JP2014098692A - Method for detecting presence or absence of travel road defect - Google Patents

Method for detecting presence or absence of travel road defect Download PDF

Info

Publication number
JP2014098692A
JP2014098692A JP2013214284A JP2013214284A JP2014098692A JP 2014098692 A JP2014098692 A JP 2014098692A JP 2013214284 A JP2013214284 A JP 2013214284A JP 2013214284 A JP2013214284 A JP 2013214284A JP 2014098692 A JP2014098692 A JP 2014098692A
Authority
JP
Japan
Prior art keywords
vehicle
defect
road
inspection
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013214284A
Other languages
Japanese (ja)
Other versions
JP6060331B2 (en
Inventor
Koichi Yagi
浩一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
yagi koichi
Original Assignee
yagi koichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by yagi koichi filed Critical yagi koichi
Priority to JP2013214284A priority Critical patent/JP6060331B2/en
Publication of JP2014098692A publication Critical patent/JP2014098692A/en
Application granted granted Critical
Publication of JP6060331B2 publication Critical patent/JP6060331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

PROBLEM TO BE SOLVED: To mount on a general purpose vehicle a general purpose device equipped with a vertically moving detector, allowing the presence or absence of a defect to be inspected by travelling on the travel road of an inspection object, to reduce an economic burden of possessing the inspection device by utilizing the general purpose vehicle and the general purpose device with the time required for the inspection reduced, and to increase the inspection frequency by allowing the number of possessed inspection devices to be increased, and also to allow the inspection to be made whether the defect exists not only on the road, but also on bridges and the high level roads.SOLUTION: The method for inspecting the presence or absence of a travel road defect uses two kinds or more of vehicles having different weights, and mounts a vertically moving detector on the vehicles. Thereby, a measurement result of travelling on the travel road of an inspection object is obtained to find a difference caused by the weights of the measurement result, and places having a large difference are extracted as places in which a defect exists.

Description

本発明は、走行路に欠陥が存在するかどうかを検査する走行路欠陥有無検査方法に関するものである。   The present invention relates to a method for inspecting whether there is a defect on a traveling road.

非破壊により地表面から地盤の中に存在する空洞を検知する方法であって、地表面に振動を測定するセンサを設置して常時微動を測定し、測定した常時微動の水平成分スペクトルと鉛直成分スペクトルとを求め、求めた水平成分スペクトルと鉛直成分スペクトルとのスペクトル比をとることによって振動特性曲線を求め、求めた振動特性曲線の形状から地盤の中に存在する空洞を検知する。(特許文献1の請求項1ならびに図1参照)   A non-destructive method for detecting cavities existing in the ground from the ground surface, by installing a sensor for measuring vibrations on the ground surface to measure microtremors, and the horizontal component spectrum and vertical component of the measured microtremors. A spectrum is obtained, a vibration characteristic curve is obtained by taking a spectral ratio of the obtained horizontal component spectrum and vertical component spectrum, and a cavity existing in the ground is detected from the shape of the obtained vibration characteristic curve. (See claim 1 of FIG. 1 and FIG. 1)

舗装の内部損傷箇所を非破壊で定量調査する方法であって、電磁波レーダーを用い、舗装路面における検出対象領域の全体にわたり、路面に沿う方向に所定の間隔を空けて、舗装上から舗装内へ電磁波を深さ方向に入射させるとともにその反射波を舗装上で検出することにより、各反射波検出位置における反射波データを取得し、この取得した反射波データに基づき、前記各反射波検出位置の反射波データにおける舗装表面の反射波ピークと路盤被覆層下面の反射波ピークとの間の部分から、反射波強度の最大値を当該反射波検出位置の反射波強度の代表値としてそれぞれ取得するとともに、前記取得した反射波データに基づき、舗装表面における反射波ピークより下側における反射波の総エネルギーを前記各反射波検出位置について算出し、この総エネルギーが所定のエネルギーしきい値以下となる反射波検出位置を内部損傷箇所とするとともに、総エネルギーが所定のエネルギーしきい値を超える反射波検出位置であって、且つ前記反射波強度の代表値が所定の強度しきい値以上となる反射波検出位置を内部損傷箇所とし、総エネルギーが所定のエネルギーしきい値を超える反射波検出位置であって、且つ反射波強度の代表値が所定の強度しきい値未満となる反射波検出位置を非内部損傷箇所として、前記検出対象領域に占める内部損傷箇所の割合を定量化する。(特許文献2の請求項1ならびに図5参照)   A non-destructive method for nondestructive investigation of the internal damage of pavement. Using electromagnetic wave radar, the entire detection target area on the pavement road surface is spaced from the pavement into the pavement at a predetermined interval along the road surface. By making electromagnetic waves incident in the depth direction and detecting the reflected waves on the pavement, the reflected wave data at each reflected wave detection position is acquired, and based on the acquired reflected wave data, In the reflected wave data, the maximum value of the reflected wave intensity is obtained as a representative value of the reflected wave intensity at the reflected wave detection position from the portion between the reflected wave peak on the pavement surface and the reflected wave peak on the bottom of the roadbed covering layer. Based on the acquired reflected wave data, the total energy of the reflected wave below the reflected wave peak on the pavement surface is calculated for each reflected wave detection position. The reflected wave detection position where the total energy is less than or equal to a predetermined energy threshold is used as an internal damage location, the reflected wave detection position where the total energy exceeds the predetermined energy threshold, and the reflected wave intensity The reflected wave detection position where the representative value is greater than or equal to the predetermined intensity threshold is the internal damage location, the reflected wave detection position where the total energy exceeds the predetermined energy threshold, and the representative value of the reflected wave intensity is predetermined. The reflected wave detection position that is less than the intensity threshold is defined as a non-internal damage location, and the proportion of the internal damage location in the detection target region is quantified. (Refer to claim 1 and FIG. 5 of Patent Document 2)

