JP2014110184A - Nickel hydrogen battery and capacitance recovery method of the same - Google Patents

Nickel hydrogen battery and capacitance recovery method of the same Download PDF

Info

Publication number
JP2014110184A
JP2014110184A JP2012264900A JP2012264900A JP2014110184A JP 2014110184 A JP2014110184 A JP 2014110184A JP 2012264900 A JP2012264900 A JP 2012264900A JP 2012264900 A JP2012264900 A JP 2012264900A JP 2014110184 A JP2014110184 A JP 2014110184A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode
negative electrode
capacity
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012264900A
Other languages
Japanese (ja)
Other versions
JP5618386B2 (en
Inventor
Tomohiro Ueno
智裕 上野
Kazuya Kubo
和也 久保
Toshio Takahashi
俊男 高橋
Hiroshi Kono
博 河野
Toshiki Kabutomori
俊樹 兜森
Hideaki Ito
秀明 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012264900A priority Critical patent/JP5618386B2/en
Publication of JP2014110184A publication Critical patent/JP2014110184A/en
Application granted granted Critical
Publication of JP5618386B2 publication Critical patent/JP5618386B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to effectively and efficiently recover a nickel hydrogen battery whose capacitance is reduced by accumulation of hydrogen to a negative electrode.SOLUTION: The capacitance recovery method of a nickel hydrogen battery includes: executing a first step for providing a third electrode 4 capable of selectively energizing one of a positive electrode 2 and a negative electrode 3, and energizing between the third electrode 4 and the positive electrode 2, in order to charge the positive electrode 2; and then, preparing for ordinary charging by executing a second step for discharging between the positive electrode 2 and negative electrode 3 and performing a recovery treatment of the nickel hydrogen battery.

Description

この発明は、繰り返し充放電が可能なニッケル水素電池およびその容量回復方法に関するものである。   The present invention relates to a nickel metal hydride battery that can be repeatedly charged and discharged and a capacity recovery method thereof.

ニッケル水素電池は、負極に水素吸蔵合金、正極に水酸化ニッケルを用いた電池である。ニッケル水素電池は長時間の使用により放電電圧が低下し容量が少なくなることが知られており、劣化原因については、活物質である水素吸蔵合金の、電解液への溶出など不可逆なものや、正極と負極の容量バランスのずれといった可逆的なものがある。
正極と負極の容量バランスのずれは、充電時に正極から発生する酸素が負極の水素と再結合せず、セパレータや負極活物質の酸化に消費されることによって生じるもので、これが進むと負極に水素が蓄積し正極の充電を妨げる結果となる。通常ニッケル水素電池は負極容量が正極容量よりも大きい正極規制のセル構成となっているので、負極に過剰に蓄積した水素は通常の充放電で除去することはできない。
The nickel metal hydride battery is a battery using a hydrogen storage alloy for the negative electrode and nickel hydroxide for the positive electrode. Nickel-metal hydride batteries are known to have a reduced discharge voltage and reduced capacity due to long-term use, and the cause of deterioration is irreversible, such as elution of an active material hydrogen storage alloy into the electrolyte, There is a reversible one such as a deviation in capacity balance between the positive electrode and the negative electrode.
The deviation in capacity balance between the positive electrode and the negative electrode is caused by the fact that oxygen generated from the positive electrode during charging does not recombine with hydrogen in the negative electrode and is consumed in the oxidation of the separator and the negative electrode active material. As a result, the positive electrode is prevented from being charged. Usually, the nickel-metal hydride battery has a positive electrode-regulated cell configuration in which the negative electrode capacity is larger than the positive electrode capacity, so that hydrogen accumulated excessively on the negative electrode cannot be removed by normal charge and discharge.

特許文献1では、負極に蓄積した水素を放出させる手段として、複数枚からなる負極を個別に正極と接続して充放電させる方法を提案している。通常は負極容量よりも正極容量のほうが多い正極規制の構造であるが、負極を個別に正極と接続することで負極規制のセル構成をつくり、これを充放電させることで負極から完全に水素を除去することが可能になる。   Patent Document 1 proposes a method of charging and discharging a plurality of negative electrodes individually connected to the positive electrode as means for releasing hydrogen accumulated in the negative electrode. Normally, the positive electrode capacity is greater than the negative electrode capacity, but the negative electrode is connected to the positive electrode individually to create a negative electrode cell structure, and charging and discharging it completely removes hydrogen from the negative electrode. It becomes possible to remove.

特開平7−78636公報JP-A-7-78636

しかし、特許文献1で提案されている回復方法は、複数の負極を1枚ずつ電気的に切り離せることができる構造のセルにしか適応できず、しかも負極の枚数が増えると回復処理にかかる時間が増えるという問題がある。   However, the recovery method proposed in Patent Document 1 can be applied only to a cell having a structure in which a plurality of negative electrodes can be electrically separated one by one, and when the number of negative electrodes increases, the time required for the recovery process There is a problem that increases.

この発明は、上記のような課題を解決するためになされたものであり、放電容量が低下したニッケル水素電池を回復させることを目的とし、さらに、単一の負極からなるニッケル水素電池においても回復処理を効果的に行うことができ、また充電と放電をそれぞれ少なくとも1回行う回復処理を行うことで処理に要する時間を短縮化できるニッケル水素電池およびニッケル水素電池の容量回復方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and aims to recover a nickel-metal hydride battery having a reduced discharge capacity. Further, the present invention can also recover a nickel-metal hydride battery comprising a single negative electrode. To provide a nickel-metal hydride battery and a nickel-metal hydride battery capacity recovery method capable of effectively performing the treatment and shortening the time required for the treatment by performing a recovery process in which charging and discharging are each performed at least once. Objective.

すなわち、本発明のニッケル水素電池は、正極および負極と、前記正極および前記負極の一方と選択的に通電が可能な容量回復用の第3の電極とを有することを特徴とする。   That is, the nickel-metal hydride battery of the present invention is characterized by having a positive electrode and a negative electrode, and a third electrode for capacity recovery capable of selectively energizing one of the positive electrode and the negative electrode.

さらに、第2の本発明のニッケル水素電池の容量回復方法は、正極と負極とを備えるニッケル水素電池の容量回復方法において、
前記負極を除いて前記正極のみに対し通電を行って前記正極を充電する第1の工程を実施し、その後、前記正極と前記負極との間で放電を行う第2の工程とを実施することを特徴とする。
Furthermore, the capacity recovery method of the nickel metal hydride battery of the second aspect of the present invention is the capacity recovery method of a nickel metal hydride battery comprising a positive electrode and a negative electrode.
Excluding the negative electrode, conducting a first step of charging only the positive electrode by energizing only the positive electrode, followed by a second step of discharging between the positive electrode and the negative electrode It is characterized by.

第3の本発明のニッケル水素電池の容量回復方法は、前記正極および前記負極の一方と選択的に通電が可能な第3の電極を設け、前記第3の電極と前記正極との間に通電を行って前記正極を充電する第1の工程を実施し、その後、前記正極と前記負極との間で放電を行う第2の工程を実施することを特徴とする。   According to a third aspect of the present invention, there is provided a method for recovering the capacity of a nickel-metal hydride battery, wherein a third electrode capable of selectively energizing one of the positive electrode and the negative electrode is provided, and energization is performed between the third electrode and the positive electrode. And performing the first step of charging the positive electrode, and then performing the second step of discharging between the positive electrode and the negative electrode.

第4の本発明のニッケル水素電池の容量回復方法は、前記第2または第3の本発明において、前記第1の工程において、正極への充電容量が電池の全容量の50%を超えることを特徴とする。   According to a fourth aspect of the present invention, there is provided the method for recovering the capacity of a nickel metal hydride battery according to the second or third aspect of the invention, wherein in the first step, the charge capacity to the positive electrode exceeds 50% of the total capacity of the battery. Features.

第5の本発明のニッケル水素電池の容量回復方法は、前記第2〜第4の本発明のいずれかにおいて、前記第2の工程後に、前記正極と前記負極との間に通電を行って通常充電工程が行われることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for recovering the capacity of a nickel-metal hydride battery, wherein, in any one of the second to fourth aspects of the invention, after the second step, a current is applied between the positive electrode and the negative electrode. A charging step is performed.

