JP2017223640A - Paved surface crack inspection method - Google Patents

Paved surface crack inspection method Download PDF

Info

Publication number
JP2017223640A
JP2017223640A JP2016252744A JP2016252744A JP2017223640A JP 2017223640 A JP2017223640 A JP 2017223640A JP 2016252744 A JP2016252744 A JP 2016252744A JP 2016252744 A JP2016252744 A JP 2016252744A JP 2017223640 A JP2017223640 A JP 2017223640A
Authority
JP
Japan
Prior art keywords
vibration
vehicle
pavement surface
crack
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016252744A
Other languages
Japanese (ja)
Inventor
浩一 八木
Koichi Yagi
浩一 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2017223640A publication Critical patent/JP2017223640A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To inspect a place of a crack and a degree of the crack even in the nighttime at which a road surface is dark by mounting a device having a vibration measurement instrument and a traveling speed measurement instrument on a vehicle, making the vehicle travel on a paved surface, and obtaining a measurement result by the device, to inexpensively manufacture an apparatus for use in the inspection, to dispense with the preparation of training data, to determine the inspection of the crack even if a traveling speed is changed, to easily install the vibration measurement instrument without worrying about an installation posture of the vibration measurement instrument, and to easily change the vibration measurement instrument and the vehicle for use.SOLUTION: In the paved-surface crack inspection method, a measurement device having a vibration measurement instrument, a traveling speed measurement instrument, and a vibration information correction instrument on a vehicle, the vehicle is made to travel on a paved surface being an inspection object, a measurement result by the measurement device is obtained, and a place of the crack and a degree of the crack are inspected even if the traveling speed is changed.SELECTED DRAWING: Figure 3

Description

本発明は、橋梁、駐車場、工場敷地内、飛行場、広場など舗装が施された場所の舗装面に存在するひび割れの場所とひび割れの程度を検査する舗装面ひび割れ検査方法に関するものである。   The present invention relates to a pavement surface crack inspection method for inspecting the location of cracks and the degree of cracks on a pavement surface of a pavement place such as a bridge, a parking lot, a factory site, an airfield, and a plaza.

自動車車体の上部前方に張り出された左右対称的位置にそれぞれ配置されそれぞれ上方から路面を撮像する左右1対のひび割れ検出用カメラと、上記各カメラの側面にそれぞれ付設されカメラ〜路面間距離を測定する上下方向距離計と、同車体に搭載され上記各カメラの出力信号による画像を処理する画像処理装置及び演算処理装置を備えてなり、道路幅員及び車両位置を検出する路面性状測定車において、上記カメラとしてそれぞれ同一性能のCCD内蔵型ひび割れ検出用カメラを具えたことを特徴とする路面性状測定車。(特許文献1の請求項1参照)   A pair of left and right crack detection cameras that are arranged in symmetrical positions protruding forward from the upper part of the car body and that respectively image the road surface from above, and attached to the side surfaces of each of the above cameras, the distance between the camera and the road surface. In a road surface property measuring vehicle for detecting a road width and a vehicle position, comprising an up-and-down distance meter to measure, an image processing device and an arithmetic processing device that are mounted on the vehicle body and process an image based on an output signal of each camera. A road surface property measuring vehicle comprising a CCD built-in type crack detection camera having the same performance as each of the cameras. (Refer to claim 1 of Patent Document 1)

遺伝的プログラミングによる並列型画像フィルタ自動生成システムにサイズ依存型交叉を導入して道路の複数の実舗装画像からクラックが存在する画像をフィルタ構築の訓練データに選定採用することで様々なタイプの画像からクラックの抽出用画像フィルタを自動的に構築し、評価対象舗装領域の画像全体を格子状に分割した個々のブロックに該抽出用画像フィルタを適用して評価するようにしたことを特徴とする舗装路面のクラックの抽出と損傷レベルの評価方法。(特許文献2の請求項1)   By introducing size-dependent crossover into a parallel image filter automatic generation system using genetic programming, and selecting and adopting images with cracks from multiple actual pavement images of roads as training data for filter construction An image filter for extracting cracks is automatically constructed from the image, and the entire image of the pavement area to be evaluated is evaluated by applying the image filter for extraction to each block divided into a grid pattern. Extraction of cracks on paved road surface and evaluation method of damage level. (Claim 1 of Patent Document 2)

路面段差検出ロジックを次のように定めた。条件1:前後方向(Y軸)と上下方向(Z軸)の50[ms]ごとの加速度の標準偏差が同時に大きくなる。条件2:その様な部分がホイールベースの時間間隔で現れる。定式化のため、次のように変数を定義する。観測順をi、各軸の加速度データをX(i)、Y(i)、Z(i)。前後方向(Y軸)と上下方向(Z軸)の50[ms]ごとの標準偏差をSDy(i)、SDz(i)。条件1を示す同時性指標をSDyz(i)で表し、SDyz(i)=SDy(i)×SDz(i)で定義する。条件2を示す段差指標をByz(i)で表し、ホイールベース時間の周期数をNwとして、Byz(i)=SDyz(i)×SDyz(i+Nw)で定義する。Nwは車速により変化する。車速をV[m/s]、ホイールベースをLw[m]、観測周期をH[Hz]とするとNwはNw=Lw×H÷Vで与えられる。(非特許文献1の4ページ参照) The road surface step detection logic was defined as follows. Condition 1: The standard deviation of acceleration every 50 [ms] in the longitudinal direction (Y-axis) and the vertical direction (Z-axis) simultaneously increases. Condition 2: Such a portion appears at the time interval of the wheelbase. For formulation, define variables as follows: The observation order is i, and the acceleration data of each axis is X (i), Y (i), and Z (i). SDy (i) and SDz (i) are standard deviations in every 50 [ms] in the front-rear direction (Y-axis) and the vertical direction (Z-axis). The simultaneity index indicating the condition 1 is represented by SDyz (i), and is defined by SDyz (i) = SDy (i) × SDz (i). The step index indicating the condition 2 is represented by Byz (i), and the number of cycles of the wheel base time is defined as Nw, and defined as Byz (i) = SDyz (i) × SDyz (i + Nw). Nw varies depending on the vehicle speed. When the vehicle speed is V [m / s], the wheel base is Lw [m], and the observation period is H [Hz], Nw is given by Nw = Lw × H ÷ V. (See page 4 of Non-Patent Document 1)

特開平08−184422JP 08-184422 A 特開2011−179874JP2011-179874A

八木浩一、スマートフォンの加速度センサを用いた路面段差検出方法、ITSシンポジウム、日本、ITS Japan、2010年12月11日、CD−ROM、2−D−04、4ページKoichi Yagi, Road Level Detection Method Using Accelerometer of Smartphone, ITS Symposium, Japan, ITS Japan, December 11, 2010, CD-ROM, 2-D-04, page 4

特許文献1に記載された方法では、ひび割れ検出にカメラを使用しているため、道路面が暗くなる夜間の計測が難しい問題と、機器が高価になる問題と、がある。   In the method described in Patent Document 1, since a camera is used for crack detection, there are a problem that it is difficult to measure at night when the road surface is dark and a problem that the equipment is expensive.

特許文献2に記載された方法では、クラック(ひび割れ)が存在する画像を訓練データとして用いているため、ひび割れ検出の前の準備作業に時間を要する問題と、訓練データと異なるひび割れを検出しづらい問題と、がある。   In the method described in Patent Document 2, since an image with cracks (cracks) is used as training data, it is difficult to detect problems that require time for preparation work before crack detection and cracks that differ from training data. There is a problem.

非特許文献1に記載された方法では、段差指標を計測された加速度の積で求めているため、同じ場所を計測しても走行速度が異なると指標の値が大きく異なり、検査判定が難しくなる問題と、指標の導出方法が使用する加速度センサの軸方向(設置姿勢)と加速度センサの観測周期と使用する車両のホイールベース(前輪と後輪の間隔距離)に依存しているため、加速度センサ設置時の姿勢調整が難しくなる問題と、使用するセンサの変更、使用する車両の変更が難しくなる問題と、がある。   In the method described in Non-Patent Document 1, since the step index is obtained by the product of the measured accelerations, even if the same place is measured, if the traveling speed is different, the index value is greatly different, and the inspection determination is difficult. Acceleration sensor because the derivation method of the index depends on the axial direction (installation posture) of the acceleration sensor used, the observation period of the acceleration sensor, and the wheelbase of the vehicle used (distance between the front and rear wheels) There are a problem that it is difficult to adjust the posture at the time of installation, and a problem that it is difficult to change the sensor to be used and the vehicle to be used.

本発明は、このような従来の問題を解決しようとするもので、車両に、振動計測器と走行速度計測器を具備した装置を搭載し、検査対象の舗装面を走行し前記装置による計測結果を得ることで、道路面が暗い夜間においてもひび割れの場所とひび割れの程度を検査すること、検査に使用する機器を安価にできること、訓練データを用意する必要がないこと、走行速度が変わってもひび割れ検査の判定ができること、振動計測器の設置姿勢を気にせず簡便に設置できるようにすること、使用する振動計測器や車両の変更を容易にすること、を目的とする。   The present invention is intended to solve such a conventional problem. A device equipped with a vibration measuring device and a traveling speed measuring device is mounted on a vehicle, and the vehicle travels on a pavement surface to be inspected. Even if the road surface is dark, it is possible to inspect the location of cracks and the degree of cracking, to make equipment used for inspection inexpensive, to eliminate the need to prepare training data, even if the traveling speed changes The purpose is to be able to judge crack inspection, to enable easy installation without worrying about the installation posture of the vibration measuring instrument, and to easily change the vibration measuring instrument and vehicle to be used.

(1)舗装面にひび割れが存在するかどうかを検査する舗装面ひび割れ検査方法において、車両に、振動計測器と走行速度計測器と振動計測器の振動計測周期を入力する装置または自動的に判定する装置を搭載し、検査対象の舗装面を走行し前記計測装置による計測結果を得て、振動計測周期が異なる振動計測器を用いても、ひび割れの場所とひび割れの程度を検査することを特徴とする。
(2)舗装面にひび割れが存在するかどうかを検査する舗装面ひび割れ検査方法において、車両に、振動計測器と走行速度計測器と走行速度に応じ振動情報を補正する振動情報補正器を具備した計測装置を搭載し、検査対象の舗装面を走行し前記計測装置による計測結果を得て、走行速度が変動しても、ひび割れの場所とひび割れの程度を検査することを特徴とする。
(3)(2)において、振動計測器の振動計測周期を入力する装置または自動的に判定する装置を搭載し、振動計測周期が異なる振動計測器を用いても、ひび割れの場所とひび割れの程度を検査できることを特徴とする。
(4)(1)から(3)のいずれかにおいて、振動計測器の設置姿勢を表示する装置または入力する装置または自動的に判定する装置のうちの1つ以上と、設置姿勢に応じ振動情報を補正する装置を搭載し、振動計測器をどのような姿勢に設置しても、ひび割れの場所とひび割れの程度を検査できることを特徴とする。
(5)(1)から(4)のいずれかにおいて、検査に前輪と後輪を持つ車両を使用し、使用する車両の前輪と後輪の間隔距離を入力する装置または自動的に判定する装置を搭載し、振動計測器にノイズが生じた場合も誤認識を抑制し精度よく、ひび割れの場所とひび割れの程度を検査できることを特徴とする。
(6)(1)から(5)のいずれかにおいて、検査に使用する車両に応じた判定基準値を入力する装置を具備し、検査に異なる車両を用いても、ひび割れの場所とひび割れの程度を検査できることを特徴とする。
(7)(1)から(5)のいずれかにおいて、検査に使用する車両の振動特性を入力する装置または振動計測器から得た振動情報解析して車両の振動特性を推定する装置のうちの1つ以上を具備し、検査に異なる車両を用いても、車両に応じた判定基準値を入力することなく、ひび割れの場所とひび割れの程度を検査できることを特徴とする。
(1) In the pavement surface crack inspection method for inspecting whether there are cracks on the pavement surface, a device that inputs the vibration measurement period of the vibration measuring instrument, the traveling speed measuring instrument, and the vibration measuring instrument to the vehicle or automatically determines It is equipped with a device that runs on the pavement surface to be inspected, obtains the measurement result by the measurement device, and inspects the location of the crack and the degree of cracking even using a vibration measuring instrument with a different vibration measurement cycle And
(2) In the pavement surface crack inspection method for inspecting whether there is a crack on the pavement surface, the vehicle is equipped with a vibration measuring instrument, a traveling speed measuring instrument, and a vibration information corrector for correcting vibration information according to the traveling speed. A measuring device is mounted, traveling on a pavement surface to be inspected, a measurement result obtained by the measuring device is obtained, and the location of cracks and the degree of cracking are inspected even when the traveling speed fluctuates.
(3) In (2), even if a device that inputs the vibration measurement cycle of the vibration measurement device or a device that automatically determines the vibration measurement is used and the vibration measurement device has a different vibration measurement cycle, the crack location and the degree of cracking It can be inspected.
(4) In any one of (1) to (3), one or more of a device for displaying or inputting an installation posture of the vibration measuring instrument, or an automatically judging device, and vibration information according to the installation posture It is characterized by the fact that it can be inspected for the location of cracks and the degree of cracking, regardless of the position of the vibration measuring instrument.
(5) In any one of (1) to (4), a vehicle having a front wheel and a rear wheel is used for inspection, and a device for inputting a distance between the front wheel and the rear wheel of the vehicle to be used or a device for automatically determining It is characterized by being able to check the location of cracks and the degree of cracks with high accuracy by suppressing misrecognition even when noise is generated in the vibration measuring instrument.
(6) In any one of (1) to (5), a device for inputting a judgment reference value according to the vehicle used for the inspection is provided, and even if a different vehicle is used for the inspection, the location of the crack and the degree of the crack It can be inspected.
(7) In any one of (1) to (5), a device for inputting vibration characteristics of a vehicle used for inspection or a device for estimating vibration characteristics of a vehicle by analyzing vibration information obtained from a vibration measuring instrument Even if one or more vehicles are provided and different vehicles are used for inspection, the location of cracks and the degree of cracks can be inspected without inputting a criterion value according to the vehicle.

車両に、振動計測器と走行速度計測器とを具備した装置を搭載し、検査対象の舗装面を走行し前記装置による計測結果を得ることで、道路面が暗い夜間においてもひび割れの場所とひび割れの程度を検査できる利点と、検査に使用する機器を安価にできる利点と、訓練データを用意する必要がない利点と、走行速度に応じ振動情報を補正する振動情報補正器を具備することで、走行速度が変わってもひび割れ検査の判定ができる利点と、振動計測器の設置姿勢を気にせず簡便に設置できる利点と、使用する振動計測器や車両の変更を容易に行える利点と、がある。   The vehicle is equipped with a device equipped with a vibration measuring instrument and a running speed measuring instrument, travels on the pavement surface to be inspected, and obtains measurement results from the device, so that the location and cracking of the crack can be found even at night when the road surface is dark. By providing a vibration information corrector that corrects the vibration information according to the traveling speed, the advantage that it is possible to inspect the degree of, the advantage that the equipment used for the inspection can be made inexpensive, the advantage that it is not necessary to prepare training data, There are the advantages of being able to judge crack inspection even if the traveling speed changes, the advantage of being able to install easily without worrying about the installation posture of the vibration measuring instrument, and the advantage of being able to easily change the vibration measuring instrument and vehicle to be used .

図1は検査対象の道路などの舗装面に存在するひび割れを検査する本発明の使用場面の模式図である。FIG. 1 is a schematic diagram of a use scene of the present invention for inspecting a crack existing on a pavement surface such as a road to be inspected. 図2は計測車両への計測装置の設置例の模式図である。FIG. 2 is a schematic diagram of an example of installation of a measurement device on a measurement vehicle. 図3は舗装面ひび割れ検査方法のフロー図である。FIG. 3 is a flow chart of the pavement surface crack inspection method. 図4は車両を模式化した振動モデルの図である。FIG. 4 is a diagram of a vibration model schematically representing a vehicle.

以下の説明では道路におけるひび割れ検査を想定して記述するが、橋梁、駐車場、工場敷地内、飛行場、広場など舗装が施された場所に適用できる。   In the following explanation, it is assumed that cracks are inspected on the road, but it can be applied to paved areas such as bridges, parking lots, factory premises, airfields, and plazas.

図1に検査対象の道路などの舗装面に存在するひび割れを検査する本発明の使用場面の模式図を示す。検査対象の舗装面1では欠陥を早期に発見し適正に維持管理するために、欠陥の1つであるひび割れ2が存在するかどうか、どこに存在するか、ひび割れの程度はどの程度かを検査する必要がある。   FIG. 1 shows a schematic diagram of a use scene of the present invention for inspecting a crack existing on a pavement surface such as a road to be inspected. In order to detect defects on the pavement surface 1 to be inspected at an early stage and to properly maintain and manage them, inspect whether or not there is a crack 2 which is one of the defects, where it exists, and how much the crack is. There is a need.

ひび割れ2を発見するため、汎用車両を計測車両3として使用する。以下の説明では普通乗用車を想定して記述するが、舗装面1上を車輪により走行するトラックやバス、オートバイ、自転車、台車、フォークリフト、飛行機などを使用することができる。計測車両3に計測装置4を搭載し、検査対象の舗装面1を走行する。   In order to detect the crack 2, a general-purpose vehicle is used as the measurement vehicle 3. In the following description, an ordinary passenger car is assumed and described, but a truck, bus, motorcycle, bicycle, bogie, forklift, airplane, or the like that travels on the pavement surface 1 by wheels can be used. A measurement device 4 is mounted on the measurement vehicle 3 and travels on the pavement surface 1 to be inspected.

図2に計測車両3への計測装置4の搭載状態の模式図を示す。計測装置4は計測車両3に固定される。図2ではダッシュボードの中央に垂直かつ進行方向に直角に固定しているが、車両のいずれの場所に設置してもよく、設置姿勢も垂直でなくても、進行方向に直角でなくても良い。計測装置4には振動計測器として直交する3つの軸方向の加速度が計測できる加速度計と、走行速度計測器としてGPSと、を具備し、走行地点ごとの加速度応答を得る。計測装置4には加速度計とGPSを具備した専用機器に限らずスマートフォンのような汎用機器を用いることができる。計測装置4に具備する振動計測器は加速度計に代えて速度計や角速度計、角度計を用いることを妨げず、3つの軸ではなく1つ以上の軸の加速度計に変えることを妨げない。また複数の計測器を組み合わせて使用することも妨げない。計測装置4に具備する走行速度計測器はGPSに代えてタイヤの回転速度から速度を計測する機器など他の計測器を用いることを妨げず、複数の計測器を組み合わせて使用することも妨げない。   FIG. 2 shows a schematic diagram of the mounting state of the measuring device 4 on the measuring vehicle 3. The measuring device 4 is fixed to the measuring vehicle 3. In FIG. 2, it is fixed perpendicularly to the center of the dashboard and at right angles to the direction of travel, but it may be installed anywhere on the vehicle. good. The measuring device 4 includes an accelerometer capable of measuring acceleration in three orthogonal directions as a vibration measuring instrument, and a GPS as a traveling speed measuring instrument, and obtains an acceleration response for each traveling point. The measuring device 4 is not limited to a dedicated device equipped with an accelerometer and GPS, and can be a general-purpose device such as a smartphone. The vibration measuring instrument provided in the measuring device 4 does not prevent the use of a speedometer, an angular velocity meter, or an angle meter in place of the accelerometer, and does not prevent changing to an accelerometer having one or more axes instead of three axes. Moreover, it does not prevent using a plurality of measuring instruments in combination. The traveling speed measuring instrument provided in the measuring device 4 does not prevent the use of other measuring instruments such as a device that measures the speed from the rotational speed of the tire instead of the GPS, and does not prevent the use of a plurality of measuring instruments in combination. .

図3に舗装面ひび割れ検査方法のフロー図を示す。図2の計測装置4に具備された加速度計11により走行中の計測車両3の振動状態を時刻ごとの加速度(以下、あわせて加速度と呼ぶ)を計測し、GPS12により図2の計測車両3の走行速度と、走行場所を計測する。加速度計11で得た加速度は設置姿勢推定13と、姿勢補正14と、計測周期判定17と、に伝えられる。GPS12で得た走行速度、走行場所は、設置姿勢推定13と、前後輪間隔推定15と、速度依存性補正16と、遅延時間算出19と、位置情報付与22と、車両依存性補正32と、に伝えられる。   FIG. 3 shows a flow chart of the pavement surface crack inspection method. The vibration state of the measuring vehicle 3 that is running is measured by the accelerometer 11 provided in the measuring device 4 of FIG. 2, and the acceleration at each time (hereinafter also referred to as acceleration) is measured, and the measurement vehicle 3 of FIG. Measure travel speed and travel location. The acceleration obtained by the accelerometer 11 is transmitted to the installation posture estimation 13, the posture correction 14, and the measurement cycle determination 17. The travel speed and travel location obtained by the GPS 12 are the installation posture estimation 13, the front and rear wheel distance estimation 15, the speed dependency correction 16, the delay time calculation 19, the position information addition 22, and the vehicle dependency correction 32. To be told.