特許第3475312号Japanese Patent No. 3475312 特許第4442914号Patent No. 4444214

特許文献1に記載された方法では、地表面にセンサを設置し検査しているため、検査対象区間の道路を検査するために、何度もセンサを設置しなおし検査を繰り返す必要がある問題と、前記問題に起因し検査に長時間を要する問題と、センサを設置した検査地点の下部構造を検査しているため、橋梁の構造すなわちトラス橋のトラス部、アーチ橋のアーチ部、斜張橋のケーブルなど、あるいは高架道路の橋桁や橋桁と橋脚の接合部など、検査装置から離れた部位に欠陥が存在しても発見できない問題と、がある。   In the method described in Patent Document 1, since a sensor is installed and inspected on the ground surface, in order to inspect a road in the section to be inspected, it is necessary to install the sensor many times and repeat the inspection. Because of the problem that the inspection takes a long time due to the above problems and the substructure of the inspection point where the sensor is installed, the structure of the bridge, that is, the truss part of the truss bridge, the arch part of the arch bridge, the cable stayed bridge There is a problem that cannot be found even if there is a defect in the part away from the inspection device, such as the cable of the above, or the bridge girder of the elevated road or the joint part of the bridge girder and the pier.

特許文献2に記載された方法では、検査に電磁波レーダーを用いているため検査専用の装置が必要となる問題と、前記問題に起因し検査装置を保有することが経済的負担になる問題と、前記問題に起因し検査装置の保有台数を多くすることが難しく検査の頻度を高めることが難しい問題と、電磁波レーダーにより構造を検査しているため、橋梁の構造すなわちトラス橋のトラス部、アーチ橋のアーチ部、斜張橋のケーブルなど、あるいは高架道路の橋桁や橋桁と橋脚の接合部など、検査装置から離れた部位に欠陥が存在しても発見できない問題と、がある。   In the method described in Patent Document 2, since an electromagnetic radar is used for inspection, a problem that requires a dedicated inspection device, and a problem that it becomes an economic burden to have the inspection device due to the problem, Due to the above problems, it is difficult to increase the number of inspection devices owned and it is difficult to increase the frequency of inspection, and because the structure is inspected by electromagnetic wave radar, the structure of the bridge, that is, the truss part of the truss bridge, the arch bridge There are problems that cannot be found even if there is a defect in the part away from the inspection device, such as the cable arch of cable, cable of cable-stayed bridge, bridge girder on the elevated road or the junction of bridge girder and pier.

本発明は、このような従来の問題を解決しようとするもので、汎用車両に、上下動検出器を具備した汎用装置を搭載し、検査対象の走行路を走行することで検査対象の走行路に欠陥が存在するかどうかを検査できるようにし、検査に要する時間を短縮し、汎用車両と汎用装置の活用により検査装置を保有することの経済的負担を低減し、検査装置の保有台数を増やすことができるようにすることで検査の頻度を高められるようにし、道路だけでなく橋梁や高架道路に欠陥が存在するかどうかも検査できるようにすること、を目的とする。   The present invention is intended to solve such a conventional problem. A general-purpose vehicle equipped with a vertical motion detector is mounted on a general-purpose vehicle and travels along a travel path to be inspected. Can be inspected for defects, reduce the time required for inspection, reduce the economic burden of possessing inspection equipment by using general-purpose vehicles and equipment, and increase the number of inspection equipment The purpose is to increase the frequency of inspections by making it possible to inspect whether there are defects in bridges and elevated roads as well as roads.

(1)走行路に欠陥が存在するかどうかを検査する走行路欠陥有無検査方法において、重量の異なる2種類以上の車両を用い、前記車両に上下動検出器を具備した装置を搭載し、検査対象の走行路を走行し計測結果を得て、前記計測結果の重量による違いを求め、違いの大きい箇所を走行路に欠陥が存在している地点として抽出することを特徴とする。
(2)(1)において、車両ごとに走行路の区間ごとの計測結果を求め、重量の軽い側の車両での計測結果に対する、重量の重い側の車両での計測結果の差異を求め、前記差異の大きい区間を走行路の状態が悪化している区間として抽出することを特徴とする。
(1) In a road path defect presence / absence inspection method for inspecting whether or not a road has a defect, two or more types of vehicles having different weights are used, and the vehicle is equipped with a device equipped with a vertical motion detector. A measurement result is obtained by traveling on a target travel route, a difference due to the weight of the measurement result is obtained, and a portion having a large difference is extracted as a point where a defect exists on the travel route.
(2) In (1), a measurement result for each section of the travel path is obtained for each vehicle, and a difference between the measurement results in the heavy vehicle is calculated with respect to the measurement result in the light vehicle. A section having a large difference is extracted as a section where the state of the traveling road is deteriorated.

汎用車両と、上下動検出器を具備した汎用装置により、検査対象の走行路に欠陥が存在するかどうかを検査できる利点と、前記特徴により検査に要する時間を短縮できる利点と、汎用車両と汎用装置の活用により検査装置を保有することの経済的負担を低減できる利点と、前記特長により検査装置の保有台数を増やすことができ検査の頻度を高められる利点と、道路だけでなく橋梁や高架道路に欠陥が存在するかどうかも検査できる利点と、がある。   Advantages that a general-purpose vehicle and a general-purpose device equipped with a vertical motion detector can inspect whether or not there is a defect on a traveling path to be inspected, an advantage that the time required for inspection can be shortened by the above features, and general-purpose vehicles and general-purpose vehicles Advantages of reducing the economic burden of possessing inspection equipment by utilizing the equipment, benefits of increasing the number of inspection equipment possessed by the above features, and increasing the frequency of inspection, as well as bridges and elevated roads There is an advantage that it is possible to inspect whether or not there is a defect.

