JP2014220323A - Copper foil, method for manufacturing the same, copper clad laminate, and flexible printed wiring board - Google Patents

Copper foil, method for manufacturing the same, copper clad laminate, and flexible printed wiring board Download PDF

Info

Publication number
JP2014220323A
JP2014220323A JP2013097523A JP2013097523A JP2014220323A JP 2014220323 A JP2014220323 A JP 2014220323A JP 2013097523 A JP2013097523 A JP 2013097523A JP 2013097523 A JP2013097523 A JP 2013097523A JP 2014220323 A JP2014220323 A JP 2014220323A
Authority
JP
Japan
Prior art keywords
copper foil
less
copper
resin substrate
foil according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013097523A
Other languages
Japanese (ja)
Other versions
JP6190619B2 (en
Inventor
一貴 青島
Kazutaka AOSHIMA
一貴 青島
嘉一郎 中室
Kaichiro Nakamuro
嘉一郎 中室
和樹 冠
Kazuki Kan
和樹 冠
小野 俊之
Toshiyuki Ono
俊之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013097523A priority Critical patent/JP6190619B2/en
Publication of JP2014220323A publication Critical patent/JP2014220323A/en
Application granted granted Critical
Publication of JP6190619B2 publication Critical patent/JP6190619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper foil excellent in transparency of resin after removing the copper foil by etching while excellently adhering with the resin, and excellent in an adhesion property with a coverlay.SOLUTION: When arithmetic average roughness Ra prescribed in JIS-B0601 in an MD direction (Machine Direction) of one face is represented by an Ra1, and the Ra in the MD direction of an opposite face is represented by an Ra2, a copper foil satisfies ΔRa=Ra2-Ra1≥0.01.

Description

本発明は、銅箔及びその製造方法、並びに銅張積層板及びフレキシブルプリント配線板に関し、特に、銅箔をエッチングした後の残部の樹脂の透明性が要求される分野に好適な銅箔及びその製造方法、並びに銅張積層板及びフレキシブルプリント配線板に関する。   The present invention relates to a copper foil and a method for producing the same, and a copper clad laminate and a flexible printed wiring board, and in particular, a copper foil suitable for a field in which transparency of the remaining resin after etching the copper foil is required and the same The present invention relates to a manufacturing method, a copper clad laminate, and a flexible printed wiring board.

近年、電子機器の高機能化に伴い、信号の高周波化が進んでおり、それに伴い信号配線として用いられるフレキシブルプリント配線板(以下、FPC)にも高周波対応が求められてきている。信号が高周波化すると、信号電流は配線の表面近傍を伝播するために、FPCの配線部材として用いられる銅箔の表面が粗いと信号の損失が大きくなる。そのため高周波対応の銅箔には表面の平滑性が求められる。
また、FPCをLCD(液晶ディスプレイ)と異方性導電膜(ACF)を用いて接合する際に、FPCのベースとなる樹脂層(例えば、ポリイミド)越しにCCDカメラでマーカー位置を確認し、接合位置合わせを行う。このため樹脂層の透明度が低いと位置合わせが困難になる。
FPCの樹脂層は、銅箔と樹脂層とを接合した後にエッチングによって銅層を除去したものである。そのため樹脂層表面は、銅箔表面の凹凸を転写したレプリカとなっている。つまり、銅箔表面が粗いと樹脂層表面も粗くなり、光を乱反射するために透明度が低下する。このため、樹脂層の光透過性を改善するためには、銅箔の樹脂層との接着面を平滑にする必要がある。
一般に、銅箔の樹脂層との接着面は、接着強度を増すために粗化めっき処理される。銅箔の表面粗さに比べて粗化処理のめっき粒子が大きいことから、銅箔表面を平滑にする手段として、これまで主としてめっき条件の改良が行われてきた。
In recent years, with the increase in functionality of electronic devices, the frequency of signals has been increased, and accordingly, flexible printed wiring boards (hereinafter referred to as FPC) used as signal wiring have been required to support high frequencies. When the frequency of the signal is increased, the signal current propagates near the surface of the wiring. Therefore, if the surface of the copper foil used as the FPC wiring member is rough, the signal loss increases. Therefore, the smoothness of the surface is required for the high-frequency copper foil.
When FPC is bonded using LCD (liquid crystal display) and anisotropic conductive film (ACF), the marker position is confirmed with a CCD camera over the resin layer (for example, polyimide) serving as the base of FPC. Perform alignment. For this reason, if the transparency of the resin layer is low, alignment becomes difficult.
The resin layer of FPC is obtained by removing the copper layer by etching after bonding the copper foil and the resin layer. Therefore, the resin layer surface is a replica to which the unevenness of the copper foil surface is transferred. That is, if the surface of the copper foil is rough, the surface of the resin layer is also rough, and light is irregularly reflected, so that the transparency is lowered. For this reason, in order to improve the light transmittance of a resin layer, it is necessary to make the adhesive surface with the resin layer of copper foil smooth.
In general, the adhesive surface of the copper foil with the resin layer is subjected to roughening plating in order to increase the adhesive strength. Since the plating particles for the roughening treatment are larger than the surface roughness of the copper foil, the plating conditions have been mainly improved so far as means for smoothing the copper foil surface.

このような技術として、例えば、特許文献1には、銅箔表面にクロム及び亜鉛のイオンまたは酸化物から形成され、少なくとも0.5%のシランを含有する水溶液を用いて処理される付着層を持つ銅箔が示されている。   As such a technique, for example, Patent Document 1 discloses an adhesion layer that is formed of chromium and zinc ions or oxides on the surface of a copper foil and is processed using an aqueous solution containing at least 0.5% of silane. The copper foil is shown.

特開2012−39126号公報JP 2012-39126 A

しかしながら、特許文献1に開示された実証サンプルの密着強度は、比較サンプルである粗い銅箔と比べて低く、このように粗化粒子を過度に微細化すると樹脂層との密着強度が低下することから、粗化めっきの改良による平滑化には限界がある。このため、樹脂層と銅箔との密着強度の確保と、樹脂層の視認性の向上とを両立することが困難となっている。
又、特許文献1記載の銅箔は,樹脂と接着する面(粗化めっき側)だけでなく、樹脂と接着されない反対面も平滑化されてしまう。そして、樹脂と接着されない面(S面)が平滑であると,ソフトエッチングをしても銅箔表面が粗くなりにくく,カバーレイフィルムとの接着強度が不十分であるという問題がある。また,ソフトエッチング工程が必須となり工程が増えコスト増となる。
However, the adhesion strength of the demonstration sample disclosed in Patent Document 1 is lower than that of a rough copper foil that is a comparative sample. Thus, if the coarse particles are excessively refined, the adhesion strength with the resin layer decreases. Therefore, there is a limit to smoothing by improving the rough plating. For this reason, it is difficult to achieve both ensuring of the adhesion strength between the resin layer and the copper foil and improving the visibility of the resin layer.
Moreover, the copper foil of patent document 1 will smooth not only the surface (roughening plating side) adhere | attached with resin but the opposite surface which is not adhere | attached with resin. If the surface that is not bonded to the resin (S surface) is smooth, there is a problem that the surface of the copper foil is not easily roughened even by soft etching, and the adhesive strength with the coverlay film is insufficient. In addition, a soft etching process is indispensable, and the number of processes increases and costs increase.

従って、本発明は、従来と同じ粗化めっきを施した場合にも平滑な表面を有し、樹脂と良好に接着しつつも銅箔をエッチングで除去した後の樹脂の透明性に優れ、さらにカバーレイとの接着性にも優れた銅箔及びその製造方法、並びに銅張積層板及びフレキシブルプリント配線板を提供することを課題とする。   Therefore, the present invention has a smooth surface even when subjected to the same roughening plating as before, and is excellent in the transparency of the resin after the copper foil is removed by etching while adhering well to the resin. It is an object of the present invention to provide a copper foil excellent in adhesiveness with a coverlay, a method for producing the same, a copper-clad laminate, and a flexible printed wiring board.

本発明者らは鋭意研究を重ねた結果、樹脂と接着する面(粗化めっき側)の銅箔の表面を平滑化する一方、銅箔の反対面を比較的粗くし、両面の光沢度の差を制御した圧延銅箔を用いることで、樹脂との良好な密着性を得るための粗化処理を行っても、銅箔をエッチングで除去した後の樹脂の透明性が良好となり、さらにカバーレイとの接着性にも優れることを見出した。   As a result of intensive research, the present inventors smoothed the surface of the copper foil on the surface to be bonded to the resin (roughening plating side), while relatively roughening the opposite surface of the copper foil, By using a rolled copper foil with a controlled difference, the transparency of the resin after removing the copper foil by etching becomes good even after roughing treatment to obtain good adhesion with the resin, and the cover It was found that the adhesiveness with the ray is also excellent.

本発明の銅箔は、一方の面のMD方向におけるJIS-B0601に規格する算術平均粗さRaをRa1、反対面のMD方向におけるRaをRa2としたとき、ΔRa=Ra2−Ra1≧0.01となる。   The copper foil of the present invention has ΔRa = Ra2-Ra1 ≧ 0.01 when the arithmetic average roughness Ra specified in JIS-B0601 in the MD direction of one surface is Ra1 and Ra in the MD direction of the opposite surface is Ra2. It becomes.

Ra1が0.07μm以下で、Ra2が0.08μmより大きいことが好ましい。
Ra1が0.06μm以下で、Ra2が0.09μmより大きいことが好ましい。
Ra1が0.04μm以下で、Ra2が0.09μmより大きいことが好ましい。
Ra1及びRa2が0.15μm以下であることが好ましい。
It is preferable that Ra1 is 0.07 μm or less and Ra2 is larger than 0.08 μm.
Ra1 is preferably 0.06 μm or less, and Ra2 is preferably larger than 0.09 μm.
It is preferable that Ra1 is 0.04 μm or less and Ra2 is larger than 0.09 μm.
Ra1 and Ra2 are preferably 0.15 μm or less.

圧延銅箔からなることが好ましい。
Ag、Sn、Mg、In、B、Ti、Zr、Zn、Ni、Si、P、Cr及びFeの群から選ばれる1種又は2種以上を合計で10〜1500質量ppm含有し、残部Cuおよび不可避的不純物からなることが好ましい。
It is preferable to consist of rolled copper foil.
Contains in total 10 to 1500 mass ppm of one or more selected from the group of Ag, Sn, Mg, In, B, Ti, Zr, Zn, Ni, Si, P, Cr and Fe, and the balance Cu and It is preferable to consist of inevitable impurities.

前記銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、前記ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、前記銅箔が破断するまでの曲げ回数が3回以上であることが好ましい。 前記銅箔が破断するまでの曲げ回数が5回以上であることが好ましい。   When a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less obtained by laminating the copper foil and a polyimide film having a film thickness of 25 μm was subjected to 180 ° adhesion bending with the polyimide film surface inside, the copper It is preferable that the number of bendings until the foil breaks is 3 or more. It is preferable that the number of times of bending until the copper foil breaks is 5 or more.

Ra1が0.07μm以下の請求項1に記載の銅箔を2枚用意し、前記一方の面を粗化処理して粗化粒子を形成した粗化処理面を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記銅箔を除去した前記樹脂基板のヘイズ値が72以下となることが好ましい。
Ra1を0.06μm以下としたとき、前記樹脂基板のヘイズ値が67以下となることが好ましい。
Ra1を0.04μm以下としたとき、前記樹脂基板のヘイズ値が55以下となることが好ましい。
Two copper foils according to claim 1 having Ra1 of 0.07 μm or less are prepared, and a roughened surface formed by roughening the one surface to form roughened particles is attached to both surfaces of the polyimide resin substrate. After combining, it is preferable that the haze value of the resin substrate from which the copper foil is removed by etching is 72 or less.
When Ra1 is 0.06 μm or less, the haze value of the resin substrate is preferably 67 or less.
When Ra1 is 0.04 μm or less, the haze value of the resin substrate is preferably 55 or less.

Ra1が0.07μm以下の前記銅箔を2枚用意し、前記一方の面を粗化処理して粗化粒子を形成した粗化処理面を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、ライン状のマークを印刷した印刷物を露出した前記樹脂基板の下に敷いて、前記印刷物を前記樹脂基板越しにCCDカメラで撮影したとき、前記撮影で得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して撮影した、観察地点−明度グラフにおいて、前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点―明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点をt2としたときに、下記(1)式で定義されるSvが3.5以上となることが好ましい。
Sv=(ΔB×0.1)/(t1−t2) (1)
Two copper foils having a Ra1 of 0.07 μm or less are prepared, and the roughened surface formed by roughening the one surface to form roughened particles is bonded to both surfaces of the polyimide resin substrate, and then etched. And removing the copper foils on both sides, placing the printed matter printed with line-shaped marks under the exposed resin substrate, and photographing the printed matter with a CCD camera over the resin substrate. In the observation point-brightness graph obtained by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends, the mark is displayed from the end of the mark. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated over the portion not drawn is 40 or more, and in the observation point-lightness graph, Of the intersections with t, the intersection closest to the line-shaped mark is t1, and in the depth range from the intersection between the brightness curve and Bt to 0.1ΔB with reference to Bt, the brightness curve and 0.1ΔB It is preferable that Sv defined by the following formula (1) is 3.5 or more when the intersection closest to the line-shaped mark is defined as t2.
Sv = (ΔB × 0.1) / (t1-t2) (1)

Ra1を0.06μm以下とし、前記明度曲線における(1)式で定義されるSvが4.0以上となることが好ましい。
Ra1を0.04μm以下とくし、前記明度曲線における(1)式で定義されるSvが5.0以上となることが好ましい。
Ra1 is preferably 0.06 μm or less, and Sv defined by the formula (1) in the brightness curve is preferably 4.0 or more.
Ra1 is preferably 0.04 μm or less, and Sv defined by the formula (1) in the brightness curve is preferably 5.0 or more.

本発明の銅箔の製造方法は、請求項5〜9のいずれかに記載の銅箔の製造方法であって、最終冷間圧延工程において、前記一方の面の油膜当量を、前記反対面の油膜当量より少なくする。
ロールの回転軸に平行な方向に測定したときの平均粗さRaが0.1μm以下である圧延ロールを用いて前記最終冷間圧延を行うことが好ましい。
The manufacturing method of the copper foil of this invention is a manufacturing method of the copper foil in any one of Claims 5-9, Comprising: In the last cold rolling process, the oil film equivalent of said one surface is made into the said opposite surface. Less than oil film equivalent.
The final cold rolling is preferably performed using a rolling roll having an average roughness Ra of 0.1 μm or less when measured in a direction parallel to the rotation axis of the roll.

本発明の銅張積層板は、前記銅箔と樹脂基板とを積層して構成してなる。   The copper clad laminate of the present invention is formed by laminating the copper foil and the resin substrate.

本発明のフレキシブルプリント配線板は、前記銅張積層板を用いてなる。   The flexible printed wiring board of this invention uses the said copper clad laminated board.

本発明によれば、樹脂と良好に接着しつつも銅箔をエッチングで除去した後の樹脂の透明性に優れ、さらにカバーレイとの接着性にも優れた銅箔が得られる。   According to the present invention, it is possible to obtain a copper foil that is excellent in the transparency of the resin after etching and removing the copper foil with good adhesion to the resin, and also excellent in adhesion to the coverlay.

Bt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging device and the measuring method of the inclination of a lightness curve in the case of evaluation of the lightness curve inclination.

以下、本発明の実施形態に係る銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
<銅箔の形態及び組成>
本発明の銅箔は、樹脂基板と積層されて銅張積層板を作製し、エッチングにより部分的に銅箔を除去することで使用される用途に適する。通常、銅箔のうち、樹脂基板と接着する面、即ち粗化面には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施される。この粗化処理は銅−コバルト−ニッケル合金めっきや銅−ニッケル−りん合金めっき等により行うことができる。
銅箔厚みは特に限定されないが、好ましくは5〜50μm、さらに好ましくは5〜35μmである。銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。
Hereinafter, the copper foil which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.
<Form and composition of copper foil>
The copper foil of this invention is suitable for the use used by laminating | stacking with a resin substrate, producing a copper clad laminated board, and removing copper foil partially by an etching. Usually, the surface of the copper foil that adheres to the resin substrate, that is, the roughened surface, has a fist-like shape on the surface of the copper foil after degreasing for the purpose of improving the peel strength of the copper foil after lamination. A roughening process for electrodeposition is performed. This roughening treatment can be performed by copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, or the like.
Although copper foil thickness is not specifically limited, Preferably it is 5-50 micrometers, More preferably, it is 5-35 micrometers. The conductivity of the copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.

銅箔は質量率で99.9%以上の銅を含み、電解銅箔及び圧延銅箔を使用できる。
圧延銅箔としては、JIS-H3510(C1011)またはJIS- H3100 (C1020)に規格される無酸素銅、又は、JIS-H3100(C1100)に規格されるタフピッチ銅が挙げられる。
圧延銅箔は、Ag、Sn、Mg、In、B、Ti、Zr、Zn、Ni、Si、P、Cr及びFeの群から選ばれる1種又は2種以上を合計で1500質量ppm以下含有してもよい。上記元素の合計量が1500質量ppmを超えると導電率が低下する場合がある。上記元素の合計量の下限は、例えば10質量ppm以上である。
The copper foil contains 99.9% or more of copper by mass ratio, and electrolytic copper foil and rolled copper foil can be used.
Examples of the rolled copper foil include oxygen-free copper standardized by JIS-H3510 (C1011) or JIS-H3100 (C1020) or tough pitch copper standardized by JIS-H3100 (C1100).
The rolled copper foil contains one or more selected from the group consisting of Ag, Sn, Mg, In, B, Ti, Zr, Zn, Ni, Si, P, Cr, and Fe in a total of 1500 ppm by mass or less. May be. If the total amount of the above elements exceeds 1500 ppm by mass, the conductivity may decrease. The lower limit of the total amount of the above elements is, for example, 10 mass ppm or more.

本発明の銅箔は、一方の面(樹脂基板と積層される面に相当)のMD方向(Machine Direction);圧延銅箔では圧延平行方向,電解銅箔では流れ方向)におけるJIS-B0601に規格する算術平均粗さRaをRa1、反対面(樹脂基板を積層しない面に相当)のMD方向におけるRaをRa2としたとき、ΔRa=Ra2−Ra1≧0.01を満たす。
ΔRa=Ra2−Ra1≧0.01を満たすと、一方の面の平滑性が良好となり、樹脂との良好な密着性を得るための粗化処理を行っても、銅箔をエッチングで除去した後の樹脂の透明性が良好となる。又、反対面は比較的粗いため、ソフトエッチング後の銅箔表面が適度に粗くなり,カバーレイフィルムとの接着性が良好になる。また,ソフトエッチング工程の省略が可能となる場合もある。
The copper foil of the present invention conforms to JIS-B0601 in the MD direction (Machine Direction) on one side (corresponding to the surface laminated with the resin substrate); the rolling parallel direction in the rolled copper foil, and the flow direction in the electrolytic copper foil). When the arithmetic average roughness Ra is Ra1 and Ra in the MD direction of the opposite surface (corresponding to a surface on which the resin substrate is not laminated) is Ra2, ΔRa = Ra2−Ra1 ≧ 0.01 is satisfied.
When ΔRa = Ra2−Ra1 ≧ 0.01 is satisfied, the smoothness of one surface becomes good, and the copper foil is removed by etching even if roughening treatment is performed to obtain good adhesion to the resin. The transparency of the resin becomes good. Further, since the opposite surface is relatively rough, the surface of the copper foil after the soft etching becomes moderately rough, and the adhesion to the coverlay film is improved. In some cases, the soft etching process can be omitted.

Ra1が0.07μm以下で、Ra2が0.08μmより大きいことが好ましく、Ra1が0.06μm以下で、Ra2が0.09μmより大きいことがより好ましく、Ra1が0.04μm以下で、Ra2が0.09μmより大きいことが最も好ましい。
Ra1が0.07μmを超えると、樹脂との良好な密着性を得るための粗化処理を行った場合、銅箔をエッチングで除去した後に樹脂の良好な透明性を得ることが困難となることがある。又、Ra2が0.08μm以下であると、上記したカバーレイとの密着性が低下し、カバーレイフィルムとの接着強度が不十分となる。
Ra1について下限はないが、製造性等を考慮すると0.02μmとすることができる。
Ra1及びRa2が0.15μm以下であることが好ましい。Ra1又はRa2が0.15μmを超えると、銅箔を折り曲げた際に表面凹部への応力集中が大きくなり、破断の起点となりやすくなると共に、銅箔をエッチングした際に微細な回路を形成することが困難となることがある。
Ra1 is 0.07 μm or less, Ra2 is preferably larger than 0.08 μm, Ra1 is 0.06 μm or less, Ra2 is more preferably larger than 0.09 μm, Ra1 is 0.04 μm or less, and Ra2 is 0. Most preferably, it is larger than 0.09 μm.
When Ra1 exceeds 0.07 μm, it becomes difficult to obtain good transparency of the resin after removing the copper foil by etching when roughening treatment is performed to obtain good adhesion to the resin. There is. On the other hand, when Ra2 is 0.08 μm or less, the adhesiveness with the coverlay described above is lowered, and the adhesive strength with the coverlay film becomes insufficient.
Although there is no lower limit for Ra1, it can be 0.02 μm in consideration of manufacturability and the like.
Ra1 and Ra2 are preferably 0.15 μm or less. When Ra1 or Ra2 exceeds 0.15 μm, when the copper foil is bent, the stress concentration on the surface recesses is increased, which tends to be a starting point of breakage, and a fine circuit is formed when the copper foil is etched. May be difficult.

本発明の銅箔は、銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、銅箔が破断するまでの曲げ回数が3回以上であるのが好ましく、5回以上であるのがより好ましい。このような条件を満たすように屈曲性が良好であれば、本発明の銅箔をLCDモジュール用FPCとして好適に用いることができる。   The copper foil of the present invention was subjected to 180 ° adhesion bending with a polyimide film surface on the inside of a sample of a single-sided copper clad laminate having a width of 3 mm to 5 mm obtained by laminating a copper foil and a polyimide film having a film thickness of 25 μm. Sometimes, the number of times of bending until the copper foil breaks is preferably 3 times or more, and more preferably 5 times or more. If the flexibility is good so as to satisfy such conditions, the copper foil of the present invention can be suitably used as an FPC for an LCD module.

本発明の銅箔を、粗化処理面側から樹脂基板に貼り合わせて銅張積層体を構成することができる。樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、ポリエチレンテレフタラート(PET)等のポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム等を使用する事ができる。
貼り合わせの方法は、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で圧延銅箔に積層接着(熱圧着)して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
The copper foil of the present invention can be bonded to a resin substrate from the roughened surface side to constitute a copper clad laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board and the like. For example, a polyester film such as polyethylene terephthalate (PET), a polyimide film, a liquid crystal polymer (LCP) film, etc. are used. I can do it.
The method of laminating is by laminating and bonding (thermocompression bonding) to a rolled copper foil under a high temperature and high pressure without using an adhesive on a base material such as a polyimide film, or a polyimide precursor. A laminate can be produced by applying, drying, curing, and the like.

(Sv値)
「Sv」の値は、次のようにして求める。まず、銅箔をポリイミド樹脂基板の両面に貼り合わせた後、エッチングで両面の銅箔を除去し、ライン状のマークを印刷した印刷物を露出した樹脂基板の下に敷いて、印刷物を樹脂基板越しにCCDカメラで撮影する。撮影によって得られた画像について、観察されたライン状のマークが伸びる方向に対して垂直な方向に沿って観察地点ごとの明度を測定し、観察地点−明度グラフを作成する。このグラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差は明るさの諧調差であり、これをΔB(=Bt−Bb)としたとき、ΔBが40以上となるように明るさの諧調を設定する。また、明度曲線とBtの交点の内、前記ライン状マークに最も近い交点をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点をt2としたとき、Svの値は以下の式(1)で定義される。
(数2)
Sv=(ΔB×0.1)/(t1−t2) (1)
なお、前記観察位置-明度グラフにおいて、横軸は位置情報(ピクセル×0.1)、縦軸は明度(階調)の値を示す。
(Sv value)
The value of “Sv” is obtained as follows. First, after copper foil is bonded to both sides of the polyimide resin substrate, the copper foil on both sides is removed by etching, and the printed material printed with line-shaped marks is laid under the exposed resin substrate, and the printed material is passed over the resin substrate. Take a picture with a CCD camera. For an image obtained by photographing, the brightness at each observation point is measured along a direction perpendicular to the direction in which the observed line-shaped mark extends, and an observation point-lightness graph is created. In this graph, the difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion where the mark is not drawn is the gradation difference of brightness, and this is expressed as ΔB (= Bt−Bb). ), The gradation of brightness is set so that ΔB is 40 or more. Further, of the intersections of the lightness curve and Bt, the intersection closest to the line-shaped mark is t1, and the lightness curve and 0. 0 in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt. The value of Sv is defined by the following equation (1), where t2 is the intersection closest to the line mark among the intersections with 1ΔB.
(Equation 2)
Sv = (ΔB × 0.1) / (t1-t2) (1)
In the observation position-lightness graph, the horizontal axis represents position information (pixel × 0.1), and the vertical axis represents the value of brightness (gradation).

ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。
図1(a)及び図1(b)に、マークの幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。マークの幅を約0.3mmとした場合、図1(a)に示すようにV型の明度曲線となる場合と、図1(b)に示すように底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図1(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図1(b)の底部を有する場合は、約0.3mmの中心部の値を示す。
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings.
FIGS. 1A and 1B are schematic views for defining Bt and Bb when the mark width is about 0.3 mm. When the mark width is about 0.3 mm, a V-shaped brightness curve may be obtained as shown in FIG. 1A, or a brightness curve having a bottom as shown in FIG. 1B. . In any case, the “top average value Bt of the lightness curve” indicates the average value of lightness when measured at 5 locations (a total of 10 locations on both sides) at 30 μm intervals from the positions 50 μm away from the end positions on both sides of the mark . On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.

図2に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点並びにその交点の位置を示す値(前記観察地点−明度グラフの横軸の値)を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1−t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、マークの両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最もマークに近い交点を採用する。   FIG. 2 is a schematic diagram that defines t1, t2, and Sv. “T1 (pixel × 0.1)” is a value indicating an intersection point closest to the line-shaped mark among intersection points of the lightness curve and Bt and a position of the intersection point (value on the horizontal axis of the observation point-lightness graph) ). “T2 (pixel × 0.1)” is the line-shaped mark among the intersections of the lightness curve and 0.1ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. And the value (the value on the horizontal axis of the observation point-brightness graph) indicating the position of the intersection closest to. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1 ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Further, Sv is measured on both sides of the mark, and a small value is adopted. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the mark is adopted.

CCDカメラで撮影した上記画像において、マークが付されていない部分では高い明度となるが、マーク端部に到達したとたんに明度が低下する。ポリイミド樹脂基板の視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド樹脂基板の視認性が不良であれば、明度がマーク端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。
このため、銅箔を貼り合わせて除去したポリイミド樹脂基板に対し、マークを付した印刷物を下に置き、ポリイミド樹脂基板越しにCCDカメラで撮影した上記マーク部分の画像から得られる観察地点−明度グラフにおいて描かれるマーク端部付近の明度曲線の傾きを制御するのが好ましい。より詳細には、明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt−Bb)とし、観察地点−明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状マークに最も近い交点の位置を示す値(前記観察地点−明度グラフの横軸の値)をt2としたときに、上記(1)式で定義されるSvが3.5以上となるのが好ましい。
このような構成によれば、樹脂基板の種類や厚みの影響を受けずに、CCDカメラによるポリイミド越しのマークの識別力が向上する。このため、視認性に優れるポリイミド樹脂基板を作製することができ、電子基板製造工程等でポリイミド樹脂基板に所定の処理を行う場合のマーキングによる位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。Svは好ましくは3.5以上、より好ましくは4.0以上,さらに好ましくは5.0以上である。Svの上限は特に限定する必要はないが、例えば70以下、30以下、15以下、10以下である。このような構成によれば、マークとマークで無い部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
In the image taken by the CCD camera, the brightness is high at the portion where the mark is not attached, but the brightness decreases as soon as the end of the mark is reached. If the visibility of the polyimide resin substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility of the polyimide resin substrate is poor, the brightness does not suddenly drop from “high” to “low” in the vicinity of the edge of the mark, but the decline is moderate and the brightness decline is not good. It becomes clear.
For this reason, with respect to the polyimide resin substrate from which the copper foil has been bonded and removed, the printed matter with the mark placed underneath, the observation point-brightness graph obtained from the image of the mark portion taken with the CCD camera over the polyimide resin substrate It is preferable to control the slope of the lightness curve near the mark end drawn in FIG. More specifically, the difference between the top average value Bt and the bottom average value Bb of the lightness curve is ΔB (ΔB = Bt−Bb), and the line of the intersections of the lightness curve and Bt in the observation point-lightness graph. In the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt, the value indicating the position of the intersection closest to the shape mark (the value on the horizontal axis of the observation point-lightness graph) is t1. When the value indicating the position of the intersection closest to the line-shaped mark among the intersections of the lightness curve and 0.1ΔB (the observation point—the value on the horizontal axis of the lightness graph) is t2, the above equation (1) It is preferable that Sv defined by is 3.5 or more.
According to such a configuration, the discrimination power of the mark over the polyimide by the CCD camera is improved without being affected by the type and thickness of the resin substrate. For this reason, it is possible to produce a polyimide resin substrate having excellent visibility, and the positioning accuracy by marking when performing a predetermined process on the polyimide resin substrate in an electronic substrate manufacturing process, etc., thereby improving the yield, etc. An effect is obtained. Sv is preferably 3.5 or more, more preferably 4.0 or more, and still more preferably 5.0 or more. The upper limit of Sv is not particularly limited, but is, for example, 70 or less, 30 or less, 15 or less, and 10 or less. According to such a configuration, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.

<銅箔の製造方法>
本発明の銅箔が電解銅箔の場合は、常法によって製造することができる。
本発明の銅箔が圧延銅箔の場合、所望の組成のインゴットを熱間圧延及び面削後、冷間圧延と焼鈍を数回(通常、2回程度)繰り返し、次いで最終再結晶焼鈍した後、最終冷間圧延して製造することができる。焼鈍後に表面酸化膜を除去するために、表面の酸洗や研磨等を行ってもよい。最終冷間圧延では、材料を繰り返し圧延機に通板(パス)することで所定の厚みに仕上げる。
<Manufacturing method of copper foil>
When the copper foil of the present invention is an electrolytic copper foil, it can be produced by a conventional method.
When the copper foil of the present invention is a rolled copper foil, after hot rolling and chamfering an ingot having a desired composition, cold rolling and annealing are repeated several times (usually about twice), and then the final recrystallization annealing is performed. It can be manufactured by final cold rolling. In order to remove the surface oxide film after annealing, pickling or polishing of the surface may be performed. In the final cold rolling, the material is finished to a predetermined thickness by repeatedly passing (passing) the material through a rolling mill.

最終冷間圧延において、銅箔の一方の面の油膜当量を、反対面の油膜当量より少なくすることで、ΔRa=Ra2−Ra1≧0.01に制御することができる。油膜当量を制御することで、材料表面の変形がロールによって拘束され、圧延による厚みの変化に伴う表面粗さの増加を抑制することができる。ここで、油膜当量は下記の式で規定される。
油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kRa/mm2])}
銅箔の両面の油膜当量を変える方法としては、両面の圧延油の粘度をそれぞれ変えたりする等、公知の方法を用いればよいが、両面の圧延油の温度をそれぞれ変えるのが簡便で好ましい。
銅箔の両面における油膜当量は、例えば10000〜30000の範囲で調整すればよい。銅箔の両面における油膜当量の比は、(一方の面の油膜当量)/(反対面の油膜当量)=0.5〜0.9とすることができる。
また、油膜当量の値が小さい場合には、圧延に用いる圧延ロール表面の凹凸が材料表面に転写しやすいため、圧延ロール表面も平滑であるのが好ましい。このため、圧延ロールの回転軸に平行な方向に測定したときのRaが0.1μm以下であるのが好ましい。
In the final cold rolling, it is possible to control ΔRa = Ra2−Ra1 ≧ 0.01 by making the oil film equivalent on one surface of the copper foil smaller than the oil film equivalent on the opposite surface. By controlling the oil film equivalent, deformation of the material surface is constrained by the roll, and an increase in surface roughness accompanying a change in thickness due to rolling can be suppressed. Here, the oil film equivalent is defined by the following equation.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (feeding plate speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kRa / mm 2 ])}
As a method for changing the oil film equivalent on both sides of the copper foil, a known method such as changing the viscosity of the rolling oil on both sides may be used, but it is convenient and preferable to change the temperature of the rolling oil on both sides.
What is necessary is just to adjust the oil film equivalent in both surfaces of copper foil, for example in the range of 10000-30000. The ratio of oil film equivalents on both sides of the copper foil can be (oil film equivalent on one side) / (oil film equivalent on the opposite side) = 0.5 to 0.9.
Moreover, since the unevenness | corrugation of the rolling roll surface used for rolling is easy to transcribe | transfer to a material surface when the value of an oil film equivalent is small, it is preferable that the rolling roll surface is also smooth. For this reason, it is preferable that Ra when it measures in the direction parallel to the rotating shaft of a rolling roll is 0.1 micrometer or less.

<圧延銅箔の製造>
表1に示す組成の元素を添加したタフピッチ銅又は無酸素銅を原料としてインゴットを鋳造し、800℃以上で熱間圧延を行い、表面の酸化スケールを面削した。その後、冷間圧延と、300〜800℃の焼鈍とを繰り返して1.0〜2.0mmの厚みの圧延板コイルを得た。その最後の冷間圧延の後に、この銅ストリップを300〜800℃の連続焼鈍炉に通板して最終再結晶焼鈍を行った。
次に最終冷間圧延で表1に記載の厚みに仕上げた。最終冷間圧延工程において、一方の面と反対面の銅箔と圧延ロールの間の圧延油の温度を変えることで,両面で異なる油粘度で圧延した。油粘度が異なると、一方の面の油膜当量と反対面の油膜当量が変化し、圧延後の表面状態がそれぞれ異なる箔ができる。
また、このとき用いた圧延ロールは、ロールの回転軸に平行な方向に測定したときの平均粗さRaが0.08μmであった。
なお、表1の組成の欄の「TPC+Ag200ppm」は、JIS-H3100(C1100)のタフピッチ銅(TPC)に200質量ppmのAgを添加したことを意味する。又、「OFC+1200ppmSn」は、JIS-H3100の無酸素銅(OFC)に1200質量ppmのSnを添加したことを意味する。他の添加量の場合も同様である。
<Manufacture of rolled copper foil>
An ingot was cast using tough pitch copper or oxygen-free copper added with an element having the composition shown in Table 1 as a raw material, and hot rolled at 800 ° C. or higher to chamfer the oxide scale on the surface. Thereafter, cold rolling and annealing at 300 to 800 ° C. were repeated to obtain a rolled plate coil having a thickness of 1.0 to 2.0 mm. After the final cold rolling, the copper strip was passed through a continuous annealing furnace at 300 to 800 ° C. to perform final recrystallization annealing.
Next, it was finished to the thickness shown in Table 1 by final cold rolling. In the final cold rolling process, rolling was performed with different oil viscosities on both sides by changing the temperature of the rolling oil between the copper foil on one side and the opposite side and the rolling roll. If the oil viscosity is different, the oil film equivalent on one side and the oil film equivalent on the opposite side are changed, and foils having different surface states after rolling can be obtained.
Moreover, the average roughness Ra when the rolling roll used at this time measured in the direction parallel to the rotating shaft of a roll was 0.08 micrometer.
“TPC + Ag 200 ppm” in the column of composition in Table 1 means that 200 mass ppm of Ag was added to tough pitch copper (TPC) of JIS-H3100 (C1100). “OFC + 1200 ppm Sn” means that 1200 mass ppm of Sn was added to oxygen-free copper (OFC) of JIS-H3100. The same applies to other addition amounts.

得られた試料の一方の面(光沢度がRA1となる面)に以下の条件で粗化処理を行った。粗化処理の条件は、実用上十分なピール強度が得られるものとして一般的にFPC用途で用いられているものとした。
・めっき浴組成:Cu15Ra/L、Co8.5Ra/L、Ni8.6Ra/L
・処理液pH:2.5
・処理温度:38℃
・電流密度:20A/dm2
・めっき時間:2.0秒
One surface of the obtained sample (surface where the glossiness is RA1) was roughened under the following conditions. The conditions for the roughening treatment were generally used for FPC applications as those that would give practically sufficient peel strength.
・ Plating bath composition: Cu15Ra / L, Co8.5Ra / L, Ni8.6Ra / L
-Treatment solution pH: 2.5
・ Processing temperature: 38 ℃
・ Current density: 20 A / dm 2
・ Plating time: 2.0 seconds

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
光沢度;
JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPRA−1を使用し、圧延方向の入射角60度で粗化処理前の銅箔の光沢度を求めた。
Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.
Glossiness;
Using a gloss meter Handy Gloss Meter PRA-1 manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS Z8741, the glossiness of the copper foil before the roughening treatment was determined at an incident angle of 60 degrees in the rolling direction.

折り曲げ性;
銅箔の粗化面側とフィルム厚25μmのポリイミドフィルムとを積層した幅3mmの片面銅張積層板の試料を作製し、ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、銅箔が破断するまでの曲げ回数を測定した。曲げ回数が3回以上であれば、折り曲げ性が良好である。
ピール強度(接着強度);
上記片面銅張積層板につき、IPC−TM−650に準拠し、引張り試験機で常態(常温で24時間放置)ピール強度を測定した。上記常態ピール強度が0.7N/mm以上であれば、銅張積層板に使用できるもの(判定「○」)とし、0.7N/mm未満のものを使用できないもの(判定「×」)とした。
Bendability;
When a sample of a single-sided copper clad laminate with a width of 3 mm was prepared by laminating a roughened surface side of a copper foil and a polyimide film with a film thickness of 25 μm, and when 180 ° contact bending was performed with the polyimide film surface on the inside, The number of bendings until the foil broke was measured. If the number of times of bending is 3 or more, the bendability is good.
Peel strength (adhesive strength);
With respect to the single-sided copper-clad laminate, the peel strength was measured in a normal state (left at room temperature for 24 hours) with a tensile tester in accordance with IPC-TM-650. If the above normal peel strength is 0.7 N / mm or more, it can be used for a copper-clad laminate (judgment “◯”), and those with less than 0.7 N / mm cannot be used (judgment “x”) did.

銅箔の反対面(算術平均粗さがRa2の面)とカバーレイとのピール強度(接着強度) ;
上記片面銅張積層板につき,カバーレイ(ニッカン工業株式会社製のポリイミドフィルム(商品名:CISA)、厚み25μm)を重ね合わせ、熱プレスにより160℃、圧力3MPaの条件で1時間加熱加圧接着しプレスサンプルを製作した.得られたプレスサンプルをJPCA-BM-02に準拠し,ピール強度(接着強度)を評価した.ピール強度が0.6N/mm以上であれば、銅張積層板に使用できる密着性の優れたもの(判定「○」)とし、0.6N/mm未満のものを密着性に劣って使用できないもの(判定「×」)とした。
Peel strength (adhesive strength) between the opposite surface of copper foil (surface with arithmetic average roughness Ra2) and coverlay;
The above single-sided copper-clad laminate is overlaid with a cover lay (polyimide film (trade name: CISA) manufactured by Nikkan Kogyo Co., Ltd., thickness 25 μm), and heated and pressure bonded for 1 hour under conditions of 160 ° C. and 3 MPa pressure by hot pressing. A press sample was made. The obtained press samples were evaluated for peel strength (adhesive strength) according to JPCA-BM-02. If the peel strength is 0.6 N / mm or more, it shall be one with excellent adhesion that can be used for copper clad laminates (judgment “◯”), and one with less than 0.6 N / mm cannot be used due to poor adhesion (Judgment “x”).

視認性(ヘイズ値);
銅箔をエッチングで除去した後の樹脂の透明性の評価はヘイズ値を用いて行った。ここで、ヘイズ値(%)は、(拡散透過率)/(全光線透過率)×100で算出される値である。
各サンプル圧延銅箔の一方の面(光沢度がG1となる面)に上記粗化処理を行った。
次に、粗化処理後の上記銅箔を2枚用い、ラミネート用熱硬化性接着剤付きポリイミドフィルム(厚み50μm、宇部興産製ユーピレックス)の両面に上記各銅箔の粗化面側を貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。JIS K7136(2000)に準拠した村上色彩技術研究所製ヘイズメーターHM−150を使用し、サンプルフィルムのヘイズ値を測定した。ヘイズ値が70以下のものを○,70より大きいものを×とした.
Visibility (haze value);
The evaluation of the transparency of the resin after removing the copper foil by etching was performed using the haze value. Here, the haze value (%) is a value calculated by (diffuse transmittance) / (total light transmittance) × 100.
The said roughening process was performed to one side (surface where glossiness becomes G1) of each sample rolled copper foil.
Next, using the two copper foils after the roughening treatment, the roughened surface side of each copper foil is bonded to both sides of a polyimide film with a thermosetting adhesive for lamination (thickness 50 μm, Upilex made by Ube Industries). The copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. A haze value of a sample film was measured using a haze meter HM-150 manufactured by Murakami Color Research Laboratory based on JIS K7136 (2000). A haze value of 70 or less was marked with ○, and a haze value greater than 70 was marked with ×.

視認性(Sv値);
上記の粗化処理後の銅箔を2枚用い、ポリイミドフィルム(カネカ製厚み50μm)の両面に上記各銅箔の粗化面側を貼り合わせ、銅箔を塩化第二鉄水溶液で溶解除去してサンプルフィルムを作製した。次に、ライン状の黒色マークを印刷した印刷物をサンプルフィルムの下に敷いて、印刷物をサンプルフィルム越しにCCDカメラで撮影し、撮影によって得られた画像について、観察されたライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定した。このように測定した観察地点−明度グラフにおいて、マークの端部からマークが描かれていない部分にかけて生じる明度曲線の傾き(角度)を測定した。この時用いた測定装置の構成及び明度曲線の傾きの測定方法を示す模式図を図3に示す。また、ΔB、t1、t2、Svは、図2で示すように、下記の撮影装置で測定した。なお、横軸の1ピクセルは10μm長さに相当する。
撮影装置は、CCDカメラ、マークを付した紙を下に置いたポリイミド樹脂基板を置くステージ(白色)、ポリイミドフィルムの撮影部に光を照射する照明用電源、撮影対象のマークが付された紙を下に置いた評価用ポリイミドフィルムをステージ上に搬送する搬送機を備えている。測定に用いた撮影装置一式の主な仕様を以下に示す。
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・CCDカメラ:8192画素(160MHz)、1024階調デジタル(10ビット)
・照明用電源:高周波点灯電源
・照明:蛍光灯(30W)
なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。Sv値3.5以上のものを○,Sv値3.5未満を×とした。
Visibility (Sv value);
Using two copper foils after the above roughening treatment, the roughened surface side of each copper foil was bonded to both sides of a polyimide film (Kaneka thickness 50 μm), and the copper foil was dissolved and removed with a ferric chloride aqueous solution. A sample film was prepared. Next, a printed material on which a line-shaped black mark is printed is laid under the sample film, the printed material is photographed with a CCD camera through the sample film, and the observed line-shaped mark extends in the image obtained by photographing. The brightness at each observation point was measured along the direction perpendicular to the direction. In the observation point-lightness graph thus measured, the slope (angle) of the lightness curve generated from the end of the mark to the portion where no mark was drawn was measured. FIG. 3 is a schematic diagram showing the configuration of the measuring apparatus used at this time and the method of measuring the slope of the brightness curve. Further, ΔB, t1, t2, and Sv were measured by the following photographing apparatus as shown in FIG. One pixel on the horizontal axis corresponds to a length of 10 μm.
The photographing device includes a CCD camera, a stage (white) on which a polyimide resin substrate is placed with a marked paper underneath, an illumination power source that irradiates light onto the polyimide film photographing unit, and a paper with a mark to be photographed. Is provided with a transfer machine for transferring the polyimide film for evaluation placed on the stage. The main specifications of the set of imaging devices used for the measurement are shown below.
・ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation
CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High frequency lighting power supply ・ Lighting: Fluorescent lamp (30W)
For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display. Those having an Sv value of 3.5 or more were marked with ◯, and those with an Sv value less than 3.5 were marked with ×.

得られた結果を表1に示す。   The obtained results are shown in Table 1.

表1から明らかなように、ΔRa=Ra2−Ra1≧0.01を満たす各実施例の場合、銅箔の樹脂との密着性、樹脂の視認性、折り曲げ性、及びカバーレイとの接着性が良好であった。なお、各実施例はいずれもRa1が0.07μm以下で、Ra2が0.08μmより大であった。   As is apparent from Table 1, in each example satisfying ΔRa = Ra2−Ra1 ≧ 0.01, the adhesion of the copper foil to the resin, the visibility of the resin, the bendability, and the adhesiveness to the coverlay are It was good. In each example, Ra1 was 0.07 μm or less, and Ra2 was larger than 0.08 μm.

一方、ΔRa=Ra2−Ra1<0.01である比較例1、2の場合、いずれも樹脂の視認性が不良であった。また、比較例1の場合、Ra2が0.08μm以下となって反対面が平滑になり過ぎたため、カバーレイとの接着性も劣った。
ΔRa=Ra2−Ra1<0.01であり、Ra2が0.08μm以下である比較例3の場合、樹脂の視認性は良好であるがカバーレイとの接着性が劣った。
On the other hand, in the case of Comparative Examples 1 and 2 where ΔRa = Ra2−Ra1 <0.01, the visibility of the resin was poor. Moreover, in the case of the comparative example 1, since Ra2 was 0.08 micrometer or less and the opposite surface became too smooth, the adhesiveness with a coverlay was also inferior.
In the case of Comparative Example 3 where ΔRa = Ra2−Ra1 <0.01 and Ra2 is 0.08 μm or less, the visibility of the resin was good, but the adhesiveness with the coverlay was inferior.

Claims (19)

一方の面のMD方向におけるJIS-B0601に規格する算術平均粗さRaをRa1、反対面のMD方向におけるRaをRa2としたとき、ΔRa=Ra2−Ra1≧0.01となる銅箔。   A copper foil in which ΔRa = Ra2−Ra1 ≧ 0.01, where Ra1 is the arithmetic average roughness Ra specified in JIS-B0601 in the MD direction of one surface and Ra2 is the Ra in the MD direction of the opposite surface. Ra1が0.07μm以下で、Ra2が0.08μmより大きい請求項1に記載の銅箔。   The copper foil according to claim 1, wherein Ra1 is 0.07 µm or less and Ra2 is larger than 0.08 µm. Ra1が0.06μm以下で、Ra2が0.09μmより大きい請求項1に記載の銅箔。   The copper foil according to claim 1, wherein Ra1 is 0.06 μm or less and Ra2 is larger than 0.09 μm. Ra1が0.04μm以下で、Ra2が0.09μmより大きい請求項1に記載の銅箔。   The copper foil according to claim 1, wherein Ra1 is 0.04 μm or less and Ra2 is larger than 0.09 μm. Ra1及びRa2が0.15μm以下である請求項1〜4のいずれかに記載の銅箔。   Ra1 and Ra2 are 0.15 micrometer or less, The copper foil in any one of Claims 1-4. 圧延銅箔からなる請求項1〜5のいずれかに記載の銅箔。   The copper foil according to claim 1, comprising a rolled copper foil. Ag、Sn、Mg、In、B、Ti、Zr、Zn、Ni、Si、P、Cr及びFeの群から選ばれる1種又は2種以上を合計で10〜1500質量ppm含有し、残部Cuおよび不可避的不純物からなる請求項6に記載の銅箔。   Contains in total 10 to 1500 mass ppm of one or more selected from the group of Ag, Sn, Mg, In, B, Ti, Zr, Zn, Ni, Si, P, Cr and Fe, and the balance Cu and The copper foil according to claim 6, comprising inevitable impurities. 前記銅箔とフィルム厚25μmのポリイミドフィルムとを積層した幅3mm以上5mm以下の片面銅張積層板の試料に対し、前記ポリイミドフィルム面を内側とした180°密着曲げを行ったときに、前記銅箔が破断するまでの曲げ回数が3回以上である請求項1〜7のいずれかに記載の銅箔。   When a single-sided copper clad laminate having a width of 3 mm or more and 5 mm or less obtained by laminating the copper foil and a polyimide film having a film thickness of 25 μm was subjected to 180 ° adhesion bending with the polyimide film surface inside, the copper The copper foil according to any one of claims 1 to 7, wherein the number of bending times until the foil breaks is 3 or more. 前記銅箔が破断するまでの曲げ回数が5回以上である請求項8に記載の銅箔。   The copper foil according to claim 8, wherein the number of times of bending until the copper foil breaks is 5 or more. Ra1が0.07μm以下の前記銅箔を2枚用意し、前記一方の面を粗化処理して粗化粒子を形成した粗化処理面を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記銅箔を除去した前記樹脂基板のヘイズ値が72以下となる請求項1に記載の銅箔。   Two copper foils having a Ra1 of 0.07 μm or less are prepared, and the roughened surface formed by roughening the one surface to form roughened particles is bonded to both surfaces of the polyimide resin substrate, and then etched. The copper foil according to claim 1, wherein the resin substrate from which the copper foil has been removed has a haze value of 72 or less. Ra1を0.06μm以下としたとき、前記樹脂基板のヘイズ値が67以下となる請求項10に記載の銅箔。   The copper foil according to claim 10, wherein when Ra1 is 0.06 µm or less, the haze value of the resin substrate is 67 or less. Ra1を0.04μm以下としたとき、前記樹脂基板のヘイズ値が55以下となる請求項10に記載の銅箔。   The copper foil according to claim 10, wherein when Ra1 is 0.04 µm or less, the haze value of the resin substrate is 55 or less. Ra1が0.07μm以下の前記銅箔を2枚用意し、前記一方の面を粗化処理して粗化粒子を形成した粗化処理面を、ポリイミド樹脂基板の両面に貼り合わせた後、エッチングで前記両面の銅箔を除去し、
ライン状のマークを印刷した印刷物を露出した前記樹脂基板の下に敷いて、前記印刷物を前記樹脂基板越しにCCDカメラで撮影したとき、
前記撮影で得られた画像について、観察された前記ライン状のマークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して撮影した、観察地点−明度グラフにおいて、
前記マークの端部から前記マークが描かれていない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt−Bb)が40以上であり、観察地点―明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状のマークに最も近い交点をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状のマークに最も近い交点をt2としたときに、下記(1)式で定義されるSvが3.5以上となる請求項1に記載の銅箔。
Sv=(ΔB×0.1)/(t1−t2) (1)
Two copper foils having a Ra1 of 0.07 μm or less are prepared, and the roughened surface formed by roughening the one surface to form roughened particles is bonded to both surfaces of the polyimide resin substrate, and then etched. To remove the copper foil on both sides,
When the printed matter on which the line-shaped mark is printed is laid under the exposed resin substrate, and the printed matter is photographed with a CCD camera through the resin substrate,
For the image obtained by the photographing, the observation point-lightness graph was obtained by measuring the brightness for each observation point along the direction perpendicular to the direction in which the observed line-shaped mark extends,
The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the mark to the portion where the mark is not drawn is 40 or more, and the observation point-lightness graph In the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt, the intersection point closest to the line-shaped mark is the intersection point of the lightness curve and Bt. The copper foil according to claim 1, wherein Sv defined by the following equation (1) is 3.5 or more when an intersection closest to the line-shaped mark among intersections with 0.1ΔB is t2. .
Sv = (ΔB × 0.1) / (t1-t2) (1)
Ra1を0.06μm以下とし、前記明度曲線における(1)式で定義されるSvが4.0以上となる請求項13に記載の銅箔。   The copper foil according to claim 13, wherein Ra1 is 0.06 μm or less, and Sv defined by the formula (1) in the brightness curve is 4.0 or more. Ra1を0.04μm以下とくし、前記明度曲線における(1)式で定義されるSvが5.0以上となる請求項13に記載の銅箔。   The copper foil according to claim 13, wherein Ra1 is set to 0.04 μm or less, and Sv defined by the formula (1) in the brightness curve is 5.0 or more. 請求項5〜9のいずれかに記載の銅箔の製造方法であって、最終冷間圧延工程において、前記一方の面の油膜当量を、前記反対面の油膜当量より少なくする銅箔の製造方法。   It is a manufacturing method of the copper foil in any one of Claims 5-9, Comprising: In the last cold rolling process, the manufacturing method of the copper foil which makes the oil film equivalent of said one surface less than the oil film equivalent of the said opposite surface . ロールの回転軸に平行な方向に測定したときのRaが0.1μm以下である圧延ロールを用いて前記最終冷間圧延を行う請求項16に記載の銅箔の製造方法。   The manufacturing method of the copper foil of Claim 16 which performs the said last cold rolling using the rolling roll whose Ra when measured to the direction parallel to the rotating shaft of a roll is 0.1 micrometer or less. 請求項1〜15のいずれかに記載の銅箔と樹脂基板とを積層して構成した銅張積層板。   The copper clad laminated board comprised by laminating | stacking the copper foil and resin substrate in any one of Claims 1-15. 請求項18に記載の銅張積層板を用いたフレキシブルプリント配線板。   The flexible printed wiring board using the copper clad laminated board of Claim 18.
JP2013097523A 2013-05-07 2013-05-07 Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board Active JP6190619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097523A JP6190619B2 (en) 2013-05-07 2013-05-07 Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097523A JP6190619B2 (en) 2013-05-07 2013-05-07 Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2014220323A true JP2014220323A (en) 2014-11-20
JP6190619B2 JP6190619B2 (en) 2017-08-30

Family

ID=51938531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097523A Active JP6190619B2 (en) 2013-05-07 2013-05-07 Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP6190619B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226802A (en) * 1989-02-28 1990-09-10 Sumitomo Bakelite Co Ltd Plane antenna
JPH04202796A (en) * 1990-11-30 1992-07-23 K D K Kk Copper foil for printed circuit board and its production
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
JP2006212802A (en) * 2005-02-01 2006-08-17 Toray Ind Inc Laminated film with metal layer, flexible printed wiring board using it and semiconductor device
JP2007317899A (en) * 2006-05-26 2007-12-06 Nitto Denko Corp Wiring circuit board, and manufacturing method thereof
JP2009283704A (en) * 2008-05-22 2009-12-03 Dainippon Printing Co Ltd Method for manufacturing of electromagnetic wave shielding sheet
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012109122A (en) * 2010-11-17 2012-06-07 Mitsui Mining & Smelting Co Ltd Lithium ion secondary battery negative electrode collector copper foil, lithium ion secondary battery negative electrode material, and lithium ion secondary battery negative electrode collector selection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226802A (en) * 1989-02-28 1990-09-10 Sumitomo Bakelite Co Ltd Plane antenna
JPH04202796A (en) * 1990-11-30 1992-07-23 K D K Kk Copper foil for printed circuit board and its production
JP2006179537A (en) * 2004-12-21 2006-07-06 Nikko Kinzoku Kk Roughened rolling copper foil for high frequency circuit and its production process
JP2006212802A (en) * 2005-02-01 2006-08-17 Toray Ind Inc Laminated film with metal layer, flexible printed wiring board using it and semiconductor device
JP2007317899A (en) * 2006-05-26 2007-12-06 Nitto Denko Corp Wiring circuit board, and manufacturing method thereof
JP2009283704A (en) * 2008-05-22 2009-12-03 Dainippon Printing Co Ltd Method for manufacturing of electromagnetic wave shielding sheet
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012109122A (en) * 2010-11-17 2012-06-07 Mitsui Mining & Smelting Co Ltd Lithium ion secondary battery negative electrode collector copper foil, lithium ion secondary battery negative electrode material, and lithium ion secondary battery negative electrode collector selection method

Also Published As

Publication number Publication date
JP6190619B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP5427943B1 (en) Rolled copper foil, surface-treated copper foil, laminate and printed circuit board
KR101498436B1 (en) Surface-treated copper foil and laminate using the same
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6497881B2 (en) Rolled copper foil, copper-clad laminate using the same, printed wiring board, electronic equipment, circuit connecting member manufacturing method, and circuit connecting member
JP5362923B1 (en) Surface-treated copper foil and laminate using the same
KR101671130B1 (en) Rolled copper foil, method for producing same, and laminate plate
KR20150040231A (en) Rolled copper foil, copper-clad laminate, printed wiring board and electronic device using the same, method for producing circuit connecting member, and circuit connecting member
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP6305001B2 (en) Copper foil, copper-clad laminate and flexible printed wiring board
TWI600537B (en) Rolled copper foil and its manufacturing method, and laminated board
JP5882932B2 (en) Rolled copper foil, surface-treated copper foil and laminate
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP6190619B2 (en) Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board
JP6170516B2 (en) Rolled copper foil and manufacturing method thereof, copper-clad laminate, flexible printed circuit board, and electronic device
JP2014218690A (en) Copper foil, production method thereof, copper-clad laminate and flexible printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6190619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250