設置姿勢推定13では、GPS12から得た走行速度がゼロのとき、すなわち停車中の加速度の方向を上下方向、方向と大きさを重力成分として判断する。走行速度が増加しているとき、あるいは減少しているときに観測される加速度から重力成分を差し引いた加速度の方向を前後方向として判断する。GPS12から得た進行方位が変化しているとき、すなわちカーブしているときに観測される加速度から重力成分を差し引いた加速度の方向を左右方向として判断する。設置姿勢推定13ではさらに上下方向、前後方向、左右方向がそれぞれ直交するとした条件を加えて補正し、加速度計11の設置姿勢の判定精度を向上させる。設置姿勢推定13での判定結果は姿勢補正14に伝えられる。   In the installation posture estimation 13, when the traveling speed obtained from the GPS 12 is zero, that is, the direction of acceleration while the vehicle is stopped is determined as the vertical direction, and the direction and magnitude are determined as the gravity component. The direction of acceleration obtained by subtracting the gravity component from the acceleration observed when the traveling speed is increasing or decreasing is determined as the front-rear direction. The direction of acceleration obtained by subtracting the gravity component from the acceleration observed when the traveling direction obtained from the GPS 12 is changing, that is, when turning, is determined as the left-right direction. In the installation posture estimation 13, correction is further made by adding a condition that the vertical direction, the front-rear direction, and the left-right direction are orthogonal to each other, thereby improving the determination accuracy of the installation posture of the accelerometer 11. The determination result in the installation posture estimation 13 is transmitted to the posture correction 14.

姿勢補正14では、加速度計11で計測された加速度を、設置姿勢推定13で判定された上下方向、前後方向、左右方向を用いて、X軸が左右方向、Y軸が前後方向、Z軸が上下方向となるように座標回転により軸方向をそろえる。XYZそれぞれの軸と実際の方向の関係はX軸が前後方向などに変更することを妨げない。姿勢補正14で補正された加速度は、前後輪間隔推定15と、速度依存性補正16と、車両特性推定31に伝えられる。   In the posture correction 14, the acceleration measured by the accelerometer 11 is used as the vertical direction, the front-rear direction, and the left-right direction determined by the installation posture estimation 13, the X-axis is the left-right direction, the Y-axis is the front-rear direction, and the Z-axis is The axes are aligned by rotating the coordinates so that they are in the vertical direction. The relationship between each axis of XYZ and the actual direction does not prevent the X axis from changing to the front-rear direction or the like. The acceleration corrected by the posture correction 14 is transmitted to the front and rear wheel distance estimation 15, the speed dependence correction 16, and the vehicle characteristic estimation 31.

前後輪間隔推定15では、姿勢補正14からの軸方向をそろえた加速度について、軸方向ごとに短時間たとえば0.05秒間の標準偏差を求め、前記標準偏差が極大値となった時刻を求め、その時間間隔を求める。前記時間間隔に、GPS12からの走行速度を掛け合わせて距離を求める。これを前記極大値が現れるごとに繰り返し実施し、算出された距離ごとに極大値が何回現れたかのヒストグラムを作成する。計測車両3がひび割れ2を通過する際、前輪、後輪の順で通過し、それぞれで計測車両3が振動する。そのため前記ヒストグラムのピークは計測車両3の前輪と後輪の間隔距離に現れる。このことからヒストグラムのピークを与える距離から、前後輪間隔距離が推定される。前記の加速度の標準偏差は代表1軸に対する標準偏差とすること、複数軸の合成加速度とすることも妨げない。前後輪間隔推定15の結果は遅延時間算出19に伝えられる。   In the front-rear wheel distance estimation 15, for the acceleration aligned in the axial direction from the posture correction 14, a standard deviation for a short time, for example, 0.05 seconds is obtained for each axial direction, and a time at which the standard deviation becomes a maximum value is obtained. Find the time interval. The distance is obtained by multiplying the time interval by the traveling speed from the GPS 12. This process is repeated every time the maximum value appears, and a histogram of how many times the maximum value appears for each calculated distance is created. When the measurement vehicle 3 passes through the crack 2, it passes in the order of the front wheels and the rear wheels, and the measurement vehicle 3 vibrates in each order. Therefore, the peak of the histogram appears in the distance between the front wheel and the rear wheel of the measurement vehicle 3. From this, the distance between the front and rear wheels is estimated from the distance giving the peak of the histogram. The standard deviation of the acceleration is not limited to a standard deviation with respect to one representative axis, or a combined acceleration of a plurality of axes. The result of the front and rear wheel interval estimation 15 is transmitted to the delay time calculation 19.

計測車両3に対し図4に示す振動モデルをあてはめ、図3の車両特定推定31、車両依存性補正32を行う。ここでZは路面凹凸量、x1タイヤ中心位置の上下変位量、x2はサスペンション上部の上下変位量、K1はタイヤのばね定数、K2はサスペンションのばね定数、C2は減衰係数、m1はばね下質量、m2はばね上質量を示す。ここで、この振動モデルは式(1)および式(2)の運動方程式で表すことができる。ばね定数、減衰係数、質量のパラメータを式(3)から式(6)で置き換えると、運動方程式は式(7)および式(8)で表すことができる。ここでωは共振周波数、hは減衰比となる。
The vibration model shown in FIG. 4 is applied to the measurement vehicle 3, and the vehicle specific estimation 31 and the vehicle dependence correction 32 of FIG. 3 are performed. Where Z is the amount of road surface unevenness, x1 vertical displacement at the tire center position, x2 is vertical displacement at the top of the suspension, K1 is the tire spring constant, K2 is the suspension spring constant, C2 is the damping coefficient, and m1 is the unsprung mass. , M2 represents the sprung mass. Here, this vibration model can be expressed by the equations of motion of Equation (1) and Equation (2). When the parameters of the spring constant, the damping coefficient, and the mass are replaced by the equations (3) to (6), the equation of motion can be expressed by the equations (7) and (8). Here, ω is a resonance frequency, and h is an attenuation ratio.

車両特性推定31では、姿勢補正14からの軸方向をそろえた加速度のうち、上下方向の加速度に対して高速フーリエ変換あるいは他の手法により周波数分析を行い、周波数ごとの振幅を得る。1.5Hz近傍で振幅が極大となる周波数を前記ω2として抽出する。またこれに対応する減衰比h2を半値幅法などにより推定する。15Hz近傍で振幅が極大となる周波数をω1として抽出する。ω2とω1の間の周波数で振幅が極大となる周波数をω21として抽出する。共振周波数と減衰比は車両依存性補正32に伝えられる。   In the vehicle characteristic estimation 31, frequency analysis is performed on the acceleration in the vertical direction out of the accelerations aligned in the axial direction from the posture correction 14 by fast Fourier transform or other methods, and an amplitude for each frequency is obtained. The frequency at which the amplitude becomes maximum in the vicinity of 1.5 Hz is extracted as ω2. Further, the corresponding attenuation ratio h2 is estimated by the half width method or the like. The frequency at which the amplitude becomes maximum in the vicinity of 15 Hz is extracted as ω1. A frequency having a maximum amplitude between ω2 and ω1 is extracted as ω21. The resonance frequency and the damping ratio are transmitted to the vehicle dependence correction 32.

車両依存性補正32では、車両特性推定31から共振周波数と減衰比と、車両特性31を介して姿勢補正14から伝えられる上下加速度と、GPS12から位置と、を受け取る。上下加速度には重力成分が含まれるためハイパスフィルタをかけたうえ、二階積分してばね上の上下変位量x2を求める。式(7)を解き、ばね下の上下変位量x1を求める。さらに式(8)を解き、タイヤ下の上下変位量Zを求める。姿勢補正14からの加速度は加速度計11によりサスペンションより上の位置で計測されており、計測車両3のサスペンションとタイヤの硬さの影響を受け、同じ道路を走行しても車種が異なると加速度の値が異なる。前記の演算により求めたタイヤ下の上下変位量Zはこれらの影響を除去しているため、車種が異なっても同様の値を得ることができる。また上下加速度は単位時間あたりの上下変化の量のため走行速度の影響を受けるが、上下変位量は上下距離であるため走行速度の影響も受けない。ここで、前記のタイヤ下の上下変位量ZをGPS12からの位置情報とあわせて場所ごとの路面の凹凸量、すなわち縦断プロファイルを求める。縦断プロファイルは振動特徴抽出18に伝えられる。
計測車両3に対し他の振動モデルをあてはめること、運動方程式に代えて路面凹凸と加速度の関係を表す他の式を用いること、を妨げない。
In the vehicle dependence correction 32, the resonance frequency and the attenuation ratio from the vehicle characteristic estimation 31, the vertical acceleration transmitted from the attitude correction 14 via the vehicle characteristic 31, and the position from the GPS 12 are received. Since the vertical acceleration includes a gravitational component, a high-pass filter is applied and second-order integration is performed to obtain the vertical displacement amount x2 on the spring. Equation (7) is solved to determine the unsprung vertical displacement x1. Further, Equation (8) is solved to determine the vertical displacement amount Z under the tire. The acceleration from the posture correction 14 is measured at a position above the suspension by the accelerometer 11, and is affected by the suspension of the measurement vehicle 3 and the hardness of the tire. The value is different. The vertical displacement amount Z under the tire obtained by the above calculation removes these influences, so that the same value can be obtained even if the vehicle types are different. The vertical acceleration is affected by the running speed because of the amount of vertical change per unit time, but the vertical displacement is not affected by the running speed because it is the vertical distance. Here, the amount of unevenness of the road surface for each location, that is, the longitudinal profile is obtained by combining the vertical displacement amount Z under the tire with the position information from the GPS 12. The longitudinal profile is transmitted to the vibration feature extraction 18.
It is not prohibited to apply another vibration model to the measurement vehicle 3 and to use another equation representing the relationship between road surface unevenness and acceleration instead of the equation of motion.

速度依存性補正16では、姿勢補正14からの軸方向をそろえた加速度を、GPS12で計測した走行速度をもとに、速度依存性補正を行う。走行速度が速くなると車両の振動は大きくなるため、車両の振動の大きさからのひび割れの程度の判定結果が走行速度によって変動してしまう。安定した判定結果を得るため、加速度を走行速度で除した値を求め、それを規定速度で走行したときに期待される加速度(以下、正規化加速度)として、ひび割れ検査に用いる。前記、正規化加速度は振動特徴抽出18に伝えられる。   In the speed dependence correction 16, the speed dependence correction is performed on the basis of the traveling speed measured by the GPS 12 with the acceleration obtained by aligning the axial direction from the attitude correction 14. Since the vibration of the vehicle increases as the traveling speed increases, the determination result of the degree of cracking from the magnitude of the vibration of the vehicle varies depending on the traveling speed. In order to obtain a stable determination result, a value obtained by dividing the acceleration by the traveling speed is obtained, and this value is used for crack inspection as an acceleration (hereinafter, normalized acceleration) expected when traveling at a specified speed. The normalized acceleration is transmitted to the vibration feature extraction 18.

計測周期判定17では、加速度計11の計測周期を判定する。車両の振動は連続的に生じているが、加速度計11では一定の時間間隔、たとえば100分の1秒ごとの加速度を計測結果として出力する。このときの時間間隔を計測周期と呼ぶ。図2の計測装置4に汎用のスマートフォンなどを使用した場合、計測周期は使用するスマートフォンにより異なる。ある時点の加速度計測時刻と次の計測時刻の時間間隔から計測周期を得る。スマートフォンによっては前記の時間間隔がばらつき安定しないことがあるため、時間間隔ごとの出現回数を数えてヒストグラムを作成し、もっとも多く出現した時間間隔を計測周期として得ることも妨げない。もっとも多く出現した時間間隔に変えて平均値、中央値を用いることも妨げない。前記の計測周期は振動特徴抽出18と、遅延装置20と、に伝えられる。   In the measurement cycle determination 17, the measurement cycle of the accelerometer 11 is determined. Although the vibration of the vehicle continuously occurs, the accelerometer 11 outputs an acceleration at a constant time interval, for example, every 1/100 second as a measurement result. The time interval at this time is called a measurement cycle. When a general-purpose smartphone or the like is used for the measurement device 4 in FIG. 2, the measurement cycle varies depending on the smartphone used. A measurement cycle is obtained from the time interval between the acceleration measurement time at a certain time and the next measurement time. Depending on the smartphone, the time interval may not be stable and stable, and it is not hindered to create a histogram by counting the number of appearances for each time interval and to obtain the most frequently occurring time interval as a measurement cycle. The average value and median value can be used instead of the most frequently occurring time interval. The measurement period is transmitted to the vibration feature extraction 18 and the delay device 20.

振動特徴抽出18では、速度依存性補正16からの正規化加速度、または車両依存性補正32からの縦断プロファイルのどちらか一方または両方を用い、ひび割れに起因する特徴を示す値を求め、その結果は遅延装置20と、前後輪特徴抽出21に伝えられる。   In the vibration feature extraction 18, either one or both of the normalized acceleration from the speed dependency correction 16 and the longitudinal profile from the vehicle dependency correction 32 is used to obtain a value indicating the characteristic caused by the crack. This is transmitted to the delay device 20 and the front and rear wheel feature extraction 21.

振動特徴抽出18において、速度依存性補正16からの正規化加速度により、ひび割れに起因する特徴を示す値を求める方法を述べる。非特許文献1の方法を改良した方法で求める。上下方向と前後方向の加速度の標準偏差の積(以下、同時性指標)に代えて、上下方向と前後方向の正規化加速度の標準偏差の積(以下、正規化同時性指標)を求め、これをひび割れに起因する特徴を示す値とする。ひび割れ2を通過する際には高い周波数たとえば20Hz以上の加速度変動が観測される。前記の正規化同時性指標では周波数が考慮されておらず、誤認識の恐れが残る。短時間たとえば1秒以下の上下方向の加速度または正規化加速度に対して高速フーリエ変換を施し周波数特性を求め、高い周波数成分が含まれているかどうかを判定し、含まれていなければひび割れに起因しないと判断する。高速フーリエ変換ではデータ件数を2のべき乗件とする必要があることから、計測周期判定17からの計測周期を用い、1秒以下となる2のべき乗件数を求め計算する。高い周波数成分が含まれているかどうかの判定は高速フーリエ変換に限らずハイパスフィルタを用いるなど他の方法で実施することを妨げない。振動特徴抽出18での結果抽出は、正規化同時性指標と、高い周波数成分が含まれるかどうかの、どちらか一方のみに基づく方法も、両方に基づく方法も妨げない。前記の抽出結果は、遅延装置20と、前後輪特徴抽出21に伝えられる。   In the vibration feature extraction 18, a method for obtaining a value indicating a feature caused by a crack based on the normalized acceleration from the speed dependency correction 16 will be described. It is obtained by a method improved from the method of Non-Patent Document 1. Instead of the product of the standard deviation of acceleration in the vertical direction and the longitudinal direction (hereinafter referred to as simultaneity index), the product of the standard deviation of normalized acceleration in the vertical direction and the longitudinal direction (hereinafter referred to as the normalized simultaneity index) is obtained. Is a value indicating the characteristics due to cracks. When passing through the crack 2, an acceleration fluctuation of a high frequency, for example, 20 Hz or more is observed. In the normalized simultaneity index, frequency is not taken into account, and there is a risk of erroneous recognition. Apply fast Fourier transform to vertical acceleration or normalized acceleration for a short time, for example 1 second or less, to obtain frequency characteristics, determine whether high frequency components are included, and if not, it will not be caused by cracks Judge. Since the number of data needs to be a power of 2 in the fast Fourier transform, the number of powers of 2 that is 1 second or less is obtained and calculated using the measurement cycle from the measurement cycle determination 17. The determination of whether or not a high frequency component is included is not limited to implementation by other methods such as using a high-pass filter as well as fast Fourier transform. The result extraction in the vibration feature extraction 18 does not disturb the method based on either the normalized simultaneity index and whether a high frequency component is included, or the method based on both. The extraction result is transmitted to the delay device 20 and the front and rear wheel feature extraction 21.

振動特徴抽出18において、車両依存性補正32からの縦断プロファイルにより、ひび割れに起因する特徴を示す値を求める方法を述べる。縦断プロファイルには路面の標高変化、うねり、局所的な変状が含まれている。ひび割れの割れ部分は局所的な変状なので、縦断プロファイルから局所的な変状を抽出するため1mのハイパスフィルタをかけ、局所プロファイルを求める。舗装調査・試験法便覧において、ひび割れは50cm区画ごとに、ひびがない、ひびが1本ある、ひびが2本以上ある、に分けて集計しひび割れ率を求めている。2本のひび割れを検知するため、局所プロファイルを進行方向25cmごとに標準偏差を求める。標準偏差が5mm以上の場合、当該50cm区画にひびがあるとして抽出する。抽出結果は、遅延装置20と、前後輪特徴抽出21に伝えられる。前記の1m、25cm、5mmなどのパラメータを変更して実施することを妨げない。   In the vibration feature extraction 18, a method for obtaining a value indicating a feature caused by a crack from a longitudinal profile from the vehicle dependence correction 32 will be described. The longitudinal profile includes road surface elevation changes, swells, and local deformations. Since the cracked portion of the crack is a local deformation, a local profile is obtained by applying a 1 m high-pass filter to extract the local deformation from the longitudinal profile. In the pavement survey / test method manual, the cracks are calculated by dividing the cracks into 50-cm sections with no cracks, one crack, and two or more cracks. In order to detect two cracks, the standard deviation of the local profile is obtained every 25 cm in the traveling direction. If the standard deviation is 5 mm or more, the 50 cm section is extracted as cracked. The extraction result is transmitted to the delay device 20 and the front and rear wheel feature extraction 21. It does not prevent implementation by changing the parameters such as 1 m, 25 cm, and 5 mm.

遅延時間算出19では、前後輪間隔推定15からの前後輪間隔距離を、GPS12からの走行速度で除し、ある地点を前輪が通過してから後輪が通過するまでの時間(以下、前後輪時間)を求める。前後輪時間は遅延装置20に伝えられる。   In the delay time calculation 19, the distance between the front and rear wheels from the front and rear wheel space estimation 15 is divided by the traveling speed from the GPS 12, and the time from when the front wheels pass through a certain point until the rear wheels pass (hereinafter referred to as front and rear wheels). Time). The front and rear wheel times are transmitted to the delay device 20.

遅延装置20では、振動特徴抽出18からの抽出結果を、遅延時間算出19からの前後輪時間分遅延させ、前後輪特徴抽出21に伝えられる。   In the delay device 20, the extraction result from the vibration feature extraction 18 is delayed by the front and rear wheel time from the delay time calculation 19 and transmitted to the front and rear wheel feature extraction 21.

前後輪特徴抽出21では、振動特徴抽出18から最新の抽出結果と、遅延装置20から前後輪時間だけ前の抽出結果を得て、それらの積(以下、前後輪同時指標)を算出する。振動特徴抽出18からの抽出結果は後輪が、遅延装置20からの抽出結果は前輪がひび割れの上を走行したときの振動特徴に相当するため、ひび割れが存在する場合、その積である前後輪同時指標も大きくなるが、加速度計11にノイズが生じたような場合は一方のみが大きくなるため前後輪同時指標は小さくなり、ノイズを除去できる。前記の前後輪同時指標は位置情報付与22に伝えられる。   In the front and rear wheel feature extraction 21, the latest extraction result from the vibration feature extraction 18 and the previous extraction result by the front and rear wheel time are obtained from the delay device 20, and the product (hereinafter referred to as front and rear wheel simultaneous index) is calculated. The extraction result from the vibration feature extraction 18 corresponds to the vibration feature when the rear wheel is traveling on the crack, and the extraction result from the delay device 20 corresponds to the vibration feature when the front wheel travels on the crack. The simultaneous index also increases, but when noise occurs in the accelerometer 11, only one increases, so the front and rear wheel simultaneous index decreases, and noise can be removed. The front and rear wheel simultaneous index is transmitted to the position information adding unit 22.

位置情報付与22では、GPS12からの位置情報と、前後輪特徴抽出21からの前後輪同時性指標の時間関係から位置を判断して、前後輪同時性指標に位置情報を付与する。位置情報が付与された前後輪同時性指標をひび割れ位置・程度23として出力する。   In the position information addition 22, the position is determined from the time relationship between the position information from the GPS 12 and the front and rear wheel synchronism index from the front and rear wheel feature extraction 21, and the position information is added to the front and rear wheel synchronism index. The front-rear wheel synchronism index to which the position information is assigned is output as a crack position / degree 23.

前記記述の実施例に対して、処理順序を変更することも妨げない。たとえば計測周期判定17を加速度計11からの加速度に代えて速度依存性補正16からの正規化加速度を用いる、位置情報付与22を前後輪特徴抽出21からの前後輪同時性指標を求める前に加速度計11からの加速度に付与する、速度依存性補正16を姿勢補正14の前に実施するあるいは前後輪特徴抽出21の後に実施する、など様々な形態での実施も妨げない。   It is not prohibited to change the processing order with respect to the embodiment described above. For example, instead of the acceleration from the accelerometer 11 for the measurement cycle determination 17, the normalized acceleration from the speed dependence correction 16 is used. The position information addition 22 is an acceleration before obtaining the front-rear wheel synchronism index from the front-rear wheel feature extraction 21. Implementation in various forms, such as applying the speed dependency correction 16 to the acceleration from the total 11 before the posture correction 14 or after the front and rear wheel feature extraction 21, is not hindered.

前記記述の実施例に対して、一部の処理を省略あるいは改変することも妨げない。たとえば計測周期判定17に代えて計測周期の入力装置とすること、加速度計11に計測周期があらかじめ分かっている機器を用いることで計測周期判定17を廃すること、設置姿勢推定13に代えて設置姿勢の入力装置にすること、設置姿勢推定13と姿勢補正14に代えて設置姿勢に関する情報たとえば重力方向を表示し設置姿勢の手動での調整を容易にすること、設置姿勢を限定することで設置姿勢推定13を廃すること、前後輪間隔推定15に代えて前後輪間隔の入力装置とすること、計測に使用する車両を前後輪間隔が特定の長さの車両とすることで前後輪間隔推定15を廃すること、前後輪間隔推定15と遅延時間算出19と遅延装置20と前後輪特徴抽出21を廃し前後輪に分離されていない車両や台車たとえば手押し台車などに適用すること、も妨げない。実施例で挙げた時間の長さなどの定数は変更を妨げず、各種演算の実現方法はデジタル式、アナログ式、あるいはハードウェアによるもの、ソフトウェアによるものなど様々な形態での実施も妨げない。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能である。   It is not prohibited to omit or modify a part of the processing in the embodiment described above. For example, a measurement cycle input device is used instead of the measurement cycle determination 17, the measurement cycle determination 17 is eliminated by using a device whose measurement cycle is known in advance for the accelerometer 11, and installation instead of the installation posture estimation 13. It can be installed by using an orientation input device, displaying information on the installation posture instead of the installation posture estimation 13 and the posture correction 14, for example, the direction of gravity to facilitate manual adjustment of the installation posture, and limiting the installation posture. By eliminating the posture estimation 13, replacing the front-rear wheel interval estimation 15 with an input device for the front-rear wheel interval, and making the vehicle used for measurement a vehicle with a specific length between the front-rear wheels, the front-rear wheel interval estimation 15, vehicle front and rear wheel estimation 15, delay time calculation 19, delay device 20, front and rear wheel feature extraction 21, and vehicles and carts that are not separated into front and rear wheels, such as handcarts. Be applied to, it does not interfere also. Constants such as the length of time given in the embodiment do not prevent the change, and the implementation method of various operations does not prevent the implementation in various forms such as a digital method, an analog method, a hardware method, and a software method. In addition, various modifications can be made without departing from the scope of the present invention.

1 舗装面
2 ひび割れ
3 計測車両
4 計測装置
11 加速度計
12 GPS
13 設置姿勢推定
14 姿勢補正
15 前後輪間隔推定
16 速度依存性補正
17 計測周期判定
18 振動特徴抽出
19 遅延時間算出
20 遅延装置
21 前後輪特徴抽出
22 位置情報付与
23 ひび割れ位置・程度
31 車両特性推定
32 車両依存性補正
DESCRIPTION OF SYMBOLS 1 Pavement surface 2 Crack 3 Measuring vehicle 4 Measuring device 11 Accelerometer 12 GPS
DESCRIPTION OF SYMBOLS 13 Installation posture estimation 14 Posture correction 15 Front-and-rear wheel space estimation 16 Speed dependence correction 17 Measurement period judgment 18 Vibration feature extraction 19 Delay time calculation 20 Delay device 21 Front-and-rear wheel feature extraction 22 Position information addition 23 Crack position and degree 31 Vehicle characteristic estimation 32 Vehicle dependence correction

Claims (7)

舗装面にひび割れが存在するかどうかを検査する舗装面ひび割れ検査方法において、車両に、振動計測器と走行速度計測器と振動計測器の振動計測周期を入力する装置または自動的に判定する装置を搭載し、検査対象の舗装面を走行し前記計測装置による計測結果を得て、振動計測周期が異なる振動計測器を用いても、ひび割れの場所とひび割れの程度を検査することを特徴とする舗装面ひび割れ検査方法。   In the pavement surface crack inspection method for inspecting whether there are cracks on the pavement surface, a device that inputs the vibration measurement period of the vibration measuring instrument, the traveling speed measuring instrument, and the vibration measuring instrument to the vehicle or a device that automatically determines it. A pavement that is mounted, travels on the pavement surface to be inspected, obtains measurement results from the measuring device, and inspects the location of cracks and the degree of cracking even when using vibration measuring instruments with different vibration measurement cycles. Surface crack inspection method. 舗装面にひび割れが存在するかどうかを検査する舗装面ひび割れ検査方法において、車両に、振動計測器と走行速度計測器と走行速度に応じ振動情報を補正する振動情報補正器を具備した計測装置を搭載し、検査対象の舗装面を走行し前記計測装置による計測結果を得て、走行速度が変動しても、ひび割れの場所とひび割れの程度を検査することを特徴とする舗装面ひび割れ検査方法。   In a method for inspecting cracks in a pavement surface for inspecting whether or not there are cracks on the pavement surface, a measuring device having a vibration measuring device, a traveling speed measuring device, and a vibration information correcting unit for correcting vibration information according to the traveling speed on the vehicle. A pavement surface crack inspection method comprising: mounting, traveling on a pavement surface to be inspected, obtaining a measurement result by the measuring device, and inspecting the location of the crack and the degree of the crack even when the traveling speed fluctuates. 請求項2に記載された舗装面ひび割れ検査方法において、振動計測器の振動計測周期を入力する装置または自動的に判定する装置を搭載し、振動計測周期が異なる振動計測器を用いても、ひび割れの場所とひび割れの程度を検査できることを特徴とする舗装面ひび割れ検査方法。   3. The method for inspecting a crack on a pavement surface according to claim 2, wherein a device for inputting a vibration measurement cycle of a vibration measuring device or a device for automatically determining is mounted, and even if a vibration measuring device having a different vibration measuring cycle is used, the crack is used. A pavement surface crack inspection method characterized by being able to inspect the location and the degree of cracks. 請求項1から請求項3のいずれかに記載された舗装面ひび割れ検査方法において、振動計測器の設置姿勢を表示する装置または入力する装置または自動的に判定する装置のうちの1つ以上と、設置姿勢に応じ振動情報を補正する装置を搭載し、振動計測器をどのような姿勢に設置しても、ひび割れの場所とひび割れの程度を検査できることを特徴とする舗装面ひび割れ検査方法。   In the pavement surface crack inspection method according to any one of claims 1 to 3, one or more of a device for displaying an installation posture of a vibration measuring instrument, a device for inputting, or a device for automatically determining; A pavement surface crack inspection method, which is equipped with a device that corrects vibration information according to the installation posture, and can inspect the location and degree of cracking regardless of the posture of the vibration measuring device. 請求項1から請求項4のいずれかに記載された舗装面ひび割れ検査方法において、検査に前輪と後輪を持つ車両を使用し、使用する車両の前輪と後輪の間隔距離を入力する装置または自動的に判定する装置を搭載し、振動計測器にノイズが生じた場合も誤認識を抑制し精度よく、ひび割れの場所とひび割れの程度を検査できることを特徴とする舗装面ひび割れ検査方法。   5. A method for inspecting a pavement surface crack according to any one of claims 1 to 4, wherein a vehicle having front and rear wheels is used for inspection, and a distance between the front and rear wheels of the vehicle to be used is input. A pavement surface crack inspection method, which is equipped with an automatic determination device and can accurately inspect the location of cracks and the degree of cracks by suppressing false recognition even when noise is generated in a vibration measuring instrument. 請求項1から請求項5のいずれかに記載された舗装面ひび割れ検査方法において、検査に使用する車両に応じた判定基準値を入力する装置を具備し、検査に異なる車両を用いても、ひび割れの場所とひび割れの程度を検査できることを特徴とする舗装面ひび割れ検査方法。   The method for inspecting cracks in a pavement surface according to any one of claims 1 to 5, further comprising a device for inputting a judgment reference value according to a vehicle used for the inspection, even if a different vehicle is used for the inspection. A pavement surface crack inspection method characterized by being able to inspect the location and the degree of cracks. 請求項1から請求項5のいずれかに記載された舗装面ひび割れ検査方法において、検査に使用する車両の振動特性を入力する装置または振動計測器から得た振動情報解析して車両の振動特性を推定する装置のうちの1つ以上を具備し、さらに振動計測器から得た振動情報を車両の振動特性に応じて補正する装置を具備し、検査に異なる車両を用いても、車両に応じた判定基準値を入力することなく、ひび割れの場所とひび割れの程度を検査できることを特徴とする舗装面ひび割れ検査方法。
6. A method for inspecting a pavement surface crack according to claim 1, wherein the vibration characteristics of the vehicle are determined by analyzing vibration information obtained from a device or a vibration measuring instrument for inputting vibration characteristics of the vehicle used for inspection. It has one or more of the devices to be estimated, and further has a device for correcting the vibration information obtained from the vibration measuring device according to the vibration characteristics of the vehicle. A pavement surface crack inspection method characterized by being able to inspect the location of cracks and the degree of cracks without inputting a criterion value.
JP2016252744A 2016-06-08 2016-12-27 Paved surface crack inspection method Pending JP2017223640A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016114202 2016-06-08
JP2016114202 2016-06-08

Publications (1)

Publication Number Publication Date
JP2017223640A true JP2017223640A (en) 2017-12-21

Family

ID=60686340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016252744A Pending JP2017223640A (en) 2016-06-08 2016-12-27 Paved surface crack inspection method

Country Status (1)

Country Link
JP (1) JP2017223640A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239747A (en) * 2018-11-26 2019-01-18 海南星油藤科技发展有限公司 A kind of Differential positioning device based on big-dipper satellite
CN112146699A (en) * 2019-06-28 2020-12-29 Ifp新能源公司 Method for characterizing road conditions
CN113622270A (en) * 2021-07-29 2021-11-09 宁夏公路勘察设计院有限责任公司 Semi-rigid base asphalt pavement crack detection device
CN114737455A (en) * 2022-04-21 2022-07-12 东软集团股份有限公司 Pavement detection method, device and equipment
JP2022532100A (en) * 2019-05-07 2022-07-13 ブリヂストン ヨーロッパ エヌブイ/エスエイ Methods and systems for recognizing unevenness in road pavement
JP7302459B2 (en) 2019-11-29 2023-07-04 富士通株式会社 Characteristic calculation program, characteristic calculation method, and information processing system
WO2023153433A1 (en) * 2022-02-10 2023-08-17 本田技研工業株式会社 Road surface evaluation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094680A (en) * 2013-11-12 2015-05-18 富士通株式会社 Unevenness analysis program, unevenness analysis method, and unevenness analysis device
JP2015161580A (en) * 2014-02-27 2015-09-07 株式会社日立製作所 road surface inspection system and road surface inspection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094680A (en) * 2013-11-12 2015-05-18 富士通株式会社 Unevenness analysis program, unevenness analysis method, and unevenness analysis device
JP2015161580A (en) * 2014-02-27 2015-09-07 株式会社日立製作所 road surface inspection system and road surface inspection method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239747A (en) * 2018-11-26 2019-01-18 海南星油藤科技发展有限公司 A kind of Differential positioning device based on big-dipper satellite
JP2022532100A (en) * 2019-05-07 2022-07-13 ブリヂストン ヨーロッパ エヌブイ/エスエイ Methods and systems for recognizing unevenness in road pavement
JP7309915B2 (en) 2019-05-07 2023-07-18 ブリヂストン ヨーロッパ エヌブイ/エスエイ Method and system for recognizing unevenness in road pavement
CN112146699A (en) * 2019-06-28 2020-12-29 Ifp新能源公司 Method for characterizing road conditions
FR3097962A1 (en) * 2019-06-28 2021-01-01 IFP Energies Nouvelles Method for characterizing the condition of a road
EP3760506A1 (en) * 2019-06-28 2021-01-06 IFP Energies nouvelles Method for characterising the state of a road
US11530932B2 (en) 2019-06-28 2022-12-20 IFP Energies Nouvelles Method of characterizing the condition of a road
JP7302459B2 (en) 2019-11-29 2023-07-04 富士通株式会社 Characteristic calculation program, characteristic calculation method, and information processing system
CN113622270A (en) * 2021-07-29 2021-11-09 宁夏公路勘察设计院有限责任公司 Semi-rigid base asphalt pavement crack detection device
WO2023153433A1 (en) * 2022-02-10 2023-08-17 本田技研工業株式会社 Road surface evaluation device
CN114737455A (en) * 2022-04-21 2022-07-12 东软集团股份有限公司 Pavement detection method, device and equipment
CN114737455B (en) * 2022-04-21 2023-09-05 东软集团股份有限公司 Pavement detection method, device and equipment

Similar Documents

Publication Publication Date Title
JP2017223640A (en) Paved surface crack inspection method
KR101912109B1 (en) Detection of short term irregularities in a road surface
JP6154001B2 (en) A device for investigating the shape of road surfaces
JP4220929B2 (en) Road surface flatness measuring device
US7469578B2 (en) Method and apparatus for evaluating a cornering stability of a wheel
JP6132304B2 (en) Road surface evaluation apparatus and method
Zhao et al. IRI estimation by the frequency domain analysis of vehicle dynamic responses
WO2016086792A1 (en) Driving behavior analysis method and device
JP2022532100A (en) Methods and systems for recognizing unevenness in road pavement
JP6078722B2 (en) Road surface property measuring device
Nagayama et al. Road condition evaluation using the vibration response of ordinary vehicles and synchronously recorded movies
Marinello et al. Determination of forest road surface roughness by Kinect depth imaging
KR20130063811A (en) Road profiling apparatus and signal processing method thereof and system with the same
CN104005324A (en) Pavement texture information detection system
JP2022531706A (en) Methods and systems for recognizing unevenness in road pavement
CN105113376B (en) Surface evenness detector and detection method based on optical detective technology
JP2014098692A (en) Method for detecting presence or absence of travel road defect
KR101509696B1 (en) Sideslip test system and method for vehicle
KR20140028405A (en) System and method for processing status data of vehicle
Kortmann et al. Applying quarter-vehicle model simulation for road elevation measurements utilizing the vehicle level sensor
KR101365366B1 (en) Measuring device and method for tire handing performance
CN113155079B (en) Road surface driving comfort judging method and device
Varunjikar et al. Multi-body vehicle dynamics simulation based on measured 3D terrain data
De Mello et al. Measurement and Analysis of Vehicle Comfort and Road Quality
Zhao et al. Measurement through dynamic tire pressure sensor inside the tire

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211019