図1は検査対象を道路とした場合の本発明の使用場面の模式図である。FIG. 1 is a schematic diagram of a use scene of the present invention when an inspection object is a road. 図2は検査対象をトラス橋とした場合の本発明の使用場面の模式図である。FIG. 2 is a schematic diagram of a use scene of the present invention when the inspection object is a truss bridge. 図3は計測車両への計測装置の設置例の模式図である。FIG. 3 is a schematic diagram of an example of installation of a measurement device on a measurement vehicle. 図4は走行路欠陥有無検査方法のフロー図である。FIG. 4 is a flowchart of a method for inspecting the presence or absence of a travel path defect.

図1に検査対象を道路とした場合の本発明の使用場面の模式図を示す。検査対象区間の道路1は道路表層11が正常に見えても、道路下部に空洞などの欠陥12が存在することがある。道路下部の欠陥12は、車両の通過に伴い周辺環境に振動を生じさせる問題を招いたり、道路1の損傷を促進し、場合によっては道路1の陥没を招いたりする。道路下部の欠陥12の発見が必要となる。   FIG. 1 shows a schematic diagram of a use scene of the present invention when the inspection object is a road. Even if the road surface layer 11 looks normal on the road 1 in the section to be inspected, a defect 12 such as a cavity may exist in the lower part of the road. The defect 12 in the lower part of the road causes a problem that causes vibrations in the surrounding environment as the vehicle passes, promotes damage to the road 1, and sometimes causes the road 1 to collapse. It is necessary to find the defect 12 in the lower part of the road.

欠陥12を発見するため、重量の異なる2種類以上の車両を計測車両として使用する。図1(a)は重量が軽い側の計測車両(以下、軽量側車両と呼ぶ)として乗用車を用いた場面を模式的に示している。計測車両21に計測装置3を搭載し、検査対象区間の道路1を走行する。計測装置3には上下動検出器として加速度計を具備し、走行地点ごとの加速度応答を得る。計測装置3には加速度計を具備したスマートフォンのような汎用機器を用いることができる。計測装置3に具備する上下動検出器は加速度計に代えて速度計や角速度計、角度計を用いることを妨げず、複数の検出器を組み合わせて使用することも妨げない。図1(b)は重量が重い側の計測車両(以下、重量側車両と呼ぶ)としてトラックを用いた場面を模式的に示している。計測車両22にも計測装置3を搭載し、検査対象区間の道路1を走行する。   In order to find the defect 12, two or more types of vehicles having different weights are used as measurement vehicles. FIG. 1A schematically shows a scene in which a passenger car is used as a measurement vehicle on the lighter weight side (hereinafter referred to as a lighter vehicle). The measuring device 3 is mounted on the measuring vehicle 21 and travels on the road 1 in the inspection target section. The measuring device 3 includes an accelerometer as a vertical motion detector, and obtains an acceleration response for each traveling point. The measuring device 3 can be a general-purpose device such as a smartphone equipped with an accelerometer. The vertical motion detector provided in the measuring device 3 does not prevent the use of a speedometer, an angular velocity meter, and an angle meter in place of the accelerometer, and does not prevent the combination of a plurality of detectors. FIG. 1B schematically shows a scene in which a truck is used as a measuring vehicle on the heavy side (hereinafter referred to as a heavy vehicle). The measuring device 3 is also mounted on the measuring vehicle 22 and travels on the road 1 in the inspection target section.

計測車両は乗用車とトラックに限る必要はなく、車両重量が異なれば良く、乗用車とバス、乗車人数の異なるバス、小型トラックと大型ダンプカー、二輪車とトラックなど様々な車種の使用と様々な組み合わせが可能である。図1(a)の軽量側車両での計測時には、欠陥12があっても計測車両21の通過に伴う道路表層11の変化は小さい。図1(b)の重量側車両での計測時には、欠陥12が存在することにより計測車両22の通過に伴い道路表層11が沈み込み、軽量側車両での計測より大きな上下動が計測される。軽量側車両の上下動より、重量側車両の上下動が、あらかじめ設定した値より大きい地点を、道路1に欠陥12が存在する可能性のある地点として抽出する。   Measurement vehicles need not be limited to passenger cars and trucks, as long as the vehicle weight is different, various vehicles can be used and various combinations such as passenger cars and buses, buses with different passenger numbers, small trucks and large dump trucks, motorcycles and trucks, etc. It is. At the time of measurement with the lightweight vehicle in FIG. 1A, even if there is a defect 12, the change in the road surface layer 11 accompanying the passage of the measurement vehicle 21 is small. At the time of measurement with the weight side vehicle in FIG. 1B, the road surface layer 11 sinks with the passage of the measurement vehicle 22 due to the presence of the defect 12, and a larger vertical movement than that with the light side vehicle is measured. From the vertical movement of the light side vehicle, a point where the vertical movement of the heavy side vehicle is larger than a preset value is extracted as a point where a defect 12 may exist on the road 1.

図2に検査対象をトラス橋とした場合の本発明の使用場面の模式図を示す。検査対象の橋梁4は橋桁41が正常であっても、橋梁4を支える構造部であるトラス部材42などに破断などの欠陥43が存在することがある。橋梁4の欠陥43は、車両の通過に伴い、橋梁4の損傷を促進し、場合によっては橋梁4の落橋を招いたりする。橋梁4の欠陥43の発見が必要となる。   FIG. 2 shows a schematic diagram of the usage scene of the present invention when the inspection object is a truss bridge. Even when the bridge 4 to be inspected has a normal bridge girder 41, there may be a defect 43 such as a fracture in the truss member 42, which is a structural part that supports the bridge 4. The defect 43 of the bridge 4 promotes damage to the bridge 4 with the passing of the vehicle, and may cause a drop of the bridge 4 in some cases. It is necessary to discover the defect 43 of the bridge 4.

欠陥43の有無を発見するために、重量の異なる2種類以上の車両を計測車両として使用する。図2(a)は軽量側車両として乗用車を用いた場面を模式的に示している。計測車両21に計測装置3を搭載し、検査対象区間の橋梁4を走行する。計測装置3には上下動検出器として加速度計を具備し、走行地点ごとの加速度応答を得て、二階積分により上下変位量を得る。計測装置3に具備する上下動検出器は加速度計に代えて速度計や角速度計、角度計を用いることを妨げず、複数の検出器を組み合わせて使用することも妨げない。図2(b)は重量側車両としてトラックを用いた場面を模式的に示している。計測車両22にも計測装置3を搭載し、検査対象区間の橋梁4を走行する。   In order to discover the presence or absence of the defect 43, two or more types of vehicles having different weights are used as measurement vehicles. FIG. 2 (a) schematically shows a scene in which a passenger car is used as the lightweight vehicle. The measuring device 3 is mounted on the measuring vehicle 21 and travels on the bridge 4 in the inspection target section. The measuring device 3 includes an accelerometer as a vertical motion detector, obtains an acceleration response for each traveling point, and obtains a vertical displacement amount by second-order integration. The vertical motion detector provided in the measuring device 3 does not prevent the use of a speedometer, an angular velocity meter, and an angle meter in place of the accelerometer, and does not prevent the combination of a plurality of detectors. FIG. 2B schematically shows a scene in which a truck is used as the heavy vehicle. The measuring device 3 is also mounted on the measuring vehicle 22 and travels on the bridge 4 in the inspection target section.

計測車両は乗用車とトラックに限る必要はなく、車両重量が異なれば良く、乗用車とバス、乗車人数の異なるバス、小型トラックと大型ダンプカー、二輪車とトラックなど様々な車種の使用と様々な組み合わせが可能である。

橋梁4を計測車両21または計測車両22が通過する際、橋桁41は沈み込み、橋桁41の中央付近を底とした凹形状に変形する。これにより橋脚44の地点を通過した時の上下変位に対して橋桁41の中央付近の上下変位は下向きに大きくなり、その差を求めることで沈み込み量が計測される。図2(a)の軽量側車両での沈み込み量451より、図2(b)の重量側車両での沈み込み量452の方が大きくなる。さらに、欠陥43が存在する場合、その差は大きくなる。軽量側車両の沈み込み量451と、重量側車両の沈み込み量452の差が、あらかじめ設定した値より大きい橋梁4を欠陥43が存在する可能性のある橋梁として抽出する。
Measurement vehicles need not be limited to passenger cars and trucks, as long as the vehicle weight is different, various vehicles can be used and various combinations such as passenger cars and buses, buses with different passenger numbers, small trucks and large dump trucks, motorcycles and trucks, etc. It is.

When the measurement vehicle 21 or the measurement vehicle 22 passes through the bridge 4, the bridge girder 41 sinks and deforms into a concave shape with the vicinity of the center of the bridge girder 41 as the bottom. As a result, the vertical displacement near the center of the bridge girder 41 increases downward with respect to the vertical displacement when passing through the point of the pier 44, and the amount of subsidence is measured by obtaining the difference. The sinking amount 452 in the weight side vehicle in FIG. 2B is larger than the sinking amount 451 in the light side vehicle in FIG. Furthermore, when the defect 43 exists, the difference becomes large. The bridge 4 in which the difference between the sinking amount 451 of the light-side vehicle and the sinking amount 452 of the heavy-side vehicle is larger than a preset value is extracted as a bridge in which the defect 43 may exist.

沈み込み量は橋脚44の地点における上下変位量と橋桁41の中央部における上下変位量の差を用いる方法だけでなく、橋桁41における上下変位量の最大値と最小値の差を用いてもよい。上下変位量は計測値そのものを用いる方法だけでなく、ローパスフィルタを通した後の値を用いてもよい。計測車両が橋桁41の中央手前に位置する場合は沈み込みにより前傾し、中央奥に位置する場合は後傾することを利用し、上下変位量に代えて車両の加速度計の前後方向に観測される重力加速度や、角速度計を用いて検出することも妨げない。図2はトラス橋を例としているが、アーチ橋や斜張橋など他の構造の橋梁、あるいは高架道路でも前記方法により欠陥が存在するかどうかを検査できる。   As for the sinking amount, not only the method using the difference between the vertical displacement amount at the point of the bridge pier 44 and the vertical displacement amount at the center portion of the bridge girder 41 but also the difference between the maximum value and the minimum value of the vertical displacement amount in the bridge girder 41 may be used. . The vertical displacement amount is not limited to the method using the measured value itself, but may be a value after passing through a low-pass filter. When the measurement vehicle is located in front of the center of the bridge girder 41, it is tilted forward by sinking, and when it is located at the back of the center, it is tilted backward, and it is observed in the longitudinal direction of the accelerometer of the vehicle instead of the vertical displacement. Detection using gravitational acceleration and an angular velocity meter is not hindered. Although FIG. 2 shows a truss bridge as an example, it is possible to inspect whether there is a defect in a bridge having another structure such as an arch bridge or a cable-stayed bridge or an elevated road by the above method.

図3に計測車両への計測装置の設置例の模式図を示す。計測する時には計測装置3は計測車両2の任意の位置に上下動が計測できるように固定するが、計測しない時には取り外すことを妨げない。上下動検出器に2軸あるいは3軸の加速度計を用いた場合、加速度計を任意の姿勢で設置したうえで、計測姿勢に応じた座標変換を行い、上下動を得てもよい。   FIG. 3 shows a schematic diagram of an installation example of the measuring device on the measuring vehicle. When measuring, the measuring device 3 is fixed at an arbitrary position of the measuring vehicle 2 so that the vertical movement can be measured. When a 2-axis or 3-axis accelerometer is used for the vertical motion detector, the vertical motion may be obtained by installing the accelerometer in an arbitrary posture and performing coordinate conversion according to the measurement posture.

図4に走行路欠陥有無検査方法のフロー図を示す。軽量側車両の計測装置31での計測結果と、重量側車両の計測装置32での計測結果を、走行路欠陥有無検査装置5に集め、走行路における欠陥の有無を検査する。   FIG. 4 shows a flow chart of the method for inspecting whether there is a road defect. The measurement result of the light-weight side vehicle measurement device 31 and the measurement result of the weight-side vehicle measurement device 32 are collected in the traveling road defect presence / absence inspection device 5 to inspect the presence or absence of defects on the traveling road.

軽量側車両の計測装置31には、加速度計311と、GPS312を具備する。加速度計311と、GPS312は上下動算出313に接続され、加速度計311の計測時刻と、GPS312の計測時刻から、加速度計311の計測結果に緯度経度を割り付ける。加速度計311で得られた上下方向の加速度を二階積分し上下変位量を得る。加速度計311の計測結果に割り付けられた緯度経度を、前記上下変位量の緯度経度として割り付け、緯度経度ごとの上下変位量を結果として得る。加速度計311は、速度計あるいは角速度計、角度計に置き換えることを妨げない。GPS312は、車速パルス計測器など移動距離を計測する装置に置き換えることを妨げない。計測位置を緯度経度ではなく起点からの距離で表すことも妨げない。   The measuring device 31 for the light-side vehicle includes an accelerometer 311 and a GPS 312. The accelerometer 311 and the GPS 312 are connected to the vertical motion calculation 313, and the latitude and longitude are assigned to the measurement result of the accelerometer 311 from the measurement time of the accelerometer 311 and the measurement time of the GPS 312. The vertical acceleration obtained by the accelerometer 311 is second-order integrated to obtain the vertical displacement. The latitude / longitude assigned to the measurement result of the accelerometer 311 is assigned as the latitude / longitude of the vertical displacement, and the vertical displacement for each latitude / longitude is obtained as a result. The accelerometer 311 does not prevent the accelerometer, the angular velocity meter, and the angle meter from being replaced. The GPS 312 does not prevent the GPS 312 from being replaced with a device that measures a moving distance such as a vehicle speed pulse measuring instrument. It does not prevent the measurement position from being expressed by the distance from the starting point instead of the latitude and longitude.

前記上下動算出313は、軽量側代表値算出314に接続され、検査対象区間の軽量側車両での計測代表値を求める。区間の長さはたとえば20mごととする。前記区間は20m以外としても良く、固定長ではなく可変長としても良い。計測代表値は20m区間に得られた上下動算出313からの上下変位量の標準偏差を用いる。計測代表値は標準偏差に代えて、分散、最大最小幅など他の指標を用いることもでき、複数種類を組み合わせて使用することもできる。   The vertical motion calculation 313 is connected to the lightweight side representative value calculation 314, and obtains a measured representative value of the lightweight side vehicle in the inspection target section. The length of the section is, for example, every 20 m. The section may be other than 20 m, and may be a variable length instead of a fixed length. The measurement representative value uses the standard deviation of the vertical displacement amount from the vertical motion calculation 313 obtained in the 20 m section. Instead of the standard deviation, other indicators such as variance and maximum / minimum width can be used as the measurement representative value, and a plurality of types can be used in combination.

重量側車両の計測装置32には、加速度計321と、GPS322を具備する。加速度計321と、GPS322は上下動算出323に接続され、加速度計321の計測時刻と、GPS322の計測時刻から、加速度計321の計測結果に緯度経度を割り付ける。加速度計321で得られた上下方向の加速度を二階積分し上下変位量を得る。加速度計321の計測結果に割り付けられた緯度経度を、前記上下変位量の緯度経度として割り付け、緯度経度ごとの上下変位量を結果として得る。加速度計321は、速度計あるいは角速度計、角度計に置き換えることを妨げない。GPS322は、車速パルス計測器など移動距離を計測する装置に置き換えることを妨げない。計測位置を緯度経度ではなく起点からの距離で表すことも妨げない。   The measuring device 32 for the weight side vehicle includes an accelerometer 321 and a GPS 322. The accelerometer 321 and the GPS 322 are connected to the vertical motion calculation 323, and the latitude and longitude are assigned to the measurement result of the accelerometer 321 from the measurement time of the accelerometer 321 and the measurement time of the GPS 322. The vertical acceleration obtained by the accelerometer 321 is second-order integrated to obtain the vertical displacement. The latitude / longitude assigned to the measurement result of the accelerometer 321 is assigned as the latitude / longitude of the vertical displacement amount, and the vertical displacement amount for each latitude / longitude is obtained as a result. The accelerometer 321 does not prevent the accelerometer 321 from being replaced with an angular velocity meter or an angle meter. The GPS 322 does not prevent the GPS 322 from being replaced with a device that measures a moving distance such as a vehicle speed pulse measuring instrument. It does not prevent the measurement position from being expressed by the distance from the starting point instead of the latitude and longitude.

前記上下動算出323は、重量側代表値算出324に接続され、検査対象区間の重量側車両での計測代表値を求める。区間の長さはたとえば20mごととする。前記区間は20m以外としても良く、固定長ではなく可変長としても良い。計測代表値は20m区間に得られた上下動算出323からの上下変位量の標準偏差を用いる。計測代表値は標準偏差に代えて、分散、最大最小幅など他の指標を用いることもでき、複数種類を組み合わせて使用することもできる。   The vertical motion calculation 323 is connected to the weight-side representative value calculation 324, and obtains a measurement representative value in the weight-side vehicle in the inspection target section. The length of the section is, for example, every 20 m. The section may be other than 20 m, and may be a variable length instead of a fixed length. As the measurement representative value, the standard deviation of the vertical displacement amount from the vertical motion calculation 323 obtained in the 20 m section is used. Instead of the standard deviation, other indicators such as variance and maximum / minimum width can be used as the measurement representative value, and a plurality of types can be used in combination.

軽量側代表値算出314と、重量側代表値算出324での区間は、図1に示したような道路1の欠陥12を検出する場合には、区間の長さをたとえば1mのように短く設定し、図2に示したような橋梁4の欠陥43を検出する場合には、区間の長さをたとえば20mのように長く設定する。前記区間の長さは1m以外、20m以外とすることを妨げず、道路1と橋梁4で同じ長さとしたり、道路1の長さを橋梁4の長さより長くすることも妨げない。図1に示したような道路1の欠陥12を検出する場合には区間ごとではなく地点ごとの上下変位量そのものを軽量側車両と重量側車両で比較することも妨げない。図2に示したような橋梁4の欠陥43を検出する場合は区間の長さを橋梁4の橋脚44間の距離すなわち橋桁41の長さに合わせ、橋桁41ごとに可変とすることも妨げない。   In the sections of the light weight side representative value calculation 314 and the weight side representative value calculation 324, when detecting the defect 12 of the road 1 as shown in FIG. 1, the length of the section is set to be as short as 1 m, for example. And when detecting the defect 43 of the bridge 4 as shown in FIG. 2, the length of a section is set long like 20 m, for example. It does not prevent the length of the section from being other than 1 m or other than 20 m, and it does not prevent the road 1 and the bridge 4 from having the same length or the length of the road 1 is longer than the length of the bridge 4. When the defect 12 of the road 1 as shown in FIG. 1 is detected, it is not hindered to compare the vertical displacement amount for each point, not for each section, between the lightweight vehicle and the heavy vehicle. When detecting the defect 43 of the bridge 4 as shown in FIG. 2, the length of the section is adjusted to the distance between the piers 44 of the bridge 4, that is, the length of the bridge girder 41, and can be varied for each bridge girder 41. .

図4において、軽量側車両の計測装置31と、重量側車両の計測装置32での計測はどちらを先に行っても良い。また計測は走行路の状況が変わらない程度であれば期間をあけて別の日に計測しても良い。   In FIG. 4, the measurement by the measurement device 31 for the lightweight vehicle and the measurement device 32 for the heavy vehicle may be performed first. In addition, the measurement may be performed on another day after a period of time as long as the condition of the traveling road does not change.

図4の走行路欠陥有無検査装置5について説明する。走行路欠陥有無検査装置5には、代表値比較51と、異常箇所抽出52を具備する。代表値比較51は、軽量側車両の計測装置31と、重量側車両の計測装置32と、に接続され、軽量側代表値算出314と、重量側代表値算出324から得られた計測代表値を比較する。比較は、同じ区間、同じ進行方向、軽量側車両と重量側車両の計測時の走行速度の差が10km/h以下、の計測結果に対して行う。軽量側代表値算出314からの計測代表値に対する、重量側代表値算出324からの計測代表値の比率を求める。比率に代えて差を用いても良い。前記走行速度の差は10km/h以外としてもよい。軽量側代表値算出314と、重量側代表値算出324からの計測代表値は同じ種類を用いる。たとえば一方が標準偏差であれば、他方も標準偏差とする。   The traveling path defect presence inspection apparatus 5 in FIG. 4 will be described. The traveling path defect presence inspection device 5 includes a representative value comparison 51 and an abnormal point extraction 52. The representative value comparison 51 is connected to the measurement device 31 of the light weight side vehicle and the measurement device 32 of the weight side vehicle, and the measurement representative value obtained from the light weight side representative value calculation 314 and the weight side representative value calculation 324 is obtained. Compare. The comparison is performed with respect to the measurement result of the same section, the same traveling direction, and the difference in travel speed when measuring the light side vehicle and the heavy side vehicle is 10 km / h or less. The ratio of the measured representative value from the weight side representative value calculation 324 to the measured representative value from the light weight side representative value calculation 314 is obtained. A difference may be used instead of the ratio. The difference in travel speed may be other than 10 km / h. The measured representative values from the lightweight side representative value calculation 314 and the weight side representative value calculation 324 use the same type. For example, if one is a standard deviation, the other is also a standard deviation.

異常箇所抽出52について説明する。異常箇所抽出52は、代表値比較51に接続され、代表値比較51で求めた計測代表値の比率が一定比率以上、たとえば10倍以上となった区間を、欠陥が存在する可能性がある区間として抽出する。この一定比率は10倍以外としたり、区間の長さや走行速度に応じて可変とすることを妨げない。   The abnormal part extraction 52 will be described. The abnormal point extraction 52 is connected to the representative value comparison 51, and a section where the ratio of the measured representative value obtained by the representative value comparison 51 is a certain ratio or more, for example, ten times or more is a section where a defect may exist. Extract as This constant ratio does not prevent other than 10 times or variable according to the length of the section or the traveling speed.

図4では、軽量側車両の計測装置31において上下動算出313と軽量側代表値算出314を行っているが、走行路欠陥有無検査装置5で行っても良い。同様に、重量側車両の計測装置32において上下動算出323と重量側代表値算出324を行っているが、走行路欠陥有無検査装置5で行っても良い。走行路欠陥有無検査装置5で行っている、代表値比較51と異常箇所抽出52を、軽量側車両の計測装置31あるいは重量側車両の計測装置32に具備し、具備した側の計測装置に、軽量側車両と重量側車両の代表値を集め、異常箇所を抽出しても良い。   In FIG. 4, the vertical motion calculation 313 and the lightweight side representative value calculation 314 are performed in the measurement device 31 of the lightweight vehicle, but may be performed by the traveling path defect presence inspection device 5. Similarly, although the vertical motion calculation 323 and the weight side representative value calculation 324 are performed in the measurement device 32 of the weight side vehicle, the travel path defect presence / absence inspection device 5 may perform the calculation. The representative value comparison 51 and the abnormal part extraction 52 performed by the traveling path defect presence / absence inspection device 5 are provided in the measurement device 31 of the lightweight vehicle or the measurement device 32 of the heavy vehicle. You may collect the representative value of a light weight side vehicle and a heavy weight side vehicle, and may extract an abnormal location.

前記記述の実施例では車両重量の異なる2種類以上の車両を使用しているが、1種類の車両で重量が異なる場合、たとえばトラックの空荷状態と積載状態や、バスの空席状態と満席状態での比較に代えることもできる。重量の異なる3種類以上の車種を使用し、軽量車両と中量車両の比較では異常箇所として抽出されないが、中量車両と重量車両の比較では異常箇所として抽出されると言うように、検出のレベルを設けることもできる。実施例では計測対象を道路と道路構造物とし、計測車両に自動車を用いているが、二輪車を用いることも妨げない。また、計測対象を鉄道軌道とし、計測車両に列車を用いることも妨げない。実施例で挙げた区間の長さなどの定数は変更を妨げず、各種演算の実現方法はデジタル式、アナログ式、あるいはハードウェアによるもの、ソフトウェアによるものなど様々な形態での実施も妨げない。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   In the above-described embodiment, two or more types of vehicles having different vehicle weights are used. However, when the weights of one type of vehicles are different, for example, an unloaded state and a loaded state of a truck, an unoccupied state and a full state of a bus. It is possible to replace the comparison with. Using three or more types of vehicles with different weights, it is not extracted as an abnormal location in the comparison between a light vehicle and a medium weight vehicle, but it is extracted as an abnormal location in a comparison between a medium weight vehicle and a heavy vehicle. Levels can also be provided. In the embodiment, the measurement object is a road and a road structure, and an automobile is used as a measurement vehicle. However, the use of a two-wheeled vehicle is not hindered. In addition, it is not hindered that the measurement object is a railway track and the train is used as a measurement vehicle. The constants such as the length of the section given in the embodiment do not prevent the change, and the implementation method of various operations does not prevent the implementation in various forms such as a digital method, an analog method, a hardware method, and a software method. In addition, various modifications can be made without departing from the scope of the present invention.

1 道路
11 道路表層
12 欠陥
2 計測車両
21 計測車両
22 計測車両
3 計測装置
31 軽量側車両の計測装置
311 加速度計
312 GPS
313 上下動算出
314 軽量側代表値算出
32 重量側車両の計測装置
321 加速度計
322 GPS
323 上下動算出
324 重量側代表値算出
4 橋梁
41 橋桁
42 トラス部材
43 欠陥
44 橋脚
451 軽量側車両の沈み込み量
452 重量側車両の沈み込み量
5 走行路欠陥有無検査装置
51 代表値比較
52 異常箇所抽出
DESCRIPTION OF SYMBOLS 1 Road 11 Road surface layer 12 Defect 2 Measurement vehicle 21 Measurement vehicle 22 Measurement vehicle 3 Measurement apparatus 31 Light-weight side vehicle measurement apparatus 311 Accelerometer 312 GPS
313 Vertical motion calculation 314 Light weight side representative value calculation 32 Weight side vehicle measuring device 321 Accelerometer 322 GPS
323 Vertical motion calculation 324 Weight-side representative value calculation 4 Bridge 41 Bridge girder 42 Truss member 43 Defect 44 Bridge pier 451 Light-side vehicle sinking amount 452 Weight-side vehicle sinking amount 5 Travel path defect presence inspection device 51 Representative value comparison 52 Abnormal Location extraction

Claims (2)

走行路に欠陥が存在するかどうかを検査する走行路欠陥有無検査方法において、重量の異なる2種類以上の車両を用い、前記車両に上下動検出器を具備した装置を搭載し、検査対象の走行路を走行し計測結果を得て、前記計測結果の重量による違いを求め、違いの大きい箇所を走行路に欠陥が存在している地点として抽出することを特徴とする走行路欠陥有無検査方法。   In a method for inspecting whether or not there is a defect on a traveling road, a method for inspecting the presence or absence of a traveling road uses two or more types of vehicles having different weights, and the vehicle equipped with a device having a vertical motion detector is mounted on the vehicle to be inspected. A traveling road defect presence / absence inspection method characterized by obtaining a measurement result by traveling on a road, obtaining a difference due to the weight of the measurement result, and extracting a portion having a large difference as a point where a defect is present on the traveling road. 請求項1に記載された走行路欠陥有無検査方法において、車両ごとに走行路の区間ごとの計測結果を求め、重量の軽い側の車両での計測結果に対する、重量の重い側の車両での計測結果の差異を求め、前記差異の大きい区間を走行路の状態が悪化している区間として抽出することを特徴とする走行路欠陥有無検査方法。   The method for inspecting whether or not there is a road defect according to claim 1, wherein the measurement result for each section of the road is obtained for each vehicle, and the measurement result for the heavy vehicle is measured with respect to the measurement result for the light vehicle. A method for inspecting the presence or absence of a road defect, wherein a difference in results is obtained, and a section having a large difference is extracted as a section where the state of the road is deteriorated.
JP2013214284A 2012-10-15 2013-10-13 Road path inspection method Expired - Fee Related JP6060331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214284A JP6060331B2 (en) 2012-10-15 2013-10-13 Road path inspection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012228489 2012-10-15
JP2012228489 2012-10-15
JP2013214284A JP6060331B2 (en) 2012-10-15 2013-10-13 Road path inspection method

Publications (2)

Publication Number Publication Date
JP2014098692A true JP2014098692A (en) 2014-05-29
JP6060331B2 JP6060331B2 (en) 2017-01-18

Family

ID=50940786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214284A Expired - Fee Related JP6060331B2 (en) 2012-10-15 2013-10-13 Road path inspection method

Country Status (1)

Country Link
JP (1) JP6060331B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200688A (en) * 2016-06-24 2016-12-07 南京中车浦镇城轨车辆有限责任公司 A kind of low-floor hinged mounting seat solid is installed and detecting tool and using method thereof
JP2017020172A (en) * 2015-07-07 2017-01-26 公益財団法人鉄道総合技術研究所 Bridge dynamic response evaluation method
WO2020174833A1 (en) * 2019-02-26 2020-09-03 日本電気株式会社 Displacement/weight association device
JPWO2020194539A1 (en) * 2019-03-26 2020-10-01

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315038A (en) * 2002-04-19 2003-11-06 Tasada Kosakusho:Kk Onboard apparatus for measuring road surface topographic feature
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2006048501A (en) * 2004-08-06 2006-02-16 Denso Corp Road surface information collecting system and on-vehicle device and server for use in the same
JP2010095135A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Wheel vibration extraction device and road surface state estimation device
JP2010236875A (en) * 2009-03-30 2010-10-21 Kozo Keikaku Engineering Inc Structure state change detection system
JP2012073810A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Road surface condition estimating device and road surface condition estimating method
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces
JP2014198974A (en) * 2013-03-29 2014-10-23 富士通株式会社 Road surface change calculation program, method, and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003315038A (en) * 2002-04-19 2003-11-06 Tasada Kosakusho:Kk Onboard apparatus for measuring road surface topographic feature
JP2004108988A (en) * 2002-09-19 2004-04-08 Yozo Fujino Road surface diagnostic method and its device
JP2006048501A (en) * 2004-08-06 2006-02-16 Denso Corp Road surface information collecting system and on-vehicle device and server for use in the same
JP2010095135A (en) * 2008-10-16 2010-04-30 Toyota Motor Corp Wheel vibration extraction device and road surface state estimation device
JP2010236875A (en) * 2009-03-30 2010-10-21 Kozo Keikaku Engineering Inc Structure state change detection system
JP2012073810A (en) * 2010-09-29 2012-04-12 Hitachi Ltd Road surface condition estimating device and road surface condition estimating method
US20120197588A1 (en) * 2011-01-27 2012-08-02 Hon Hai Precision Industry Co., Ltd. Apparatus and method for inspecting road surfaces
JP2014198974A (en) * 2013-03-29 2014-10-23 富士通株式会社 Road surface change calculation program, method, and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016024816; 八木浩一: 'スマートフォンの加速度センサを用いた路面段差検出方法' 第9回ITSシンポジウム論文集 , 20101211, pp. 394-399 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017020172A (en) * 2015-07-07 2017-01-26 公益財団法人鉄道総合技術研究所 Bridge dynamic response evaluation method
CN106200688A (en) * 2016-06-24 2016-12-07 南京中车浦镇城轨车辆有限责任公司 A kind of low-floor hinged mounting seat solid is installed and detecting tool and using method thereof
WO2020174833A1 (en) * 2019-02-26 2020-09-03 日本電気株式会社 Displacement/weight association device
JPWO2020174833A1 (en) * 2019-02-26 2021-11-25 日本電気株式会社 Displacement-weight mapping device
JP7067667B2 (en) 2019-02-26 2022-05-16 日本電気株式会社 Displacement-weight mapping device
JPWO2020194539A1 (en) * 2019-03-26 2020-10-01
WO2020194539A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Structure displacement measurement device

Also Published As

Publication number Publication date
JP6060331B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
ES2909331T3 (en) Method, system and software product for the detection of short-term irregularities in a road surface
Kim et al. Utilizing moving vehicles as sensors for bridge condition screening-A laboratory verification
JP6060331B2 (en) Road path inspection method
US11276302B2 (en) Traffic monitoring apparatus and method of using the same
Seraj et al. RoVi: Continuous transport infrastructure monitoring framework for preventive maintenance
Paixão et al. Smartphone’s Sensing Capabilities for On‐Board Railway Track Monitoring: Structural Performance and Geometrical Degradation Assessment
JP2017223640A (en) Paved surface crack inspection method
CN104215421A (en) Quick bridge impact coefficient determination method
Nagayama et al. Road condition evaluation using the vibration response of ordinary vehicles and synchronously recorded movies
JP5009174B2 (en) Strong wind monitoring method and strong wind monitoring device
Sekiya et al. Visualization system for bridge deformations under live load based on multipoint simultaneous measurements of displacement and rotational response using MEMS sensors
CN201530980U (en) Pavement flatness checking device
CN107128329B (en) Track gauge dynamic change monitoring device and design method based on strain measurement inversion deformation acceleration response
CN207751471U (en) The test system that detection end of the bridge differential settlement influences simply supported girder bridge shock effect
Morichika et al. Estimation of displacement response in steel plate girder bridge using a single MEMS accelerometer
JP4913544B2 (en) Collision detection method
RU2337031C1 (en) Method of railroad wheel pair contact surface wear monitoring
JP7075613B2 (en) Road surface property inspection system, road surface property inspection method, and road surface property inspection program
Tsunashima et al. Condition monitoring of railway track and driver using in-service vehicle
JP2020008293A (en) Structure deterioration diagnostic system
Chong et al. Defining rail track input conditions using an instrumented revenue vehicle
KR101768380B1 (en) Road diagnostics system
JP7314669B2 (en) Road surface condition estimation program, road surface condition estimation method, and information processing device
Zhao et al. IRI measurement using dynamic tire pressure sensor with an axle accelerometer
Zhao et al. Measurement through dynamic tire pressure sensor inside the tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6060331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees