JP2014111277A - Rolled copper foil, surface-treated copper foil, and laminate plate - Google Patents

Rolled copper foil, surface-treated copper foil, and laminate plate Download PDF

Info

Publication number
JP2014111277A
JP2014111277A JP2013049326A JP2013049326A JP2014111277A JP 2014111277 A JP2014111277 A JP 2014111277A JP 2013049326 A JP2013049326 A JP 2013049326A JP 2013049326 A JP2013049326 A JP 2013049326A JP 2014111277 A JP2014111277 A JP 2014111277A
Authority
JP
Japan
Prior art keywords
copper foil
rolling
rolled
incident angle
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013049326A
Other languages
Japanese (ja)
Other versions
JP5882932B2 (en
Inventor
Ikuya Kurosaki
郁也 黒▲崎▼
Atsushi Miki
敦史 三木
Yasunori Arai
康修 新井
Kaichiro Nakamuro
嘉一郎 中室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013049326A priority Critical patent/JP5882932B2/en
Publication of JP2014111277A publication Critical patent/JP2014111277A/en
Application granted granted Critical
Publication of JP5882932B2 publication Critical patent/JP5882932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil, a surface-treated copper foil and a laminate plate which satisfactorily adhere to a resin, and in which the resin after the copper foil has been removed by etching has excellent transparency.SOLUTION: A rolled copper foil is tough pitch copper based on JIS H3100 C1100 or oxygen-free copper based on JIS-C1020. An average value between a mirror reflectance at an incident angle of 20° in a direction parallel to rolling and a mirror reflectance at an incident angle of 20° in a direction perpendicular to rolling is 30 or more.

Description

本発明は、積層板の回路に用いられる銅箔及びそれを用いた積層板に関し、特に銅箔をエッチングした後の樹脂の透明性が要求される分野に好適な圧延銅箔、表面処理銅箔及び積層板に関する。   TECHNICAL FIELD The present invention relates to a copper foil used in a circuit of a laminated board and a laminated board using the same, and in particular, a rolled copper foil and a surface-treated copper foil suitable for a field where transparency of a resin after etching the copper foil is required. And a laminated board.

電子機器の信号配線として用いられるフレキシブルプリント配線板(以下、FPC)は、機器の小型、薄型化に伴い、従来の繰返し曲げが加わる部分に加えて、回路間を折り曲げて接続する部分での使用が増加している。その一例である表示装置の液晶ディスプレイと基板とを電気的に接合する際に、FPCのベースとなるポリイミドなどに代表される樹脂層越しにCCDカメラで回路やマーカーの位置を確認し、接合の位置合わせを行う方法が広く用いられている。この方法では、樹脂層の透明度が低くなると、樹脂層越しに回路やマーカーの位置を正確に確認することが難しく、接合の位置合わせが困難になる。
ここで、FPCの樹脂層は、銅箔と樹脂層とを接合した後にエッチングによって銅層を除去したものであるため、銅層除去後の表面は、銅箔表面の凹凸を転写したレプリカとなっている。従って、樹脂との接着面側の銅箔表面が粗い場合には樹脂層表面も粗くなり、光が乱反射されることで樹脂の透明度が低下する。以上より、樹脂層の光透過性を改善するためには、銅箔の樹脂層との接着面を平滑にする必要がある。
Flexible printed wiring boards (hereinafter referred to as FPCs) used as signal wiring for electronic devices are used in parts that bend and connect between circuits in addition to conventional repeated bending as equipment becomes smaller and thinner. Has increased. When electrically connecting the liquid crystal display of the display device, which is an example, and the substrate, the position of the circuit or marker is confirmed with a CCD camera over a resin layer typified by polyimide as the base of the FPC. A method of aligning is widely used. In this method, if the transparency of the resin layer is low, it is difficult to accurately confirm the positions of the circuits and markers over the resin layer, and it is difficult to align the bonding.
Here, since the resin layer of the FPC is obtained by bonding the copper foil and the resin layer and then removing the copper layer by etching, the surface after removing the copper layer is a replica to which the unevenness of the copper foil surface is transferred. ing. Therefore, when the surface of the copper foil on the adhesive surface side with the resin is rough, the surface of the resin layer also becomes rough, and the light is irregularly reflected, thereby lowering the transparency of the resin. As mentioned above, in order to improve the light transmittance of a resin layer, it is necessary to make the adhesive surface with the resin layer of copper foil smooth.

一般に、銅箔の樹脂層との接着面は、接着強度を確保する目的で粗化めっきされるため、粗化処理前の銅箔表面と比較して、粗化処理後の方が表面粗さが大きくなる。このため、表面粗さを小さくする方法として、これまで粗化処理めっき条件の改良や表面処理の検討が行われてきた。   In general, since the adhesive surface of the copper foil with the resin layer is roughened for the purpose of ensuring adhesive strength, the surface after the roughening treatment is rougher than the surface of the copper foil before the roughening treatment. Becomes larger. For this reason, as a method for reducing the surface roughness, improvement of roughening plating conditions and surface treatment have been studied so far.

このような技術として、例えば、銅箔表面にクロム及び亜鉛のイオンまたは酸化物から形成され、少なくとも0.5%のシランを含有する水溶液を用いて処理される付着層を持つ銅箔が開示されている(特許文献1)。   As such a technique, for example, a copper foil having an adhesion layer formed on the copper foil surface from an ion or oxide of chromium and zinc and treated with an aqueous solution containing at least 0.5% silane is disclosed. (Patent Document 1).

特開2012−39126号公報JP 2012-39126 A

しかしながら、特許文献1に開示された実証サンプルの密着強度は、比較サンプルである粗い銅箔と比較すると低い値にとどまっている。このように、粗化粒子を過度に微細化すると、樹脂層との密着強度が低下することから、粗化めっきの改良による平滑化には限界があった。このため、樹脂層と銅箔との密着強度の確保と、樹脂層の視認性の向上とを両立することが困難となっている。
本発明は、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた圧延銅箔、表面処理銅箔及び積層板を提供することを課題とする。
However, the adhesion strength of the demonstration sample disclosed in Patent Document 1 remains low as compared with a rough copper foil that is a comparative sample. As described above, when the roughened particles are excessively refined, the adhesion strength with the resin layer is lowered, and there is a limit to smoothing by improving the roughening plating. For this reason, it is difficult to achieve both ensuring of the adhesion strength between the resin layer and the copper foil and improving the visibility of the resin layer.
An object of the present invention is to provide a rolled copper foil, a surface-treated copper foil, and a laminate that are excellently bonded to a resin and excellent in transparency of the resin after the copper foil is removed by etching.

本発明者は鋭意研究を重ねた結果、粗化めっきの母材となる圧延銅箔の表面を所定の手段で平滑化し、鏡面反射率を所定の範囲に制御した圧延銅箔を用いることで、樹脂との良好な密着性を得るための粗化処理を行っても、銅箔をエッチングで除去した後の樹脂の透明性が良好となることを見出した。   As a result of intensive research, the present inventors smoothed the surface of the rolled copper foil as a base material for rough plating by a predetermined means, and by using the rolled copper foil in which the specular reflectance was controlled within a predetermined range, It has been found that the transparency of the resin after removing the copper foil by etching is improved even when a roughening treatment for obtaining good adhesion with the resin is performed.

以上の知見を基礎として完成された本発明は一側面において、JIS H3100 C1100に規格するタフピッチ銅又はJIS H3100 C1020に規格する無酸素銅であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔である。   The present invention completed on the basis of the above knowledge is, in one aspect, tough pitch copper standardized to JIS H3100 C1100 or oxygen-free copper standardized to JIS H3100 C1020, and has a specular reflectance with an incident angle of 20 ° in the rolling parallel direction. And a rolled copper foil in which the average value of the mirror reflectivity at an incident angle of 20 ° in the direction perpendicular to the rolling is 30 or more.

本発明は別の一側面において、JIS H3100 C1100に規格するタフピッチ銅に、さらにAgを0.002〜0.05質量%含有する銅箔であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔である。   Another aspect of the present invention is a copper foil containing 0.002 to 0.05 mass% of Ag in addition to tough pitch copper specified in JIS H3100 C1100, and having a mirror reflection angle of 20 ° in the rolling parallel direction. This is a rolled copper foil in which the average value of the rate and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling is 30 or more.

本発明は更に別の一側面において、JIS H3100 C1020に規格する無酸素銅に、さらにAg、SnおよびZrの中から1種以上を合計0.002〜0.05質量%含有する銅箔であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔である。   In another aspect of the present invention, there is provided a copper foil containing oxygen-free copper specified in JIS H3100 C1020 and further containing one or more of Ag, Sn and Zr in a total amount of 0.002 to 0.05% by mass. Thus, the rolled copper foil has an average value of 30 or more of the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling.

本発明に係る圧延銅箔の一実施形態においては、厚みが6〜35μmである。   In one embodiment of the rolled copper foil according to the present invention, the thickness is 6 to 35 μm.

本発明に係る圧延銅箔の別の実施形態においては、前記銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、前記ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、前記銅箔が破断するまでの曲げ回数が3回以上である。   In another embodiment of the rolled copper foil according to the present invention, the polyimide film surface is applied to a sample of a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less obtained by laminating the copper foil and a polyimide film having a film thickness of 25 μm. When 180 ° contact bending is performed inside, the number of bendings until the copper foil breaks is 3 or more.

本発明に係る圧延銅箔の更に別の実施形態においては、前記銅箔が破断するまでの曲げ回数が5回以上である。   In another embodiment of the rolled copper foil which concerns on this invention, the frequency | count of bending until the said copper foil fractures | ruptures is 5 times or more.

本発明は更に別の一側面において、本発明の圧延銅箔の少なくとも一方の表面に、粗化処理により粗化粒子が形成された表面処理銅箔であって、前記銅箔を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、前記撮影で得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.5以上となる表面処理銅箔である。
Sv=(ΔB×0.1)/(t1−t2) (1)
According to another aspect of the present invention, there is provided a surface-treated copper foil in which roughened particles are formed by a roughening treatment on at least one surface of the rolled copper foil of the present invention, the copper foil being a polyimide resin substrate. Then, the copper foils on both sides are removed by etching, and the printed matter printed with line marks is laid under the exposed polyimide substrate, and the printed matter is passed through the polyimide substrate with a CCD camera. In the observation point-brightness graph, which was prepared by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, for the image obtained by the shooting, The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the mark to the portion where the mark is not drawn is 40 or more. In the observation point-lightness graph, the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and Bt is defined as t1, and the reference point is Bt from the intersection of the lightness curve and Bt. In the depth range up to 0.1ΔB, the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB is defined by the following equation (1). It is a surface-treated copper foil whose Sv is 3.5 or more.
Sv = (ΔB × 0.1) / (t1-t2) (1)

本発明の表面処理銅箔は一実施形態において、前記明度曲線における(1)式で定義されるSvが5.0以上となる。   In one embodiment of the surface-treated copper foil of the present invention, Sv defined by the formula (1) in the brightness curve is 5.0 or more.

本発明は更に別の一側面において、本発明の圧延銅箔と樹脂基板とを積層して構成した積層板である。   In still another aspect of the present invention, the present invention provides a laminated plate configured by laminating the rolled copper foil of the present invention and a resin substrate.

本発明は更に別の一側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。   In still another aspect of the present invention, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.

本発明によれば、樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性に優れた圧延銅箔、表面処理銅箔及び積層板を提供することができる。   According to the present invention, it is possible to provide a rolled copper foil, a surface-treated copper foil, and a laminate that are excellently bonded to a resin and excellent in transparency of the resin after the copper foil is removed by etching.

Bt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging device and the measuring method of the inclination of a lightness curve in the case of evaluation of the lightness curve inclination.

以下、本発明の実施形態に係る圧延銅箔について説明する。なお、特に説明しない限り、「%」は「質量%」を表す。   Hereinafter, the rolled copper foil which concerns on embodiment of this invention is demonstrated. Unless otherwise specified, “%” represents “mass%”.

(組成)
本発明の圧延銅箔は、JIS H3100 C1100に規格するタフピッチ銅またはJIS H3100 C1020に規格する無酸素銅を組成とする。圧延銅箔に含まれる酸素濃度は、タフピッチ銅の場合は0.01〜0.05%、無酸素銅の場合は0.001%以下である。
また、Ag、SnおよびZrの中から1種以上を0.002〜0.05%含有しても良い。圧延銅箔にAg及び/又はSnを適量添加すると、FPC形成後の屈曲性や折り曲げ性が改善し、また、Zr添加によりハンドリング性が改善する。圧延銅箔へのAg、SnおよびZrの中から1種以上の合計添加量が0.002%未満の場合は、屈曲性、折り曲げ性、ハンドリング性等の特性改善効果が得られないため、下限値は0.002%とする。さらに、Agは高価であるため、また、SnおよびZrは添加濃度が高くなると再結晶温度が上昇してFPC成形後の屈曲性が充分得られない場合があるため、その添加濃度の合計は0.05%以下とする。
なお、AgはCuよりも酸化しにくいので、タフピッチ銅および無酸素銅のどちらの溶湯中でも添加可能であり、SnおよびZrはCuよりも酸化しやすいため、無酸素銅の溶湯中に添加するのが一般的である。
(composition)
The rolled copper foil of the present invention has a composition of tough pitch copper standardized to JIS H3100 C1100 or oxygen-free copper standardized to JIS H3100 C1020. The oxygen concentration contained in the rolled copper foil is 0.01 to 0.05% for tough pitch copper, and 0.001% or less for oxygen-free copper.
Moreover, you may contain 0.002-0.05% of 1 or more types from Ag, Sn, and Zr. When an appropriate amount of Ag and / or Sn is added to the rolled copper foil, the bendability and the bendability after forming the FPC are improved, and the handling property is improved by adding Zr. When the total addition amount of one or more of Ag, Sn, and Zr to the rolled copper foil is less than 0.002%, the effect of improving the properties such as bendability, bendability, and handleability cannot be obtained. The value is 0.002%. Furthermore, since Ag is expensive, and Sn and Zr increase in addition concentration, the recrystallization temperature rises and the flexibility after FPC molding may not be sufficiently obtained. Therefore, the total addition concentration is 0. .05% or less.
In addition, since Ag is harder to oxidize than Cu, it can be added in both tough pitch copper and oxygen-free copper melts, and Sn and Zr are easier to oxidize than Cu, so they are added to the oxygen-free copper melt. Is common.

(圧延銅箔の形態及び製造方法)
本発明の圧延銅箔は、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である。このため、銅箔表面の平滑性が良好となり、樹脂との良好な密着性を得るための適当な粗化処理を行うことで、銅箔をエッチングで除去した後の樹脂の透明性が良好となる。圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30未満になると、粗化処理を行って樹脂と接着し、銅箔をエッチングで除去した後の樹脂の透明性が劣化する。
圧延平行方向の鏡面反射率に影響する要因としては、銅箔表面のオイルピットの存在が挙げられる。オイルピットは、圧延方向に直角な微細なスジ模様として観察され、スジ模様の増加や溝が深くなることで、圧延平行方向に入射した光を乱反射し、鏡面反射率を低下させる。従って、規定の鏡面反射率を達成するためには、後述の油膜当量を制御することで、オイルピットの発生を抑える必要がある。なお、再結晶焼鈍後の材料を圧延して所定の厚みに仕上げる際、通常、複数回の圧延パスを繰り返して加工するが、材料の加工度が低くなるほど圧延時にオイルピットが生じやすいため、特に、最終冷間圧延における仕上げの最終圧延パスを含む、最後の3パスの油膜当量の制御が重要である。
次に、圧延直角方向の鏡面反射率に影響する要因としては、銅箔表面に転写される圧延ワークロールの研削スジの存在が挙げられる。上記の通り、オイルピットの発生を抑える条件で圧延する場合、油膜当量が小さい、すなわち圧延ワークロールと銅箔表面との間の油膜厚みが薄くなり、ワークロール表面の研削スジが銅箔表面に転写されやすくなる。このとき、研削スジの凹凸が大きくなると、これが転写される銅箔の表面粗さも大きくなることで圧延直角方向に入射した光が乱反射し、鏡面反射率を低下させる。従って、規定の鏡面反射率を達成するためには、後述の圧延ワークロールの表面粗さを小さくする必要がある。
以上に加えて、1パスあたりの圧延加工度が高くなると油膜当量が小さくなり、研削スジが銅箔表面に転写されやすくなるため、ワークロール表面の粗さを制御したとしても、十分小さな表面粗さの銅箔が得られなくなる。そのため、圧延加工度を一定値以下に設定する必要があり、具体的には、最終冷間圧延工程における圧延1パスの最大加工度を24%以下とする。
(Form and manufacturing method of rolled copper foil)
The rolled copper foil of the present invention has an average value of 30 or more between the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling. For this reason, the smoothness of the copper foil surface becomes good, and the transparency of the resin after removing the copper foil by etching is good by performing an appropriate roughening treatment to obtain good adhesion with the resin. Become. When the average value of the specular reflectivity at an incident angle of 20 ° in the rolling parallel direction and the specular reflectivity at an incident angle of 20 ° in the direction perpendicular to the rolling is less than 30, the surface is roughened and bonded to the resin, and the copper foil is etched. The transparency of the resin after the removal is deteriorated.
As a factor affecting the specular reflectance in the rolling parallel direction, the presence of oil pits on the surface of the copper foil can be mentioned. The oil pit is observed as a fine streak pattern perpendicular to the rolling direction, and when the streak pattern increases or the groove becomes deep, the light incident in the rolling parallel direction is irregularly reflected and the specular reflectance is lowered. Therefore, in order to achieve the prescribed specular reflectance, it is necessary to suppress the occurrence of oil pits by controlling the oil film equivalent described later. In addition, when rolling the material after recrystallization annealing to finish it to a predetermined thickness, it is usually processed repeatedly by a plurality of rolling passes, but oil pits are more likely to occur during rolling as the degree of processing of the material decreases. It is important to control the oil film equivalent of the final three passes, including the final final rolling pass in the final cold rolling.
Next, as a factor affecting the specular reflectivity in the direction perpendicular to the rolling, the presence of grinding stripes on the rolled work roll transferred to the copper foil surface can be mentioned. As described above, when rolling under conditions that suppress the occurrence of oil pits, the oil film equivalent is small, that is, the oil film thickness between the rolled work roll and the copper foil surface is reduced, and the grinding streaks on the surface of the work roll are on the copper foil surface. It becomes easy to be transferred. At this time, if the irregularities of the grinding stripe become larger, the surface roughness of the copper foil to which the grinding stripe is transferred also becomes larger, so that the light incident in the direction perpendicular to the rolling is irregularly reflected and the specular reflectance is lowered. Therefore, in order to achieve a specified specular reflectance, it is necessary to reduce the surface roughness of a rolled work roll described later.
In addition to the above, since the oil film equivalent becomes smaller and the grinding streaks are easily transferred to the surface of the copper foil when the rolling degree per pass is increased, even if the surface roughness of the work roll is controlled, the surface roughness is sufficiently small. No copper foil can be obtained. Therefore, it is necessary to set the rolling degree to a certain value or less. Specifically, the maximum degree of rolling in one pass in the final cold rolling process is set to 24% or less.

本発明の圧延銅箔の製造方法としては、次のように製造することが可能である。なお、本発明の圧延銅箔の製造方法は、以下に示す方法に限定されることを意図しない。
まず、溶解炉で原料を溶解し、所望の組成の溶湯を得る。そして、この溶湯をインゴットに鋳造する。その後、熱間圧延、冷間圧延、及び、焼鈍を適宜行い、所定の厚みを有する箔に仕上げる。熱処理後には、熱処理時に生成した表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。最終冷間圧延では、熱処理後の材料を繰り返し圧延機に通板(パス)することで所定の厚みに仕上げる。本発明の圧延銅箔の製造方法では、最終冷間圧延工程の最終圧延パスにおける油膜当量(最終パス油膜当量)を18000以下、最終圧延パスの直前の圧延パスにおける油膜当量(最終1パス前油膜当量)を16000以下、更にその直前の圧延パスにおける油膜当量(最終2パス前油膜当量)を15000以下とする。
ここで、油膜当量は下記の式で規定される。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
圧延油粘度[cSt]は40℃での動粘度である。
油膜当量を制御するためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
油膜当量を制御することによって、材料表面の変形がロールによって拘束され、圧延による厚みの変化に伴う表面粗さの増加を抑制することができる。最終圧延パスの直前で油膜当量を制御して鏡面反射率を高くすることで、最終パス後の鏡面反射率を所期の範囲に制御できる。最終パス直前で鏡面反射率が低いと、最終パスで材料表面を平滑にしても、前パスまでに形成された深い凹凸が残留するため、所期の鏡面反射率が得られない。
As a manufacturing method of the rolled copper foil of this invention, it is possible to manufacture as follows. In addition, the manufacturing method of the rolled copper foil of this invention is not intended to be limited to the method shown below.
First, a raw material is melted in a melting furnace to obtain a molten metal having a desired composition. Then, this molten metal is cast into an ingot. Thereafter, hot rolling, cold rolling, and annealing are appropriately performed to finish a foil having a predetermined thickness. After the heat treatment, surface pickling, polishing, or the like may be performed in order to remove the surface oxide film generated during the heat treatment. In the final cold rolling, the material after the heat treatment is repeatedly passed through a rolling mill to be finished to a predetermined thickness. In the method for producing rolled copper foil of the present invention, the oil film equivalent (final pass oil film equivalent) in the final rolling pass of the final cold rolling step is 18000 or less, and the oil film equivalent (final oil film before the final one pass) in the rolling pass immediately before the final rolling pass. Equivalent) is 16000 or less, and the oil film equivalent (oil film equivalent before the final two passes) in the rolling pass immediately before is 15000 or less.
Here, the oil film equivalent is defined by the following equation.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to control the oil film equivalent, a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.
By controlling the oil film equivalent, deformation of the material surface is constrained by the roll, and an increase in surface roughness accompanying a change in thickness due to rolling can be suppressed. By controlling the oil film equivalent immediately before the final rolling pass to increase the specular reflectivity, the specular reflectivity after the final pass can be controlled within a desired range. If the specular reflectance is low just before the final pass, even if the material surface is smoothed in the final pass, the deep irregularities formed up to the previous pass remain, and the desired specular reflectivity cannot be obtained.

また、油膜当量が小さい場合には、圧延に用いる圧延ロール表面の凹凸が材料表面に転写しやすいため、圧延ロール表面も平滑にする必要がある。このため、本発明の圧延銅箔の製造方法で用いる圧延ロールは、ロールの回転軸に平行な方向に測定したときの平均粗さRaが0.01〜0.08μm、より好ましくは0.01〜0.06μmとする。これよりも表面粗さが大きい場合には、ロール表面の凹凸が材料表面に転写し易く、特に圧延直角方向につき、所期の鏡面反射率を得ることが困難になる。   In addition, when the oil film equivalent is small, the unevenness on the surface of the rolling roll used for rolling is easily transferred to the material surface, so the surface of the rolling roll needs to be smooth. For this reason, as for the rolling roll used with the manufacturing method of the rolled copper foil of this invention, average roughness Ra when measured to the direction parallel to the rotating shaft of a roll is 0.01-0.08 micrometer, More preferably, it is 0.01. ˜0.06 μm. When the surface roughness is larger than this, the irregularities on the roll surface are easily transferred to the material surface, and it becomes difficult to obtain the desired specular reflectance particularly in the direction perpendicular to the rolling.

さらに、最終冷間圧延における圧延1パス当りの圧延加工度が高くなると、油膜当量が小さくなり、圧延ロール表面の凹凸が材料表面に転写しやすくなるため、これを制限する必要がある。すなわち、圧延1パス当りの圧延加工度が24%を超えると圧延ロール表面の凹凸が材料表面に転写しやすくなるため、これを24%以下に制御する必要がある。圧延1パス当りの圧延加工度は、より好ましくは20%以下であるが、加工度を下げすぎると、所望の厚みに仕上げるまでの圧延パス回数が増加し、生産性が悪くなるため、通常、圧延1パス当りの加工度は5%以上に設定される。   Furthermore, if the degree of rolling process per rolling in the final cold rolling is increased, the oil film equivalent is reduced, and the unevenness on the surface of the rolling roll is easily transferred to the material surface, so this needs to be restricted. That is, when the rolling degree per rolling pass exceeds 24%, the unevenness on the surface of the rolling roll is easily transferred to the surface of the material. Therefore, it is necessary to control this to 24% or less. The degree of rolling work per rolling pass is more preferably 20% or less. However, if the degree of working is too low, the number of rolling passes until finishing to a desired thickness increases, and the productivity deteriorates. The degree of processing per rolling pass is set to 5% or more.

なお、本発明の銅箔は、銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、銅箔が破断するまでの曲げ回数が3回以上であるのが好ましく、5回以上であるのがより好ましい。このような条件を満たすように屈曲性が良好であれば、LCDモジュール用FPCとして好適に用いることができる。   The copper foil of the present invention was subjected to 180 ° adhesive bending with the polyimide film surface on the inside of a sample of a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less in which a copper foil and a polyimide film having a film thickness of 25 μm were laminated. When performed, the number of times of bending until the copper foil breaks is preferably 3 times or more, and more preferably 5 times or more. If the flexibility is good so as to satisfy such conditions, it can be suitably used as an LCD module FPC.

(粗化処理及び表面処理銅箔の製造方法)
本発明において使用する圧延銅箔は、樹脂基板との接着面となる粗化面につき、積層後の銅箔の引き剥がし強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理を施して表面処理銅箔とすることができる。この粗化処理は銅−コバルト−ニッケル合金めっきにより、さらに、粗化処理表面上に防錆処理を施すなどにより行うことができる。
(Roughening treatment and surface treatment copper foil production method)
The rolled copper foil used in the present invention is applied to the surface of the copper foil after degreasing for the purpose of improving the peeling strength of the copper foil after lamination on the roughened surface that becomes the adhesive surface with the resin substrate. A surface-treated copper foil can be obtained by performing a roughening treatment for performing knurled electrodeposition. This roughening treatment can be performed by copper-cobalt-nickel alloy plating, and further by subjecting the surface of the roughening treatment to rust prevention treatment.

粗化処理としての銅−コバルト−ニッケル合金めっきは、電解めっきにより、例えば、付着量が15〜40mg/dm2の銅−100〜3000μg/dm2のコバルト−100〜1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。 Copper as roughening treatment - cobalt - nickel alloy plating, by electrolytic plating, for example, the adhesion amount is in the nickel-cobalt -100~1500μg / dm 2 of copper -100~3000μg / dm 2 of 15~40mg / dm 2 Such a ternary alloy layer can be formed.

このような3元系銅−コバルト−ニッケル合金めっきを形成するためのめっき条件の一例は、次の通りである。
めっき浴組成 Cu:10〜20g/L、Co:1〜10g/L、Ni:1〜10g/L
pH:1〜4
浴温度:30〜50℃
電流密度:20〜30A/dm2
めっき時間:1〜5秒
An example of plating conditions for forming such ternary copper-cobalt-nickel alloy plating is as follows.
Plating bath composition Cu: 10 to 20 g / L, Co: 1 to 10 g / L, Ni: 1 to 10 g / L
pH: 1-4
Bath temperature: 30-50 ° C
Current density: 20-30 A / dm 2
Plating time: 1-5 seconds

粗化処理後、例えば、粗化面上に付着量200〜3000μg/dm2のコバルトと100〜1300μg/dm2のニッケルによるコバルト−ニッケル合金めっき層を形成することができる。この処理は、広い意味で一種の防錆処理と見ることができる。このコバルト−ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。 After roughening treatment, such as cobalt by adhesion amount 200~3000μg of / dm 2 of cobalt and 100~1300μg / dm 2 of nickel on the roughened surface - it is possible to form a nickel alloy plating layer. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially reduced.

粗化処理後のコバルト−ニッケル合金めっきを形成するためのめっき条件の一例は、次の通りである。
めっき浴組成 Co:1〜20g/L、Ni:1〜20g/L
pH:1.5〜3.5
浴温度:30〜80℃
電流密度:1〜20A/dm2
めっき時間:0.5〜4秒
An example of plating conditions for forming the cobalt-nickel alloy plating after the roughening treatment is as follows.
Plating bath composition Co: 1-20 g / L, Ni: 1-20 g / L
pH: 1.5-3.5
Bath temperature: 30-80 ° C
Current density: 1 to 20 A / dm 2
Plating time: 0.5-4 seconds

上述のコバルト−ニッケル合金めっき上に、更に亜鉛めっき層、又は亜鉛−ニッケル合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布などによって防錆層を形成しても良い。   A zinc plating layer or zinc-nickel alloy plating layer may be further formed on the above cobalt-nickel alloy plating, and a rust prevention layer is formed on the outermost surface by chromate treatment or application of a silane coupling agent. You may do it.

(鏡面反射率)
FPCの銅層除去後の樹脂層表面は、上述した通り、銅箔表面の凹凸を転写したレプリカとなっているため、直接的には、粗化処理後の表面形態が樹脂層表面に影響するが、粗化処理によって形成される粗化粒子の分布や形態は、粗化処理前の銅箔表面形態の影響を受ける。この点に着目して調査を進めた結果、理由は定かではないが、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上の場合に、この銅箔に適当な粗化処理を施すことで、後述するSv値が3.5以上を示す視認性が良好な銅箔が得られることが判明した。また、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値につき、これが30未満となった場合、Sv値が3.5未満となり、視認性が不十分である。従って、良好な視認性を確保するためには、粗化処理前の銅箔につき、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値は30以上が必要であり、好ましくは35以上である。
(Specular reflectance)
As described above, the surface of the resin layer after removing the copper layer of the FPC is a replica to which the irregularities on the surface of the copper foil are transferred. Therefore, the surface form after the roughening treatment directly affects the surface of the resin layer. However, the distribution and form of the roughened particles formed by the roughening process are affected by the copper foil surface form before the roughening process. As a result of conducting an investigation focusing on this point, the reason is not clear, but the average value of the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling is 30. In the above case, it was found that by performing an appropriate roughening treatment on the copper foil, a copper foil having a good visibility with an Sv value of 3.5 or more described later can be obtained. In addition, when the average value of the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling is less than 30, the Sv value is less than 3.5. Visibility is insufficient. Therefore, in order to ensure good visibility, the average of the specular reflectance at the incident angle of 20 ° in the rolling parallel direction and the specular reflectance at the incident angle of 20 ° in the rolling perpendicular direction is applied to the copper foil before the roughening treatment. The value needs to be 30 or more, preferably 35 or more.

(Sv値)
「Sv」の値は、次のようにして求める。まず、銅箔をポリイミド基材樹脂の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、ライン状のマークを印刷した印刷物を露出した前記ポリイミド基板の下に敷いて、印刷物を前記ポリイミド基板越しにCCDカメラで撮影する。撮影によって得られた画像について、観察されたライン状のマークが伸びる方向に対して垂直な方向に沿って観察地点ごとの明度を測定し、観察地点−明度グラフを作成する。このグラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差は明るさの諧調差であり、これをΔB(=Bt−Bb)としたとき、ΔBが40以上となるように明るさの諧調を設定する。また、明度曲線とBtの交点の内、前記ライン状マークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点の位置を示す値をt2としたとき、Svの値は以下の式(1)で定義される。
Sv=(ΔB×0.1)/(t1−t2) (1)
なお、前記観察地点−明度グラフにおいて、横軸は位置情報(ピクセル×0.1)、縦軸は明度(階調)の値を示す。
ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。
図1(a)及び図1(b)に、マークの幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。マークの幅を約0.3mmとした場合、図1(a)に示すようにV型の明度曲線となる場合と、図1(b)に示すように底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図1(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図1(b)の底部を有する場合は、約0.3mmの中心部の値を示す。
図2に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1−t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、マークの両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。
CCDカメラで撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。ポリイミド基板の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド基板の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
このため、本発明の表面処理銅箔を貼り合わせて除去したポリイミド基板に対し、マークを付した印刷物を下に置き、ポリイミド基板越しにCCDカメラで撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを制御するのが好ましい。より詳細には、明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)とし、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、上記(1)式で定義されるSvが3.5以上となるのが好ましい。このような構成によれば、基板樹脂の種類や厚みの影響を受けずに、CCDカメラによるポリイミド越しのマークの識別力が向上する。このため、視認性に優れるポリイミド基板を作製することができ、電子基板製造工程等でポリイミド基板に所定の処理を行う場合のマーキングによる位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。Svは好ましくは3.9以上、より好ましくは5.0以上である。Svの上限は特に限定する必要はないが、例えば70以下、30以下、15以下、10以下である。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
(Sv value)
The value of “Sv” is obtained as follows. First, after bonding the copper foil to both sides of the polyimide base resin, the copper foil on both sides was removed by etching, and the printed matter on which the line-shaped mark was printed was laid under the exposed polyimide substrate, and the printed matter was Take a picture with a CCD camera through a polyimide substrate. For an image obtained by photographing, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed line-shaped mark extends, and an observation point-lightness graph is created. In this graph, the difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion where the mark is not drawn is the gradation difference of brightness, and this is expressed as ΔB (= Bt−Bb). ), The gradation of brightness is set so that ΔB is 40 or more. In addition, in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB on the basis of Bt, the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and Bt is The value of Sv is defined by the following equation (1), where t2 is the value indicating the position of the intersection closest to the line mark among the intersections of the lightness curve and 0.1 ΔB.
Sv = (ΔB × 0.1) / (t1-t2) (1)
In the observation point-lightness graph, the horizontal axis represents position information (pixel × 0.1), and the vertical axis represents the value of brightness (gradation).
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings.
FIGS. 1A and 1B are schematic views for defining Bt and Bb when the mark width is about 0.3 mm. When the mark width is about 0.3 mm, a V-shaped brightness curve may be obtained as shown in FIG. 1A, or a brightness curve having a bottom as shown in FIG. 1B. . In any case, the “top average value Bt of the lightness curve” indicates the average value of lightness when measured at 5 locations (a total of 10 locations on both sides) at 30 μm intervals from the positions 50 μm away from the end positions on both sides of the mark. . On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.
FIG. 2 is a schematic diagram that defines t1, t2, and Sv. “T1 (pixel × 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ). “T2 (pixel × 0.1)” is the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And the value (the value on the horizontal axis of the observation point-brightness graph) indicating the position of the intersection closest to. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1 ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Further, Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.
In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the polyimide substrate is poor, the lightness does not suddenly drop from “high” to “low” in the vicinity of the mark end, but the state of decline is slow and the state of lightness decline is unclear. End up.
For this reason, with respect to the polyimide substrate from which the surface-treated copper foil of the present invention has been bonded and removed, the printed matter with the mark placed underneath, the observation point obtained from the image of the mark portion taken with a CCD camera over the polyimide substrate -It is preferable to control the slope of the brightness curve near the edge of the mark drawn in the brightness graph. More specifically, the difference between the top average value Bt and the bottom average value Bb of the lightness curve is ΔB (ΔB = Bt−Bb), and the line of the intersections of the lightness curve and Bt in the observation point-lightness graph. In the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt, the value indicating the position of the intersection closest to the shape mark (the value on the horizontal axis of the observation point-lightness graph) is t1. When the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB (the observation point—the value on the horizontal axis of the lightness graph) is t2, the above equation (1) It is preferable that Sv defined by is 3.5 or more. According to such a configuration, the discrimination power of the mark over the polyimide by the CCD camera is improved without being affected by the type and thickness of the substrate resin. For this reason, it is possible to produce a polyimide substrate with excellent visibility, and the positioning accuracy by marking when performing a predetermined treatment on the polyimide substrate in an electronic substrate manufacturing process or the like is improved, thereby improving the yield. can get. Sv is preferably 3.9 or more, more preferably 5.0 or more. The upper limit of Sv is not particularly limited, but is, for example, 70 or less, 30 or less, 15 or less, and 10 or less. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.

本発明の圧延銅箔又は表面処理銅箔は、粗化処理面側から樹脂基板に貼り合わせて積層体を製造することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、ポリエチレンテレフタラート(PET)等のポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム等を使用することができる。
また、貼り合わせの方法は、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で圧延銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
The rolled copper foil or surface-treated copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board and the like. For example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a liquid crystal polymer (LCP) film, etc. are used. can do.
In addition, the method of laminating can be laminated and bonded to a rolled copper foil under high temperature and high pressure without using an adhesive to a base material such as a polyimide film, or a polyimide precursor is applied. -A laminated board can be manufactured by drying and hardening.

以下、本発明の実施例を示すが、これらは本発明をより良く理解するために提供するものであり、本発明が限定されることを意図するものではない。   EXAMPLES Examples of the present invention will be described below, but these are provided for better understanding of the present invention and are not intended to limit the present invention.

[圧延銅箔の製造]
無酸素銅(OFC、JIS H3100 C1020)またはタフピッチ銅(TPC、JIS H3100 C1100)を溶解し、必要に応じてAg及び/又はSn及び/又はZrを表1及び2に示す量投入して厚さ30mm、幅60mm、長さ120mmのインゴットを鋳造し、熱間圧延により10mmまで圧延した。その後、焼鈍と圧延を繰返して、最終冷間圧延にて、表面粗さRaを0.01〜0.1μmに仕上げたワークロールを使用し、表1及び2に示す条件で最終冷間圧延における圧延1パスの最大圧延加工度を調整し、厚み6〜35μmまで圧延した。
[Manufacture of rolled copper foil]
Oxygen-free copper (OFC, JIS H3100 C1020) or tough pitch copper (TPC, JIS H3100 C1100) is dissolved, and Ag and / or Sn and / or Zr are added in the amounts shown in Tables 1 and 2 as necessary. A 30 mm, 60 mm wide, 120 mm long ingot was cast and rolled to 10 mm by hot rolling. Thereafter, annealing and rolling were repeated, and in the final cold rolling, a work roll finished with a surface roughness Ra of 0.01 to 0.1 μm was used, and in the final cold rolling under the conditions shown in Tables 1 and 2. The maximum rolling work degree of 1 pass of rolling was adjusted, and it rolled to thickness 6-35 micrometers.

[銅箔の粗化処理]
各銅箔について、樹脂と張り合わせる面に、粗化処理として下記条件にてめっき処理を行った。
・めっき浴組成 Cu:15g/L、Co:8.5g/L、Ni:8.6g/L
・処理液pH:2.5
・処理温度:38℃
・電流密度:20A/dm2
・めっき時間:2.0秒
[Roughening of copper foil]
About each copper foil, the plating process was performed on the surface bonded with resin on the following conditions as a roughening process.
-Plating bath composition Cu: 15 g / L, Co: 8.5 g / L, Ni: 8.6 g / L
-Treatment solution pH: 2.5
・ Processing temperature: 38 ℃
・ Current density: 20 A / dm 2
・ Plating time: 2.0 seconds

上述のように作製したサンプルにつき、各種評価を下記の通り行った。
(1)鏡面反射率
粗化処理前の銅箔につき、圧延平行方向の鏡面反射率と圧延直角方向の鏡面反射率とを測定した。測定装置は日本電色工業株式会社製のVG−1Dを用い、サンプルを25mm角の大きさに切り出し、JIS Z 8741に規定の方法で、入射角20°にて1サンプルにつき圧延平行方向の鏡面反射率と圧延直角方向の鏡面反射率とをそれぞれ3回測定し、合計6個の測定値の平均を鏡面反射率とした。
Various evaluations were performed as follows for the samples prepared as described above.
(1) Specular reflectivity The specular reflectivity in the rolling parallel direction and the specular reflectivity in the direction perpendicular to the rolling were measured for the copper foil before the roughening treatment. VG-1D manufactured by Nippon Denshoku Industries Co., Ltd. was used as the measuring device, and the sample was cut into a 25 mm square size, and the mirror surface in the rolling parallel direction per sample at an incident angle of 20 ° by the method specified in JIS Z 8741. The reflectance and the specular reflectance in the direction perpendicular to the rolling were each measured three times, and the average of a total of six measurements was taken as the specular reflectance.

(2)曲げ性
各銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料を作製し、ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、銅箔が破断するまでの曲げ回数を測定した。
(2) Bendability A sample of a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less obtained by laminating each copper foil and a polyimide film having a film thickness of 25 μm was prepared, and 180 ° contact bending was performed with the polyimide film surface being the inside. Sometimes, the number of bendings until the copper foil broke was measured.

(3)ピール強度
PC−TM−650に準拠し、引張試験機オートグラフ100で常態ピール強度を測定し、ピール強度が0.7N/mm以上の場合に積層基板用途に使用できるものとして「○」とした。
(3) Peel strength In accordance with PC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100, and it can be used as a laminated substrate when the peel strength is 0.7 N / mm or more. "

(4)視認性(Sv値)
粗化処理後の銅箔をポリイミドフィルム(カネカ製厚み50μm)の両面に貼り合わせ、銅箔を塩化第二鉄水溶液で溶解除去してサンプルフィルムを作製した。次に、ライン状の黒色マークを印刷した印刷物をサンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影し、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定した。このように測定した観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線の傾き(角度)を測定した。この時用いた測定装置の構成及び明度曲線の傾きの測定方法を示す模式図を図3に示す。また、ΔB、t1、t2、Svは、図2で示すように、下記の撮影装置で測定した。なお、横軸の1ピクセルは10μm長さに相当する。そして、明度曲線の傾きであるSvを求める別の方法としては、明度曲線のグラフにおける1ピクセルと1階調の長さの比率を3.5:5(明度曲線のグラフにおける1ピクセルの長さ:明度曲線のグラフにおける1階調の長さ=3.5(mm):5(mm))とした明度曲線のグラフにおいて、t1、t2、Svの値を算出することもできる。
撮影装置は、CCDカメラ、マークを付した紙を下に置いたポリイミド基板を置くステージ(白色)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミド基板をステージ上に搬送する搬送機を備えている。測定に用いた撮影装置一式の主な仕様を以下に示す。
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調デジタル(10ビット)
・照明用電源:高周波点灯電源
・照明:蛍光灯(30W)
なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
上記各試験の条件及び評価を表1及び2に示す。
(4) Visibility (Sv value)
The copper foil after the roughening treatment was bonded to both surfaces of a polyimide film (Kaneka thickness 50 μm), and the copper foil was dissolved and removed with an aqueous ferric chloride solution to prepare a sample film. Next, a printed material on which a line-shaped black mark is printed is laid under the sample film, the printed material is photographed with a CCD camera through the sample film, and the observed line-shaped mark extends in the image obtained by photographing. The brightness at each observation point was measured along the direction perpendicular to the direction. In the observation point-lightness graph thus measured, the slope (angle) of the lightness curve generated from the end of the mark to the portion where no mark was drawn was measured. FIG. 3 is a schematic diagram showing the configuration of the measuring apparatus used at this time and the method of measuring the slope of the brightness curve. Further, ΔB, t1, t2, and Sv were measured by the following photographing apparatus as shown in FIG. One pixel on the horizontal axis corresponds to a length of 10 μm. As another method for obtaining Sv which is the slope of the lightness curve, the ratio of the length of one pixel to one gradation in the lightness curve graph is 3.5: 5 (the length of one pixel in the lightness curve graph). : The value of t1, t2, and Sv can also be calculated in the graph of the lightness curve where the length of one gradation in the graph of the lightness curve = 3.5 (mm): 5 (mm)).
The photographing device has a CCD camera, a stage (white) on which a polyimide substrate is placed with a marked paper underneath, an illumination power source that irradiates light onto the photographing portion of the polyimide substrate, and a paper with a mark to be photographed. It has a transfer machine for transferring the polyimide substrate for evaluation placed on the stage onto the stage. The main specifications of the set of imaging devices used for the measurement are shown below.
・ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High frequency lighting power supply ・ Lighting: Fluorescent lamp (30W)
For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.
Tables 1 and 2 show the conditions and evaluation of the above tests.

(評価結果)
実施例1〜16は、いずれも圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上であり、曲げ性、ピール強度及び樹脂の視認性がいずれも良好であった。
比較例1〜6は、いずれも圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30未満であり、樹脂の視認性が不良であった。また、曲げ性が不良であるものもあった。
比較例7は、最終冷間圧延における圧延ワークロールの表面粗さRaが規定値である0.08μmを超えているため、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30未満であり、樹脂の視認性が不良であった。
比較例8は、最終冷間圧延における圧延1パスの最大圧延加工度が規定値である24%を超えているため、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30未満であり、樹脂の視認性が不良であった。
(Evaluation results)
In Examples 1 to 16, the average value of the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the rolling perpendicular direction is 30 or more, and bendability, peel strength, and The visibility of the resin was good.
In Comparative Examples 1 to 6, the average value of the specular reflectivity at an incident angle of 20 ° in the rolling parallel direction and the specular reflectivity at an incident angle of 20 ° in the rolling perpendicular direction is less than 30, and the resin visibility is poor. Met. Some also had poor bendability.
In Comparative Example 7, since the surface roughness Ra of the rolled work roll in the final cold rolling exceeds the specified value of 0.08 μm, the specular reflectance at the incident angle of 20 ° in the rolling parallel direction and the incident in the direction perpendicular to the rolling direction. The average value with the specular reflectance at an angle of 20 ° was less than 30, and the visibility of the resin was poor.
In Comparative Example 8, since the maximum rolling degree of rolling in one pass in the final cold rolling exceeds the specified value of 24%, the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the incident angle in the perpendicular direction of rolling. The average value with the specular reflectance of 20 ° was less than 30, and the visibility of the resin was poor.

Claims (10)

JIS H3100 C1100に規格するタフピッチ銅又はJIS H3100 C1020に規格する無酸素銅であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔。   Tough pitch copper standardized to JIS H3100 C1100 or oxygen-free copper standardized to JIS H3100 C1020, the average of the specular reflectance at an incident angle of 20 ° in the rolling parallel direction and the specular reflectance at an incident angle of 20 ° in the direction perpendicular to the rolling A rolled copper foil having a value of 30 or more. JIS H3100 C1100に規格するタフピッチ銅に、さらにAgを0.002〜0.05質量%含有する銅箔であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔。   A copper foil containing 0.002 to 0.05 mass% of Ag in addition to tough pitch copper specified in JIS H3100 C1100, and having a mirror reflectivity with an incident angle of 20 ° in the rolling parallel direction and an incident angle of 20 in the direction perpendicular to the rolling direction. A rolled copper foil having an average value of 30 or more with a specular reflectance of °. JIS H3100 C1020に規格する無酸素銅に、さらにAg、SnおよびZrの中から1種以上を合計0.002〜0.05質量%含有する銅箔であって、圧延平行方向の入射角20°の鏡面反射率と圧延直角方向の入射角20°の鏡面反射率との平均値が30以上である圧延銅箔。   A copper foil containing 0.002 to 0.05 mass% in total of one or more of Ag, Sn and Zr in oxygen-free copper specified in JIS H3100 C1020, and having an incident angle of 20 ° in the rolling parallel direction The rolled copper foil whose average value of the specular reflectivity of this and the specular reflectivity of 20 degrees of incident angles of a perpendicular direction of rolling is 30 or more. 厚みが6〜35μmである請求項1〜3のいずれかに記載の圧延銅箔。   The rolled copper foil according to any one of claims 1 to 3, wherein the thickness is 6 to 35 µm. 前記銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、前記ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、前記銅箔が破断するまでの曲げ回数が3回以上である請求項1〜4のいずれかに記載の圧延銅箔。   When a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less obtained by laminating the copper foil and a polyimide film having a film thickness of 25 μm was subjected to 180 ° adhesion bending with the polyimide film surface inside, the copper The rolled copper foil according to any one of claims 1 to 4, wherein the number of bending times until the foil breaks is 3 or more. 前記銅箔が破断するまでの曲げ回数が5回以上である請求項5に記載の圧延銅箔。   The rolled copper foil according to claim 5, wherein the number of times of bending until the copper foil breaks is 5 or more. 請求項1〜6のいずれかに記載の圧延銅箔の少なくとも一方の表面に、粗化処理により粗化粒子が形成された表面処理銅箔であって、前記銅箔を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、
ライン状のマークを印刷した印刷物を露出した前記ポリイミド基板の下に敷いて、前記印刷物を前記ポリイミド基板越しにCCDカメラで撮影したとき、
前記撮影で得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点−明度グラフにおいて、
前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.5以上となる表面処理銅箔。
Sv=(ΔB×0.1)/(t1−t2) (1)
It is the surface treatment copper foil in which the roughening particle was formed by the roughening process on the surface of at least one of the rolled copper foil in any one of Claims 1-6, Comprising: The said copper foil is both surfaces of a polyimide resin board | substrate. After bonding, the copper foil on both sides is removed by etching,
When the printed matter on which a line-shaped mark is printed is laid under the exposed polyimide substrate, and the printed matter is photographed with a CCD camera through the polyimide substrate,
For the image obtained by the photographing, the observation point-brightness graph produced by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends,
The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the part where the mark is not drawn is 40 or more, and the observation point-lightness graph , The value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and Bt is t1, and the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt , When the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.5 or more Surface-treated copper foil.
Sv = (ΔB × 0.1) / (t1-t2) (1)
前記明度曲線における(1)式で定義されるSvが5.0以上となる、請求項7に記載の表面処理銅箔。   The surface-treated copper foil of Claim 7 from which Sv defined by (1) Formula in the said brightness curve will be 5.0 or more. 請求項1〜6のいずれかに記載の圧延銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the rolled copper foil and resin substrate in any one of Claims 1-6. 請求項7又は8に記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the surface-treated copper foil and resin substrate of Claim 7 or 8.
JP2013049326A 2012-11-06 2013-03-12 Rolled copper foil, surface-treated copper foil and laminate Active JP5882932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049326A JP5882932B2 (en) 2012-11-06 2013-03-12 Rolled copper foil, surface-treated copper foil and laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012244638 2012-11-06
JP2012244638 2012-11-06
JP2013049326A JP5882932B2 (en) 2012-11-06 2013-03-12 Rolled copper foil, surface-treated copper foil and laminate

Publications (2)

Publication Number Publication Date
JP2014111277A true JP2014111277A (en) 2014-06-19
JP5882932B2 JP5882932B2 (en) 2016-03-09

Family

ID=51168833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049326A Active JP5882932B2 (en) 2012-11-06 2013-03-12 Rolled copper foil, surface-treated copper foil and laminate

Country Status (1)

Country Link
JP (1) JP5882932B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061938A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015061936A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate sheet using the same, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
JP2020163407A (en) * 2019-03-28 2020-10-08 Jx金属株式会社 Metal rolled sheet and manufacturing method for metal product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011136357A (en) * 2009-12-28 2011-07-14 Jx Nippon Mining & Metals Corp Copper foil and copper clad laminate using the same
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012201965A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Copper foil and secondary battery using the same
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011136357A (en) * 2009-12-28 2011-07-14 Jx Nippon Mining & Metals Corp Copper foil and copper clad laminate using the same
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same
JP2012201965A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Copper foil and secondary battery using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015061938A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015061937A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
JP2015061936A (en) * 2013-08-20 2015-04-02 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate sheet using the same, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
JP2015110843A (en) * 2013-08-20 2015-06-18 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate using the same, printed wiring board, electronic equipment, and method for manufacturing printed wiring board
JP2015117436A (en) * 2013-08-20 2015-06-25 Jx日鉱日石金属株式会社 Surface-treated copper foil and laminate, printed wiring board and electronic apparatus using the same, and manufacturing method of printed wiring board
JP2015148011A (en) * 2013-08-20 2015-08-20 Jx日鉱日石金属株式会社 Surface treated copper foil, laminate using the same, printed wiring board, electronic apparatus and method for manufacturing printed wiring board
JP2020163407A (en) * 2019-03-28 2020-10-08 Jx金属株式会社 Metal rolled sheet and manufacturing method for metal product
JP7284612B2 (en) 2019-03-28 2023-05-31 Jx金属株式会社 METHOD FOR MANUFACTURING METAL ROLLED SHEET AND METAL PRODUCT

Also Published As

Publication number Publication date
JP5882932B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP5362898B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
JP5427943B1 (en) Rolled copper foil, surface-treated copper foil, laminate and printed circuit board
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
JP6497881B2 (en) Rolled copper foil, copper-clad laminate using the same, printed wiring board, electronic equipment, circuit connecting member manufacturing method, and circuit connecting member
JP5882932B2 (en) Rolled copper foil, surface-treated copper foil and laminate
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
KR101671130B1 (en) Rolled copper foil, method for producing same, and laminate plate
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
KR20150040231A (en) Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
JP6305001B2 (en) Copper foil, copper-clad laminate and flexible printed wiring board
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP2014220323A (en) Copper foil, method for manufacturing the same, copper clad laminate, and flexible printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160204

R150 Certificate of patent or registration of utility model

Ref document number: 5882932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250