JP2014103221A - 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール - Google Patents

電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール Download PDF

Info

Publication number
JP2014103221A
JP2014103221A JP2012253657A JP2012253657A JP2014103221A JP 2014103221 A JP2014103221 A JP 2014103221A JP 2012253657 A JP2012253657 A JP 2012253657A JP 2012253657 A JP2012253657 A JP 2012253657A JP 2014103221 A JP2014103221 A JP 2014103221A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
particles
mass
wiring member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012253657A
Other languages
English (en)
Inventor
Shuichiro Adachi
修一郎 足立
Masato Yoshida
誠人 吉田
Takeshi Nojiri
剛 野尻
Yasushi Kurata
靖 倉田
Yoshiaki Kurihara
祥晃 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012253657A priority Critical patent/JP2014103221A/ja
Publication of JP2014103221A publication Critical patent/JP2014103221A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】太陽電池素子の銅含有電極と配線部材との接続が高強度(良好な密着性)かつ高信頼性を有する構造を備え、更に安定した発電性能を示す太陽電池及びこのような太陽電池を含む太陽電池モジュールを提供する。
【解決手段】リン含有銅合金粒子、錫含有粒子、ガラス粒子及び分散媒を含む電極用組成物と、接着剤を含む接続材料と、を含む電極接続セットと;前記電極セットを用いて太陽電池を製造する太陽電池の製造方法と;前記製造方法により得られた太陽電池と;前記太陽電池と、前記太陽電池における前記配線部材の一部を露出させて、前記太陽電池を封止した封止材と、を有する太陽電池モジュール。
【選択図】図8

Description

本発明は、電極接続セット、これを用いた太陽電池の製造方法、太陽電池及び太陽電池モジュールに関する。
一般にシリコン基板を備えた太陽電池素子の受光面及び裏面には電極が形成されている。光の入射により太陽電池素子内で変換された電気エネルギーを効率よく外部に取出すためには、前記電極の体積抵抗率が十分に低いことと、シリコン基板と良好なオーミックコンタクトを形成することが必要である。
太陽電池素子に用いられる電極には、受光面集電用電極、受光面出力取出し電極、裏面集電用電極及び裏面出力取出し電極があり、通常次のように形成される。まず、p型シリコン基板の受光面側にテクスチャ(凹凸)形成を施し、次いでリン等を高温で熱的に拡散させることにより形成されたn型拡散層上に、電極用組成物(電極用ペースト組成物と称されることもある)をスクリーン印刷等により付与し、これを大気中800℃〜900℃で焼成することで電極が形成される。これらの電極を形成する電極用組成物は、導電性金属粉末、ガラス粒子及び種々の添加剤等を含む。
前記電極のうち裏面集電用電極以外には、導電性金属粉末として、銀粒子を含む電極用組成物が一般的に用いられている。銀粒子の使用には、銀粒子の体積抵抗率が1.6×10−6Ω・cmと低いこと、上記焼成条件において銀粒子が自己還元して焼結すること及びシリコン基板と良好なオーミックコンタクト(電気的な接続)を形成できることなどの利点がある。
上記に示すように、銀粒子を含む電極用組成物は、太陽電池素子の電極として優れた特性を発現する。一方で銀が貴金属で地金自体が高価であるため、また資源の問題から、銀に代わる材料の提案が望まれている。
銀に代わる有望な材料としては、半導体配線材料に適用されている銅が挙げられる。銅は資源的にも豊富で、地金コストも銀の約100分の1と安価である。しかしながら、銅は大気中200℃以上の高温で容易に酸化される材料であり、上記工程で電極を形成することは困難である。
銅が有する上記課題を解決するために、銅に種々の手法を用いて耐酸化性を付与し、高温焼成に付しても酸化され難い銅粒子が報告されている(例えば、特許文献1及び特許文献2参照)。また、焼成時の銅の酸化を抑制する方法として、銅含有粒子とガラス粒子を含有する電極用ペースト組成物(電極用組成物)を用いた方法も報告されている(例えば、特許文献3参照)。
ここで、一般の太陽電池及び太陽電池モジュールの構造を説明する。一般の太陽電池素子は、例えば125mm×125mm又は156mm×156mmの大きさで、単独では発電量が小さい。そのため、実際には複数の太陽電池素子をまとめて太陽電池及び太陽電池モジュールとして使用する。前記太陽電池及び太陽電池モジュールは、多くの場合、複数の太陽電池素子が、その受光面及び裏面の出力取出し電極上に電気的に接続された配線部材を介して直列及び/又は並列に接続された構造を有している。また太陽電池モジュールは、屋外環境で使用されることから気温変化、風雨、積雪等に対する耐性を確保するため、配線部材を介して接続された複数の太陽電池素子を封止材で封止して形成される。通常は、強化ガラス、エチレンビニルアセテート(EVA)、バックシートなどを含む封止材を、配線部材を有する太陽電池に積層して挟んだ後、真空ラミネータによって封止が行われる。なお、ここで太陽電池素子とは、pn接合を有する半導体基板と、半導体基板上に形成された電極とを有するものを意味する。太陽電池とは、太陽電池素子上に配線部材が設けられ、必要に応じて複数の太陽電池素子が配線部材を介して接続された状態のものを意味する。太陽電池モジュールとは、配線部材を備えた太陽電池を、太陽電池における配線部材の一部を露出させて、封止材で封止したものを意味する。
前記太陽電池素子の電極と配線部材とを接続する際は、太陽電池素子内で変換された電気エネルギーを効率よく外部に取出すために、電極と配線部材との電気的な接触抵抗を小さくする必要がある。更に、前記太陽電池モジュールを作製する際、複数の太陽電池素子を配線部材で接続した状態の太陽電池を運搬する工程で、太陽電池素子が配線部材から脱落することを防止するために、太陽電池素子の電極と配線部材との密着力を強固に保持する必要がある。
一般に、太陽電池素子の電極と配線部材との接続には、はんだが使用される(例えば、特許文献4及び特許文献5参照)。はんだは、導電性、固着強度等の接続信頼性に優れ、安価で汎用性があることから広く用いられている。近年は、太陽電池素子の電極と配線部材との接続に用いるはんだとしては、環境面から鉛フリーはんだも普及してきている。
一方、はんだを使用しない接続方法も提案されている。例えば特許文献6〜8には導電性ペーストを使用する接続方法が開示されている。
特開2005−314755号公報 特開2004−217952号公報 特開2011−171272号公報 特開2004−204256号公報 特開2005−050780号公報 特開2000−286436号公報 特開2001−357897号公報 特許第3448924号公報
しかしながら、鉛フリーはんだを用いる場合は、はんだの溶融温度が通常230℃〜260℃程度であることから、接続に伴う高温又ははんだの体積収縮が太陽電池素子の半導体構造に影響を与え、太陽電池素子の性能劣化を引き起こす場合がある。
更に、特許文献6〜8に記載のように、導電性ペーストを用いて太陽電池素子の電極と配線部材との接続を行う方法は、高温高湿条件下で経時的に発電性能が大幅に劣化してしまうことがあり、必ずしも充分な接続信頼性が得られるものではなかった。
一方、特許文献3に記載のような銅含有電極と、配線部材との接続を、はんだ又は導電性ペーストで行なう場合、太陽電池素子の銅含有電極と配線部材との密着力が不足する傾向があった。
本発明は、上記課題に鑑みてなされたものであり、太陽電池素子の銅含有電極と配線部材との接続が高強度(良好な密着性)かつ高信頼性を有する構造を備え、更に安定した発電性能を示す太陽電池を提供可能な電極接続セットと、電極接続セットを用いた太陽電池の製造方法、太陽電池及び太陽電池モジュールとを提供することを目的とする。
本発明は以下の通りである。
[1] リン含有銅合金粒子、錫含有粒子、ガラス粒子及び分散媒を含む電極用組成物と、接着剤を含む接続材料と、を含む電極接続セット。
[2] 前記電極用組成物が、更にニッケル粒子を含む[1]に記載の電極接続セット。
[3] 前記接続材料が、更に硬化剤及びフィルム形成材を含む[1]又は[2]に記載の電極接続セット。
[4] 前記接続材料が、更に導電性粒子を含む[1]〜[3]のいずれかに記載の電極接続セット。
[5] 前記電極用組成物を、pn接合を有する半導体基板上に付与する工程と、前記電極用組成物が付与された半導体基板を熱処理して、銅含有電極を形成する工程と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程と、前記積層体を、加熱加圧処理する工程と、を含む[1]〜[4]のいずれかに記載の電極接続セットを用いて太陽電池を製造する太陽電池の製造方法。
[6] 前記熱処理を450℃〜900℃で行う[5]に記載の太陽電池の製造方法。
[7] [5]又は[6]に記載の製造方法により得られる太陽電池。
[8] [5]又は[6]に記載の製造方法により得られる太陽電池と、前記太陽電池における前記配線部材の少なくとも一部を外部と電気的に接続可能に露出させて、前記太陽電池を封止した封止材と、を有する太陽電池モジュール。
本発明によれば、太陽電池素子の銅含有電極と配線部材との接続が高強度(良好な密着性)かつ高信頼性を有する構造を備え、更に安定した発電性能を示す太陽電池を提供可能な電極接続セットと、電極接続セットを用いた太陽電池の製造方法、太陽電池及び太陽電池モジュールとを提供することができる。
本発明にかかるシリコン太陽電池素子の一例を示す概略断面図である。 本発明にかかるシリコン太陽電池素子の受光面側電極構造の一例を示す概略平面図である。 本発明にかかるシリコン太陽電池素子の受光面側電極構造の一例を示す概略平面図である。 本発明にかかるシリコン太陽電池素子の裏面側電極構造の一例を示す概略平面図である。 本発明にかかるシリコン太陽電池の受光面の一例を示す概略平面図である。 本発明にかかるシリコン太陽電池の裏面の一例を示す概略平面図である。 本発明にかかるシリコン太陽電池を2つ接続した構造の一例を示す概略断面図である。 本発明にかかるシリコン太陽電池の配線接続部の断面の一例を示す図である。 本発明にかかるシリコン太陽電池モジュールの製造方法の一例を説明するための図である。
本発明の電極接続セットは、リン含有銅合金粒子、錫含有粒子、ガラス粒子及び分散媒を含む電極用組成物と、接着剤を含む接続材料と、必要に応じて他の要素を含む。
前記電極接続セットは、前記電極用組成物と前記接続材料とを組み合わせて含んでいるので、配線部材を更に準備することにより、前記接続材料を用いて、前記電極用組成物から得られる電極と、配線部材とを接続することができる。本セットを用いて得られる、前記電極用組成物から得られた電極と前記配線部材とが接続された太陽電池においては、電極と配線部材との配線接続部が、高い接続強度(密着性)及び高い接続信頼性を示す。
これは例えば以下のように考えることができる。
本発明の電極接続セットの電極用組成物の焼成によって形成された銅含有電極は、Cu−Sn合金相などの銅と錫を含む合金相からなる金属部と、Sn−P−Oガラス相などの錫とリンと酸素を含むガラス部とで構成される。このうちCu−Sn合金相は緻密なバルク体からなる金属部を形成すると同時に、電極に、金属部及びガラス部が形成されていない空隙部を生じる。これは前記バルク体形成時の反応及び合金相の焼結が劇的に進むためと考えられる。ガラス部は半導体基板と金属部との間に配置され、また、金属部の表面にも存在することが好ましい。
前記空隙部は、前記銅含有電極表面側から見て開気孔であり、前記半導体基板側に形成されたSn−P−Oガラス相まで達していることもある。なお、前記銅含有電極に前記空隙部を含むことによって、電極としての性能(例えば、体積抵抗率)及び太陽電池素子の発電性能の低下が引き起こされるものではないと考えられる。銅含有電極、接続材料及び配線部材を積層して得られた積層体の加熱加圧処理時に、この構造をもつ銅含有電極と配線部材とが、接着剤を含む接続材料を挟んで加熱圧着されることで、接続材料の少なくとも一部が前記空隙部に入り込み、銅含有電極と配線部材とが力学的に接着するという、所謂アンカー効果によって、前記銅含有電極と配線部材の接続強度が向上する。
一方、銅含有電極と、配線部材との接続を、はんだ又は導電性ペーストで行なった場合は、前記接続材料を用いた場合よりも、電極と配線部材との密着性が劣る。これは、前述したように銅含有電極に形成される前記空隙部にはんだ又は導電性ペーストが入り込まず、アンカー効果が得られないためと考えられる。
また、前記電極用組成物を用いなかった場合、焼成後に得られる電極に空隙部が形成されにくく、上記アンカー効果が小さくなり、電極と配線部材との密着性が劣る可能性がある。
このように、電極と配線部材との高い密着性は、本発明にかかる電極接続セットに含まれる前記電極用組成物と、前記接続材料とを組み合わせることによって初めて発現される。
また、本発明では前記電極用組成物と前記接続材料を組み合わせることで、接続強度とは別に、電気的な接触抵抗の低減も発現できる。これは、例えば以下のように考えることができる。
前述したように本発明にかかる電極用組成物から得られる前記銅含有電極は、内部に空隙部を含み、前記配線部材の加熱圧着時に前記接続材料が前記空隙部に入り込む。ここで、半導体基板と配線部材との間に、金属部、ガラス部及び接続材料を含む導電層が形成される。このとき、空隙部が少ない電極、例えば銀電極などに比べて、前記空隙部に入り込む接続材料の量(体積)は増加し、その結果、電極と配線部材との間に介在する接続材料の厚みが著しく減少する。また前記配線部材の加熱圧着時には接着部材が流動排除されるため、導電層の一部では、金属部と配線部材とが直接接触する。この結果、導電性が向上し、電極と配線部材との電気的な接触抵抗が減少する。更に電極及び配線部材内の金属などの導電成分が、接触部から相互拡散することで、接触部が合金化し、接触抵抗が一層低下することも考えられる。
本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
また本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
更に本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
以下、本発明について説明する。
[電極接続セット]
前記電極接続セットは、前記電極用組成物と、前記接続材料と、必要に応じて他の要素を含む。
<電極用組成物>
前記電極用組成物は、リン含有銅合金粒子と、錫含有粒子と、ガラス粒子と、分散媒と、を含む。この電極用組成物を、pn接合を有する半導体基板に付与し、焼成することで、銅含有電極を形成することができる。なお、pn接合を有する半導体基板として、本発明ではシリコン基板を例に説明するが、本発明における前記半導体基板はシリコン基板に限定されない。
前記電極用組成物を用いることで、大気中焼成時における銅の酸化が抑制され、抵抗率の低い電極を形成できる。更に銅と前記シリコン基板との反応物相の形成が抑制され、形成される電極とシリコン基板とが良好なオーミックコンタクトを形成できる。これは例えば以下のように考えることができる。
まず本発明の電極用組成物を焼成処理すると、前記リン含有銅合金粒子と錫含有粒子との反応により、Cu−Sn合金相及びSn−P−Oガラス相が形成される。Cu−Sn合金相の形成により、体積抵抗率(以下、単に「抵抗率」ともいう)の低い電極を形成することができる。ここでCu−Sn合金相は、500℃程度といった比較的低温から生成されるため、電極の低温焼成が可能となり、プロセスコストを削減できるという効果が期待できる。
これは例えば以下のように考えることができる。
リン含有銅合金粒子、錫含有粒子が、焼成工程で互いに反応して、金属部であるCu−Sn合金相と、ガラス部であるSn−P−Oガラス相とを含む電極を形成する。Cu−Sn合金相は、Cu−Sn合金相どうしで緻密なバルク体を形成する。このバルク体は電極内で連続して形成され、導電層として機能することで抵抗率の低い電極が形成される。またここでいう緻密なバルク体とは、塊状のCu−Sn合金相が互いに密に接触し、三次元的に連続して形成された構造体を意味する。
一方で、Sn−P−Oガラス相は、Cu−Sn合金相とシリコン基板との間に形成される。これによりCu−Sn合金相のシリコン基板に対する密着性が得られると考えることができる。
前記電極用組成物は、更にニッケル含有粒子を含んでいることが好ましい。これによってCu−Sn合金相とニッケル含有粒子とが更に反応し、Cu−Sn−Ni合金相を形成すると考えられる。このCu−Sn−Ni合金相は、800℃といった比較的高い温度でも形成されることから、より高温での焼成工程でも耐酸化性を保ったまま抵抗率の低い電極を形成できると考えられる。また前記ニッケル含有粒子を含む電極用組成物から形成される銅含有電極を用いることで、シリコン基板に対する密着性を保ったまま、電極とシリコン基板とのより良好なオーミックコンタクトを達成することができる。ニッケル含有粒子を更に含むことにより得られるCu−Sn−Ni合金相も、Cu−Sn合金相と同様にCu−Sn−Ni合金相どうしで、またCu−Sn合金相と共に緻密なバルク体を形成する。なお、Cu−Sn合金相とCu−Sn−Ni合金相は電極内に混在していても、機能(例えば抵抗率)を低下させることはないと考えられる。
従来開発されていた、耐酸化性を付与した銅粒子を用いた場合、耐酸化性を有するのは高々300℃までで、800℃〜900℃の高温ではほとんど酸化されてしまう。このため、太陽電池素子用の電極として実用に至っておらず、更に、耐酸化性を付与するために適用した添加剤等が銅粒子の焼結を阻害し、結果として銀のような抵抗率の低いの電極が得られないという課題があった。また銅の酸化を抑える別の手法として、導電性金属粉末に銅を用いた導電性組成物を、窒素等の雰囲気下で焼成するという特殊な方法が提案されていたが、この方法では銅粒子の酸化を完全に抑えるために窒素等の雰囲気ガスで完全密封した環境が必要となり、工程コストの面で太陽電池素子の量産には不向きであった。
本発明によれば、抵抗率の低い電極を、特殊な方法を用いずに形成することができる。
またSn−P−Oガラス相が、銅とシリコンとの相互拡散を防止するためのバリア層として機能することで、焼成して形成される電極とシリコン基板との良好なオーミックコンタクトが達成できると考えることができる。すなわち、Sn−P−Oガラス相が、銅を含む電極とシリコンを直に接触して加熱したときに形成される反応物相(CuSi)の形成を抑制し、半導体性能(例えば、pn接合特性)を劣化することなくシリコン基板との密着性を保ちながら、良好なオーミックコンタクトを発現することができると考えられる。
従来、銅を太陽電子素子の電極に適用するための課題として、シリコン基板とのオーミックコンタクト性が挙げられていた。このCuSiの形成はシリコン基板の界面から数μmにまで及ぶことがあり、シリコン基板側に亀裂を生じ、太陽電池素子の性能劣化を引き起こす場合がある。また形成されたCuSiが銅を含む電極を持ち上げるなどして、電極とシリコン基板との密着性を阻害し、電極の機械的強度低下をもたらす恐れがある。
本発明によれば、反応物相(CuSi)の形成を抑制することができるため、良好なオーミックコンタクト性を発現することができる。
以下に本発明で使用される電極用組成物に含有される各成分について詳細に説明する。
(リン含有銅合金粒子)
前記電極用組成物は、リン含有銅合金粒子を含有する。リン含有銅合金としては、リン銅ろう(リン含有率:7質量%程度以下)と呼ばれるろう付け材料が知られている。リン銅ろうは、銅と銅との接合剤としても用いられるものであるが、本発明の電極用組成物にリン含有銅合金粒子を用いることで、リンの銅酸化物に対する還元性を利用し、耐酸化性に優れ、抵抗率の低い電極を形成することができる。更に電極の低温焼成が可能となり、プロセスコストを削減できるという効果を得ることができる。
リン含有銅合金粒子に含まれる、リン原子の含有率は、耐酸化性と抵抗率の観点から、1質量%以上8質量%以下であることが好ましく、1.5質量%以上7.8質量%以下であることがより好ましく、2質量%以上7.5質量%以下であることが更に好ましい。
リン含有銅合金粒子に含まれる、銅原子の含有量は、92質量%以上99質量%以下であることが好ましく、92.2質量%以上98.5質量%以下であることがより好ましく、92.5質量%以上98質量%以下であることが更に好ましい。
また本発明で使用される電極用組成物において、前記リン含有銅合金粒子は、1種単独でも又は2種以上を組み合わせて用いてもよい。
前記リン含有銅合金粒子は、銅とリンを含む合金であるが、他の原子を更に含んでいてもよい。他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Sn、Al、Zr、W、Mo、Ti、Co、Ni、Au等を挙げることができる。
また前記リン含有銅合金粒子に含まれる他の原子の含有率は、例えば、前記リン含有銅合金粒子中に3質量%以下とすることができ、耐酸化性と抵抗率の観点から、1質量%以下であることが好ましい。
前記リン含有銅合金粒子の粒子径としては特に制限はないが、小粒径側から積算した体積が50%の場合における粒子径(以下、「D50%」と略記することがある)として、0.4μm〜10μmであることが好ましく、1μm〜7μmであることがより好ましい。0.4μm以上とすることで耐酸化性がより効果的に向上する。また10μm以下であることで電極中におけるリン含有銅合金粒子どうし、又は、リン含有銅合金粒子と、後述する錫含有粒子、及び必要に応じて添加されるニッケル含有粒子との接触面積が大きくなり、抵抗率がより効果的に低下する。なお、リン含有銅合金粒子の粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定できる。
また前記リン含有銅合金粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
電極用組成物におけるリン含有銅合金粒子の含有率は特に制限されない。抵抗率の観点から、電極用組成物中に15質量%以上75質量%以下であることが好ましく、18質量%以上70質量%以下であることがより好ましく、20質量%以上65質量%以下であることが更に好ましく、25質量%以上50質量%以下であることが特に好ましい。
リン含有銅合金は、通常用いられる方法で製造することができる。また、リン含有銅合金粒子は、所望のリン含有率となるように調製したリン含有銅合金を用いて、金属粉末を調製する通常の方法を用いて調製することができ、例えば、水アトマイズ法を用いて定法により製造することができる。なお、水アトマイズ法の詳細については金属便覧(丸善(株)出版事業部)等の記載を参照することができる。
具体的には、リン含有銅合金を溶解し、これをノズル噴霧によって粉末化した後、得られた粉末を乾燥、分級することで、所望のリン含有銅合金粒子を製造することができる。また、分級条件を適宜選択することで所望の粒子径を有するリン含有銅合金粒子を製造することができる。
(錫含有粒子)
本発明で使用される電極用組成物は、錫含有粒子を含有する。錫含有粒子を含むことにより、後述する電極形成工程において、抵抗率の低い電極を形成できる。
前記錫含有粒子としては、錫を含む粒子であれば特に制限はない。中でも、錫粒子及び錫合金粒子から選ばれる少なくとも1種であることが好ましく、錫粒子及び錫含有率が1質量%以上である錫合金粒子から選ばれる少なくとも1種であることが好ましい。また、本発明で使用される電極用組成物において、錫含有粒子は1種単独で使用してもよく、また2種類以上を組み合わせて使用することもできる。
錫粒子における錫の純度は特に制限されない。例えば錫粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
また錫合金粒子は、錫を含む合金粒子であれば合金の種類は特に制限されない。中でも、錫合金粒子の融点、並びに、リン含有銅合金粒子、及び必要に応じて添加されるニッケル含有粒子との反応性の観点から、錫の含有率が1質量%以上である錫合金粒子であることが好ましく、錫の含有率が3質量%以上である錫合金粒子であることがより好ましく、錫の含有率が5質量%以上である錫合金粒子であることが更に好ましく、錫の含有率が10質量%以上である錫合金粒子であることが特に好ましい。錫の含有率の上限値については、特に制限はない。
錫合金粒子に含まれる錫合金としては、Sn−Ag系合金、Sn−Cu系合金、Sn−Ag−Cu系合金、Sn−Ag−Sb系合金、Sn−Ag−Sb−Zn系合金、Sn−Ag−Cu−Zn系合金、Sn−Ag−Cu−Sb系合金、Sn−Ag−Bi系合金、Sn−Bi系合金、Sn−Ag−Cu−Bi系合金、Sn−Ag−In−Bi系合金、Sn−Sb系合金、Sn−Bi−Cu系合金、Sn−Bi−Cu−Zn系合金、Sn−Bi−Zn系合金、Sn−Bi−Sb−Zn系合金、Sn−Zn系合金、Sn−In系合金、Sn−Zn−In系合金、Sn−Pb系合金等が挙げられる。
前記錫合金粒子のうち、特に、Sn−3.5Ag、Sn−0.7Cu、Sn−3.2Ag−0.5Cu、Sn−4Ag−0.5Cu、Sn−2.5Ag−0.8Cu−0.5Sb、Sn−2Ag−7.5Bi、Sn−3Ag−5Bi、Sn−58Bi、Sn−3.5Ag−3In−0.5Bi、Sn−3Bi−8Zn、Sn−9Zn、Sn−52In、Sn−40Pb等を含む錫合金粒子は、Snのもつ融点(232℃)と同じ、若しくはより低い融点をもつ。そのため、これら錫合金粒子は焼成の初期段階で溶融することで、リン含有銅合金粒子の表面を覆い、リン含有銅合金粒子と均一に反応することができるという点で、好適に用いることができる。なお、錫合金における表記は、例えば、Sn−AX−BY−CZの場合は、錫合金の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
前記錫含有粒子は、不可避的に混入する他の原子を更に含んでいてもよい。不可避的に混入する他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Ni、Au等を挙げることができる。
また前記錫含有粒子に含まれる他の原子の含有率は、例えば前記錫含有粒子中に3質量%以下とすることができ、融点及びリン含有銅合金粒子との反応性の観点から、1質量%以下であることが好ましい。
前記錫含有粒子の粒子径としては特に制限はないが、D50%として、0.5μm〜20μmであることが好ましく、1μm〜15μmであることがより好ましく、5μm〜15μmであることが更に好ましい。0.5μm以上とすることで錫含有粒子自身の耐酸化性が向上する。また20μm以下であることで電極中におけるリン含有銅合金粒子及びニッケル含有粒子との接触面積が大きくなり、焼成中の反応が効果的に進む。なお、錫含有粒子の粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定できる。
また前記錫含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
また前記電極用組成物における錫含有粒子の含有率は特に制限されない。中でも、前記リン含有銅合金粒子と前記錫含有粒子の総含有率を100質量%としたときの錫含有粒子の含有率が、5質量%以上70質量%以下であることが好ましく、7質量%以上65質量%以下であることがより好ましく、9質量%以上60質量%以下であることが更に好ましく、9質量%以上45質量%以下であることが特に好ましい。
錫含有粒子の含有率を5質量%以上とすることで、リン含有銅合金粒子との反応をより均一に生じさせることができる。また錫含有粒子の含有率を70質量%以下とすることで、Cu−Sn合金相を充分な体積で形成することができ、電極の抵抗率がより低下する。
(ニッケル含有粒子)
本発明で使用される電極用組成物は、ニッケル含有粒子を含むことが好ましい。リン含有銅合金粒子及び錫含有粒子に加えて、ニッケル含有粒子を含むことにより、焼成工程において、より高温での耐酸化性を発現させることができる。つまり、ニッケル含有粒子を含むことにより、電極用組成物をより高温で焼成することが可能となる。
前記ニッケル含有粒子としては、ニッケルを含む粒子であれば特に制限はない。中でもニッケル粒子及びニッケル合金粒子から選ばれる少なくとも1種であることが好ましく、ニッケル粒子及びニッケル含有率が1質量%以上であるニッケル合金粒子から選ばれる少なくとも1種であることが好ましい。前記電極用組成物において、ニッケル含有粒子は1種単独で使用してもよく、又は2種類以上を組み合わせて使用することもできる。
ニッケル粒子におけるニッケルの純度は特に制限されない。例えばニッケル粒子の純度は、95質量%以上とすることができ、97質量%以上であることが好ましく、99質量%以上であることがより好ましい。
またニッケル合金粒子は、ニッケルを含む合金粒子であれば合金の種類は制限されない。中でもニッケル合金粒子の融点、並びに、リン含有銅合金粒子、錫含有粒子及びCu−Sn合金相との反応性の観点から、ニッケルの含有率が1質量%以上であるニッケル合金粒子であることが好ましく、ニッケルの含有率が3質量%以上であるニッケル合金粒子であることがより好ましく、ニッケルの含有率が5質量%以上であるニッケル合金粒子であることが更に好ましく、ニッケルの含有率が10質量%以上であるニッケル合金粒子であることが特に好ましい。ニッケルの含有率の上限値については、特に制限はない。
ニッケル合金粒子に含まれるニッケル合金としては、Ni−Fe系合金、Ni−Cu系合金、Ni−Cu−Zn系合金、Ni−Cr系合金、Ni−Cr−Ag系合金等が挙げられる。特にNi−58Fe、Ni−75Cu、Ni−6Cu−20Zn等を含むニッケル合金粒子は、リン含有銅合金粒子及び錫含有粒子と均一に反応することができるという点で、好適に用いることができる。なお、ニッケル合金における表記は、例えばNi−AX−BY−CZの場合は、ニッケル合金の中に、元素XがA質量%、元素YがB質量%、元素ZがC質量%含まれていることを示す。
前記ニッケル含有粒子は、不可避的に混入する他の原子を更に含んでいてもよい。不可避的に混入する他の原子としては、Ag、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Sn、Au等を挙げることができる。
また前記ニッケル含有粒子に含まれる他の原子の含有率は、例えば前記ニッケル含有粒子中に3質量%以下とすることができ、融点、並びに、リン含有銅合金粒子及び錫含有粒子との反応性の観点から、1質量%以下であることが好ましい。
前記ニッケル含有粒子の粒子径としては特に制限はないが、D50%として、0.5μm〜20μmであることが好ましく、1μm〜15μmであることがより好ましく、3μm〜15μmであることが更に好ましい。0.5μm以上とすることでニッケル含有粒子自身の耐酸化性が向上する。また20μm以下であることで電極中におけるリン含有銅合金粒子及び錫含有粒子との接触面積が大きくなり、リン含有銅合金粒子及び錫含有粒子との反応が効果的に進む。なお、ニッケル含有粒子の粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定できる。
また前記ニッケル含有粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
また前記電極用組成物におけるニッケル含有粒子の含有率は特に制限されない。中でも、前記リン含有銅合金粒子と前記錫含有粒子及びニッケル含有粒子との総含有率を100質量%としたときのニッケル含有粒子の含有率が、10質量%以上70質量%以下であることが好ましく、12質量%以上55質量%以下であることがより好ましく、15質量%以上50質量%以下であることが更に好ましく、15質量%以上35質量%以下であることが特に好ましい。
ニッケル含有粒子の含有率を10質量%以上とすることで、Cu−Sn−Ni合金相の形成をより均一に生じさせることができる。またニッケル含有粒子の含有率を70質量%以下とすることで、充分な体積のCu−Sn−Ni合金相を形成することができ、電極の抵抗率がより低下する。
前記電極用組成物における、錫含有粒子と必要に応じて添加されるニッケル含有粒子の含有比は特に制限されない。シリコン基板との密着性の観点から、錫含有粒子に対するニッケル含有粒子の質量比(ニッケル含有粒子/錫含有粒子)が0.3〜4.0であることが好ましく、0.4〜3.0であることがより好ましい。
また前記電極用組成物における、リン含有銅合金粒子と錫含有粒子及び必要に応じて添加されるニッケル含有粒子との含有比は特に制限されない。高温焼成条件下で形成される電極の抵抗率とシリコン基板との密着性の観点から、リン含有銅合金粒子に対する粒子錫含有粒子とニッケル含有粒子の総量の質量比((ニッケル含有粒子+錫含有粒子)/リン含有銅合金粒子)が0.4〜1.8であることが好ましく、0.6〜1.4であることがより好ましい。
更に前記電極用組成物における、錫含有粒子の粒子径(D50%)と必要に応じて添加されるニッケル含有粒子の粒子径(D50%)の比は特に制限されない。形成されるSn−P−Oガラス相の均一性とシリコン基板との密着性の観点から、錫含有粒子の粒子径(D50%)に対するニッケル含有粒子の粒子径(D50%)の比(ニッケル含有粒子/錫含有粒子)が0.05〜20であることが好ましく、0.5〜10であることがより好ましい。
また前記電極用組成物における、リン含有銅合金粒子の粒子径(D50%)と錫含有粒子の粒子径(D50%)の比は特に制限されない。高温焼成条件下で形成される電極の抵抗率とシリコン基板との密着性の観点から、リン含有銅合金粒子の粒子径(D50%)に対する錫含有粒子の粒子径(D50%)比(錫含有粒子/リン含有銅合金粒子)が0.03〜30であることが好ましく、0.1〜10であることがより好ましい。
また前記電極用組成物における、リン含有銅合金粒子の粒子径(D50%)と必要に応じて添加されるニッケル含有粒子の粒子径(D50%)の比は特に制限されない。高温焼成条件下で形成される電極の抵抗率の観点から、リン含有銅合金粒子の粒子径(D50%)に対するニッケル含有粒子の粒子径(D50%)比(ニッケル含有粒子/リン含有銅合金粒子)が0.02〜20であることが好ましく、0.1〜10であることがより好ましい。
前記電極組成物における、耐酸化性と電極の抵抗率の観点から、リン含有銅合金粒子、錫含有粒子、及び必要に応じて添加されるニッケル含有粒子の総含有率は、60質量%以上94質量%以下であることが好ましく、64質量%以上88質量%以下であることがより好ましい。
(ガラス粒子)
本発明で使用される電極用組成物は、ガラス粒子を含有する。電極用組成物がガラス粒子を含むことにより、電極とシリコン基板との密着性が向上する。また。特に太陽電池受光面側の電極形成において、電極形成時にいわゆるファイアースルーによって反射防止膜である窒化ケイ素膜が取り除かれ、電極とシリコン基板とのオーミックコンタクトが形成される。
前記ガラス粒子は、シリコン基板との密着性と電極の抵抗率の観点から、ガラス軟化温度が650℃以下であって、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であることが好ましい。なお、前記ガラス軟化温度は、熱機械分析装置(TMA)を用いて通常の方法によって測定され、また前記結晶化開始温度は、示差熱−熱重量分析装置(TG−DTA)を用いて通常の方法によって測定される。
前記電極用組成物を太陽電池受光面側の電極として使用する場合は、前記ガラス粒子は、電極形成温度で軟化及び溶融し、接触した窒化ケイ素膜を酸化し、酸化された二酸化ケイ素を取り込むことで、反射防止膜を除去可能なものであれば、当該技術分野において通常用いられるガラス粒子を特に制限なく用いることができる。
一般に電極用組成物に含まれるガラス粒子は、二酸化ケイ素を効率よく取り込み可能であるこという観点からは、鉛を含むガラスから構成されることが好ましい。このような鉛を含むガラスとしては、例えば、特許第3050064号公報等に記載のものを挙げることができ、本発明においてもこれらを好適に使用することができる。
また本発明においては、環境に対する影響を考慮すると、鉛を実質的に含まない鉛フリーガラスを用いることが好ましい。鉛フリーガラスとしては、例えば、特開2006−313744号公報の段落番号0024〜0025に記載の鉛フリーガラス、特開2009−188281号公報等に記載の鉛フリーガラスを挙げることができ、これらの鉛フリーガラスから適宜選択して本発明で使用される電極用組成物に適用することもまた好ましい。
また前記電極用組成物を太陽電池受光面側の電極以外、例えば裏面出力取出し電極として用いる場合には、ガラス軟化温度が650℃以下であって、結晶化開始温度が650℃を超えるガラスを含むガラス粒子であれば、上記鉛のようなファイアースルーに必要な成分を含むことなく用いることができる。
前記電極用組成物に用いられるガラス粒子を構成するガラス成分としては、二酸化ケイ素(SiO)、酸化リン(P)、酸化アルミニウム(Al)、酸化ホウ素(B)、酸化バナジウム(V)、酸化カリウム(KO)、酸化ビスマス(Bi)、酸化ナトリウム(NaO)、酸化リチウム(LiO)、酸化バリウム(BaO)、酸化ストロンチウム(SrO)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、酸化鉛(PbO)、酸化カドミウム(CdO)、酸化スズ(SnO)、酸化ジルコニウム(ZrO)、酸化タングステン(WO)、酸化モリブデン(MoO)、酸化ランタン(La)、酸化ニオブ(Nb)、酸化タンタル(Ta)、酸化イットリウム(Y)、酸化チタン(TiO)、酸化ゲルマニウム(GeO)、酸化テルル(TeO)、酸化ルテチウム(Lu)、酸化アンチモン(Sb)、酸化銅(CuO)、酸化鉄(FeO)、酸化銀(AgO)及び酸化マンガン(MnO)が挙げられる。
中でも、SiO、P、Al、B、V、Bi、ZnO及びPbOから選択される少なくとも1種を含むガラス粒子を用いることが好ましく、SiO、Al、B、Bi及びPbOから選択される少なくとも1種を含むガラス粒子を用いることがより好ましい。このようなガラス粒子の場合には、軟化温度がより効果的に低下する。更にリン含有銅合金粒子、錫含有粒子及び必要に応じて添加されるニッケル含有粒子との濡れ性が向上するため、焼成過程での前記粒子間の焼結が進み、より抵抗率の低い電極を形成することができる。
他方、接触抵抗率を低下させるとの観点からは、酸化リンを含むガラス粒子(リン酸ガラス、P系ガラス粒子)であることが好ましく、酸化リンに加えて酸化バナジウムを更に含むガラス粒子(P−V系ガラス粒子)であることがより好ましい。酸化バナジウムを更に含むことで、耐酸化性がより向上し、電極の接触抵抗率がより低下する。これは、例えば、酸化バナジウムを更に含むことでガラスの軟化温度が低下することに起因すると考えることができる。酸化リン−酸化バナジウム系ガラス粒子(P−V系ガラス粒子)を用いる場合、酸化バナジウムの含有率としては、ガラスの全質量中に1質量%以上であることが好ましく、1質量%〜70質量%であることがより好ましい。
本発明で使用される電極用組成物におけるガラス粒子の粒子径としては特に制限はないが、積算した体積が50%である場合における粒子径(D50%)が、0.5μm以上10μm以下であることが好ましく、0.8μm以上8μm以下であることがより好ましい。0.5μm以上とすることで電極用組成物の作製時の作業性が向上する。また10μm以下であることで、電極用組成物中に均一に分散し、焼成工程で効率よくファイアースルーを生じることができ、更にシリコン基板との密着性も向上する。なお、ガラス粒子の粒子径は、マイクロトラック粒度分布測定装置(日機装社製、MT3300型)によって測定できる。
また前記ガラス粒子の形状としては特に制限はなく、略球状、扁平状、ブロック状、板状、鱗片状等のいずれであってもよいが、耐酸化性と抵抗率の観点から、略球状、扁平状、または板状であることが好ましい。
前記ガラス粒子の含有率としては電極用組成物の全質量中に0.1質量%〜12質量%であることが好ましく、0.5質量%〜10質量%であることがより好ましく、1質量%〜9質量%であることが更に好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低抵抗率化、及び低接触抵抗率化が達成され、また前記リン含有銅合金粒子、前記錫含有粒子及び必要に応じて添加されるニッケル含有粒子間の反応を促進させることができる。
また電極用組成物は、リン含有銅粒子、錫含有粒子及び必要に応じて添加されるニッケル含有粒子の総含有量に対するガラス粒子の含有量の比(質量比)が0.01〜0.18であることが好ましく、0.03〜0.15であることがより好ましい。かかる範囲の含有率でガラス粒子を含むことで、より効果的に耐酸化性、電極の低抵抗率化及び低接触抵抗率化が達成され、また前記リン含有銅合金粒子、前記錫含有粒子及びニッケル含有粒子間の反応を促進させることができる。
(分散媒)
本発明で使用される電極用組成物は、分散媒を含有する。これにより前記電極用組成物の液物性(例えば、粘度、表面張力)を、半導体基板等に付与する際の付与方法に応じて必要とされる液物性に調整することができる。
前記分散媒としては、溶剤及び樹脂の少なくとも1種が挙げられる。
前記溶剤としては特に制限はなく、ヘキサン、シクロヘキサン、トルエン等の炭化水素溶剤;ジクロロエチレン、ジクロロエタン、ジクロロベンゼン等のハロゲン化炭化水素溶剤;テトラヒドロフラン、フラン、テトラヒドロピラン、ピラン、ジオキサン、1,3−ジオキソラン、トリオキサン等の環状エーテル溶剤;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド溶剤;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド溶剤;アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン等のケトン溶剤;エタノール、2−プロパノール、1−ブタノール、ジアセトンアルコール等のアルコール溶剤;2,2,4−トリメチル−1,3−ペンタンジオールモノアセテート、2,2,4−トリメチル−1,3−ペンタンジオールモノプロピオレート、2,2,4−トリメチル−1,3−ペンタンジオールモノブチレート、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート、2,2,4−トリエチル−1,3−ペンタンジオールモノアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等の多価アルコールのエステル溶剤;ブチルセロソルブ、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールのエーテル溶剤;α−テルピネン等のテルピネン、α−テルピネオール等のテルピネオール、α−ピネン、β−ピネン等のピネン、ミルセン、アロオシメン、リモネン、ジペンテン、カルボン、オシメン、フェランドレンなどのテルペン溶剤、及びこれらの混合物が挙げられる。
前記溶剤としては、電極用組成物を半導体基板上に形成する際の付与特性(塗布性又は印刷性)の観点から、多価アルコールのエステル溶剤、テルペン溶剤及び多価アルコールのエーテル溶剤から選ばれる少なくとも1種であることが好ましく、多価アルコールのエステル溶剤及びテルペン溶剤から選ばれる少なくとも1種であることがより好ましい。
また本発明で使用される電極用組成物において前記溶剤は1種単独でも、2種以上を組み合わせて用いてもよい。
また前記樹脂としては焼成処理によって熱分解されうる樹脂であれば、当該技術分野において通常用いられる樹脂を特に制限なく用いることができ、天然高分子化合物であっても合成高分子化合物であってもよい。具体的には、メチルセルロース、エチルセルロース、カルボキシメチルセルロース、ニトロセルロース等のセルロース樹脂;ポリビニルアルコール樹脂;ポリビニルピロリドン樹脂;アクリル樹脂;酢酸ビニル−アクリル酸エステル共重合体;ポリビニルブチラール等のブチラール樹脂;フェノール変性アルキド樹脂、ひまし油脂肪酸変性アルキド樹脂等のアルキド樹脂;エポキシ樹脂;フェノール樹脂;ロジンエステル樹脂を挙げることができる。
本発明で使用される電極用組成物における前記樹脂としては、電極形成工程における消失性の観点から、セルロース樹脂、及びアクリル樹脂から選ばれる少なくとも1種であることが好ましい。
また本発明において前記樹脂は1種単独でも、2種以上を組み合わせて用いてもよい。
また本発明における前記樹脂の重量平均分子量は特に制限されない。中でも重量平均分子量は5000以上500000以下が好ましく、10000以上300000以下であることがより好ましい。前記樹脂の重量平均分子量が5000以上であると、電極用組成物の粘度が増加することを抑制できる。また樹脂の重量平均分子量が5000以上であれば、リン含有銅合金粒子、錫含有粒子及び必要に応じて添加されるニッケル含有粒子に吸着させたときの立体的な反発作用により、粒子が互いに凝集しにくくすることができると考えられる。一方、樹脂の重量平均分子量が500000以下であると、樹脂どうしが溶剤中で凝集することが抑制され、電極用組成物の粘度が増加することを抑制できる。またこれに加え樹脂の重量平均分子量が500000以下であることで、樹脂の燃焼温度が高くなることが抑制され、電極用組成物を焼成する際に樹脂が完全に燃焼されず異物として残存することが抑制され、より低い抵抗率の電極を形成することができる。
本発明で使用される電極用組成物において、前記分散媒の含有率は、所望の液物性と使用する分散媒の種類に応じて適宜選択することができる。例えば、分散媒の含有率が、電極用組成物の全質量中に3質量%以上40質量%以下であることが好ましく、3質量%以上39.9質量%以下であることがより好ましく、5質量%以上35質量%以下であることが更に好ましく、7質量%以上30質量%以下であることが更により好ましい。
分散媒の含有率が前記範囲内であることにより、電極用組成物を半導体基板に付与する際の付与適性が良好になり、所望の幅及び高さを有する電極をより容易に形成することができる。
前記分散媒における溶剤と樹脂それぞれの種類及び分散媒中での含有比率は、電極用組成物の付与方法等を考慮して、適宜選択できる。
更に本発明で使用される電極用組成物においては、耐酸化性と電極の抵抗率の観点から、リン含有銅合金粒子、錫含有粒子及び必要に応じて添加されるニッケル含有粒子の総含有率が60質量%以上94質量%以下であって、ガラス粒子の含有率が0.1質量%以上12質量%以下であって、分散媒の含有率が3質量%以上39.9質量%以下であることが好ましく、リン含有銅合金粒子、錫含有粒子及び必要に応じて添加されるニッケル粒子の総含有率が64質量%以上88質量%以下であって、ガラス粒子の含有率が0.5質量%以上10質量%以下であって、分散媒の含有率が5質量%以上35質量%以下であることがより好ましく、リン含有銅合金粒子、錫含有粒子及び必要に応じて添加されるニッケル含有粒子の総含有率が64質量%以上88質量%以下であって、ガラス粒子の含有率が1質量%以上9質量%以下であって、分散媒の含有率が7質量%以上30質量%以下であることが更に好ましい。
(フラックス)
前記電極用組成物は、フラックスを含有してもよい。フラックスを含むことでリン含有銅合金粒子の表面に形成された酸化膜を除去し、焼成中のリン含有銅合金粒子の還元反応を促進させることができる。また焼成中の錫含有粒子の溶融も進むためリン含有銅合金粒子との反応が進み、結果として耐酸化性がより向上し、形成される電極の抵抗率がより低下する。更に電極とシリコン基板の密着性が向上するという効果も得られる。
おけるフラックスとしては、リン含有銅合金粒子の表面に形成された酸化膜を除去可能で、錫含有粒子の溶融を促進するものであれば特に制限はない。具体的には、脂肪酸、ホウ酸化合物、フッ化化合物、及びホウフッ化化合物を好ましいフラックスとして挙げることができる。
フラックスとしてより具体的には、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ソルビン酸、ステアロール酸、プロピオン酸、酸化ホウ素、ホウ酸カリウム、ホウ酸ナトリウム、ホウ酸リチウム、ホウフッ化カリウム、ホウフッ化ナトリウム、ホウフッ化リチウム、酸性フッ化カリウム、酸性フッ化ナトリウム、酸性フッ化リチウム、フッ化カリウム、フッ化ナトリウム、フッ化リチウム等が挙げられる。
中でも、電極焼成時の耐熱性(フラックスが焼成の低温時に揮発しない特性)及びリン含有銅合金粒子の耐酸化性補完の観点から、ホウ酸カリウム及びホウフッ化カリウムが特に好ましいフラックスとして挙げられる。
本発明で使用される電極用組成物においてこれらのフラックスは、それぞれ1種単独で使用してもよく、2種類以上を組み合わせて使用することもできる。
前記電極用組成物において、フラックスを含有する場合のフラックスの含有率としては、リン含有銅合金粒子の耐酸化性を効果的に発現させ、錫含有粒子の溶融を促進させる観点及び電極の焼成完了時にフラックスが除去された部分の空隙率低減の観点から、電極用組成物の全質量中に、0.1質量%〜5質量%であることが好ましく、0.3質量%〜4質量%であることがより好ましく、0.5質量%〜3.5質量%であることが更に好ましく、0.7質量%〜3質量%であることが特に好ましく、1質量%〜2.5質量%であることが極めて好ましい。
(その他の成分)
本発明で使用される電極用組成物は、上述した成分に加え、必要に応じて、当該技術分野で通常用いられるその他の成分を更に含むことができる。その他の成分としては、例えば、可塑剤、分散剤、界面活性剤、無機結合剤、金属酸化物、セラミック、及び有機金属化合物を挙げることができる。
本発明で使用される電極用組成物の製造方法としては特に制限はない。前記リン含有銅合金粒子、前記錫含有粒子、ガラス粒子及び分散媒を、通常用いられる分散方法又は混合方法を用いて、分散又は混合することで製造することができる。
分散方法及び混合方法は特に制限されず、通常用いられる分散方法及び混合方法から適宜選択して適用することができる。
<接続材料>
本発明における接続材料は、接着剤を含む。
前記接続材料は、太陽電池の製造工程において、前記電極用組成物により形成される電極と、後述する配線部材とを接続可能な接着剤を含むものであれば、形状、材質、含有成分等について特に制限されない。前記接続材料の形状としては、フィルム状、ペースト状、溶液状等を挙げることができる。前記接続材料の形状については、接続材料に含まれる他の成分の種類及び含有率によって適宜調整可能である。太陽電池の製造効率、取扱性、発電性能の安定性等の観点から、前記接続材料はフィルム状であることが好ましい。
フィルム状の接続材料を形成する観点から、前記接続材料は、接着剤と、硬化剤と、フィルム形成材と、を含むことが好ましい。
このような接続材料としては、例えば、特開2007−214533号公報に記載の導電性接着フィルムを挙げることができ、本発明においてもこれらを好適に使用することができる。このような接続材料を用いることで、安定した発電性能を示す太陽電池及び太陽電池モジュールを提供することができる。これは、例えば以下のように考えることができる。
前記導電性接着フィルムを用いて太陽電池素子の電極と配線部材との接続を行う場合は、200℃付近の低温領域での接続が可能となるため、薄い太陽電池素子を用いた場合でも、配線部材との接続の際の反り又は割れが発生するのを抑えることができる。またはんだ接続の際生じるはんだの染み出しが発生しないため、太陽電池素子の受光面積を広げることができ、結果として発電性能の向上も期待できる。
前記接続材料を用いることにより、上記で述べたような発電性能の向上などの効果が期待できる。
なお、特開2007−214533号公報等に記載の導電性接着フィルムは、導電性粒子を含んでおり、加熱圧着時に該導電性粒子を介して基板間の導電性を発現することができる。本発明で用いる接続材料はこの組成に限定されるものではなく、該導電性粒子を含んでいなくてもよい。すなわち、接続材料に導電性粒子を含んでいない場合は、該銅含有電極と配線部材は、加圧で接続材料が流動排除された部分にて直接接触することで導電性を得ることができる。
前記接続材料は、配線部材の加熱圧着の条件下で、40000Pa・s以下の粘度を有することが好ましい。40000Pa・s以下の粘度であれば、配線部材の加熱圧着時に電極に生じた空隙部へより容易に侵入可能となる。接続材料の粘度は20000Pa・s以下であることが好ましく、15000Pa・s以下の粘度であることがより好ましい。なお、接続材料の粘度は、太陽電池の製造工程における取り扱いの点で、5000Pa・s以上であることが好ましい。
接続材料の粘度は、Rheometric社製ずり粘弾測定装置(ARES)を用いて、周波数10Hzの条件により確認することができる。
以下、各成分について説明する。
(接着剤)
前記接着剤としては、絶縁性を示すものであることが好ましい。絶縁性を示す接着剤としては、特に制限はないが、接着信頼性の観点から、熱硬化性樹脂を使用することが好ましい。
熱硬化性樹脂としては公知のものを使用でき、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、及びポリカーボネート樹脂が挙げられる。中でもより充分な接続信頼性を得る観点から、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂のうちの少なくとも1種を含むことが好ましい。
前記接着剤の含有率は特に制限されない。硬化前のフィルム形成性又は硬化後の接着力の観点から、接続材料中に20質量%以上70質量%以下であることが好ましく、30質量%以上60質量%以下であることがより好ましく、40質量%以上50質量%以下であることが更に好ましい。
(硬化剤)
前記接続材料に含有可能な硬化剤としては、アニオン重合性の触媒型硬化剤、カチオン重合性の触媒型硬化剤、重付加型の硬化剤等が挙げられる。これらは単独又は2種以上の混合物として使用できる。これらのうち、速硬化性において優れ、化学当量的な考慮が不要である点から、アニオン又はカチオン重合性の触媒型硬化剤が好ましい。
アニオン又はカチオン重合性の触媒型硬化剤としては、例えば、第3級アミン誘導体、イミダゾール誘導体、ヒドラジド化合物、三フッ化ホウ素−アミン錯体、オニウム塩(スルホニウム塩、アンモニウム塩)アミンイミド、ジアミノマレオニトリル、メラミン及びその誘導体、ポリアミンの塩、及びジシアンジアミドが挙げられ、これらの変成物も用いることが可能である。重付加型の硬化剤としては、ポリアミン、ポリメルカプタン、ポリフェノール、酸無水物等が挙げられる。
アニオン又はカチオン重合性の触媒型硬化剤としては、接着力の点で具体的には第3級アミン誘導体又はイミダゾール誘導体を用いることが好ましく、イミダゾール誘導体を用いることがより好ましい。
前記硬化剤としては、加熱圧着による反応開始の活性点が比較的明瞭であり、加熱圧着工程を伴う接続方法に好適であるとの理由から、潜在性硬化剤が好ましい。ここで潜在性硬化剤とは、ある特定の条件下(温度等)で硬化機能が発現されるものである。潜在性硬化剤としては、通常の硬化剤をマイクロカプセルなどで保護したもの、硬化剤と各種化合物とが塩を形成した構造のもの等が挙げられる。
このような潜在性硬化剤においては、例えば、特定の温度を超えるとマイクロカプセル又は塩から硬化剤が系中に放出され、硬化機能が発現される。
潜在性硬化剤の例としては、アミン化合物とエポキシ化合物の反応生成物(アミンーエポキシアダクト系)、アミン化合物とイソシアネート化合物又は尿素化合物との反応生成物(尿素型アダクト系)が挙げられる。潜在性硬化剤の市販品としては、アミキュア(味の素株式会社製、登録商標)、マイクロカプセル化されたアミンをフェノール樹脂に分散させたノバキュア(旭化成イーマテリアルズ株式会社製、登録商標)等が挙げられる。
前記接続材料における硬化剤の含有率は特に制限されないが、接着力の観点から、前記接着剤と前記硬化剤との総含有率を100質量%としたときの硬化剤の含有率が、10質量%以上50質量%以下であることが好ましく、20質量%以上40質量%以下であることがより好ましい。
(フィルム形成材)
前記フィルム形成材としては、フェノキシ樹脂、アクリルゴム、ポリイミド樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、ポリエステルウレタン樹脂、ポリビニルブチラール樹脂等が挙げられ、フェノキシ樹脂又はアクリルゴムであることが好ましい。
前記フィルム形成材の含有率は特に制限されないが、作製された接続材料の硬さ、後に述べる剥離フィルム上からの剥がし易さなどの観点から、前記接着剤と前記硬化剤と前記フィルム形成材との総含有率を100質量%としたときのフィルム形成材の含有率が、20質量%以上80質量%以下であることが好ましく、30質量%以上70質量%以下であることがより好ましい。
(導電性粒子)
前記接続材料は、導電性粒子を更に含有することができる。導電性粒子を含有することで、太陽電池モジュールの発電性能をより向上することができる。
導電性粒子としては、特に限定されるものではないが、例えば金粒子、銀粒子、銅粒子、ニッケル粒子、金めっきニッケル粒子、金/ニッケルめっきプラスチック粒子、銅めっき粒子、及びニッケル粒子が挙げられる。また導電性粒子を含有する場合は、導電性粒子の粒子径は、1μm〜50μmであることが好ましく、1μm〜30μmであることがより好ましく,1μm〜25μmであることが更に好ましい。また、接続材料中の導電性粒子の含有率は、導電性の観点から、接続材料の全体積を100体積%として、1体積%以上15体積%以下であることが好ましく、2体積%以上12体積%以下であることがより好ましく、3体積%以上10体積%以下であることが更に好ましい。
(その他の成分)
前記接続材料は、上述した成分に加え、接着性又は濡れ性を改善するために、シランカップリング剤、チタネート系カップリング剤、アルミネート系カップリング剤等の改質材料、また導電性粒子を加える場合は、その分散性を向上させるために、リン酸カルシウム、炭酸カルシウム等の分散剤、銀又は銅マイグレーション等を抑制するためのキレート材料などを含有させることができる。
前記接続材料は、例えば、上述した各種材料を溶剤に溶解又は分散させてなる塗布液をポリエチレンテレフタレートフィルム等の剥離フィルム上に塗布し、溶剤を除去することにより作製することができる。
<配線部材>
前記電極接続セットは、配線部材を要素の一つとして含むことができる。
前記配線部材は特に制限されないが、太陽電池用のはんだ被覆された銅線(タブ線)を好適に用いることができる。はんだの組成は、Sn−Pb系、Sn−Pb−Ag系、Sn−Ag−Cu系などを挙げることができるが、環境に対する影響を考慮すると、実質的に鉛を含まないSn−Ag−Cu系はんだを用いることが好ましい。
前記タブ線の銅線の厚さについては特に制限されないが、加熱加圧処理時の太陽電池素子との熱膨脹係数差又は接続信頼性及びタブ線自身の抵抗率の観点から、0.05mm〜0.5mmとすることができ、0.1mm〜0.5mmとすることが好ましい。
また前記タブ線の断面形状は特に制限されず、断面形状が長方形(平角線)及び楕円形(丸線)のいずれも適用できるが、前記接続材料を加熱圧着する際の前記接続材料の前記銅含有電極の空隙部への入り込み性、加熱圧着時の圧力の均一性等の観点から、断面形状が長方形(平タブ)を用いることが好ましい。
また前記タブ線の総厚みは特に制限されないが、加熱圧着時の圧力の均一性などの観点から、0.1mm〜0.7mmとすることが好ましく、0.15mm〜0.5mmとすることがより好ましい。
[太陽電池の製造方法]
本発明にかかる太陽電池の製造方法は、前記電極接続セットを用いて、電極を形成し、得られた電極に配線部材を接続するものである。
即ち、前記太陽電池の製造方法は、前記電極用組成物を、前記pn接合を有する半導体基板上に付与する工程(電極用組成物付与工程という)と、前記電極用組成物が付与された半導体基板を熱処理して、銅含有電極を形成する工程(電極形成工程という)と、前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程(積層工程という)と、前記積層体を、加熱加圧処理する工程(加熱加圧処理工程という)と、を含む。
前記太陽電池の製造方法によって、電極と配線部材とが、高い接続強度(密着性)及び高い接続信頼性を有する太陽電池を製造することができる。
(太陽電池素子の製造工程)
前記電極用組成物付与工程と前記電極形成工程により、太陽電池素子が得られる。本明細書において太陽電池素子とは、pn接合を有する半導体基板と、半導体基板上に形成された電極とを有するものを意味する。
前記電極用組成物付与工程では、前記半導体基板上の電極を形成する領域に、電極用組成物を付与する。電極用組成物を付与する方法としては、例えば、スクリーン印刷、インクジェット法、ディスペンサー法を挙げることができるが、生産性の観点から、スクリーン印刷による付与であることが好ましい。
電極用組成物をスクリーン印刷によって付与する場合、電極用組成物は、20Pa・s〜1000Pa・sの範囲の粘度を有することが好ましい。なお、電極用組成物の粘度は、ブルックフィールドHBT粘度計を用いて25℃の温度及び回転数5.0rpmの条件で測定される。
電極用組成物の付与量は、形成する銅含有電極の大きさ等に応じて適宜選択することができる。例えば、電極用組成物付与量として2g/m〜10g/mとすることができ、4g/m〜8g/mであることが好ましい。
電極形成工程では、電極用組成物を付与した後の前記半導体基板を、乾燥後に熱処理する。これにより、電極用組成物の焼成が行われて、半導体基板上の所望の領域に銅含有電極が形成され、太陽電池素子を得ることができる。前記電極用組成物を用いることで、酸素の存在下(例えば、大気中)で熱処理(焼成処理ということがある)を行っても、抵抗率の低い電極を形成することができる。
前記電極用組成物を用いて半導体基板上に銅含有電極を形成する際の熱処理条件(焼成条件)としては、通常用いられる熱処理条件を適用することができる。
一般に、熱処理温度(焼成温度)としては800℃〜900℃であるが、前記電極用組成物を用いる場合には、より低温の熱処理条件から一般的な熱処理条件までの広範な範囲に適用することができる。例えば、450℃〜900℃の広範な熱処理温度で良好な特性を有する電極を形成することができる。
また熱処理時間は、熱処理温度等に応じて適宜選択することができ、例えば、1秒〜20秒とすることができる。
熱処理装置としては、上記温度に加熱できるものであれば適宜採用することができ、例えば、赤外線加熱炉、及びトンネル炉を挙げることができる。赤外線加熱炉は、電気エネルギーを電磁波の形で加熱材料に直接投入し、熱エネルギーに変換されるため高効率であり、また短時間での急速加熱が可能である。更に、燃焼による生成物がなく、また非接触加熱であるため、形成される電極の汚染を抑えることが可能である。トンネル炉は、試料を自動で連続的に入り口から出口へ搬送し、焼成するため、炉体の区分けと搬送スピードの制御により、均一に焼成することが可能である。太陽電池素子の発電性能の観点からは、トンネル炉により熱処理することが好適である。
以下、太陽電池素子の具体例及びその製造方法を、図面を参照しながら説明するが、本発明はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
代表的な太陽電池素子の一例を示す断面図、受光面及び裏面の概要を図1〜図4に示す。
図1に概略断面図を示すように、半導体基板1の一方の面の表面付近には、n型拡散層2が形成され、n型拡散層2上に受光面出力取出し電極4及び反射防止膜3が形成されている。また他方の面の表面付近にはp型拡散層7が形成され、p型拡散層7上に裏面出力取出し電極6及び裏面集電用電極5が形成されている。通常、太陽電池素子の半導体基板1には、単結晶又は多結晶シリコンが使用される。この半導体基板1には、ホウ素などが含有され、p型半導体を構成している。受光面側には太陽光の反射を抑制するために、NaOHとIPA(イソプロピルアルコール)からなるエッチング溶液により凹凸(テクスチャともいう、図示せず)が形成されている。その受光面側にはリン等が拡散(ドーピング)され、n拡散層2がサブミクロンオーダーの厚みで設けられているとともに、p型バルク部分との境界にpn接合部が形成されている。更に受光面側には、n型拡散層2上に窒化ケイ素などの反射防止膜3が、PECVDなどによって膜厚90nm前後で設けられている。
次に、図2に概略を示す受光面側に設けられた受光面出力取出し電極4及び受光面集電用電極8と、図4に概略を示す裏面に形成される集電用電極5及び出力取出し電極6の形成方法について説明する。
受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6は、前記電極用組成物から形成される。また裏面集電用電極5はガラス粉末を含むアルミニウム電極用組成物から形成されている。受光面出力取出し電極4と、受光面集電用電極8と、裏面出力取出し電極6及び裏面集電用電極5を形成する第一の方法として、前記電極用組成物及びアルミニウム電極用組成物をスクリーン印刷等にて所望のパターンに付与した後、乾燥後に、大気中750℃〜900℃程度で同時に焼成して形成することが挙げられる。
その際に、受光面側では、前記受光面出力取出し電極4と前記受光面集電用電極8を形成する前記電極用組成物に含まれるガラス粒子と、反射防止膜3とが反応(ファイアースルー)して、受光面出力取出し電極4及び受光面集電用電極8とn型拡散層2とが電気的に接続(オーミックコンタクト)される。
本発明においては、前記電極用組成物を用いて受光面出力取出し電極4と受光面集電用電極8が形成されることで、導電性金属として銅を含みながら、銅の酸化が抑制され、抵抗率の低い銅含有電極が良好な生産性で形成される。
更に前記銅含有電極がCu−Sn合金相及び/又はCu−Sn−Ni合金相とSn−P−Oガラス相とを含んで構成されることが好ましく、Sn−P−Oガラス相がCu−Sn合金相若しくはCu−Sn−Ni合金相とシリコン基板との間に配置される(不図示)ことがより好ましい。これにより銅とシリコン基板との反応が抑制され、抵抗率が低く密着性に優れる電極を形成することができる。
また裏面側では、焼成の際に裏面集電用電極5を形成するアルミニウム電極用組成物中のアルミニウムが半導体基板1の裏面に拡散して、p型拡散層7を形成することによって、半導体基板1と裏面集電用電極5及び裏面出力取出し電極6との間にオーミックコンタクトを得ることができる。
受光面出力取出し電極4、受光面集電用電極8及び裏面出力取出し電極6を形成する第二の方法として、裏面集電用電極5を形成するアルミニウム電極用組成物を先に印刷し、乾燥後に大気中750℃〜900℃程度で焼成して裏面集電用電極5を形成した後に、前記電極用組成物を受光面側及び裏面側に付与し、乾燥後に大気中450℃〜650℃程度で焼成して、受光面出力取出し電極4と受光面集電用電極8及び裏面出力取出し電極6を形成する方法が挙げられる。
この方法は、例えば以下の場合に有効である。すなわち、裏面集電用電極5を形成するアルミニウム電極用組成物を焼成する際に、650℃以下の焼成温度では、アルミニウム電極用組成物の組成によっては、アルミニウム粒子の焼結及び半導体基板1へのアルミニウム拡散量が不足して、p拡散層を充分に形成できない場合がある。この状態では裏面における半導体基板1と裏面集電用電極5、裏面出力取出し電極6との間にオーミックコンタクトが充分に形成できなくなり、太陽電池素子としての発電性能が低下する場合がある。そこで、アルミニウム電極用組成物に最適な焼成温度(例えば750℃〜900℃)で裏面集電用電極5を形成した後、前記電極用組成物を付与し、乾燥後に比較的低温(例えば450℃〜650℃)で焼成して、受光面出力取出し電極4と受光面集電用電極8及び裏面出力取出し電極6を形成することが好ましい。
いずれの方法を選択した場合であっても、焼成後に得られる受光面集電用電極8及び裏面出力取出し電極6の膜厚は、例えば、3μm〜50μm、好ましくは5μm〜30μmとすることができる。なお、本発明における層又は積層体の膜厚は、対象となる層又は積層体の5点の厚みを測定し、その算術平均値として与えられる値とする。層又は積層体の膜厚は、マイクロメータを用いて測定したものとする。
また前記太陽電池素子は、図3の平面図で示すように、受光面出力取出し電極4を形成しない形態をとることも可能である。図3に示された太陽電池素子は、図2及び図4に示す構造を有する太陽電池素子と同様にして製造することができる。これは、例えば以下のように考えることができる。
本発明においては、前記接続材料を用いるため、前述したように配線部材を接続する対象は、はんだの濡れ性を必要としない。本発明では前記接続材料を用いることで、半導体基板1に形成された反射防止膜3と、配線部材を強固に密着させることができる。また太陽電池素子の受光面における受光面集電用電極8と配線部材との電気的な接続は、接続材料の流動排除による受光面集電用電極8と配線部材とが直接接触している部分、及び、前記接続材料が導電性粒子を含んでいる場合は、受光面集電用電極8と配線部材とが加熱圧着により該導電性粒子を介して接触している部分を形成することで達成される。
(太陽電池の製造工程)
上述のようにして得られた太陽電池素子を用いて、更に前記積層工程と加熱加圧処理工程により、太陽電池素子を含む太陽電池が得られる。本発明において、太陽電池とは、太陽電池素子上に配線部材が設けられ、必要に応じて複数の太陽電池素子が配線部材を介して接続された状態のものを意味する。
より具体的には、本発明の太陽電池は、銅を含む金属部とガラス部と接着部材とを含む導電層が半導体基板と配線部材との間に介在している構造を有する。前記導電層では、前記金属部と前記ガラス部とからなる銅含有電極がその上の配線部材と接している構造と、銅含有電極の空隙部に接続材料の一部が入り込んだ構造とを含有する。銅含有電極と配線部材とが直接接している構造を有することで、接続信頼性を向上させることができ、銅含有電極の空隙部に接続材料の一部が入り込んだ構造を有することで、銅含有電極と配線部材との密着性が向上する。
次に、本発明の太陽電池の具体例及びその製造方法を、図5〜図7を参照しながら説明するが、本発明はこれに限定されるものではない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
図5〜図7に示すように、受光面出力取出し電極4及び裏面出力取出し電極6に、接続材料10と配線部材9とをこの順に配して積層体を得て(積層工程)、得られた積層体を加熱加圧処理(加熱圧着処理)することで、受光面出力取出し電極4と配線部材9とが圧着され、裏面出力取出し電極6と配線部材9とが圧着されて太陽電池が形成される。前記太陽電池を複数接続する際は、配線部材9は、その一端が太陽電池素子の受光面出力取出し電極4と、他端が、別の太陽電池素子の裏面出力取出し電極6と、それぞれ配線部材9を介して接続されるように配列すればよい。なお、太陽電池を製造する場合においては、図3に示すように、受光面出力取出し電極4を形成しない太陽電池素子を用いることもできる。
また本発明の太陽電池を製造する際、前記電極と配線部材とを加熱圧着させる条件としては、当該技術分野で通常用いられる加熱加圧処理条件を適用することができる。
一般に、加熱温度としては、150℃以上200℃以下であることが好ましく、150℃以上190℃以下であることがより好ましい。また圧着時の圧力は、0.1MPa以上4.0MPa以下であることが好ましく、0.5MPa以上3.5MPa以下であることがより好ましい。加熱加圧の時間は、3秒以上30秒以下であることが好ましく、4秒以上20秒以下であることが好ましい。上記の条件で加熱加圧処理することによって、前記接続材料が前記銅含有電極の空隙に入り込み易くなり、電極と配線部材との接着力が向上し、また、接続材料が効率よく流動排除されることで、電極と配線部材とが直接接触し易くなり、結果として電極と配線部材の電気的な接触抵抗を減少させることができる。加圧の方向としては、少なくとも電極と配線部材との積層方向に加圧されて電極と配線部材とが接着されれば、いずれの方向であってもよい。
加熱圧着装置としては、上記温度と圧力を付与できるものであれば適宜採用することができ、例えば、加熱機構を有する圧着ヘッドを備える熱圧着機などを好適に用いることができる。この場合、目標圧力と接着面積から、圧着ヘッドの加圧力((目標圧力)×(接着面積))を適宜設定できるものが特に好ましい。
[太陽電池の構造]
前記電極接続セットを用いて製造された太陽電池は、半導体基板と、半導体基板上に形成された電極と、電極上に配置された配線部材とを備えており、前記電極は、金属部及びガラス部と、電極形成時の焼成により形成された空隙部に相当する部分とを有している。太陽電池は、配線接続部として、半導体基板上に、金属部、ガラス部及び接続材料を含む導電層と、配線部材とが積層された部分構造を有している。
上述したように、電極形成時の焼成によって銅含有電極の空隙部が不規則且つ任意の形状で発生し、電極を構成する金属部の輪郭は、空隙部の形成によって不均一な形状となる。このような電極と配線部材との加熱圧着時に、前記接続材料が、接続材料の付与面、即ち配線部材側から該空隙部へ侵入する。その結果、前記配線接続部における半導体基板と配線部材との間には、金属部と、ガラス部と、前記空隙部に相当する部分に侵入した接続材料と、を含む導電層が形成される。導電層では、前記空隙部の発生によって金属部と金属部(場合によっては、ガラス部を表面に有する金属部)との間に接続材料が侵入しているため、配線部材と電極との境界面には、不均一な形状となった金属部の輪郭に応じた不規則な凹凸が形成される。
このような形態の太陽電池は、例えば、半導体基板と導電層と配線部材との積層方向での断面を観察した場合に、金属部(金属部の表面にガラス部が存在している場合にはガラス部)と接続材料との境界線は不規則に曲折する(図8参照)。この不規則な曲折状態を示す金属部又はガラス部と接続材料との境界線の存在は、例えば、半導体基板と導電層と配線部材との積層方向に平行な断面(観察断面)を用いて確認することができる。
導電層内部の形状の確認に適用される観察断面は、半導体基板、導電層及び配線部材の積層方向と平行な方向に沿った二辺と、半導体基板、導電層及び配線部材の積層方向に対して垂直な方向に沿った二辺とで囲まれた矩形状として設定すればよい。この観察断面において、半導体基板、導電層及び配線部材の積層方向と平行な方向の辺の長さを「高さ」とし、半導体基板、導電層及び配線部材の積層方向に対して垂直な方向の長さを「幅」とする。観察断面には、少なくとも導電層と、これを挟む配線部材及び半導体基板のそれぞれ少なくとも一部が含まれていればよい。
この観察断面の大きさは、太陽電池の大きさによって異なるが、例えば、幅を100μm〜500μmとし、高さを、導電層の厚みよりも大きい任意の長さ、例えば50μm〜500μmとすることができる。また、観察断面は、配線接続部における観察断面であれば特に制限はないが、太陽電池の端部又は、接続材料が極端に少ない若しくは極端に多い観察断面(例えば、観察断面における導電層の面積に対して接続材料の面積が2%以下、又は98%以上)を確認対象から除外することが好ましい。
このような観察断面を用いた場合、配線接続部の銅含有電極の形状は、以下のように確認することができる。
前記配線接続部の前記観察断面において、金属部とガラス部との境界線の合計、金属部と接続材料との境界線の合計、ガラス部と接続材料との境界線の合計、並びに、存在する場合には金属部と配線部材との境界線の合計を合わせた総合の境界線の長さが、該観察断面の幅の長さL(図8)よりも長いことにより確認することができる。
また、前記配線接続部の前記観察断面において、当該観察断面の高さ方向と平行な方向に、配線部材と導電層との境界線から最初に接触するガラス部又は金属部までの線分を描いたときに、長さが異なる複数の線分(例えば、図8において線分D1と線分D2)が得られることにより、確認することができる。
また前記配線接続部では、金属部が配線部材と接している部分を有していてもよい(図8、枠C)。このような金属部と配線部材とが接する部分は、加熱加圧処理により、接続材料が金属部と配線部材との間から除去されることにより得られると考えられている。電極の金属部と配線部材とが直接接触する部分では、金属部と配線部材とが良好な接続状態となるため、導電粒子を含まない接続材料であっても配線部材と電極とを電気的に接続状態にすることができる。
金属部と配線部材とが直接接している部分が存在する場合には、金属部又はガラス部と接続材料又は配線部材との境界線の長さの合計と、観察断面の幅方向の長さとの比較により電極の形状を確認することが好ましい。
なお、本発明に係る太陽電池において電極と配線部材との良好な接続強度をもたらす金属部(金属部の表面にガラス部が存在している場合にはガラス部)と樹脂部との境界面の不規則な凹凸状態は、金属部(金属部の表面にガラス部が存在している場合にはガラス部)の表面粗さによって特定してもよい。
この場合、金属部の表面の算術平均粗さRaが0.8以上6.3以下であることが好ましい。なお前記算術平均粗さRaは、JIS B 0601−2001に記載の方法で測定することにより得ることができる。具体的には、表面形状測定器(株式会社ミツトヨ製、商品名:フォームトレーサSV−C3000などを用いて、半導体基板上に形成された金属部(金属部の表面にガラス部が存在している場合にはガラス部)の表面について、配線部材を積層する前又は積層された配線部材及び樹脂部を除去後に、算術平均粗さRaを直接測定することにより得ることができる。
[太陽電池モジュール]
本発明の太陽電池モジュールは、前記電極接続セットを用いて得られた太陽電池と、前記太陽電池における前記配線部材の一部を露出させて、前記太陽電池を封止した封止材と、を有するものである。
なお、本発明において太陽電池モジュールとは、前記銅含有電極を有する太陽電池素子と配線部材とを接続材料で接続した太陽電池を、太陽電池における配線部材の一部を露出させて、封止材で封止したものを意味する。前記太陽電池モジュールには、例えば、前記太陽電池を、必要に応じて複数直列及び/又は並列に接続し、環境耐性のために強化ガラスなどで挟み込み、間隙を透明性のある樹脂によって埋め、露出した配線部材を外部端子として備えたものを包含する。
太陽電池モジュールの製造方法としては、例えば図9に示すように、ガラス板11と、封止材12と、配線部材9を備えた太陽電池14と、封止材12と、バックシート13とをこの順に配し、真空ラミネータなどによる封止工程を備える、一般的な方法を好適に用いることができる。ラミネート条件としては、封止材の種類によって決定されるが、130℃〜160℃で3分以上保持することが好ましく、135℃〜150℃で3分以上保持することがより好ましい。
ガラス板11としては、太陽電池用ディンプル付き白板強化ガラスなどが挙げられる。封止材12としては、エチレンビニルアセテート(EVA)からなるEVAシートが挙げられる。バックシート13としては、ポリエチレンテレフタレート(PET)系又はテドラ−PET積層材料、金属箔−PET積層材料などが挙げられる。
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施形態に限定されるものではない。
<実施例1>
(a)電極用組成物の調製
7質量%のリンを含むリン含有銅合金を常法により調製し、これを溶解して水アトマイズ法により粉末化した後、乾燥、分級した。分級した粉末をブレンドして、脱酸素及び脱水処理し、7質量%のリンを含むリン含有銅合金粒子を作製した。なお、リン含有銅合金粒子の粒子径(D50%)は5.0μmであり、その形状は略球状であった。
二酸化ケイ素(SiO)3質量部、酸化鉛(PbO)60質量部、酸化ホウ素(B)18質量部、酸化ビスマス(Bi)5質量部、酸化アルミニウム(Al)5質量部、酸化亜鉛(ZnO)9質量部からなるガラス(以下、「G01」と略記することがある)を調製した。得られたガラスG01の軟化温度は420℃、結晶化開始温度は650℃を超えていた。
得られたガラスG01を用いて、粒子径(D50%)が2.5μmであるガラスG01粒子を得た。またその形状は略球状であった。
なお、リン含有銅合金粒子及びガラス粒子の形状は、(株)日立ハイテクノロジーズ製TM−1000型走査型電子顕微鏡を用いて観察して判定した。リン含有銅合金粒子及びガラス粒子の粒子径はベックマン・コールター(株)製LS 13 320型レーザー散乱回折法粒度分布測定装置(測定波長:630nm)を用いて算出した。ガラスの軟化温度及び結晶化開始温度は(株)島津製作所製DTG−60H型示差熱−熱重量同時測定装置を用いて、示差熱(DTA)曲線により求めた。
上記で得られたリン含有銅合金粒子を33.3質量部、錫粒子(Sn;粒子径(D50%)は5.0μm;純度99.9質量%)を22.8質量部、ニッケル粒子(Ni;粒子径(D50%)は5.0μm:純度99.9質量%)を22.2質量部、ガラスG01粒子を7.8質量部、ジエチレングリコールモノブチルエーテル(BC)を11.7質量部、ポリアクリル酸エチル(EPA)を2.2質量部、混ぜ合わせ、自動乳鉢混錬装置を用いて混合してペースト化し、電極用組成物1を調製した。得られた電極用組成物1の粘度を、ブルックフィールドHBT粘度計を用いて25℃の温度及び回転数5.0rpmの条件で測定したところ、31Pa・sであった。
(b)接続材料の調製
ブチルアクリレート40質量部と、エチルアクリレート30質量部と、アクリロニトリル30質量部と、グリシジルメタクリレート3質量部とを共重合してなるアクリルゴム(製品名:KS8200H、日立化成工業社製、重量平均分子量:850,000)125gと、フェノキシ樹脂(製品名:PKHC、ユニオンカーバイド社製、重量平均分子量45,000)50gとを、酢酸エチル400gに溶解し、30質量%溶液を得た。次いで、この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ樹脂(ノバキュアHX−3941HP、旭化成イーマテリアルズ(株)製、エポキシ当量185)325gを加えて攪拌し、接着剤組成物を得た。更に、この接着剤組成物に、直径10μm程度のNi粒子を56g加え攪拌した。
上記で得られた接着剤組成物を、ポリエチレンテレフタレートフィルム上にアプリケータ(YOSHIMITSU社製)を用いて塗布し、ホットプレート上で70℃の温度で10分間乾燥し、接続材料としての膜厚が25μmの接続材料1を作製した。なお、接続材料の膜厚は、マイクロメータ(Mitsutoyo Corp社製、ID−C112)を用いて測定した。接続材料1の粘度は、Rheometric社製ずり粘弾測定装置(ARES)を用いて、25℃、周波数10Hzの条件で測定したところ、9800Pa・sであった。
(c)太陽電池素子の作製
上記(a)及び(b)で得られた電極用組成物1及び接続材料1を電極接続セットとして用意した。
また、前記電極接続セットに加えて、配線部材として太陽電池用はんだめっき平角線(製品名:SSA−TPS L 0.2×1.5(10)、厚さ0.2mm×幅1.5mmの銅線に、Sn−Ag−Cu系鉛フリーはんだと片面に10μmの厚さでめっきした仕様のもの、日立電線社製)を用意した。
これらを用いて以下のように太陽電池素子を作製した。
まず、受光面にn型拡散層、テクスチャ及び反射防止膜(窒化ケイ素膜)が形成された厚み190μmのp型シリコン基板基板を用意し、125mm×125mmの大きさに2枚切り出した。その受光面上にスクリーン印刷法を用い電極用組成物1を図2に示すような電極パターンとなるように印刷した。電極パターンが150μm幅の受光面集電用電極と1.5mm幅の受光面出力取出し電極で構成され、焼成後の受光面集電用電極及び受光面出力取出し電極それぞれの膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、受光面とは反対側の面(以下、「裏面」ともいう)上に、電極用組成物としての電極用組成物1とペースト状のアルミニウム電極用組成物を、上記と同様にスクリーン印刷で、図4に示すような電極パターンとなるように印刷した。
電極用組成物1からなる裏面出力取出し電極のパターンは、123mm×5mmで構成され、計2ヶ所印刷した。なお、裏面出力取出し電極は焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。またアルミニウム電極用組成物を裏面出力取出し電極以外の全面に印刷して、裏面集電用電極パターンを形成した。また焼成後の裏面集電用電極の膜厚が20μmとなるように、アルミニウム電極用組成物の印刷条件を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いて、トンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子1を2枚(ピール強度評価用の1枚と発電性能評価用の1枚)作製した。
接続材料1を、太陽電池素子1の受光面出力取出し電極の幅(1.5mm)に裁断し、用意した配線部材と、太陽電池素子1の受光面出力取出し電極及び裏面出力取出し電極との間にそれぞれ、裁断後の接続材料1を配置した。次いで、熱圧着機(装置名:MB−200WH, 日化設備エンジニアリング社製)を用いて、180℃、2MPa、10秒の条件で加熱圧着し、前記電極と配線部材とが接続材料1を介して接続された構造を有する太陽電池1を、2枚作製した。
(d)太陽電池モジュールの作製
得られた太陽電池1のうち1枚(発電性能評価用の1枚)については、強化ガラス(製品名:白板強化ガラス3KWE33、AGC社製)、エチレンビニルアセテート(EVA)、バックシートを用いて、図9に示すように、ガラス(ガラス板11)/EVA(封止材12)/太陽電池1(太陽電池14)/EVA(封止材12)/バックシート(バックシート13)の順に積層し、この積層体を真空ラミネータ(装置名:LM−50×50、エヌピーシー社製)を用いて、配線部材の一部が露出するように、140℃の温度で5分間、真空ラミネートし、太陽電池モジュール1を作製した。
(e)太陽電池の断面形状
得られた太陽電池1の配線部材が接続されている部分(配線接続部)を、リファインテック社製RCO−961型ダイヤモンドカッターを用いて、太陽電池素子1と配線部材との積層方向に対して平行に切断した。得られた断面のSEM写真を、SEM((株)日立ハイテクノロジーズ製TM−1000型走査型電子顕微鏡)を用いて得た。
観察断面は、前記切断方向の長さを高さとし、切断方向に平行な方向の長さを幅として、300μm×250μmの矩形状とし、配線接続部に中の接続材料が面積比で2%以下、又は98%以上でないものを観察断面として選択した。
観察断面において、接続材料と金属部又はガラス部との境界線の長さの合計をAdobe illustrator CS6を用いて、測定した。実際の断面図の約1万倍に拡大して測定を行った。上記の境界線の長さに該当する線分は、「鉛筆ツール」でなぞり、「オブジェクトツール」を用いることで長さを測定した。観察断面の幅の長さは、「直線ツール」で観察断面の幅と同じ長さの直線を描き、「オブジェクトツール」を用いることで測定した。それぞれ得られた境界線の長さに該当する線分と、観察断面の幅に該当する線分との長さを比較した。
なお、電極用組成物1の組成については表1に、太陽電池1及び太陽電池モジュール1の構成については表2にそれぞれ示す。以下、同様である。
表2において、「適用した電極」の欄に記載の「○」は、対象となる電極が用いられていることを意味し、「−」は、対象となる電極が用いられていないことを意味する。その他の欄における「−」は、該当項目がないことを意味する。
<実施例2〜6>
実施例1において、リン含有銅合金粒子のリン含有率、粒子径(D50%)及びその含有量、錫含有粒子の組成、粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、樹脂の種類及びその含有量を表1に示したように変更したこと以外は、電極用組成物1と同様にして電極用組成物2〜6をそれぞれ調製した。
なおガラスG02は、酸化バナジウム(V)45質量部、酸化リン(P)24.2質量部、酸化バリウム(BaO)20.8質量部、酸化アンチモン(Sb)5質量部、酸化タングステン(WO)5質量部からなるように調製した。このガラスG02の軟化温度は492℃で、結晶化開始温度は650℃を超えていた。また表中における溶剤Terはテルピネオールを、樹脂ECはエチルセルロースを、それぞれ示す。
次いで、得られた電極用組成物2〜6をそれぞれ用い、焼成条件(最高温度及び保持時間)を表2に示す条件に変更したこと以外は、実施例1と同様にして太陽電池素子2〜6、太陽電池2〜6及び太陽電池モジュール2〜6を、それぞれ作製した。
<実施例7>
実施例1において、受光面集電用電極及び受光面出力取出し用電極を形成するために、電極用組成物1を適用したこと、及び、裏面出力取出し用電極を形成するために、下記に示す電極用組成物7を適用したこと以外は、実施例1と同様にして、太陽電池素子7、太陽電池7及び太陽電池モジュール7を、それぞれ作製した。
電極用組成物7は、ガラス粒子の組成をガラスG01から、以下に示すガラスG03に変更したこと以外は、電極用組成物1と同様にして調製した。
なおガラスG03は、二酸化ケイ素(SiO)13質量部、酸化ホウ素(B)58質量部、酸化亜鉛(ZnO)38質量部、酸化アルミニウム(Al)12質量部、酸化バリウム(BaO)12質量部からなるように調製した。得られたガラスG03の軟化温度は583℃で、結晶化開始温度は650℃を超えていた。
<実施例8>
実施例7において、裏面出力取出し用電極を形成するために、下記に示す電極用組成物8を適用したこと以外は、実施例7と同様にして、太陽電池素子8、太陽電池8及び太陽電池モジュール8を、それぞれ作製した。
電極用組成物8は、リン含有銅合金粒子(リン含有率は8質量%;粒子径(D50%)は5.0μm)を40.9質量部、錫粒子(Sn;粒子径(D50%)は5.0μm)を29.8質量部、Ni−6Cu−20Zn粒子(粒子径(D50%)は5.0μm)を13.6質量部、ガラスG03粒子を6.8質量部、ジエチレングリコールモノブチルエーテル(BC)を19.0質量部、ポリアクリル酸エチル(EPA)を6.0質量部混ぜ合わせ、自動乳鉢混練装置を用いて混合してペースト化することで作製した。
<実施例9>
受光面にn型拡散層、テクスチャ及び反射防止膜(窒化ケイ素)が形成された膜厚190μmのp型シリコン基板基板を用意し、125mm×125mmの大きさに2枚切り出した。その後、裏面にアルミニウム電極ペーストを印刷して裏面集電用電極パターンを形成した。裏面集電用電極パターンは、図4に示すように裏面出力取出し電極以外の全面に印刷した。また焼成後の裏面集電用電極の膜厚が30μmとなるように、アルミニウム電極用組成物の印刷条件を適宜調整した。これを150℃に加熱したオーブンの中に15分間入れ、溶剤を蒸散により取り除いた。
続いてトンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度800℃で保持時間10秒の加熱処理(焼成)を行って、裏面の集電用電極及びp型拡散層を形成した。
その後、上記で得られた電極用組成物1を図2及び図4に示す、受光面集電用電極、受光面出力取出し電極及び裏面出力取出し電極のパターンとなるように印刷した。電極パターンは、150μm幅の受光面集電用電極と1.5mm幅の受光面出力取出し電極で構成され、焼成後の膜厚がそれぞれ20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。裏面出力取出し電極のパターンは、123mm×5mmで構成され、計2ヶ所印刷した。焼成後の膜厚が20μmとなるよう、印刷条件(スクリーン版のメッシュ、印刷速度、印圧)を適宜調整した。これを150℃に加熱したオーブンの中に入れ、溶剤を蒸散により取り除いた。
次いで、トンネル炉(ノリタケ社製、1列搬送W/Bトンネル炉)を用いて大気雰囲気下、焼成最高温度650℃で保持時間10秒の加熱処理(焼成)を行って、所望の電極が形成された太陽電池素子9を2枚作製した。その後は実施例1と同様にして、太陽電池9及び太陽電池モジュール9を作製した。
<実施例10>
実施例9において、受光面集電用電極、受光面出力取出し電極及び裏面出力取出し電極を形成するための電極用組成物を表1に示したように電極用組成物9に変更したこと以外は、実施例9と同様にして、太陽電池素子10を2枚作製した。その後は実施例9と同様にして、太陽電池10及び太陽電池モジュール10を作製した。
<実施例11>
実施例1において、配線部材として太陽電池用はんだめっき平角線(製品名:SSA−TPS 0.2×1.5(40)、厚さ0.2mm×幅1.5mmの銅線に、Sn−Ag−Cu系鉛フリーはんだと片面に40μmの厚さでめっきした仕様のもの、日立電線社製)を用いたこと以外は、実施例1と同様にして、太陽電池11及び太陽電池モジュール11を作製した。
<実施例12>
実施例1において、加熱圧着条件を、170℃、2MPa、20秒に変更したこと以外は、実施例1と同様にして、太陽電池12及び太陽電池モジュール12を作製した。
<実施例13>
実施例1において、加熱圧着条件を、190℃、1.5MPa、10秒に変更したこと以外は、実施例1と同様にして、太陽電池13及び太陽電池モジュール13を作製した。
<実施例14>
実施例1において、接続材料を接続材料1から接続材料2に変更したこと以外は、実施例1と同様にして、太陽電池14及び太陽電池モジュール14を作製した。なお、接続材料2は、導電性粒子としてNi粒子を含まないこと以外は、接続材料1と同様にして作製した。接続材料2の粘度は、接続材料1と同様に測定したところ、9500Pa・sであった。
<実施例15>
実施例1において、受光面出力取出し電極を形成せずに、図3に示すような受光面電極パターンを適用したこと以外は、実施例1と同様にして、太陽電池15及び太陽電池モジュール15を作製した。
<実施例16>
実施例14において、受光面出力取出し電極を形成せずに、図3に示すような受光面電極パターンを適用したこと以外は、実施例14と同様にして、太陽電池16及び太陽電池モジュール16を作製した。
<実施例17>
実施例1において、リン含有銅合金粒子のリン含有率、粒子径(D50%)及びその含有量、錫含有粒子の組成、粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、樹脂の種類及びその含有量を表1に示したように変更した以外は、電極用組成物1と同様にして電極用組成物10を調製した。電極組成物10を用いた以外は、実施例1と同様にして、太陽電池素子17を3枚作製した。その後は実施例1と同様にして、太陽電池17及び太陽電池モジュール17を作製した。
なおガラスG04は、酸化ホウ素を12.8質量部、二酸化ケイ素を8.7質量部、酸化ビスマスを78.5質量部からなるように調製した。このガラスG04の軟化温度は451℃で、結晶化開始温度は650℃を超えていた。
<比較例1>
実施例1における太陽電池の作製において、受光面出力取出し電極及び裏面出力取出し電極と、配線部材との接続にはんだ溶融を用いたこと以外は、実施例1と同様にして、太陽電池C1及び太陽電池モジュールC1を作製した。具体的には、太陽電池素子1の電極表面にフラックス(製品名:デルタラックス、千住金属工業社製)を付与し、その上でSn−Ag−Cu系鉛フリーはんだを温度240℃で溶融し、配線部材を配して接続させた。
<比較例2>
実施例1における電極用組成物の調製において、リン含有銅合金粒子、錫含有粒子及びニッケル含有粒子を用いずに、表1に示すように、銀粒子を用いた電極用組成物C2を調製した。電極用組成物C2を用いたこと以外は、実施例1と同様にして、太陽電池素子C2、太陽電池C2及び太陽電池モジュールC2を作製した。
<比較例3>
実施例1における太陽電池の作製において、受光面出力取出し電極及び裏面出力取出し電極と、配線部材との接続に、以下の導電性ペーストを用いたこと以外は、実施例1と同様にして、太陽電池C3及び太陽電池モジュールC3を作製した。
具体的には、銀粒子(Ag;粒子径(D50%)は3.0μm;純度99.8質量%)を78.0質量部、ポリエチレンオキチオフェンを3.5質量部、エポキシ樹脂を1.2質量部、N−メチル−2−ピロリドン(NMP)を17.3質量部混ぜ合わせ、自動乳鉢混錬装置を用いて混合してペースト化し、導電性ペーストを調製した。次いで前記導電性ペーストを太陽電池素子の電極表面に付与し、この上に配線部材(SSA−TPS L 0.2×1.5(10))を配し、これを150℃の温度で15分間加熱して導電性ペーストを硬化させ、太陽電池素子電極と配線部材とを接続した。
<比較例4>
実施例1において、ガラス粒子を用いずに、リン含有銅合金粒子のリン含有率、粒子径(D50%)及びその含有量、錫含有粒子の組成、粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、樹脂の種類及びその含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用組成物C1をそれぞれ調製した。
次いで、得られた電極用組成物C1を用い、実施例1と同様にして太陽電池素子C4、太陽電池C4及び太陽電池モジュールC4を、それぞれ作製した。
<比較例5>
実施例1において、錫含有粒子を用いずに、リン含有銅合金粒子のリン含有率、粒子径(D50%)及びその含有量、ニッケル含有粒子の組成、粒子径(D50%)及びその含有量、ガラス粒子の種類、粒子径(D50%)及びその含有量、溶剤の種類及びその含有量、樹脂の種類及びその含有量を表1に示したように変更したこと以外は、実施例1と同様にして電極用組成物C3をそれぞれ調製した。
次いで、得られた電極用組成物C3を用い、実施例1と同様にして太陽電池素子C5、太陽電池C5及び太陽電池モジュールC5を、それぞれ作製した。
<評価>
(ピール強度)
作製した太陽電池のうち1枚については、受光面出力取出し電極及び裏面出力取出し電極に接続した配線部材のピール強度を測定した。なお、配線部材のピール強度は、卓上ピール試験機(装置名:EZ−S、島津製作所製)を用い、配線部材の90°はく離接着強さを測定した。また測定は、JIS K 6854−1;接着剤−はく離接着強さ試験方法 に準拠して行い、配線部材の引張り速度を50mm/min、配線部材の引張り距離を100mmとした。各試験について,配線部材引張り距離−試験力曲線をプロットし、引張り距離の10mm、20mm、30mm、40mm、及び50mmにおける試験力の平均値をはく離接着強さとした。得られた値を、比較例1(太陽電池C1)の測定値を100.0とした相対値に換算して表3に示した。
(発電性能)
また作製した太陽電池のうちもう一枚については、上記に示すように太陽電池モジュールを作製し、その発電性能について評価を行った。評価は、擬似太陽光(装置名:WXS−155S−10、ワコム電創社製)と、電圧−電流(I−V)評価測定器(装置名:I−V CURVE TRACER MP−160、EKO INSTRUMENT社製)の測定装置を組み合わせて行った。太陽電池としての発電性能を示すJsc(短絡電流)、Voc(開放電圧)、FF(フィルファクター)、Eff(変換効率)は、それぞれJIS−C−8913及びJIS−C−8914に準拠して測定を行い得られたものである。得られた各測定値を、比較例1(太陽電池モジュールC1)の測定値を100.0とした相対値に換算して表3に示した。
実施例1〜17で作製した太陽電池における配線部材のピール強度は、比較例1の測定値と比べて、高い値を示した。これは、本発明で形成した銅含有電極の空隙部に、接続材料が効率よく入り込み、アンカー効果によって力学的な接着強度が向上したことが考えられる。一方比較例2については、配線部材のピール強度が比較例1の測定値より低いことが分かった。これについては、形成した電極が空隙部を殆ど含まず、接着剤による充分なアンカー効果が得られなかったことによるものと考えられる。
また比較例3についても、配線部材のピール強度が比較例1の測定値より低かった。これについては電極と配線部材間を導電性ペーストで接続しており、導電性ペースト中の導電性粒子の焼結が不充分であるため、機械的強度が保てなかったことによると考えられる。また同様の理由で、導電性粒子間の接触抵抗成分が多く含まれるために、配線接続部における抵抗率も増加してしまい、結果として発電性能の低下が引き起こされたものと考えられる。
また実施例1〜17で作製した太陽電池モジュールの発電性能は、比較例1の測定値と比べて、ほぼ同等であった。特に太陽電池モジュール15及び16は、受光面出力取出し電極を形成していないにもかかわらず、高い発電性能を示した。このことから、加熱圧着によって絶縁性接着剤が流動排除され、配線部材が、受光面及び裏面出力取出し電極のみならず、受光面集電用電極とも、直接接触している部分を有しており、高い導電性が得られているものと考えられる。
また実施例1で作製した太陽電池の配線接続部の積層方向に平行な断面としての観察断面では、シリコン基板上に、不均一な形状の金属部が不規則に配置されており、接続材料と金属部との境界線は、不均一な形状となった金属部の輪郭に応じて観察断面の幅方向に不規則に曲折していた。この境界線の合計の長さは、観察断面の幅の長さと比較して長かった。実施例2〜実施例17も同様であった。
なお、比較例4及び比較例5では、配線部材のピール強度及び太陽電池モジュールの発電性能が、共に実施例1の測定値よりも低かった。このことから、いずれの特性にも、電極用組成物として錫含有粒子及びガラス粒子が必須であることがわかる。
1 半導体基板
2 n拡散層
3 反射防止膜
4 受光面出力取出し電極
5 裏面集電用電極
6 裏面出力取出し電極
7 p拡散層
8 受光面集電用電極
9 配線部材
10 接続材料
11 ガラス板
12 封止材
13 バックシート
14 太陽電池

Claims (8)

  1. リン含有銅合金粒子、錫含有粒子、ガラス粒子及び分散媒を含む電極用組成物と、
    接着剤を含む接続材料と、
    を含む電極接続セット。
  2. 前記電極用組成物が、更にニッケル粒子を含む請求項1に記載の電極接続セット。
  3. 前記接続材料が、更に硬化剤及びフィルム形成材を含む請求項1又は請求項2に記載の電極接続セット。
  4. 前記接続材料が、更に導電性粒子を含む請求項1〜請求項3のいずれか一項に記載の電極接続セット。
  5. 前記電極用組成物を、pn接合を有する半導体基板上に付与する工程と、
    前記電極用組成物が付与された半導体基板を熱処理して、銅含有電極を形成する工程と、
    前記銅含有電極上に、前記接続材料及び配線部材をこの順に積層し、積層体を得る工程と、
    前記積層体を、加熱加圧処理する工程と、
    を含む請求項1〜請求項4のいずれか一項に記載の電極接続セットを用いて太陽電池を製造する太陽電池の製造方法。
  6. 前記熱処理を450℃〜900℃で行う、請求項5に記載の太陽電池の製造方法。
  7. 請求項5又は請求項6に記載の製造方法により得られる太陽電池。
  8. 請求項5又は請求項6に記載の製造方法により得られる太陽電池と、
    前記太陽電池における前記配線部材の一部を露出させて、前記太陽電池を封止した封止材と、
    を有する太陽電池モジュール。
JP2012253657A 2012-11-19 2012-11-19 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール Pending JP2014103221A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253657A JP2014103221A (ja) 2012-11-19 2012-11-19 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253657A JP2014103221A (ja) 2012-11-19 2012-11-19 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2014103221A true JP2014103221A (ja) 2014-06-05

Family

ID=51025485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253657A Pending JP2014103221A (ja) 2012-11-19 2012-11-19 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2014103221A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115565A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
WO2015115566A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
JP2017098548A (ja) * 2015-11-17 2017-06-01 エルジー エレクトロニクス インコーポレイティド 太陽電池パネル、並びに太陽電池パネルの配線材付着装置及び方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214533A (ja) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
WO2012140786A1 (ja) * 2011-04-14 2012-10-18 日立化成工業株式会社 電極用ペースト組成物、太陽電池素子及び太陽電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214533A (ja) * 2006-01-16 2007-08-23 Hitachi Chem Co Ltd 導電性接着フィルム及び太陽電池モジュール
WO2012140786A1 (ja) * 2011-04-14 2012-10-18 日立化成工業株式会社 電極用ペースト組成物、太陽電池素子及び太陽電池
JP2012227184A (ja) * 2011-04-14 2012-11-15 Hitachi Chem Co Ltd 電極用ペースト組成物及び太陽電池素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115565A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
WO2015115566A1 (ja) * 2014-01-31 2015-08-06 日立化成株式会社 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
JP2017098548A (ja) * 2015-11-17 2017-06-01 エルジー エレクトロニクス インコーポレイティド 太陽電池パネル、並びに太陽電池パネルの配線材付着装置及び方法

Similar Documents

Publication Publication Date Title
JP5768455B2 (ja) 電極用ペースト組成物及び太陽電池素子
JP5811186B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
CN104733546A (zh) 太阳能电池和太阳能电池模块
JP5891599B2 (ja) シリコン系太陽電池の電極用ペースト組成物
WO2015115567A1 (ja) 太陽電池、太陽電池モジュール、電極付部品、半導体装置及び電子部品
JP5879793B2 (ja) 素子の製造方法及び太陽電池の製造方法
JP2014103221A (ja) 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
JP5772174B2 (ja) 素子及び太陽電池並びに電極用ペースト組成物
JP5720393B2 (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2015115565A1 (ja) 電極形成用組成物、電極、太陽電池素子及びその製造方法並びに太陽電池
JP2014103220A (ja) 太陽電池及び太陽電池モジュール
WO2015115566A1 (ja) 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
WO2017033343A1 (ja) 電極形成用組成物、電極、太陽電池素子、太陽電池及び太陽電池素子の製造方法
JP2015188089A (ja) 素子及び太陽電池
JP2015146357A (ja) 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
WO2015092901A1 (ja) 電極接続セット、太陽電池の製造方法、太陽電池及び太陽電池モジュール
JP2017163161A (ja) 太陽電池及び太陽電池モジュール
JP2015195223A (ja) 電極用ペースト組成物、太陽電池素子及び太陽電池
WO2015092900A1 (ja) 太陽電池及び太陽電池モジュール
JP2015144126A (ja) 電極用ペースト組成物及び太陽電池素子
TWI634668B (zh) 太陽電池以及太陽電池模組
JP2016189446A (ja) 太陽電池及び太陽電池モジュール
CN203910815U (zh) 太阳能电池和太阳能电池模块
JP2016054312A (ja) 素子及び太陽電池
JP2014093491A (ja) 太陽電池素子及びその製造方法、並びに太陽電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170214