JP2006078033A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006078033A
JP2006078033A JP2004260728A JP2004260728A JP2006078033A JP 2006078033 A JP2006078033 A JP 2006078033A JP 2004260728 A JP2004260728 A JP 2004260728A JP 2004260728 A JP2004260728 A JP 2004260728A JP 2006078033 A JP2006078033 A JP 2006078033A
Authority
JP
Japan
Prior art keywords
tube
tank
heat exchanger
length ratio
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004260728A
Other languages
Japanese (ja)
Inventor
Tatsuo Ozaki
竜雄 尾崎
Toshihide Ninagawa
蜷川  稔英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004260728A priority Critical patent/JP2006078033A/en
Priority to US11/218,046 priority patent/US20060048930A1/en
Publication of JP2006078033A publication Critical patent/JP2006078033A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To thin a thickness of a tube without deteriorating a fracture service life of the tube. <P>SOLUTION: In the heat exchanger with an end of the tube 10 inserted in a tank 2 and joined to it, an insertion hole is provided in a protruding portion 210 protruding in a tube longitudinal direction X toward the outside of the tank 2. When a circumference of an outer circumferential face of the tube 10 is A, a circumference of a joined portion of the tube 10 and the tank 2 is B, and a joined part length ratio is B/A, the joined part length ratio is 1.15 or more. As the joined part length ratio becomes larger, stress generated in the tube 10 is distributed and the stress becomes smaller. Particularly, when the joined part length ratio is 1.15 or more, the stress is reduced by half in comparison with when the joined part length ratio is 1.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、流体を熱交換させる熱交換器に関するもので、特に水冷エンジンの冷却水の熱を大気中に放熱する車両用ラジエータに適用して有効である。   The present invention relates to a heat exchanger that exchanges heat between fluids, and is particularly effective when applied to a vehicle radiator that radiates heat of cooling water of a water-cooled engine to the atmosphere.

従来の熱交換器は、多数のチューブと多数のコルゲートフィンとを交互に積層してコア部を構成している。そして、チューブにおけるチューブ長手方向の端部をタンクの挿入穴に挿入して接合している。また、コア部を補強するために、コア部におけるチューブ積層方向の両端部にサイドプレートを配置している(例えば、特許文献1、2参照)。   In the conventional heat exchanger, a large number of tubes and a large number of corrugated fins are alternately stacked to constitute a core portion. And the edge part of the tube longitudinal direction in a tube is inserted in the insertion hole of a tank, and is joined. Moreover, in order to reinforce a core part, the side plate is arrange | positioned at the both ends of the tube lamination direction in a core part (for example, refer patent document 1, 2).

ところで、この熱交換器を車両用ラジエータとして用いる場合、サイドプレートにはエンジン冷却水は流れず、チューブにはエンジン冷却水が流れる。サイドプレートはコルゲートフィンと接合されており冷却風で冷却される。このため、チューブとサイドプレートには温度差が生じ、チューブとサイドプレートの熱膨張差が発生する。   By the way, when this heat exchanger is used as a vehicle radiator, engine cooling water does not flow through the side plate, but engine cooling water flows through the tube. The side plate is joined to the corrugated fin and cooled by cooling air. For this reason, a temperature difference arises between a tube and a side plate, and a thermal expansion difference occurs between the tube and the side plate.

また、コア部の各部位での冷却風量にバラツキがある場合は、多数のチューブはその配置位置によって温度差が生じ、チューブ間の熱膨張差が発生する。
実用新案登録第3059971号公報 特開平11−337290号公報
In addition, when there is variation in the cooling air volume at each part of the core portion, a temperature difference occurs in many tubes depending on the arrangement position, and a difference in thermal expansion occurs between the tubes.
Utility Model Registration No. 3059971 JP 11-337290 A

そして、特許文献1に示された熱交換器は、チューブとサイドプレートの熱膨張差を吸収する変形部をサイドプレートに設けているため、チューブとサイドプレートの熱膨張差による応力は緩和される。   And since the heat exchanger shown by patent document 1 has provided the deformation | transformation part which absorbs the thermal expansion difference of a tube and a side plate in the side plate, the stress by the thermal expansion difference of a tube and a side plate is relieved. .

しかしながら、チューブ間の熱膨張差を吸収することはできないため、チューブにはチューブ間の熱膨張差による応力が発生する。したがって、チューブの板厚を現状よりもさらに薄くすると、熱膨張差による応力によってチューブが破損する恐れがあり、すなわち、チューブの破壊寿命を低下させる恐れがあるため、チューブの板厚を薄くすることが困難になっている。   However, since the difference in thermal expansion between the tubes cannot be absorbed, stress is generated in the tube due to the difference in thermal expansion between the tubes. Therefore, if the tube thickness is made thinner than the current thickness, the tube may be damaged by the stress due to the difference in thermal expansion, that is, the tube's fracture life may be reduced. Has become difficult.

本発明は上記点に鑑みて、チューブの破壊寿命を低下させることなく、チューブの板厚の薄肉化を可能にすることを目的とする。   In view of the above points, an object of the present invention is to make it possible to reduce the thickness of a tube without reducing the fracture life of the tube.

上記目的を達成するため、請求項1に記載の発明では、多数積層配置された扁平形状のチューブ(10)と、チューブ(10)におけるチューブ長手方向(X)の端部に配置され、多数のチューブ(10)と連通するタンク(2、3)とを備え、チューブ(10)におけるチューブ長手方向(X)の端部をタンク(2、3)の挿入穴(211)に挿入して接合した熱交換器において、挿入穴(211)はチューブ長手方向(X)で且つタンク(2、3)の外側に向かって凸となる凸状部位(210)に設けられ、チューブ(10)の外周面の周長をAとし、チューブ(10)とタンク(2、3)の接合部位の周長をBとし、B/Aを接合部長さ比としたとき、接合部長さ比が1.15以上であることを特徴とする。   In order to achieve the above object, in the invention described in claim 1, a flat tube (10) arranged in a large number of layers and a tube longitudinal direction (X) end portion of the tube (10) are arranged. A tank (2, 3) communicating with the tube (10), and the end of the tube (10) in the tube longitudinal direction (X) is inserted into the insertion hole (211) of the tank (2, 3) and joined. In the heat exchanger, the insertion hole (211) is provided in a convex portion (210) which is convex in the longitudinal direction (X) of the tube and toward the outside of the tank (2, 3), and the outer peripheral surface of the tube (10). When the perimeter of the tube (10) and the tank (2, 3) is B, and B / A is the joint length ratio, the joint length ratio is 1.15 or more. It is characterized by being.

これによると、接合部長さ比が大きくなるほどチューブに発生する応力が分散されて応力が小さくなり、図5に示すように、特に、接合部長さ比を1.15以上にした場合、接合部長さ比が1.0のものと比較して応力は半減する。したがって、チューブの破壊寿命を低下させることなく、チューブの板厚を薄くすることが可能になる。   According to this, as the joint length ratio increases, the stress generated in the tube is dispersed and the stress decreases, and as shown in FIG. 5, particularly when the joint length ratio is 1.15 or more, the joint length is increased. The stress is halved compared to a ratio of 1.0. Therefore, it is possible to reduce the thickness of the tube without reducing the tube's fracture life.

請求項2に記載の発明では、請求項1に記載の熱交換器において、接合部長さ比が1.4以下であることを特徴とする。   The invention according to claim 2 is characterized in that, in the heat exchanger according to claim 1, the joint length ratio is 1.4 or less.

ところで、チューブとタンクの接合が良好に行われるように、チューブの端部をタンクの挿入穴に挿入後、チューブの端部近傍を口拡治具にて広げてチューブとタンクの接合予定部を密着させる場合がある。   By the way, so that the tube and tank can be joined well, after inserting the end of the tube into the insertion hole of the tank, widen the vicinity of the end of the tube with a magnifying jig to There is a case to adhere.

そして、接合部長さ比が大きくなると、挿入穴の凸形状の度合いが強くなって、チューブの端部から接合予定部までの距離が増加するため、接合予定部を密着させることが困難になってくる。これに対し、請求項2に記載の発明のように、接合部長さ比を1.4以下にした場合には、接合予定部を確実に密着させることができる。   And as the joint length ratio increases, the degree of the convex shape of the insertion hole increases, and the distance from the end of the tube to the planned joint increases, making it difficult to closely contact the planned joint. come. On the other hand, as in the second aspect of the invention, when the joint length ratio is set to 1.4 or less, the planned joint portion can be securely adhered.

請求項3に記載の発明では、請求項1または2に記載の熱交換器において、チューブ(10)およびタンク(2、3)は、アルミニウム製であることを特徴とする。   According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the tube (10) and the tanks (2, 3) are made of aluminum.

ところで、チューブをアルミニウム製とし、タンクを樹脂製にした熱交換器においては、チューブとサイドプレートの熱膨張差やチューブ間の熱膨張差が樹脂製タンクによって吸収されるため、チューブに発生する応力は緩和される。   By the way, in heat exchangers where the tube is made of aluminum and the tank is made of resin, the difference in thermal expansion between the tube and the side plate and the difference in thermal expansion between the tubes are absorbed by the resin tank. Is alleviated.

一方、チューブおよびタンクがともにアルミニウム製である場合には、上記のような樹脂製タンクによる熱膨張差吸収効果はあまり期待できない。したがって、請求項3に記載の発明のように、チューブ(10)およびタンク(2、3)がアルミニウム製である熱交換器に好適である。なお、本明細書で言うアルミニウムは、アルミニウム合金を含む。   On the other hand, when both the tube and the tank are made of aluminum, the thermal expansion difference absorption effect by the resin tank as described above cannot be expected so much. Therefore, as in the invention described in claim 3, the tube (10) and the tanks (2, 3) are suitable for a heat exchanger made of aluminum. In addition, the aluminum said by this specification contains an aluminum alloy.

請求項4に記載の発明では、請求項1ないし3のいずれか1つに記載の熱交換器において、タンク(2、3)は、チューブ積層方向(Y)に見たときの形状が略矩形であることを特徴とする。   According to a fourth aspect of the present invention, in the heat exchanger according to any one of the first to third aspects, the tank (2, 3) has a substantially rectangular shape when viewed in the tube stacking direction (Y). It is characterized by being.

ところで、例えばラジエータのように通過流体の流量が大流量である場合、充分な流路面積を確保する必要があるため、タンクが円管であるとその直径はある程度の大きさが必要となり、タンクの幅(チューブ幅方向の寸法)が大きくなってしまう。   By the way, when the flow rate of the passing fluid is a large flow rate such as a radiator, it is necessary to secure a sufficient flow path area. Therefore, if the tank is a circular pipe, the diameter of the tank needs to be a certain size. The width (dimension in the tube width direction) becomes large.

これに対し、請求項4に記載の発明のように、タンクを略矩形にした場合、タンクにおけるチューブ長手方向の寸法を大きくして充分な流路面積を確保することにより、タンクの幅を小さくすることができる。   On the other hand, when the tank is made substantially rectangular as in the invention described in claim 4, the tank width is reduced by increasing the dimension of the tank in the longitudinal direction of the tube to ensure a sufficient flow area. can do.

請求項5に記載の発明では、請求項4に記載の熱交換器において、タンク(2、3)は、チューブ積層方向(Y)に延びる筒状部を有し、筒状部は、挿入穴(211)が形成された板部材(21)と挿入穴(211)が形成されていない板部材(22)とを含む複数の板部材を接合して形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the heat exchanger according to the fourth aspect, the tank (2, 3) has a cylindrical portion extending in the tube stacking direction (Y), and the cylindrical portion is an insertion hole. A plurality of plate members including a plate member (21) in which (211) is formed and a plate member (22) in which the insertion hole (211) is not formed are joined to each other.

これによると、接合予定部を密着させる作業を、挿入穴が形成されていない板部材が装着されていない状態、すなわち、チューブの端部が覆われていない状態で行うことにより、接合予定部を密着させる作業を容易に行うことができ、ひいては、接合予定部を確実に密着させることができる。   According to this, by performing the operation of closely attaching the planned joining portion in a state where the plate member in which the insertion hole is not formed is not attached, that is, in a state where the end portion of the tube is not covered, The operation | work which makes it adhere can be performed easily and by extension, a joining plan part can be stuck firmly.

請求項6に記載の発明では、請求項4または5に記載の熱交換器において、チューブ長手方向(X)およびチューブ積層方向(Y)に対してともに直交する方向のチューブ(10)の外形寸法をチューブ幅Cとし、チューブ長手方向(X)およびチューブ積層方向(Y)に対してともに直交する方向のタンク(2、3)の外形寸法をタンク幅Dとしたとき、タンク幅Dがチューブ幅Cの1.5倍以下であることを特徴とする。   According to a sixth aspect of the present invention, in the heat exchanger according to the fourth or fifth aspect, the outer dimensions of the tube (10) in a direction perpendicular to both the tube longitudinal direction (X) and the tube stacking direction (Y). Is the tube width C, and the outer dimensions of the tanks (2, 3) in the direction orthogonal to the tube longitudinal direction (X) and the tube stacking direction (Y) are the tank width D, the tank width D is the tube width. It is characterized by being 1.5 times or less of C.

ところで、タンク幅Dがチューブ幅Cよりも充分に大きい場合には、サイドプレートの熱膨張差やチューブ間の熱膨張差は、タンクにおける挿入穴が形成されている辺の変形により吸収されやすい。   By the way, when the tank width D is sufficiently larger than the tube width C, the thermal expansion difference of the side plate and the thermal expansion difference between the tubes are easily absorbed by deformation of the side where the insertion hole is formed in the tank.

一方、タンク幅Dがチューブ幅Cと比較してあまり大きくない場合には、上記のような挿入穴が形成されている辺の変形による熱膨張差吸収効果はあまり期待できない。したがって、請求項6に記載の発明のように、タンク幅Dがチューブ幅Cの1.5倍以下である熱交換器に好適である。   On the other hand, when the tank width D is not so large as compared with the tube width C, the effect of absorbing the thermal expansion difference due to the deformation of the side where the insertion hole is formed cannot be expected. Therefore, as in the invention described in claim 6, it is suitable for a heat exchanger in which the tank width D is 1.5 times or less of the tube width C.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の一実施形態について説明する。本実施形態は、本発明に係る熱交換器を車両走行用水冷エンジンの冷却水を冷却するラジエータに適用したものである。   An embodiment of the present invention will be described. In this embodiment, the heat exchanger according to the present invention is applied to a radiator that cools the cooling water of a water-cooled engine for vehicle travel.

図1は本実施形態に係るラジエータの正面図、図2は図1のE−E線に沿う断面図、図3は図2のタンクを単体で示すF矢視図である。   FIG. 1 is a front view of a radiator according to the present embodiment, FIG. 2 is a cross-sectional view taken along the line EE of FIG. 1, and FIG. 3 is a view taken in the direction of arrow F showing the tank of FIG.

図1に示すように、ラジエータは直方体形状のコア部1を備えており、コア部1は、交互に積層配置された多数のチューブ10と多数のコルゲートフィン11とで構成されている。   As shown in FIG. 1, the radiator includes a rectangular parallelepiped core portion 1, and the core portion 1 includes a large number of tubes 10 and a large number of corrugated fins 11 that are alternately stacked.

チューブ10は、車両に搭載された水冷エンジン(図示せず)の冷却水が流通する流路を内部に有する。より詳細には、チューブ10は、板厚が0.2〜0.3mm程度のアルミニウム製板材を所定の扁平形状に折り曲げ後、溶接またはろう付けして形成される。   The tube 10 has a flow path through which cooling water of a water-cooled engine (not shown) mounted on the vehicle flows. More specifically, the tube 10 is formed by welding or brazing an aluminum plate having a plate thickness of about 0.2 to 0.3 mm, bending it into a predetermined flat shape.

コルゲートフィン11は、アルミニウム製であり、コルゲート状に形成されて空気と冷却水との熱交換を促進するものである。   The corrugated fins 11 are made of aluminum and are formed in a corrugated shape to promote heat exchange between air and cooling water.

コア部1におけるチューブ長手方向Xの両端部には、多数のチューブ10の各流路と連通するタンク2、3が配置されている。   Tanks 2, 3 communicating with the flow paths of the numerous tubes 10 are disposed at both ends of the tube portion X in the core portion 1.

一方のタンク2は、アルミニウム製であり、エンジンから流出した高温の冷却水を多数のチューブ10に分配供給するものである。この一方のタンク2には、ホース(図示せず)を介してエンジンの冷却水出口側に接続される、アルミニウム製の流入口パイプ20が配置されてる。   One tank 2 is made of aluminum, and distributes and supplies the high-temperature cooling water flowing out from the engine to many tubes 10. This one tank 2 is provided with an aluminum inlet pipe 20 connected to the engine coolant outlet side through a hose (not shown).

他方のタンク3は、アルミニウム製であり、空気との熱交換により冷却された冷却水を集合回収してエンジンに向けて排水するものである。この他方のタンク3には、ホースを介してエンジンの冷却水入口側に接続される、アルミニウム製の流出口パイプ30が配置されている。   The other tank 3 is made of aluminum and collects and collects cooling water cooled by heat exchange with air and drains it toward the engine. The other tank 3 is provided with an aluminum outlet pipe 30 connected to the cooling water inlet side of the engine via a hose.

コア部1におけるチューブ積層方向Yの両端部には、コア部1を補強するサイドプレート4が配置されている。サイドプレート4は、アルミニウム製であり、チューブ長手方向Xと平行な方向に延びてその両端がタンク2、3に接続されている。   Side plates 4 that reinforce the core portion 1 are disposed at both ends of the core portion 1 in the tube stacking direction Y. The side plate 4 is made of aluminum, extends in a direction parallel to the tube longitudinal direction X, and both ends thereof are connected to the tanks 2 and 3.

図2、図3に示すように、一方のタンク2は、チューブ積層方向Yに延びるとともに、チューブ積層方向Yに見たときの形状が略矩形の筒状になった筒状部と、この筒状部の両端を閉塞する端板部を有している。筒状部は、挿入穴が形成された第1板部材21と、挿入穴が形成されていない第2板部材22とを接合して形成されている。   As shown in FIG. 2 and FIG. 3, one tank 2 extends in the tube stacking direction Y, and has a tubular portion whose shape when viewed in the tube stacking direction Y is a substantially rectangular tube. It has an end plate portion that closes both ends of the shape portion. The cylindrical portion is formed by joining the first plate member 21 in which the insertion hole is formed and the second plate member 22 in which the insertion hole is not formed.

第1板部材21は、チューブ長手方向Xで且つタンク2の外側に向かって凸となる台形形状の凸状部位210を有し、この凸状部位210に挿入穴211が設けられている。そして、チューブ10におけるチューブ長手方向Xの端部が挿入穴211に挿入された後、挿入穴211の部位でチューブ10と第1板部材21が接合されている。   The first plate member 21 has a trapezoidal convex portion 210 that is convex in the tube longitudinal direction X and toward the outside of the tank 2, and an insertion hole 211 is provided in the convex portion 210. And after the edge part of the tube longitudinal direction X in the tube 10 is inserted in the insertion hole 211, the tube 10 and the 1st board member 21 are joined in the site | part of the insertion hole 211. FIG.

第2板部材22は、チューブ積層方向Yに延びる断面が略L字状の側板部220と前述した端板部221が一体に形成されている。なお、凸状部位210を台形形状としたが、図4に示すように、凸状部位210は円弧状であってもよい。   The second plate member 22 is integrally formed with the side plate portion 220 having a substantially L-shaped cross section extending in the tube stacking direction Y and the end plate portion 221 described above. In addition, although the convex part 210 was made into trapezoid shape, as shown in FIG. 4, the convex part 210 may be circular arc shape.

因みに、他方のタンク3も、一方のタンク2と同様の構成になっており、他方のタンク3の挿入穴(図示せず)に、チューブ10におけるチューブ長手方向Xの端部が挿入されて、他方のタンク3とチューブ10が接合されている。   Incidentally, the other tank 3 has the same configuration as the one tank 2, and the end of the tube 10 in the tube longitudinal direction X is inserted into the insertion hole (not shown) of the other tank 3, The other tank 3 and the tube 10 are joined.

なお、一体ろう付けのために、チューブ10、コルゲートフィン11、タンク2、3、パイプ20、30、およびサイドプレート4のうちの少なくとも一部の部品は、ろう材がクラッドされたクラッド材を用いる。   For integral brazing, a clad material in which a brazing material is clad is used for at least some of the tubes 10, corrugated fins 11, tanks 2 and 3, pipes 20 and 30, and side plate 4. .

本実施形態では、タンク2におけるチューブ長手方向Xの寸法を大きくして充分な流路面積を確保することにより、タンク2の幅Dを小さくしている。なお、タンク幅Dは、チューブ長手方向Xおよびチューブ積層方向Yに対してともに直交する方向のタンク2の外形寸法である。因みに、本実施形態においては、チューブ長手方向Xおよびチューブ積層方向Yに対してともに直交する方向は、コア部1を通過する空気の流れ方向と一致する。   In this embodiment, the width D of the tank 2 is reduced by increasing the dimension in the tube longitudinal direction X in the tank 2 to ensure a sufficient flow path area. The tank width D is an external dimension of the tank 2 in a direction orthogonal to the tube longitudinal direction X and the tube stacking direction Y. Incidentally, in this embodiment, the direction orthogonal to both the tube longitudinal direction X and the tube stacking direction Y coincides with the flow direction of the air passing through the core portion 1.

また、本実施形態では、チューブ10と第1板部材21の接合が良好に行われるように、チューブ10の端部を第1板部材21の挿入穴211に挿入後、チューブ10の端部近傍を図示しない口拡治具にて広げてチューブ10と第1板部材21の接合予定部を密着させる作業(以下、口拡作業という)を行う。   Moreover, in this embodiment, after inserting the edge part of the tube 10 in the insertion hole 211 of the 1st board member 21, so that joining of the tube 10 and the 1st board member 21 may be performed favorably, the edge part vicinity of the tube 10 Is expanded with a magnifying jig (not shown) and the tube 10 and the first plate member 21 are bonded to each other (hereinafter referred to as magnifying operation).

この口拡作業は、第1板部材21に第2板部材22が装着されていない状態、すなわち、チューブ10の端部が覆われていない状態で行う。したがって、口拡作業を容易に行うことができ、ひいては、接合予定部を確実に密着させることができる。   This widening operation is performed in a state where the second plate member 22 is not attached to the first plate member 21, that is, in a state where the end of the tube 10 is not covered. Therefore, it is possible to easily perform the magnifying operation, and as a result, it is possible to ensure that the planned joining portion is in close contact.

ところで、台形形状や円弧状等の凸状部位210に挿入穴211を設けているため、タンク2とチューブ10の接合部位の長さが増加し、これによりチューブ10に発生する応力が分散されて応力が小さくなる。   By the way, since the insertion hole 211 is provided in the convex part 210 such as a trapezoidal shape or an arc shape, the length of the joint part between the tank 2 and the tube 10 is increased, and thereby the stress generated in the tube 10 is dispersed. Stress is reduced.

そこで、上記構成になる本実施形態のラジエータについて、チューブ10の外周面の周長をAとし、チューブ10とタンク2の接合部位の周長(以下、接合部位周長という)をBとし、B/Aを接合部長さ比としたとき、接合部長さ比の望ましい範囲について検討を行った。なお、接合部位周長Bは、タンク2の板厚の中心部で測定した値である。   Therefore, for the radiator of the present embodiment configured as described above, the circumferential length of the outer peripheral surface of the tube 10 is A, the circumferential length of the joined portion of the tube 10 and the tank 2 (hereinafter referred to as the joined portion circumferential length) is B, and B When / A is the joint length ratio, the desirable range of the joint length ratio was examined. In addition, the joining part circumferential length B is a value measured at the center of the plate thickness of the tank 2.

この検討は、以下の条件で行った。まず、チューブ10は、チューブ幅Cが16mm、チューブ厚さが1.4mmである。タンク2は、タンク幅Dが21.8mm、板厚が1.6mmである。なお、チューブ幅Cは、チューブ長手方向Xおよびチューブ積層方向Yに対してともに直交する方向のチューブ10の外形寸法であり、チューブ厚さは、チューブ積層方向Yのチューブ10の外形寸法である。   This examination was performed under the following conditions. First, the tube 10 has a tube width C of 16 mm and a tube thickness of 1.4 mm. The tank 2 has a tank width D of 21.8 mm and a plate thickness of 1.6 mm. The tube width C is the outer dimension of the tube 10 in the direction orthogonal to both the tube longitudinal direction X and the tube stacking direction Y, and the tube thickness is the outer dimension of the tube 10 in the tube stacking direction Y.

図5は検討結果を示すもので、横軸は接合部長さ比(B/A)であり、縦軸は接合部長さ比が1.0のときにチューブ10に発生する応力を100%とする発生応力比である。また、図5中の□記号は凸状部位210が台形形状の場合の結果を示し、○記号は凸状部位210が円弧状の場合の結果を示している。   FIG. 5 shows the results of the study. The horizontal axis represents the joint length ratio (B / A), and the vertical axis represents the stress generated in the tube 10 when the joint length ratio is 1.0. This is the stress ratio. Further, the □ symbol in FIG. 5 indicates the result when the convex portion 210 is trapezoidal, and the ◯ symbol indicates the result when the convex portion 210 is arcuate.

図5から明らかなように、特に、接合部長さ比を1.15以上にした場合、接合部長さ比が1.0のものと比較して応力は半減する。したがって、チューブ10の破壊寿命を低下させることなく、チューブ10の板厚を薄くすることが可能になる。   As is clear from FIG. 5, particularly when the joint length ratio is 1.15 or more, the stress is halved as compared with the joint length ratio of 1.0. Therefore, it is possible to reduce the thickness of the tube 10 without reducing the fracture life of the tube 10.

一方、接合部長さ比が大きくなると、挿入穴211が形成された凸状部位210の凸形状の度合いが強くなって、チューブ10の端部から接合予定部までの距離が増加するため、口拡作業において接合予定部を密着させることが困難になってくる。そして、接合部長さ比を1.4以下にした場合、口拡作業において接合予定部を確実に密着させることができることが確認された。   On the other hand, when the joint length ratio is increased, the degree of the convex shape of the convex portion 210 in which the insertion hole 211 is formed increases, and the distance from the end of the tube 10 to the portion to be joined increases. In the work, it becomes difficult to bring the planned joining portion into close contact. It was confirmed that when the joint length ratio was 1.4 or less, the joint planned portion could be securely adhered in the magnifying operation.

ところで、チューブ10をアルミニウム製とし、タンク2を樹脂製にした熱交換器においては、チューブ10とサイドプレート4の熱膨張差やチューブ10間の熱膨張差が樹脂製タンクによって吸収されるため、チューブ10に発生する応力は緩和される。一方、チューブ10およびタンク2がともにアルミニウム製である場合には、上記のような樹脂製タンクによる熱膨張差吸収効果はあまり期待できない。したがって、チューブ10およびタンク2がともにアルミニウム製であるラジエータに好適である。   By the way, in the heat exchanger in which the tube 10 is made of aluminum and the tank 2 is made of resin, the thermal expansion difference between the tube 10 and the side plate 4 and the thermal expansion difference between the tubes 10 are absorbed by the resin tank. The stress generated in the tube 10 is relaxed. On the other hand, when both the tube 10 and the tank 2 are made of aluminum, the effect of absorbing the thermal expansion difference by the resin tank as described above cannot be expected so much. Therefore, both the tube 10 and the tank 2 are suitable for a radiator made of aluminum.

また、タンク幅Dがチューブ幅Cよりも充分に大きい場合には、サイドプレート4の熱膨張差やチューブ10間の熱膨張差は、タンク2における挿入穴211が形成されている辺の変形により吸収されやすい。しかし、タンク幅Dがチューブ幅Cと比較してあまり大きくない場合には、挿入穴211が形成されている辺の変形による熱膨張差吸収効果はあまり期待できない。したがって、タンク幅Dがチューブ幅Cと比較してあまり大きくないラジエータ、例えば、タンク幅Dがチューブ幅Cの1.5倍以下であるラジエータに好適である。   When the tank width D is sufficiently larger than the tube width C, the difference in thermal expansion of the side plate 4 and the difference in thermal expansion between the tubes 10 are caused by deformation of the side of the tank 2 where the insertion hole 211 is formed. Easy to be absorbed. However, when the tank width D is not so large as compared with the tube width C, the thermal expansion difference absorption effect due to the deformation of the side where the insertion hole 211 is formed cannot be expected so much. Therefore, it is suitable for a radiator in which the tank width D is not so large as compared with the tube width C, for example, a radiator in which the tank width D is 1.5 times or less of the tube width C.

(他の実施形態)
上記実施形態では、本発明をラジエータに適用したが、本発明はラジエータ以外の熱交換器にも適用することができる。
(Other embodiments)
In the said embodiment, although this invention was applied to the radiator, this invention is applicable also to heat exchangers other than a radiator.

本発明の一実施形態に係るラジエータの正面図である。It is a front view of the radiator concerning one embodiment of the present invention. 図1のE−E線に沿う断面図である。It is sectional drawing which follows the EE line | wire of FIG. 図2のタンクを単体で示すF矢視図である。FIG. 3 is an F arrow view showing the tank of FIG. 2 alone. タンクの変形例を示す断面図である。It is sectional drawing which shows the modification of a tank. 接合部長さ比B/Aとチューブに発生する応力との関係を示す図である。It is a figure which shows the relationship between joining part length ratio B / A and the stress which generate | occur | produces in a tube.

符号の説明Explanation of symbols

2、3…タンク、10…チューブ、210…凸状部位、211…挿入穴、X…チューブ長手方向。   2, 3 ... tank, 10 ... tube, 210 ... convex portion, 211 ... insertion hole, X ... tube longitudinal direction.

Claims (6)

多数積層配置された扁平形状のチューブ(10)と、
前記チューブ(10)におけるチューブ長手方向(X)の端部に配置され、前記多数のチューブ(10)と連通するタンク(2、3)とを備え、
前記チューブ(10)におけるチューブ長手方向(X)の端部を前記タンク(2、3)の挿入穴(211)に挿入して接合した熱交換器において、
前記挿入穴(211)はチューブ長手方向(X)で且つ前記タンク(2、3)の外側に向かって凸となる凸状部位(210)に設けられ、
前記チューブ(10)の外周面の周長をAとし、前記チューブ(10)と前記タンク(2、3)の接合部位の周長をBとし、B/Aを接合部長さ比としたとき、前記接合部長さ比が1.15以上であることを特徴とする熱交換器。
A flat tube (10) arranged in multiple layers;
A tank (2, 3) disposed at an end of the tube (10) in the tube longitudinal direction (X) and communicating with the multiple tubes (10);
In the heat exchanger in which the end of the tube (10) in the tube (10) is inserted into the insertion hole (211) of the tank (2, 3) and joined,
The insertion hole (211) is provided in a convex portion (210) that is convex in the tube longitudinal direction (X) and toward the outside of the tank (2, 3),
When the peripheral length of the outer peripheral surface of the tube (10) is A, the peripheral length of the joint portion of the tube (10) and the tank (2, 3) is B, and B / A is the joint length ratio, The junction length ratio is 1.15 or more.
前記接合部長さ比が1.4以下であることを特徴とする請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the joint length ratio is 1.4 or less. 前記チューブ(10)および前記タンク(2、3)は、アルミニウム製であることを特徴とする請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the tube (10) and the tank (2, 3) are made of aluminum. 前記タンク(2、3)は、チューブ積層方向(Y)に見たときの形状が略矩形であることを特徴とする請求項1ないし3のいずれか1つに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the tank (2, 3) has a substantially rectangular shape when viewed in the tube stacking direction (Y). 前記タンク(2、3)は、チューブ積層方向(Y)に延びる筒状部を有し、
前記筒状部は、前記挿入穴(211)が形成された板部材(21)と前記挿入穴(211)が形成されていない板部材(22)とを含む複数の板部材を接合して形成されていることを特徴とする請求項4に記載の熱交換器。
The tank (2, 3) has a cylindrical portion extending in the tube stacking direction (Y),
The cylindrical portion is formed by joining a plurality of plate members including a plate member (21) in which the insertion hole (211) is formed and a plate member (22) in which the insertion hole (211) is not formed. The heat exchanger according to claim 4, wherein the heat exchanger is provided.
チューブ長手方向(X)およびチューブ積層方向(Y)に対してともに直交する方向の前記チューブ(10)の外形寸法をチューブ幅Cとし、
チューブ長手方向(X)およびチューブ積層方向(Y)に対してともに直交する方向の前記タンク(2、3)の外形寸法をタンク幅Dとしたとき、
前記タンク幅Dが前記チューブ幅Cの1.5倍以下であることを特徴とする請求項4または5に記載の熱交換器。
The outer dimension of the tube (10) in the direction orthogonal to the tube longitudinal direction (X) and the tube stacking direction (Y) is the tube width C,
When the outer dimension of the tank (2, 3) in the direction orthogonal to the tube longitudinal direction (X) and the tube stacking direction (Y) is the tank width D,
The heat exchanger according to claim 4 or 5, wherein the tank width D is 1.5 times or less of the tube width C.
JP2004260728A 2004-09-08 2004-09-08 Heat exchanger Pending JP2006078033A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004260728A JP2006078033A (en) 2004-09-08 2004-09-08 Heat exchanger
US11/218,046 US20060048930A1 (en) 2004-09-08 2005-09-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004260728A JP2006078033A (en) 2004-09-08 2004-09-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006078033A true JP2006078033A (en) 2006-03-23

Family

ID=35995041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004260728A Pending JP2006078033A (en) 2004-09-08 2004-09-08 Heat exchanger

Country Status (2)

Country Link
US (1) US20060048930A1 (en)
JP (1) JP2006078033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501301A (en) * 2017-11-17 2021-01-14 エルジー・ケム・リミテッド Heat exchanger

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008000781T5 (en) 2007-04-05 2010-06-02 Dana Canada Corp., Oakville heat exchanger assembly
DE102012210339A1 (en) * 2012-06-19 2013-12-19 Behr Gmbh & Co. Kg Heat exchanger
FR2998360A1 (en) * 2012-11-20 2014-05-23 Valeo Systemes Thermiques COLLECTOR BOX FOR MOTOR VEHICLE
US11626346B2 (en) * 2020-03-27 2023-04-11 Auras Technology Co., Ltd. Liquid-cooling radiator module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615385B1 (en) * 1985-04-12 1994-12-20 Modine Mfg Co Heat exchanger
US4825941B1 (en) * 1986-07-29 1997-07-01 Showa Aluminum Corp Condenser for use in a car cooling system
US5092398A (en) * 1989-02-17 1992-03-03 Zexel Corporation Automotive parallel flow type heat exchanger
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
US5570737A (en) * 1993-10-07 1996-11-05 Showa Aluminum Corporation Heat exchanger
KR100261006B1 (en) * 1996-07-03 2000-07-01 오타 유다카 Flat tube for radiator
US6216776B1 (en) * 1998-02-16 2001-04-17 Denso Corporation Heat exchanger
JP4300628B2 (en) * 1999-03-30 2009-07-22 株式会社デンソー Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021501301A (en) * 2017-11-17 2021-01-14 エルジー・ケム・リミテッド Heat exchanger

Also Published As

Publication number Publication date
US20060048930A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP5029166B2 (en) Heat exchanger
JP5821795B2 (en) Heat exchanger
US20080000626A1 (en) Heat exchanger
JP2008249252A (en) Heat exchanging device
JP2006284107A (en) Heat exchanger
JP2008020085A (en) Heat exchanger
JP2002286395A (en) Heat exchanger
JP2017075741A (en) Heat exchanger
WO2017013918A1 (en) Heat exchanger
JP2012137251A (en) Multitubular heat exchanger
JP2007120827A (en) Heat exchanger
US20060048930A1 (en) Heat exchanger
JP5884484B2 (en) Heat exchanger
JP5082387B2 (en) Heat exchanger
WO2021085548A1 (en) Heat exchanger and method of manufacturing heat exchanger
JP5515877B2 (en) Heat exchanger
JP2010127506A (en) Heat exchange device
JP5187047B2 (en) Tube for heat exchanger
JP2005331176A (en) Heat exchanger
JP2009198132A (en) Tube for heat exchanger
JP2009228970A (en) Heat exchanger
JP6083272B2 (en) Heat exchanger
JP2010185636A (en) Heat exchanger
JP2009150572A (en) Heat exchanger
JP2005037031A (en) Joining structure of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020