この発明は、特にフロート保持により劣化したニッケル水素電池を回復させるため負極に蓄積した水素を放電させるのに好適であり、正極のみを充電した後、負極の余剰水素を放電させることでフロート保持中の正極と負極の電位バランスを元に戻し、正極の充電率を高めることができる。   This invention is particularly suitable for discharging the hydrogen accumulated in the negative electrode in order to recover a nickel metal hydride battery that has deteriorated due to the float holding, and after charging only the positive electrode, the surplus hydrogen in the negative electrode is discharged to hold the float. The potential balance between the positive electrode and the negative electrode can be restored to the original, and the charging rate of the positive electrode can be increased.

第1の工程で正極に対する充電を行う際には、正極、負極以外の第3の電極を使用することができる。第3の電極は、ニッケル水素電池のセルに常時設けられているものであってもよく、また、工程実施に際し、セル内などに設置されるものであってもよい。要は、充電に際し、負極への通電がなされずに正極に通電がなされて正極のみへの充電がなされるものであればよい。第3の電極は正極を充電するための対極として作用することができればその大きさについて特に制限を設けなくて良い。また、材質についても導電性があり強アルカリ性の電解液中で活性を保つ素材であればよい。   When charging the positive electrode in the first step, a third electrode other than the positive electrode and the negative electrode can be used. The third electrode may be always provided in the cell of the nickel metal hydride battery, or may be installed in the cell or the like when performing the process. In short, it is only necessary to charge the positive electrode without charging the negative electrode without charging the negative electrode. If the third electrode can act as a counter electrode for charging the positive electrode, there is no particular limitation on the size thereof. The material may be any material that has conductivity and maintains activity in a strong alkaline electrolyte.

第1の工程において正極を充電する場合の容量は、正極の全容量の50%以上が望ましく、さらには80%以下にするのが望ましい。正極への充電量が少なすぎると、その後に負極と接続させたときに負極を放電しきれずに、十分な回復効果が得られない。一方、正極への充電容量を、80%を超えて100%の範囲で行うと充電ロスが多くなる。これは、正極の充電率が高くなるほど充電電流が正極の酸素発生など他の反応に消費されやすくなり効率が悪くなるからである。したがって、第1の工程における正極への充電量としては50%から80%の範囲が適切である。   The capacity when charging the positive electrode in the first step is desirably 50% or more of the total capacity of the positive electrode, and more desirably 80% or less. If the amount of charge to the positive electrode is too small, the negative electrode cannot be fully discharged when it is subsequently connected to the negative electrode, and a sufficient recovery effect cannot be obtained. On the other hand, if the charge capacity to the positive electrode is in the range of more than 80% and 100%, the charge loss increases. This is because the higher the charging rate of the positive electrode, the more easily the charging current is consumed by other reactions such as the generation of oxygen in the positive electrode, resulting in poor efficiency. Therefore, the range of 50% to 80% is appropriate as the amount of charge to the positive electrode in the first step.

第2の工程では、第1の工程における充電量に見合う放電を行うことができ、これにより負極に残留していた水素を確実に低減することができる。通常のニッケル水素電池は、負極容量が大きく、正極規制の構成となっているため、第1の工程と第2の工程とからなる一連の処理を繰り返し行ってもよい。但し、一連の充放電が終了したときに、正極が未放電のままであると正極と負極の容量のバランスがずれるため、上記充放電では、正極側が放電しつくされた状態、正極容量10%以下であるのが望ましい。   In the second step, discharge corresponding to the amount of charge in the first step can be performed, and thereby hydrogen remaining in the negative electrode can be reliably reduced. Since a normal nickel metal hydride battery has a large negative electrode capacity and a positive electrode regulation configuration, a series of processes including the first step and the second step may be repeated. However, when the series of charge / discharge is completed, if the positive electrode remains undischarged, the capacity balance between the positive electrode and the negative electrode shifts. Therefore, in the above charge / discharge, the positive electrode side is completely discharged, and the positive electrode capacity is 10%. The following is desirable.

回復処理後には、通常の充電を行ってニッケル水素電池としての使用に備えることができる。回復処理は、定期的に行うなどしてニッケル水素電池の回復を図ることができ、また、充電容量の変化に応じて回復処理を行うようにしてもよい。   After the recovery process, normal charging can be performed to prepare for use as a nickel metal hydride battery. The recovery process can be performed periodically to recover the nickel metal hydride battery, or the recovery process may be performed in accordance with a change in the charge capacity.

以上、説明したように、本発明によれば、負極に蓄積した水素を放出させ、正極と負極とのバランスを戻し、ニッケル水素電池の容量回復を図ることができる。しかも、回復処理に要する時間も比較的短時間とすることができる効果がある。   As described above, according to the present invention, the hydrogen accumulated in the negative electrode can be released, the balance between the positive electrode and the negative electrode can be restored, and the capacity of the nickel-metal hydride battery can be recovered. Moreover, there is an effect that the time required for the recovery process can be made relatively short.

本発明の一実施形態のニッケル水素電池の電極構成を示す図である。It is a figure which shows the electrode structure of the nickel metal hydride battery of one Embodiment of this invention. 従来のニッケル水素電池における電極構成と、負極での水素残留状態を示す図である。It is a figure which shows the electrode structure in the conventional nickel metal hydride battery, and the hydrogen residual state in a negative electrode.

以下に、本発明の一実施形態のニッケル水素電池1を説明する。
ニッケル水素電池1は、図1に示す電極構成を有している。すなわち、通常の放電時に用いられる正極2と負極3とを有しており、さらに第3の電極4を有している。第3の電極4は、常時セル内に備えるものであってもよく、また、回復処理に備えてセル内に配置されるものであってもよい。各電極には正極端子2a、負極端子3a、第3電極端子4aを有している。
Below, the nickel metal hydride battery 1 of one Embodiment of this invention is demonstrated.
The nickel metal hydride battery 1 has the electrode configuration shown in FIG. That is, it has a positive electrode 2 and a negative electrode 3 that are used during normal discharge, and further has a third electrode 4. The third electrode 4 may be always provided in the cell, or may be arranged in the cell in preparation for the recovery process. Each electrode has a positive electrode terminal 2a, a negative electrode terminal 3a, and a third electrode terminal 4a.

ニッケル水素電池1のセル構造は特に限定されるものではなく、各種セル構造に適用することができる。特には、負極がひとつの集電体に接続され、電気的に分解できないもの、もしくは内部に第三電極を装着できるスペースを有した電池に適している。
また、電極を構成する正極、負極の材料も本発明としては特に限定されるものではなく、既知のものを用いることができる。第3の電極は、導電性があり電解液中で活性を有するものであればよく、特定の材質に限定されるものではない。ニッケル水素電池1としては、フロート保持されるものが好適である。
The cell structure of the nickel metal hydride battery 1 is not particularly limited, and can be applied to various cell structures. In particular, it is suitable for a battery in which the negative electrode is connected to one current collector and cannot be electrically decomposed, or a battery having a space in which the third electrode can be mounted.
Also, the materials of the positive electrode and the negative electrode constituting the electrode are not particularly limited as the present invention, and known materials can be used. The third electrode is not limited to a specific material as long as it has conductivity and is active in the electrolytic solution. As the nickel metal hydride battery 1, a battery that is float-maintained is suitable.

図2は、従来のニッケル水素電池10における電極構造を示すものであり、正極2、負極3を備え、各電極には、正極端子2a、負極端子3aが設けられている。
ニッケル水素電池10では、充放電の繰り返しにより、負極3において水素が蓄積し、正極が放電し尽くされた後においても負極3に残留水素30が残る。このため、負極3では、残余の水素吸蔵可能量31に応じた充電が可能であり、この充電量が正極の充電可能量よりも小さくなると、負極規制になり、十分な充電容量が得られなくなる。
FIG. 2 shows an electrode structure in a conventional nickel metal hydride battery 10, which includes a positive electrode 2 and a negative electrode 3, and each electrode is provided with a positive electrode terminal 2 a and a negative electrode terminal 3 a.
In the nickel metal hydride battery 10, hydrogen accumulates in the negative electrode 3 due to repeated charge and discharge, and residual hydrogen 30 remains in the negative electrode 3 even after the positive electrode is completely discharged. For this reason, the negative electrode 3 can be charged in accordance with the remaining hydrogen storage capacity 31. If this charge amount is smaller than the positive electrode chargeable amount, the negative electrode is regulated and sufficient charge capacity cannot be obtained. .

本実施形態では、このように水素が蓄積されたニッケル水素電池1に第3の電極4を配置した上で、正極2の正極端子2aと、第3の電極の第3電極端子4aと、を外部電源5を介して接続し、正極2への充電を行う第1の工程を実施する。ニッケル水素電池1がフロート保持中の場合は、正極2、負極3への充電を中断し、第1の工程以降を実施する。
なお、第1の工程の充電では、電池の全容量の50%を超えるまで行うのが望ましく、また、80%を超えない段階で充電を完了するのが望ましい。
In the present embodiment, after the third electrode 4 is arranged in the nickel hydrogen battery 1 in which hydrogen is stored in this way, the positive electrode terminal 2a of the positive electrode 2 and the third electrode terminal 4a of the third electrode are provided. A first step of connecting to the external power source 5 and charging the positive electrode 2 is performed. When the nickel metal hydride battery 1 is in the float holding state, the charging of the positive electrode 2 and the negative electrode 3 is interrupted, and the first and subsequent steps are performed.
The charging in the first step is desirably performed until it exceeds 50% of the total capacity of the battery, and it is desirable to complete the charging at a stage not exceeding 80%.

第1の工程により、正極には十分な充電が行われる。次いで、正極端子2aと第3電極端子4aとの接続を解き、正極端子2aと、負極端子3aとを、負荷6を介して接続し、放電を行う第2の工程を実施する。この放電により正極の充電容量に見合う量で残留水素30が消費され、残留水素32まで低減される。この結果、水素吸蔵可能量33は、正極を充電するのに十分な量になり、正極規制で充電を行うことができる。   The positive electrode is sufficiently charged by the first step. Next, the positive electrode terminal 2a and the third electrode terminal 4a are disconnected, the positive electrode terminal 2a and the negative electrode terminal 3a are connected via the load 6, and a second step of discharging is performed. This discharge consumes residual hydrogen 30 in an amount commensurate with the charge capacity of the positive electrode and reduces it to residual hydrogen 32. As a result, the hydrogen storable amount 33 is sufficient to charge the positive electrode, and charging can be performed with positive electrode regulation.

その後、正極端子2aと負極端子3aとの間に外部電源を接続して正極規制により充電を行うことができ、ニッケル水素電池1の容量が効果的に回復する。   After that, an external power source can be connected between the positive electrode terminal 2a and the negative electrode terminal 3a to perform charging according to positive electrode regulation, and the capacity of the nickel metal hydride battery 1 is effectively recovered.

以下、この発明の一実施例を説明する。
ニッケル水素電池において、負極と正極の容量が約3:1になるように電気化学セルに組み込み、正極の容量がセルの容量となるようにした。また、正極と負極の間には厚さ約0.2mmのセパレータを介して短絡を防止した。
An embodiment of the present invention will be described below.
In a nickel metal hydride battery, the capacity of the negative electrode and the positive electrode was incorporated in the electrochemical cell so that the capacity was about 3: 1, and the capacity of the positive electrode was the capacity of the cell. Further, a short circuit was prevented between the positive electrode and the negative electrode through a separator having a thickness of about 0.2 mm.

上記セルを活性化後に40℃で1.4Vの電圧で40週間フロート保持した。この間2週毎に0.2Cで放電を行い容量の変化を追跡したところ、容量はフロート保持中に単調に減少し、フロート初期には容量が約2000mAhあったが40週目の放電では約1300mAhまで減少した。放電後の負極電位を確認したところ、放電末の状態でも負極には全容量の約60%の水素が残存していた。   The cell was floated at 40 ° C. and a voltage of 1.4 V for 40 weeks after activation. During this time, discharge was performed at 0.2 C every two weeks, and the change in capacity was traced. The capacity monotonously decreased while the float was held, and the capacity was about 2000 mAh in the initial stage of the float, but about 1300 mAh in the discharge at 40 weeks. Decreased to. When the negative electrode potential after the discharge was confirmed, about 60% of the total capacity of hydrogen remained in the negative electrode even at the end of the discharge.

このセルに20mm×20mm×0.8mm厚の多孔質ニッケルを挿入し、正極と接続して50mAの電流で30時間正極を充電した。その後正極と負極を接続して366mAhの電流で放電させた。2時間の放電を行うことができ、これにより負極の残存水素をゼロとすることができた。   20 mm × 20 mm × 0.8 mm thick porous nickel was inserted into this cell, connected to the positive electrode, and the positive electrode was charged with a current of 50 mA for 30 hours. Thereafter, the positive electrode and the negative electrode were connected and discharged at a current of 366 mAh. The discharge for 2 hours could be performed, and thereby the residual hydrogen of the negative electrode could be made zero.

この後、40℃で2週間のフロート保持を行い容量確認の放電を行ったところ、回復処理前は1279mAhだった放電容量が1415mAhに回復していた。
比較例として、回復処理を行わないセルでの容量変化を示す。比較例のセルも40℃で約40週間のフロート保持を行ったもので、放電容量はこの間で約2000mAhから1435mAhに減少した。回復処理を行わず2週間のフロート保持を継続した場合、容量は1305mAhから1230mAhに減少した。
Thereafter, when the capacity was confirmed by performing float holding at 40 ° C. for 2 weeks, the discharge capacity before the recovery process was restored to 1415 mAh, which was 1279 mAh.
As a comparative example, a change in capacity in a cell where no recovery process is performed is shown. The cell of the comparative example was also maintained at 40 ° C. for about 40 weeks, and the discharge capacity decreased from about 2000 mAh to 1435 mAh during this period. The capacity decreased from 1305 mAh to 1230 mAh when the float process was continued for 2 weeks without performing the recovery process.

本実施例では40℃×40週のフロート保持による容量低下を完全に回復させるには至っていないが、これは高温での劣化加速試験によって電位バランス以外の劣化要因(正負極のバインダーの酸化による結着性の低下、負極合金成分の溶出)が大きいことが要因である。常温で適切な期間をおいて本発明の回復処理を実施すれば放電容量を維持できる。   In this example, the capacity drop due to the 40 ° C. × 40 week float retention has not been fully recovered, but this is caused by deterioration factors other than potential balance (accumulation due to oxidation of the positive and negative electrode binders) by a high temperature deterioration acceleration test. This is due to a decrease in adherence and large elution of the negative electrode alloy component. The discharge capacity can be maintained by carrying out the recovery process of the present invention at an appropriate period at room temperature.

1 ニッケル水素電池
2 正極
2a 正極端子
3 負極
3a 負極端子
4 第3の電極
4a 第3電極端子
30 残留水素
31 水素吸蔵可能量
32 残留水素
33 水素吸蔵可能量
DESCRIPTION OF SYMBOLS 1 Nickel metal hydride battery 2 Positive electrode 2a Positive electrode terminal 3 Negative electrode 3a Negative electrode terminal 4 3rd electrode 4a 3rd electrode terminal 30 Residual hydrogen 31 Hydrogen storage capacity 32 Residual hydrogen 33 Hydrogen storage capacity

Claims (5)

正極および負極と、前記正極および前記負極の一方と選択的に通電が可能な容量回復用の第3の電極とを有することを特徴とするニッケル水素電池。   A nickel-metal hydride battery comprising: a positive electrode and a negative electrode; and a third electrode for capacity recovery capable of selectively energizing one of the positive electrode and the negative electrode. 正極と負極とを備えるニッケル水素電池の容量回復方法において、
前記負極を除いて前記正極のみに対し通電を行って前記正極を充電する第1の工程を実施し、その後、前記正極と前記負極との間で放電を行う第2の工程とを実施することを特徴とするニッケル水素電池の容量回復方法。
In a method for recovering the capacity of a nickel metal hydride battery comprising a positive electrode and a negative electrode,
Excluding the negative electrode, conducting a first step of charging only the positive electrode by energizing only the positive electrode, followed by a second step of discharging between the positive electrode and the negative electrode A method for recovering the capacity of a nickel-metal hydride battery.
前記正極および前記負極の一方と選択的に通電が可能な第3の電極を設け、前記第3の電極と前記正極との間に通電を行って前記正極を充電する第1の工程を実施し、その後、前記正極と前記負極との間で放電を行う第2の工程を実施することを特徴とするニッケル水素電池の容量回復方法。   A third electrode capable of selectively energizing one of the positive electrode and the negative electrode is provided, and the first step of charging the positive electrode by energizing between the third electrode and the positive electrode is performed. Then, a capacity recovery method for a nickel-metal hydride battery, comprising performing a second step of discharging between the positive electrode and the negative electrode. 前記第1の工程における正極への充電容量が、電池の全容量の50%を超えることを特徴とする請求項2または3に記載のニッケル水素電池の容量回復方法。   The method for recovering the capacity of a nickel-metal hydride battery according to claim 2 or 3, wherein the charge capacity of the positive electrode in the first step exceeds 50% of the total capacity of the battery. 前記第2の工程後に、前記正極と前記負極との間に通電を行って通常充電工程が行われることを特徴とする請求項2〜4のいずれかに記載のニッケル水素電池の容量回復方法。   5. The method for recovering the capacity of a nickel-metal hydride battery according to claim 2, wherein after the second step, a normal charging step is performed by energizing the positive electrode and the negative electrode.
JP2012264900A 2012-12-04 2012-12-04 Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery Expired - Fee Related JP5618386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264900A JP5618386B2 (en) 2012-12-04 2012-12-04 Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264900A JP5618386B2 (en) 2012-12-04 2012-12-04 Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery

Publications (2)

Publication Number Publication Date
JP2014110184A true JP2014110184A (en) 2014-06-12
JP5618386B2 JP5618386B2 (en) 2014-11-05

Family

ID=51030688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264900A Expired - Fee Related JP5618386B2 (en) 2012-12-04 2012-12-04 Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery

Country Status (1)

Country Link
JP (1) JP5618386B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107892A1 (en) * 2020-11-20 2022-05-27 株式会社村田製作所 Secondary battery, secondary battery control system, and battery pack

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324585A (en) * 2001-04-24 2002-11-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and capacity restoring method thereof
JP2010108822A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Alkaline storage battery, and discharge reserve reduction method of alkaline storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324585A (en) * 2001-04-24 2002-11-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery and capacity restoring method thereof
JP2010108822A (en) * 2008-10-31 2010-05-13 Kawasaki Heavy Ind Ltd Alkaline storage battery, and discharge reserve reduction method of alkaline storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107892A1 (en) * 2020-11-20 2022-05-27 株式会社村田製作所 Secondary battery, secondary battery control system, and battery pack
JP7464146B2 (en) 2020-11-20 2024-04-09 株式会社村田製作所 Secondary battery, secondary battery control system and battery pack

Also Published As

Publication number Publication date
JP5618386B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
CN102013530B (en) Antipole repair method for irreversible vulcanization of 2V high-capacity lead-acid storage battery cathode
US20050127875A1 (en) Method for prolonging the life of lithium ion batteries
JP6690414B2 (en) Trickle charging power system
JP6168138B2 (en) Liquid lead-acid battery
JP4501330B2 (en) Lead acid battery
JP2009016324A (en) Regenerating method for lead storage battery and its device
JP5618386B2 (en) Nickel metal hydride battery and capacity recovery method for nickel metal hydride battery
CN110277595B (en) Secondary battery system and secondary battery control method
JP6002141B2 (en) Molten salt battery and operation method thereof
JP5950311B2 (en) Initial activation method of nickel metal hydride battery
JPH08153543A (en) Forming method of sealed alkaline storage battery
JP4358156B2 (en) How to charge the power system
JP2016126949A (en) Input/output recovery method and control system
JP2017127168A (en) Lead storage battery charging method
JP2012064552A (en) Lead acid battery charging method
CN113161633B (en) Method for identifying and coping with false death of silicon-based high-capacity lithium battery electrode
CN116344788A (en) Battery cell
JPS603874A (en) Charging method of sealed lead-acid battery
Martin et al. Decrystallization with high current pulses technique for capacity restoration of industrial nickel-cadmium battery
JP2017139841A (en) Battery system
RU2464674C2 (en) Method to recover sulphated lead accumulators
CN110010959A (en) A kind of lithium ion battery having stratiform cathode
JP2578633B2 (en) Zinc electrode for alkaline storage batteries
JP2001185227A (en) Maintenance method of lead-acid battery
JP4999309B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140911

R150 Certificate of patent or registration of utility model

Ref document number: 5618386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees