead-out port 55 is formed at the right end portion, and a left-side portion that is continuous with the left end of the funnel-like portion 51. The short-angle cylindrical portion 58 has a substantially short-angle cylindrical shape without a step.

導出部延設部57は、段付きの略角筒状に形成され、略短角筒状の第1短角筒状部57aと、第1短角筒状部57aの左側に傾斜部57bを経て第1短角筒状部57aよりも縮径して連続する略短角筒状の第2短角筒状部57cと、第2短角筒状部57cの左側に傾斜部57dを経て第2短角筒状部57cよりも縮径して連続する略短角筒状の第3短角筒状部57eとを有している。第3短角筒状部57eの左端は、左端開口部53とされている。   The lead-out portion extending portion 57 is formed in a stepped substantially rectangular tube shape, and includes a first short-angle cylindrical portion 57a having a substantially short-angle cylindrical shape, and an inclined portion 57b on the left side of the first short-angle cylindrical portion 57a. After that, the second short-angle cylindrical portion 57c having a substantially short-angle cylindrical shape that is continuous with a diameter smaller than that of the first short-angle cylindrical portion 57a and the inclined portion 57d on the left side of the second short-angle cylindrical portion 57c. The second short-angle cylindrical portion 57c has a third short-angle cylindrical portion 57e having a substantially short-angle cylindrical shape and a continuous diameter. The left end of the third short-angle cylindrical portion 57 e is a left end opening 53.

そして、第1短角筒状部57aの内周面が短角筒状部58の外周面に接合されて、導出部延設部57が導出部本体部56の上流側に延設され、排気ガス導出部5が形成される。   Then, the inner peripheral surface of the first short-angle cylindrical portion 57a is joined to the outer peripheral surface of the short-angle cylindrical portion 58, and the lead-out portion extending portion 57 extends to the upstream side of the lead-out portion main body portion 56. A gas outlet 5 is formed.

また、図10に示すように、伝熱管集合体7の一端部7aの外周面が、第3短角筒状部47eの内周面に接合されて、第1の接合部61が形成され、冷却媒体流通部形成部3の左端部37の内周面が、第2短角筒状部47cの外周面に接合されて、第3の接合部63が形成される。同様に、伝熱管集合体7の他端部7bの外周面が、第3短角筒状部57eの内周面に接合されて、第2の接合部62が形成され、冷却媒体流通部形成部3の右端部38の内周面が、第2短角筒状部57cの外周面に接合されて、第4の接合部64が形成される。   Further, as shown in FIG. 10, the outer peripheral surface of the one end portion 7a of the heat transfer tube assembly 7 is bonded to the inner peripheral surface of the third short-angle cylindrical portion 47e to form the first bonding portion 61, The inner peripheral surface of the left end portion 37 of the cooling medium circulation portion forming portion 3 is joined to the outer peripheral surface of the second short-angle cylindrical portion 47c, so that a third joint portion 63 is formed. Similarly, the outer peripheral surface of the other end portion 7b of the heat transfer tube assembly 7 is bonded to the inner peripheral surface of the third short tube portion 57e to form the second bonding portion 62, thereby forming a cooling medium circulation portion. The inner peripheral surface of the right end portion 38 of the portion 3 is joined to the outer peripheral surface of the second short-angle cylindrical portion 57c, so that a fourth joint portion 64 is formed.

なお、第1実施形態と同様に、各部の接合は、ロウ付けにより一度に行われる。   Note that, as in the first embodiment, each part is joined at one time by brazing.

熱交換器1Bにおいても、熱交換器1と同様に、第1の接合部61が第3の接合部63よりも下流側にずれて配置され、第2の接合部62が第4の接合部64よりも上流側にずれて配置されているため、熱交換器1と同様の効果を奏する。但し、熱交換器1の方が熱交換器1Bよりも、部品点数が少なく、製造コストが安くなる点で有利である。   Also in the heat exchanger 1B, like the heat exchanger 1, the 1st junction part 61 is shifted | deviated and arrange | positioned downstream from the 3rd junction part 63, and the 2nd junction part 62 is a 4th junction part. Since it is arranged to be shifted to the upstream side of 64, the same effect as the heat exchanger 1 is achieved. However, the heat exchanger 1 is more advantageous than the heat exchanger 1B in that the number of parts is smaller and the manufacturing cost is lower.

また、熱交換器1Bによれば、図11に示すような排気ガスの流れ方向における長さが短い従来の排気ガス導入部104及び排気ガス導出部を、それぞれ、導入部本体部46及び導出部本体部56として用いることとして、それぞれ、導入部延設部47及び導出部延設部57を接合することにより、排気ガスの流れ方向における長さを長くでき、第1の接合部61と第3の接合部63とをずらして配置することが可能となるとともに、第2の接合部62と第4の接合部64とをずらして配置することが可能となる。   Further, according to the heat exchanger 1B, the conventional exhaust gas introduction part 104 and the exhaust gas lead-out part having a short length in the exhaust gas flow direction as shown in FIG. As the main body 56, the length in the flow direction of the exhaust gas can be increased by joining the introduction portion extension portion 47 and the lead-out portion extension portion 57, respectively. It is possible to displace the second joint portion 62 and the fourth joint portion 64 while shifting the second joint portion 63 and the fourth joint portion 64.

なお、熱交換器1Bでは、導入部本体部46と導入部延設部47との接合部は、第1の接合部61及び第3の接合部63よりも上流側にずれて配置されて、第1の接合部61及び第3の接合部63のいずれとも重ならず、導出部本体部56と導出部延設部57との接合部は、第2の接合部62及び第4の接合部64よりも下流側にずれて配置されて、第2の接合部62及び第4の接合部64のいずれとも重ならない。すなわち、これらの接合部はすべて二重であるため、クリアランス管理が容易であり、かつ、応力集中を緩和できる。   In the heat exchanger 1B, the joint portion between the introduction portion main body portion 46 and the introduction portion extension portion 47 is arranged so as to be shifted upstream from the first joint portion 61 and the third joint portion 63. The first joint 61 and the third joint 63 do not overlap with each other, and the joint between the lead-out body 56 and the lead-out extension 57 is the second joint 62 and the fourth joint. The second joint part 62 and the fourth joint part 64 do not overlap with each other because the second joint part 62 and the fourth joint part 64 are arranged so as to be shifted to the downstream side of 64. That is, since these joint portions are all double, clearance management is easy and stress concentration can be reduced.

1,1B 排気ガス熱交換器
2 アウターケース
3 冷却媒体流通部形成部
4 排気ガス導入部
5 排気ガス導出部
7 伝熱管集合体
7a 一端部
7b 他端部
21 排気ガス流通部
22 冷却媒体流通部
33 冷却媒体入口
34 冷却媒体出口
37 左端部
38 右端部
45 排気ガス導入口
46 導入部本体部
47 導入部延設部
55 排気ガス導出口
56 導出部本体部
57 導出部延設部
61 第1の接合部
62 第2の接合部
63 第3の接合部
64 第4の接合部
70 伝熱管
70a 排気ガス入口
70b 排気ガス出口
1, 1B Exhaust gas heat exchanger 2 Outer case 3 Cooling medium circulation part formation part 4 Exhaust gas introduction part 5 Exhaust gas outlet part 7 Heat transfer tube assembly 7a One end part 7b Other end part 21 Exhaust gas circulation part 22 Cooling medium circulation part 33 Cooling medium inlet 34 Cooling medium outlet 37 Left end portion 38 Right end portion 45 Exhaust gas introduction port 46 Introduction portion main body portion 47 Introduction portion extension portion 55 Exhaust gas outlet portion 56 Lead portion main portion 57 Lead portion extension portion 61 First Joint part 62 Second joint part 63 Third joint part 64 Fourth joint part 70 Heat transfer tube 70a Exhaust gas inlet 70b Exhaust gas outlet

Claims (3)

排気ガスが流通する複数の伝熱管を集合させて形成されて一端部に前記各伝熱管の排気ガス入口が開口し他端部に前記各伝熱管の排気ガス出口が開口する伝熱管集合体と、前記伝熱管集合体を収容するアウターケースとを備え、
前記伝熱管集合体の前記一端部及び前記他端部の外周面を、前記アウターケースの内周面に接合することにより、前記アウターケースの内部が、排気ガスが流通する排気ガス流通部と、排気ガスを冷却するための冷却媒体が流通する冷却媒体流通部とに区分された排気ガス熱交換器において、
前記アウターケースが、冷却媒体の入口と冷却媒体の出口とが形成されて前記冷却媒体流通部を囲繞する冷却媒体流通部形成部と、排気ガス導入口が形成されて前記排気ガス流通部の前記伝熱管集合体より上流側を囲繞する排気ガス導入部と、排気ガス導出口が形成されて前記排気ガス流通部の前記伝熱管集合体より下流側を囲繞する排気ガス導出部とを備えて、前記冷却媒体流通部形成部の一端部に前記排気ガス導入部を接合し、前記冷却媒体流通部形成部の他端部に前記排気ガス導出部を接合することにより形成され、
前記伝熱管集合体の前記一端部の外周面が、前記排気ガス導入部の内周面に接合されることにより、第1の接合部が形成され、
前記伝熱管集合体の前記他端部の外周面が、前記排気ガス導出部の内周面に接合されることにより、第2の接合部が形成され、
前記冷却媒体流通部形成部の前記一端部の内周面が、前記排気ガス導入部の外周面に接合されることにより、第3の接合部が形成され、
前記冷却媒体流通部形成部の前記他端部の内周面が、前記排気ガス導出部の外周面に接合されることにより、第4の接合部が形成され、
前記第1の接合部が、前記第3の接合部に対し、排気ガスの流れ方向における上流側または下流側にずれて配置され、
前記第2の接合部が、前記第4の接合部に対し、前記上流側または前記下流側にずれて配置されていることを特徴とする排気ガス熱交換器。
A heat transfer tube assembly formed by assembling a plurality of heat transfer tubes through which exhaust gas circulates, wherein an exhaust gas inlet of each heat transfer tube opens at one end and an exhaust gas outlet of each heat transfer tube opens at the other end; And an outer case for housing the heat transfer tube assembly,
By joining the outer peripheral surfaces of the one end portion and the other end portion of the heat transfer tube assembly to the inner peripheral surface of the outer case, an exhaust gas circulation portion in which the exhaust gas flows inside the outer case, and In an exhaust gas heat exchanger divided into a cooling medium circulation part through which a cooling medium for cooling the exhaust gas flows,
The outer case is formed with a cooling medium inlet and a cooling medium outlet to surround the cooling medium circulation part, and an exhaust gas inlet is formed to form the exhaust gas circulation part. An exhaust gas introduction portion that surrounds the upstream side of the heat transfer tube assembly, and an exhaust gas discharge portion that forms an exhaust gas outlet and surrounds the downstream side of the heat transfer tube assembly of the exhaust gas circulation portion, Formed by joining the exhaust gas introduction part to one end of the cooling medium circulation part forming part and joining the exhaust gas outlet part to the other end of the cooling medium circulation part formation part,
By joining the outer peripheral surface of the one end portion of the heat transfer tube assembly to the inner peripheral surface of the exhaust gas introduction portion, a first joint portion is formed,
By joining the outer peripheral surface of the other end portion of the heat transfer tube assembly to the inner peripheral surface of the exhaust gas outlet portion, a second joint portion is formed,
A third joint portion is formed by joining the inner peripheral surface of the one end portion of the cooling medium circulation portion forming portion to the outer peripheral surface of the exhaust gas introducing portion,
By joining the inner peripheral surface of the other end portion of the cooling medium circulation portion forming portion to the outer peripheral surface of the exhaust gas outlet portion, a fourth joint portion is formed,
The first joint portion is arranged to be shifted to the upstream side or the downstream side in the exhaust gas flow direction with respect to the third joint portion,
The exhaust gas heat exchanger is characterized in that the second joint portion is arranged to be shifted to the upstream side or the downstream side with respect to the fourth joint portion.
前記第1の接合部が、前記第3の接合部に対し、前記下流側にずれて配置され、
前記第2の接合部が、前記第4の接合部に対し、前記上流側にずれて配置されていることを特徴とする請求項1記載の排気ガス熱交換器。
The first joint portion is arranged to be shifted to the downstream side with respect to the third joint portion;
2. The exhaust gas heat exchanger according to claim 1, wherein the second joint portion is arranged to be shifted to the upstream side with respect to the fourth joint portion.
前記排気ガス導入部が、前記排気ガス導入口が形成された導入部本体部と、前記導入部本体部に接合されて前記導入部本体部の前記下流側に延設された筒状の導入部延設部とを備え、
前記排気ガス導出部が、前記排気ガス導出口が形成された導出部本体部と、前記導出部本体部に接合されて前記導出部本体部の前記上流側に延設された筒状の導出部延設部とを備え、
前記冷却媒体流通部形成部の前記一端部の内周面が、前記導入部延設部の外周面に接合されることにより、前記第3の接合部が形成され、
前記冷却媒体流通部形成部の前記他端部の内周面が、前記導出部延設部の外周面に接合されることにより、前記第4の接合部が形成されていることを特徴とする請求項1又は2記載の排気ガス熱交換器。
The exhaust gas introduction part includes an introduction part main body part in which the exhaust gas introduction port is formed, and a cylindrical introduction part joined to the introduction part main body part and extending to the downstream side of the introduction part main body part An extension part,
The exhaust gas lead-out portion is a lead-out portion main body portion in which the exhaust gas lead-out port is formed, and a tubular lead-out portion that is joined to the lead-out portion main body portion and extends to the upstream side of the lead-out portion main body portion. An extension part,
The inner peripheral surface of the one end portion of the cooling medium circulation portion forming portion is bonded to the outer peripheral surface of the introduction portion extending portion, thereby forming the third bonding portion,
The fourth joint portion is formed by joining an inner peripheral surface of the other end portion of the cooling medium circulation portion forming portion to an outer peripheral surface of the extended portion extending portion. The exhaust gas heat exchanger according to claim 1 or 2.
JP2012266552A 2012-12-05 2012-12-05 Exhaust gas heat exchanger Expired - Fee Related JP6092603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012266552A JP6092603B2 (en) 2012-12-05 2012-12-05 Exhaust gas heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012266552A JP6092603B2 (en) 2012-12-05 2012-12-05 Exhaust gas heat exchanger

Publications (2)

Publication Number Publication Date
JP2014112013A true JP2014112013A (en) 2014-06-19
JP6092603B2 JP6092603B2 (en) 2017-03-08

Family

ID=51169251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012266552A Expired - Fee Related JP6092603B2 (en) 2012-12-05 2012-12-05 Exhaust gas heat exchanger

Country Status (1)

Country Link
JP (1) JP6092603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116370A1 (en) * 2016-12-20 2018-06-28 東京濾器株式会社 Heat exchange device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102736A1 (en) * 2005-04-01 2006-10-05 Dana Canada Corporation Stacked-tube heat exchanger
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2009097839A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Heat exchanger
JP2011002133A (en) * 2009-06-17 2011-01-06 Denso Corp Heat exchanger for cooling high temperature gas
JP2011038752A (en) * 2009-08-18 2011-02-24 T Rad Co Ltd Heat exchanger without header plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006102736A1 (en) * 2005-04-01 2006-10-05 Dana Canada Corporation Stacked-tube heat exchanger
JP2007225190A (en) * 2006-02-23 2007-09-06 Maruyasu Industries Co Ltd Heat exchanger
JP2009097839A (en) * 2007-10-19 2009-05-07 T Rad Co Ltd Heat exchanger
JP2011002133A (en) * 2009-06-17 2011-01-06 Denso Corp Heat exchanger for cooling high temperature gas
JP2011038752A (en) * 2009-08-18 2011-02-24 T Rad Co Ltd Heat exchanger without header plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116370A1 (en) * 2016-12-20 2018-06-28 東京濾器株式会社 Heat exchange device
CN110100142A (en) * 2016-12-20 2019-08-06 东京滤器株式会社 Heat-exchange device
JPWO2018116370A1 (en) * 2016-12-20 2019-10-24 東京濾器株式会社 Heat exchanger
US10767605B2 (en) 2016-12-20 2020-09-08 Tokyo Roki Co., Ltd. Heat exchanger

Also Published As

Publication number Publication date
JP6092603B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2014013725A1 (en) Heat exchanger
JP6276054B2 (en) Heat exchanger
JP6619675B2 (en) Channel structure
US10202880B2 (en) Exhaust heat exchanger
JP5585558B2 (en) Exhaust heat exchanger
JP6092603B2 (en) Exhaust gas heat exchanger
JP2016128730A (en) Heat exchanger
WO2020158364A1 (en) Heat exchanger
JP4760693B2 (en) Heat exchanger
JP2006292307A (en) Multi-plate heat exchanger
JP6577282B2 (en) Heat exchanger
JP5903911B2 (en) Heat exchanger
JP2018169058A (en) Heat exchanger
US20160363380A1 (en) Heat exchanger
JP2014081175A (en) Casing connection structure of exhaust heat exchanger
JP6731266B2 (en) Heat exchanger
WO2015107814A1 (en) Heat transfer pipe for heat exchanger and heat exchanger
JP2008116101A (en) Heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
WO2018225692A1 (en) Heat exchanger
JP2019032127A (en) Heat exchanger
JP6083272B2 (en) Heat exchanger
JP2006078033A (en) Heat exchanger
WO2015107815A1 (en) Heat transfer pipe for heat exchanger and heat exchanger
JP2005083673A (en) Multilayer heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees