JP2014095555A - Nondestructive inspection system for structure using tomography - Google Patents

Nondestructive inspection system for structure using tomography Download PDF

Info

Publication number
JP2014095555A
JP2014095555A JP2012245355A JP2012245355A JP2014095555A JP 2014095555 A JP2014095555 A JP 2014095555A JP 2012245355 A JP2012245355 A JP 2012245355A JP 2012245355 A JP2012245355 A JP 2012245355A JP 2014095555 A JP2014095555 A JP 2014095555A
Authority
JP
Japan
Prior art keywords
oscillation
time
measurement sensor
reception
waveform measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012245355A
Other languages
Japanese (ja)
Other versions
JP6171214B2 (en
Inventor
Shohei Momoki
昌平 桃木
Tomomoto Shiotani
智基 塩谷
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Kyoto University
Tobishima Corp
Original Assignee
Nihon University
Kyoto University
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University, Kyoto University, Tobishima Corp filed Critical Nihon University
Priority to JP2012245355A priority Critical patent/JP6171214B2/en
Publication of JP2014095555A publication Critical patent/JP2014095555A/en
Application granted granted Critical
Publication of JP6171214B2 publication Critical patent/JP6171214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection system for structures using tomography that does not require oscillation means for a worker to hit a floor surface or the like of an expressway on scaffolding after going to a predetermined point of a structure using the scaffolding, which reduces time and labor for inspection work and expenses, and that does not require a worker to approach an inspection area of the structure to be inspected nondestructively each time when the inspection area is monitored over time.SOLUTION: A nondestructive inspection system for structures using tomography analysis does not require an oscillation waveform measurement sensor and an elastic wave oscillation tool, receives sound emitted from a structure with plural installed reception waveform measurement sensors, performs arithmetic operation using a mathematical expression for estimating oscillation time and a position on the basis of identified reception time and position, obtains the estimated oscillation time and position of the emitted sound, and performs tomography analysis using values of the obtained estimated oscillation time and position.

Description

本発明は、例えばコンクリート構造物などで構成されるインフラ構造物の再生やその長寿命化のためのリニューアル工事などの前に、前記構造物の内部状況を調査し、検査するコンクリート構造物などの非破壊検査システムに関するものである。
The present invention investigates the internal state of the structure before the renewal work for regenerating the infrastructure structure composed of, for example, a concrete structure or extending its life, etc. It relates to a nondestructive inspection system.

ここで、トモグラフィとは、調査領域内の多数の、かつ多方向の走査線間における弾性波の計測走時と、解析モデルから算出される理論走時との「走時残差」を許容誤差内に収束させるように、解析モデルの要素パラメータ、例えば弾性波の伝播速度を補正し、前記調査領域を補正された各要素の速度の分布図で表すものである。そして、前記の速度の分布図によって構造物内部の欠陥等の位置や程度を、例えば通常の伝播速度より遅い低速度の領域として示すことが出来るものとなる。   Here, tomography allows the “runtime residual” between the measured travel of elastic waves between multiple scan lines in multiple directions and the theoretical travel time calculated from the analysis model. The element parameter of the analysis model, for example, the propagation velocity of the elastic wave is corrected so as to converge within the error, and the investigation area is represented by a distribution diagram of the corrected velocity of each element. Then, the position and extent of defects and the like inside the structure can be shown as a low-speed region that is slower than the normal propagation speed, for example, by using the velocity distribution diagram.

そして、前記速度の分布図解析は、複数の弾性波波形計測センサによって計測された弾性波の波形を分析することにより行われている。   The velocity distribution map analysis is performed by analyzing the elastic wave waveforms measured by a plurality of elastic wave waveform measuring sensors.

そして、当該非破壊検査システムの検査手法の一手段である、いわゆる走査線間の計測走時の計測は、鋼球等で発振された弾性波の発振波形および受信波形を、それぞれ設置した弾性波波形計測センサ(発振波形計測センサ、受信波形計測センサ)で計測し、読み取られる初動時刻の差から算出し、解析するものとしている(特開昭2011−191202号公報参照)。   The so-called measurement travel time between scanning lines, which is one of the inspection methods of the non-destructive inspection system, is an elastic wave in which an oscillation waveform and a reception waveform of an elastic wave oscillated by a steel ball or the like are respectively installed. It is measured by a waveform measurement sensor (oscillation waveform measurement sensor, reception waveform measurement sensor), and is calculated and analyzed from the difference in the initial movement time read (see Japanese Patent Application Laid-Open No. 2011-191202).

ところで、従来では、前記弾性波の発振手段として、例えば弾性波発振用器具となる金属製ハンマーなどで打撃するなどの手段が必ず必要とされていると共に、当該発振箇所付近に配置する弾性波波形計測センサ(発振波形計測センサ)が複数個必要とされ、調査領域に設置した弾性波波形計測センサを、受信波形計測センサとして使用するとともに、発振波形計測センサとしても使用しなければならなかった。   By the way, conventionally, as the means for oscillating the elastic wave, for example, means such as hitting with a metal hammer as an elastic wave oscillating instrument is always required, and an elastic wave waveform arranged in the vicinity of the oscillating point is used. A plurality of measurement sensors (oscillation waveform measurement sensors) are required, and the elastic wave waveform measurement sensor installed in the investigation area must be used as the reception waveform measurement sensor and also as the oscillation waveform measurement sensor.

特に、前記の金属製ハンマーで、例えば高速道路の床面などコンクリート構造物所定箇所に打撃を加える等、強制的な形での発振手段を講じるためには、さらに、常設の足場を構築して、その足場を利用し、構造物所定箇所に作業者が出向き、その上で前記高速道路の床面などを打撃するなどの発振手段を講じなければならない。   In particular, in order to take the oscillation means in a forced form, such as hitting a predetermined part of a concrete structure such as a floor surface of an expressway with the metal hammer, a permanent scaffold is further constructed. Then, using the scaffold, an operator must go to a predetermined location of the structure and then take oscillation means such as hitting the floor surface of the expressway.

すると作業自体も時間と手間がかかるほか、費用コストも高額となり、特に前述の高架橋等の高所作業を伴う場合では、作業者の安全面も含めて従来のトモグラフィを利用した構造物の非破壊検査システムは適用しがたいものであった。   The work itself is time consuming and labor intensive, and the cost is high. In particular, in the case of high-level work such as the above-mentioned viaduct, the structure using non-conventional tomography, including the safety aspects of the worker, is not included. The destructive inspection system was difficult to apply.

すなわち、上記従来のトモグラフィを利用した構造物の非破壊検査システムでは、例えば、金属製ハンマーでの打撃や鋼球等での打撃により、構造物の非破壊検査の調査領域に能動的に弾性波を発振することが必須であり、ゆえに、計測時にも作業者が調査領域に近づかなければならないため、足場等設備が必須となる。   That is, in the nondestructive inspection system for a structure using the conventional tomography, for example, the structure is actively elasticized in the investigation area of the nondestructive inspection of the structure by hitting with a metal hammer or hitting with a steel ball. Since it is essential to oscillate the wave, the operator must approach the survey area even during measurement, so facilities such as scaffolding are essential.

そして、これは、前記構造物の非破壊検査の調査領域を経時的にモニタリングする場合にも同様で、その都度調査領域に近づかなければならないことになる。また、前述したように、発振波形を計測するための発振波形計測センサとして使用することも必須であり、発振点数および発振位置は予め設置されたセンサ位置となるため、走査線数も限られてしまうとの課題があった。
This also applies to the case where the investigation area of the non-destructive inspection of the structure is monitored over time, and the investigation area must be approached each time. In addition, as described above, it is essential to use the sensor as an oscillation waveform measurement sensor for measuring an oscillation waveform. Since the number of oscillation points and the oscillation position are sensor positions set in advance, the number of scanning lines is limited. There was a problem with it.

特開2011−191202号公報JP 2011-191202 A

本発明は前記従来の課題を解消するために創案されたものであって、前記の金属製ハンマーで、例えば高速道路の床面などコンクリート構造物所定箇所に打撃を加える等、強制的な形での発振手段を講じる必要がなく、そのため、常設の足場を構築する必要がなく、すなわちその足場を利用し、構造物所定箇所に出向き、その上で前記高速道路の床面などを打撃するなどの発振手段を講ずる必要がなく、もって検査作業も時間と手間がかからず、費用コストも安価となり、また前記構造物の非破壊検査の調査領域を経時的にモニタリングする場合にも同様で、その都度調査領域に近づく必要がないトモグラフィを利用した構造物の非破壊検査システムを提供することを目的とするものである。
The present invention was devised in order to solve the above-mentioned conventional problems, and in a forced manner, for example, hitting a predetermined portion of a concrete structure such as a floor surface of an expressway with the metal hammer. Therefore, it is not necessary to construct a permanent scaffold, that is, using the scaffold, going to a predetermined place of the structure, and then hitting the floor of the expressway, etc. It is not necessary to take oscillation means, so the inspection work is not time consuming and laborious, the cost is low, and the same applies when monitoring the investigation area of the non-destructive inspection of the structure over time. The object of the present invention is to provide a non-destructive inspection system for structures using tomography that does not need to approach the investigation area each time.

本発明によるトモグラフィを利用した構造物の非破壊検査システムは、
構造物の既知位置に設置された発振波形計測センサ及び受信波形計測センサと、前記発振波形計測センサ近傍位置で構造物を打撃して弾性波を発振させ、前記発振波形計測センサ及び受信波形計測センサに受信させる弾性波発振用器具と、を有し、
前記発振波形計測センサで計測された波形を分析することにより、発振した弾性波の発振時刻と発振位置を特定すると共に、前記受信波形計測センサで計測された波形を分析することにより前記弾性波を受信した受信時刻と受信位置とを特定し、特定された発振時刻、発振位置、受信時刻、受信位置を用いて前記発振波形計測センサから受信波形計測センサ間の実際の弾性波伝播時間(計測走時)を算出してなり、
一方前記発振波形計測センサから受信波形計測センサ間に複数の分岐点を設けた解析モデルを形成し、該解析モデルから前記発振波形計測センサから受信波形計測センサ間の理論値としての弾性波伝播時間(理論走時)を算出すると共に、理論走時を計測走時に近づける演算を行って、前記分岐点で分岐された分岐線内領域の速度分布を形成し、形成された速度分布により破壊検査を行うトモグラフィ解析を利用した構造物の非破壊検査システムにおいて、
前記発振波形計測センサ及び弾性波発振用器具を必要とせず、前記構造物から発する音を複数設置された弾性波波形計測センサにより受信し、特定された受信時刻と受信位置により発振時刻と発振位置を推定する数式を用いて演算し、前記発した音の推定発振時刻と推定発振位置を求めてなり、
前記求められた推定発振時刻と推定発振位置の値を用いて前記トモグラフィ解析を行う、
ことを特徴とし、
または、
前記構造物から発する音は、外力負荷により自然的に発生する微小音たるAE音である、
ことを特徴とし、
または、
前記構造物は、交通荷重により自然的に発生するAE音を発振情報として利用できる橋梁床板や高速道路床板である、
ことを特徴とするものである。
A nondestructive inspection system for a structure using tomography according to the present invention is as follows.
An oscillation waveform measurement sensor and a reception waveform measurement sensor installed at a known position of the structure, and an oscillation wave is oscillated by hitting the structure near the oscillation waveform measurement sensor, and the oscillation waveform measurement sensor and the reception waveform measurement sensor. An elastic wave oscillating device to be received by
By analyzing the waveform measured by the oscillation waveform measurement sensor, the oscillation time and oscillation position of the oscillated elastic wave are specified, and by analyzing the waveform measured by the reception waveform measurement sensor, the elastic wave is analyzed. The received reception time and reception position are specified, and the actual propagation time of the elastic wave (measurement scan time) between the oscillation waveform measurement sensor and the reception waveform measurement sensor using the specified oscillation time, oscillation position, reception time, and reception position. Time)
On the other hand, an analysis model in which a plurality of branch points are provided between the oscillation waveform measurement sensor and the reception waveform measurement sensor is formed, and an elastic wave propagation time as a theoretical value between the oscillation waveform measurement sensor and the reception waveform measurement sensor is formed from the analysis model. Calculate the (theoretical travel time) and calculate the speed distribution of the branch line area branched at the branch point by calculating the theoretical travel time closer to the measurement travel time, and perform the destructive inspection with the formed speed distribution. In a non-destructive inspection system for structures using tomographic analysis,
The oscillating waveform measuring sensor and the elastic wave oscillating instrument are not required, and the sound generated from the structure is received by a plurality of installed elastic wave waveform measuring sensors. And calculating the estimated oscillation time and estimated oscillation position of the emitted sound,
The tomography analysis is performed using the obtained estimated oscillation time and estimated oscillation position values.
It is characterized by
Or
The sound emitted from the structure is an AE sound that is a minute sound that is naturally generated by an external force load.
It is characterized by
Or
The structure is a bridge floor board or an expressway floor board that can use AE sound that naturally occurs due to traffic load as oscillation information.
It is characterized by this.

かくして、本発明によれば、
金属製ハンマーなどを用い、例えば高速道路の床面などコンクリート構造物所定箇所(トモグラフィを利用した構造物の非破壊検査を行うために弾性波波形計測センサを複数設置した調査領域)に打撃を加える等、強制的な形での発振手段を講じる必要がなく、そのため、常設の足場を構築する必要がなく、すなわちその足場を利用し、構造物所定箇所に出向き、その上で前記高速道路の床面などを打撃するなどの発振手段を講ずる必要もなく、もって検査作業も時間と手間がかからず、費用コストも安価となり、また前記構造物の非破壊検査の調査領域を経時的にモニタリングする場合にも同様で、その都度調査領域に近づく必要がないとの優れた効果を奏する。
Thus, according to the present invention,
Using a metal hammer etc., for example, hitting a specific part of a concrete structure such as the floor of an expressway (an investigation area where multiple elastic wave waveform sensors are installed to perform nondestructive inspection of the structure using tomography) There is no need to take any oscillating means in a compulsory form, such as adding, so there is no need to construct a permanent scaffold, that is, using the scaffold, going to a predetermined location of the structure, and then on the expressway There is no need to take oscillation means such as hitting the floor surface, etc., so the inspection work is not time consuming and laborious, the cost is low, and the non-destructive inspection area of the structure is monitored over time. This also applies to the case where there is no need to approach the survey area each time.

トモグラフィを利用した構造物の非破壊検査システムの概略構成において計測方法を説明する説明図(平面図)(1)である。It is explanatory drawing (plan view) (1) explaining the measuring method in schematic structure of the nondestructive inspection system of the structure using tomography. トモグラフィを利用した構造物の非破壊検査システムの概略構成において計測方法を説明する説明図(断面図)(2)である。It is explanatory drawing (sectional drawing) (2) explaining the measuring method in schematic structure of the nondestructive inspection system of the structure using tomography. トモグラフィを利用した構造物の非破壊検査システムの概略構成において計測された波形から計測走時を算出する方法を説明する説明図(3)である。It is explanatory drawing (3) explaining the method to calculate measurement travel time from the waveform measured in the schematic structure of the nondestructive inspection system of the structure using tomography. トモグラフィを利用した構造物の非破壊検査システムの概略構成において理論走時を算出する解析モデルを説明する説明図(4)である。It is explanatory drawing (4) explaining the analysis model which calculates theoretical travel time in the schematic structure of the nondestructive inspection system of the structure using tomography. トモグラフィを利用した構造物の非破壊検査システムの概略構成において理論走時を算出する方法を説明する説明図(5)である。It is explanatory drawing (5) explaining the method to calculate theoretical travel time in the schematic structure of the nondestructive inspection system of the structure using tomography. トモグラフィを利用した構造物の非破壊検査システムの概略構成において解析モデルの要素パラメータを補正する方法を説明する説明図(6)である。It is explanatory drawing (6) explaining the method to correct | amend the element parameter of an analysis model in schematic structure of the nondestructive inspection system of the structure using tomography. 発振情報推定フロー(1)である。It is an oscillation information estimation flow (1). 発振情報推定フロー(2)である。It is an oscillation information estimation flow (2). 発振情報推定フロー(3)である。It is an oscillation information estimation flow (3). 本発明のトモグラフィを利用した構造物非破壊検査システムの概略構成においてAE音を利用した計測および解析モデルを説明する説明図(1)である。It is explanatory drawing (1) explaining the measurement and analysis model using AE sound in the schematic structure of the structure nondestructive inspection system using the tomography of this invention. 本発明のトモグラフィを利用した構造物非破壊検査システムの概略構成において複数のAE音を利用できることを説明する説明図(2)である。It is explanatory drawing (2) explaining that several AE sound can be utilized in schematic structure of the structure nondestructive inspection system using the tomography of this invention.

以下、本発明を図に示す実施例に基づいて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1から理解されるように、トモグラフィを利用した構造物の非破壊検査システムにあっては、構造物1の既知位置に設置された発振波形計測センサ2及び受信波形計測センサ3と、前記発振波形計測センサ2の近傍位置で構造物1の表面を打撃して弾性波を発振させ、前記発振波形計測センサ2及び受信波形計測センサ3に受信させる弾性波発振用器具4とを必要としていた。   As can be understood from FIG. 1, in the nondestructive inspection system for a structure using tomography, the oscillation waveform measurement sensor 2 and the reception waveform measurement sensor 3 installed at a known position of the structure 1; The surface of the structure 1 is hit at a position near the oscillation waveform measurement sensor 2 to oscillate an elastic wave and the oscillation waveform measurement sensor 2 and the elastic wave oscillation instrument 4 to be received by the reception waveform measurement sensor 3 are required. .

そして、前記発振波形計測センサ2では、発振した弾性波の波形を受信して、当該弾性波の発振時刻と発振位置を特定する。従って、弾性波発振器具4による打撃は、発振波形計測センサ2の近傍位置であることが必要なのである。   The oscillation waveform measuring sensor 2 receives the oscillated elastic wave waveform and identifies the oscillation time and oscillation position of the elastic wave. Therefore, the impact by the elastic wave oscillator tool 4 needs to be in the vicinity of the oscillation waveform measuring sensor 2.

また、前記受信波形計測センサ3で前記弾性波の波形を受信し、その受信時刻と受信位置とを特定する。   The received waveform measurement sensor 3 receives the elastic wave waveform and specifies the reception time and the reception position.

そして、これら特定された発振時刻、発振位置、受信時刻、受信位置の値を用いて演算し、前記発振波形計測センサ2から受信波形計測センサ3までの距離における実際の弾性波伝播時間、すなわち、計測走時7を算出するものとしていた(図1、図2、図3参照)。   Then, an actual elastic wave propagation time at a distance from the oscillation waveform measurement sensor 2 to the reception waveform measurement sensor 3 is calculated using the specified oscillation time, oscillation position, reception time, and reception position values, that is, The measured running time 7 was calculated (see FIGS. 1, 2 and 3).

一方図4に示す様に発振波形計測センサ2から受信波形計測センサ3間に複数の分岐点6・・・を設けた解析モデル5を形成し(図4参照)、該解析モデル5から前記発振波形計測センサ2から受信波形計測センサ3の間の理論値としての弾性波伝播時間、すなわち、理論走時8を算出する(図5参照)。   On the other hand, as shown in FIG. 4, an analysis model 5 having a plurality of branch points 6... Is formed between the oscillation waveform measurement sensor 2 and the reception waveform measurement sensor 3 (see FIG. 4). The elastic wave propagation time as a theoretical value between the waveform measurement sensor 2 and the reception waveform measurement sensor 3, that is, the theoretical travel time 8 is calculated (see FIG. 5).

そして、求められた理論値としての弾性波伝播時間、すなわち、理論走時8と、前記実際の弾性波伝播時間、すなわち、計測走時7とが等しくなるよう演算を行う。この際、前記分岐点6・・・を分岐線11で囲み、分岐線11・・・で囲まれたそれぞれの分岐線内領域9・・・でのそれぞれの速度分布を算出する。そして、算出されたそれぞれの分岐線内領域9・・・での速度分布により、例えば、速度が極端に遅い箇所の分岐線内領域9に速度が遅くなる原因、すなわち欠陥が存在するなどの破壊検査が行えるのである(図5、図6参照)。   Then, the calculation is performed so that the elastic wave propagation time as the obtained theoretical value, that is, the theoretical travel time 8 is equal to the actual elastic wave propagation time, that is, the measured travel time 7. At this time, the branch points 6... Are surrounded by the branch lines 11, and the respective velocity distributions in the respective branch line regions 9. Then, due to the calculated speed distribution in each branch line area 9..., For example, the cause of the speed becoming slow in the branch line area 9 where the speed is extremely slow, that is, the presence of a defect, etc. Inspection can be performed (see FIGS. 5 and 6).

これが、従来からのトモグラフィ解析を利用した構造物の非破壊検査システムである。   This is a conventional non-destructive inspection system for structures using tomographic analysis.

しかしながら、前述したように、高速道路の床面などについて、従来のトモグラフィ解析を利用した構造物の非破壊検査システムの適用は困難であり、本発明者らは、前記高速道路の床面などについて、作業者の弾性波発振行為を必要とせず、例えば高速道路を走行する車両などにより生じた音(アコースティックエミッション音:AE音)を発振情報として捉え、該音(AE音)の発生時刻及び発生位置を算出して、従来の発振時刻及び発振位置に代替する検査システムを創案するに至ったのである。   However, as described above, it is difficult to apply a non-destructive inspection system for a structure using a conventional tomographic analysis to the floor surface of an expressway. For example, a sound (acoustic emission sound: AE sound) generated by a vehicle traveling on a highway, for example, is regarded as oscillation information without requiring an operator's elastic wave oscillation action, and the generation time of the sound (AE sound) and This has led to the creation of an inspection system that calculates the occurrence position and substitutes for the conventional oscillation time and oscillation position.

図10は、本発明の一実施例を示したものであり、構造物1、例えば高速道路の床面の裏面に、複数の受信波形計測センサ3・・・のみ設置してある。そして、高速道路を走行する車両により、AE音10が生じたとする。   FIG. 10 shows an embodiment of the present invention, and only a plurality of received waveform measuring sensors 3... Are installed on the structure 1, for example, the rear surface of the expressway floor. Assume that an AE sound 10 is generated by a vehicle traveling on the highway.

なお、受信波形計測センサ3・・・で囲まれた領域、すなわち調査領域内には複数の分岐点6・・・が設けられ、これら分岐点6・・・を繋ぐ分岐線11が形成されて、それぞれの分岐線内領域9・・・が確定されている。   Note that a plurality of branch points 6... Are provided in an area surrounded by the received waveform measurement sensors 3..., That is, a survey area, and a branch line 11 that connects these branch points 6. Each branch line area 9... Is determined.

ここで、前記AE音10が生じても、その発生時刻及び発生位置は特定できない。しかしながら、図10において、例えば、4つの受信波形計測センサ3・・・により、前記AE音10の受信時刻及び受信位置は特定できる。よって、特定されたAE音10の受信時刻及び受信位置からAE音10の発生時刻(発振時刻)及び発生位置(発振位置)を推定する演算を行うのである。   Here, even when the AE sound 10 is generated, the generation time and generation position cannot be specified. However, in FIG. 10, for example, the reception time and reception position of the AE sound 10 can be specified by the four reception waveform measurement sensors 3. Therefore, the calculation for estimating the generation time (oscillation time) and generation position (oscillation position) of the AE sound 10 from the reception time and reception position of the specified AE sound 10 is performed.

これには、たとえば、地震の震源決定法などの数式が用いられる。なお、特定されたAE音10の受信時刻及び受信位置から、発振情報となるAE音10の発生時刻(発振時刻)及び発生位置(発振位置)を推定出来る数式であれば、前記地震の震源決定法の数式使用に限定されるものではない。   For this, for example, a mathematical formula such as a method for determining the epicenter of an earthquake is used. In addition, if it is a numerical formula which can estimate the generation | occurrence | production time (oscillation time) and generation | occurrence | production position (oscillation position) of the AE sound 10 used as oscillation information from the reception time and reception position of the specified AE sound 10, the epicenter determination of the said earthquake will be carried out. It is not limited to the use of math formulas.

しかして、図7乃至図9から理解されるように、いわゆる受信時刻を用いた非線形最小2乗法による震源決定法によって、図10に示す発振情報となるAE音10の発振時刻及び発振座標が算出されるものとなる。   Thus, as can be understood from FIGS. 7 to 9, the oscillation time and oscillation coordinates of the AE sound 10 that is the oscillation information shown in FIG. 10 are calculated by the so-called non-linear least-squares hypocenter determination method using the reception time. Will be.

すなわち、図9に示すdt(m)がAE音10の発振時刻であり、(xs(m)、ys(m))が発振座標となる。 That is, dt (m) shown in FIG. 9 is the oscillation time of the AE sound 10, and (xs (m) , ys (m) ) is the oscillation coordinate.

そして、AE音10の発振時刻であるdt(m)、発振位置を示す発振座標
(xs(m)、ys(m))を用い、図3に示す、計測走時7を算出し、図5に示す、理論走時8を算出するのである。
Then, dt (m) that is the oscillation time of the AE sound 10 and oscillation coordinates (xs (m) , ys (m) ) that indicate the oscillation position are used to calculate the measured travel time 7 shown in FIG. The theoretical running time 8 shown in FIG.

すなわち、これら特定された発振時刻dt(m)、発振位置(xs(m)、ys(m))、受信時刻、受信位置の値を用いて演算し、前記AE音10の発振位置から受信波形計測センサ3までの距離における実際の弾性波伝播時間、すなわち、計測走時7を算出する(図1、図2、図3参照)。 That is, calculation is performed using the values of the specified oscillation time dt (m) , oscillation position (xs (m) , ys (m) ), reception time, and reception position, and the received waveform from the oscillation position of the AE sound 10 is calculated. The actual elastic wave propagation time at the distance to the measurement sensor 3, that is, the measurement travel time 7 is calculated (see FIGS. 1, 2, and 3).

一方、AE音10から受信波形計測センサ3間に複数の分岐点6・・・を設けた解析モデル5を形成し、該解析モデルから前記AE音10から受信波形計測センサ3の間の理論値としての弾性波伝播時間、すなわち、理論走時8を算出する(図5参照)。   On the other hand, an analysis model 5 in which a plurality of branch points 6... Are provided between the AE sound 10 and the reception waveform measurement sensor 3 is formed, and a theoretical value between the AE sound 10 and the reception waveform measurement sensor 3 is formed from the analysis model. The elastic wave propagation time, that is, the theoretical travel time 8 is calculated (see FIG. 5).

そして、求められた理論値としての弾性波伝播時間、すなわち、理論走時8を前記実際の弾性波伝播時間、すなわち、計測走時7に近づける演算を行って、前記分岐点6・・・を分岐線で繋ぎ、それらの分岐線で分岐されたそれぞれの分岐線内領域9・・・のそれぞれの速度を算出し、もって前記それぞれの分岐線内領域9・・・における速度分布を形成し、形成された速度分布により、例えば、速度が極端に遅い箇所の分岐線内領域9に速度が遅くなる原因、すなわち欠陥が存在するなどの破壊検査が行えるのである(図6参照)。   Then, a calculation is performed to bring the elastic wave propagation time as the calculated theoretical value, that is, the theoretical travel time 8 close to the actual elastic wave propagation time, that is, the measurement travel time 7, and the branch point 6. Connecting the branch lines, calculating the respective speeds of the respective branch line regions 9... Branched by the branch lines, thereby forming the velocity distribution in the respective branch line regions 9. Due to the formed velocity distribution, for example, a destructive inspection such as a cause that the velocity is slow in the branch line inner region 9 where the velocity is extremely slow, that is, a defect exists can be performed (see FIG. 6).

ここで、本発明の説明を明確化するために図10のように発振情報であるAE音10を1つ発生したとして説明したが、図11に示すように、複数箇所に発生した複数のAE音10を発振情報として採用し、これらの発振情報数値を算出し、詳細な構造物の非破壊検査を行うことも出来る。   Here, in order to clarify the description of the present invention, it has been described that one AE sound 10 which is oscillation information is generated as shown in FIG. 10, but as shown in FIG. The sound 10 can be adopted as the oscillation information, and the numerical value of the oscillation information can be calculated to perform a detailed nondestructive inspection of the structure.

このように、本発明では発振波形計測センサ2及び弾性波発振用器具4を必要とすることなく高速道路など構造物の非破壊検査が行える。すなわち、車両の走行という外的負荷により前記後続道路の床面から発するAE音10を複数設置された受信波形計測センサ3・・・により受信し、特定された受信時刻と受信位置により発振時刻と発振位置を推定する数式を用いて演算し、前記AE音10の推定発振時刻と推定発振位置が求められ、この求められたAE音10の推定発振時刻と推定発振位置を用いて前記トモグラフィ解析が行えるのである。   Thus, in the present invention, a nondestructive inspection of a structure such as a highway can be performed without the need for the oscillation waveform measurement sensor 2 and the elastic wave oscillation instrument 4. That is, a plurality of AE sounds 10 emitted from the floor surface of the subsequent road due to an external load of traveling of the vehicle are received by a plurality of installed reception waveform measuring sensors 3..., And the oscillation time is determined according to the specified reception time and reception position. An estimated oscillation time and an estimated oscillation position of the AE sound 10 are obtained by calculating using an equation for estimating an oscillation position, and the tomography analysis is performed using the estimated oscillation time and the estimated oscillation position of the obtained AE sound 10. Can be done.

本発明は、発振手段を講じる代わりに、構造物1に損傷箇所がある場合、そこから発せられるAE音10の波形を受信波形計測センサ3・・・で計測し、その情報のみから発振情報であるAE音10の発振時刻と発振位置を特定する検査システムと言える。   In the present invention, when there is a damaged part in the structure 1 instead of taking oscillation means, the waveform of the AE sound 10 emitted from the structure 1 is measured by the reception waveform measuring sensor 3. It can be said that this is an inspection system that specifies the oscillation time and oscillation position of a certain AE sound 10.

ただし、本発明による検査システムの対象構造物としては、外力負荷等の影響を比較的高頻度で受ける高速道路、橋梁、貯水槽、堤防等外郭施設や建物等であると考えられる。   However, the target structure of the inspection system according to the present invention is considered to be an expressway, a bridge, a water tank, an external facility such as a dike, a building, or the like that is relatively frequently affected by an external force load or the like.

そして、本発明の検査システムの主要な装置構成としては、AE音10を受信するAEセンサ(受信波形計測センサ)、AE音の波形を記録する記録装置、及び表示装置、解析装置などが挙げられる。   The main apparatus configuration of the inspection system of the present invention includes an AE sensor (received waveform measurement sensor) that receives the AE sound 10, a recording apparatus that records the waveform of the AE sound, a display apparatus, an analysis apparatus, and the like. .

また、本発明のシステムによる検査方法は、上記の装置を用いて行われ、まず、受信波形計測センサ3・・・を対象となる構造物1の所定箇所へ設置し、地上側の記録装置や表示装置、解析装置へ有線接続若しくは無線接続し、所定期間、AE音10によるAE波を計測し、計測したデータは記録装置へ記録する。   In addition, the inspection method by the system of the present invention is performed using the above-described apparatus. First, the received waveform measurement sensors 3... Are installed at predetermined locations of the target structure 1, and the ground-side recording apparatus or A wired or wireless connection is made to the display device and the analysis device, and the AE wave by the AE sound 10 is measured for a predetermined period, and the measured data is recorded in the recording device.

そして、記録装置により記録された記録(波形時刻歴)を用い、複数設置した受信波形計測センサ3・・・の各位置関係から、解析装置によりAE波受信箇所を解析・特定する。   Then, using the record (waveform time history) recorded by the recording device, the analysis device analyzes and specifies the AE wave reception location from the respective positional relationships of the plurality of received waveform measuring sensors 3.

なお、解析・特定は、AE音10によるAE波発生時刻が同じ隣接四箇所のセンサで囲まれた領域内で得られることが基本とされる。   The analysis / specification is basically obtained in the area surrounded by the four adjacent sensors having the same AE wave generation time by the AE sound 10.

このように本発明は、外力負荷により自然的に発生する微小音(アコースティック・エミッション:AE)を発振波形として利用するトモグラフィであり、受信波形を計測する受信波形計測センサ3・・・のみを調査領域に設置し、それぞれの受信波形計測センサ3・・・で計測された受信波形で読み取られる初動時刻から、発振情報(AE音の発振位置と発振波形の初動時刻)をいわゆる逆解析で同定するものであり、同定された発振情報を利用して走査線間における計測走時を用いて調査領域のトモグラフ解析が行える。   As described above, the present invention is a tomography that uses, as an oscillation waveform, a very small sound (acoustic emission: AE) that is naturally generated by an external force load, and uses only the received waveform measuring sensor 3... For measuring the received waveform. Oscillation information (oscillation position of AE sound and initial time of oscillation waveform) is identified by so-called reverse analysis based on the initial movement time set in the survey area and read by the received waveform measured by each received waveform measurement sensor 3. The tomographic analysis of the investigation area can be performed using the measured running time between the scanning lines using the identified oscillation information.

特に、橋梁床板や高速道路床板の検査に際して、発振手段自体を省略することが出来、かつ常設足場が不要となり、調査作業の手間や費用面の問題が従来システムに比べ格段に減少する。   In particular, when inspecting bridge floor boards and expressway floor boards, the oscillation means itself can be omitted, and a permanent scaffold is not required, and the labor and cost of investigation work are greatly reduced compared to conventional systems.

すなわち、AEセンサは受信用のみでよく、しかも効果的な配置が可能となる。また、継続監視することで、橋梁床板や高速道路床板など構造物1の損傷等異常発生を直ちに把握することが可能とされる。   That is, the AE sensor only needs to be used for reception, and an effective arrangement is possible. Further, by continuously monitoring, it is possible to immediately grasp the occurrence of an abnormality such as damage to the structure 1 such as a bridge floor board or an expressway floor board.

そして、AE音10を発生させる外力負荷には交通荷重の利用が見込めるものであり、交通荷重により自然的に発生するAE音10を発振情報として利用するため、調査領域に予め受信波形計測センサ3・・・を設置しておけば受動的に計測可能である。   The traffic load is expected to be used for the external force load that generates the AE sound 10. Since the AE sound 10 that is naturally generated by the traffic load is used as the oscillation information, the received waveform measuring sensor 3 is preliminarily placed in the investigation area. ... can be passively measured if installed.

さらに、計測時に調査領域に近づいて打撃するための足場等設備を必要とせず、加えて、AE音10が発生する度に受動的に計測されるため経時的なモニタリングも可能である。
Furthermore, it does not require a facility such as a scaffold for approaching and hitting the investigation area at the time of measurement, and in addition, since it is passively measured every time the AE sound 10 is generated, monitoring over time is possible.

1 構造物
2 発振波形計測センサ
3 受信波形計測センサ
4 弾性波発振用器具
5 解析モデル
6 分岐点
7 計測走時
8 理論走時
9 分岐線内領域
10 AE音
DESCRIPTION OF SYMBOLS 1 Structure 2 Oscillation waveform measurement sensor 3 Reception waveform measurement sensor 4 Elastic wave oscillation instrument 5 Analytical model 6 Branch point 7 Measurement travel time 8 Theoretical travel time 9 Branch line area 10 AE sound

Claims (3)

構造物の既知位置に設置された発振波形計測センサ及び受信波形計測センサと、前記発振波形計測センサ近傍位置で構造物を打撃して弾性波を発振させ、前記発振波形計測センサ及び受信波形計測センサに受信させる弾性波発振用器具と、を有し、
前記発振波形計測センサは、発振した弾性波の発振時刻と発振位置を特定すると共に、前記受信波形計測センサで前記弾性波を受信した受信時刻と受信位置とを特定し、特定された発振時刻、発振位置、受信時刻、受信位置を用いて前記発振波形計測センサから受信波形計測センサ間の実際の弾性波伝播時間を算出してなり、
一方前記発振波形計測センサから受信波形計測センサ間に複数の分岐点を設けた解析モデルを形成し、該解析モデルから前記発振波形計測センサから受信波形計測センサ間の理論値としての弾性波伝播時間を算出すると共に、求められた理論値としての弾性波伝播時間を前記実際の弾性波伝播時間に近づける演算を行って、前記分岐点で分岐された分岐線内領域の速度分布を形成し、形成された速度分布により破壊検査を行うトモグラフィ解析を利用した構造物の非破壊検査システムにおいて、
前記発振波形計測センサ及び弾性波発振用器具を必要とせず、前記構造物から発する音を複数設置された受信波形計測センサにより受信し、特定された受信時刻と受信位置により発振時刻と発振位置を推定する数式を用いて演算し、前記発した音の推定発振時刻と推定発振位置を求めてなり、
前記求められた推定発振時刻と推定発振位置の値を用いて前記トモグラフィ解析を行う、
ことを特徴とするトモグラフィ解析を利用した構造物の非破壊検査システム。
An oscillation waveform measurement sensor and a reception waveform measurement sensor installed at a known position of the structure, and an oscillation wave is oscillated by hitting the structure near the oscillation waveform measurement sensor, and the oscillation waveform measurement sensor and the reception waveform measurement sensor. An elastic wave oscillating device to be received by
The oscillation waveform measurement sensor specifies the oscillation time and oscillation position of the oscillated elastic wave, specifies the reception time and reception position at which the reception waveform measurement sensor receives the elastic wave, and specifies the oscillation time, Calculate the actual elastic wave propagation time between the reception waveform measurement sensor from the oscillation waveform measurement sensor using the oscillation position, reception time, reception position,
On the other hand, an analysis model in which a plurality of branch points are provided between the oscillation waveform measurement sensor and the reception waveform measurement sensor is formed, and an elastic wave propagation time as a theoretical value between the oscillation waveform measurement sensor and the reception waveform measurement sensor is formed from the analysis model. And calculating the velocity distribution of the region in the branch line branched at the branch point by performing an operation to bring the elastic wave propagation time as the obtained theoretical value closer to the actual elastic wave propagation time, and forming In a non-destructive inspection system for structures using tomographic analysis that performs destructive inspection with the determined velocity distribution
The oscillation waveform measuring sensor and the elastic wave oscillating instrument are not required, and the sound emitted from the structure is received by a plurality of received waveform measuring sensors, and the oscillation time and the oscillation position are determined by the specified reception time and reception position. Calculate using the mathematical formula to be estimated, and obtain the estimated oscillation time and estimated oscillation position of the emitted sound,
The tomography analysis is performed using the obtained estimated oscillation time and estimated oscillation position values.
A nondestructive inspection system for structures using tomographic analysis.
前記構造物から発する音は、外力負荷により自然的に発生する微小音たるAE音である、
ことを特徴とする請求項1記載のトモグラフィ解析を利用した構造物の非破壊検査システム。
The sound emitted from the structure is an AE sound that is a minute sound that is naturally generated by an external force load.
The nondestructive inspection system for a structure using tomographic analysis according to claim 1.
前記構造物は、交通荷重により自然的に発生するAE音を発振情報として利用できる橋梁床板や高速道路床板である、
ことを特徴とする請求項1または請求項2記載のトモグラフィ解析を利用した構造物の非破壊検査システム。
The structure is a bridge floor board or an expressway floor board that can use AE sound that naturally occurs due to traffic load as oscillation information.
A nondestructive inspection system for a structure using tomographic analysis according to claim 1 or 2.
JP2012245355A 2012-11-07 2012-11-07 Nondestructive inspection system for structures using tomographic analysis Active JP6171214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012245355A JP6171214B2 (en) 2012-11-07 2012-11-07 Nondestructive inspection system for structures using tomographic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012245355A JP6171214B2 (en) 2012-11-07 2012-11-07 Nondestructive inspection system for structures using tomographic analysis

Publications (2)

Publication Number Publication Date
JP2014095555A true JP2014095555A (en) 2014-05-22
JP6171214B2 JP6171214B2 (en) 2017-08-02

Family

ID=50938755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012245355A Active JP6171214B2 (en) 2012-11-07 2012-11-07 Nondestructive inspection system for structures using tomographic analysis

Country Status (1)

Country Link
JP (1) JP6171214B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174040A (en) * 2013-03-11 2014-09-22 Tobishima Corp Transmission origin and physical property condition (deterioration condition) simultaneous identification method in elastic wave tomography performed on measurement target with heterogeneous physical properties
JP2017009415A (en) * 2015-06-22 2017-01-12 東電設計株式会社 Deformed-state monitoring method of road bridge floor slab
CN106525976A (en) * 2016-11-18 2017-03-22 金陵科技学院 Method for quantitative analysis of damaged part of concrete structure based on acoustic emission tomography
JP2017090311A (en) * 2015-11-12 2017-05-25 株式会社東芝 Detection device, detection system and detection method
US20170336364A1 (en) * 2016-05-17 2017-11-23 Kabushiki Kaisha Toshiba Structure Evaluation System, Structure Evaluation Apparatus, and Structure Evaluation Method
WO2018051534A1 (en) 2016-09-15 2018-03-22 株式会社東芝 Structure evaluation system, structure evaluation device, and structure evaluation method
CN107850577A (en) * 2016-06-15 2018-03-27 株式会社东芝 Structure evaluation system, structure evaluating apparatus and structure evaluation method
CN107870201A (en) * 2017-11-10 2018-04-03 河海大学 A kind of air bubble mix light-textured soil embankment lossless detection method
JP2018165731A (en) * 2018-08-07 2018-10-25 株式会社東芝 Arrangement method for detection device
US10345275B2 (en) 2016-06-15 2019-07-09 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10352912B2 (en) 2016-09-15 2019-07-16 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10458954B2 (en) 2016-09-15 2019-10-29 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10613060B2 (en) 2016-06-15 2020-04-07 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US11519883B2 (en) 2019-03-15 2022-12-06 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219075A (en) * 2003-01-09 2004-08-05 Civil Engineering Research Institute Of Hokkaido Ae measurement body, function testing method for ae measurement body, ae measuring method, and active natural ground stabilization evaluating method
JP2007047094A (en) * 2005-08-12 2007-02-22 Railway Technical Res Inst Method and apparatus for determining damage of structure using ae source for one-dimensional location
JP2009121955A (en) * 2007-11-15 2009-06-04 Railway Technical Res Inst Method for identifying ae occurrence location in rock sample
JP2011191202A (en) * 2010-03-15 2011-09-29 Tobishima Corp Nondestructive detection system and nondestructive detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219075A (en) * 2003-01-09 2004-08-05 Civil Engineering Research Institute Of Hokkaido Ae measurement body, function testing method for ae measurement body, ae measuring method, and active natural ground stabilization evaluating method
JP2007047094A (en) * 2005-08-12 2007-02-22 Railway Technical Res Inst Method and apparatus for determining damage of structure using ae source for one-dimensional location
JP2009121955A (en) * 2007-11-15 2009-06-04 Railway Technical Res Inst Method for identifying ae occurrence location in rock sample
JP2011191202A (en) * 2010-03-15 2011-09-29 Tobishima Corp Nondestructive detection system and nondestructive detection method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOMOKI SHIOTANI: ""Recent Advances of AE technology for Damage Assessment of Infrastructures"", PROCEEDING OF 30TH EUROPEAN CONFERENCE ON ACOUSTIC EMISSION TESTING AND 7TH INTERNATIONAL CONFERENCE, JPN7016002523, September 2012 (2012-09-01), ISSN: 0003388708 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014174040A (en) * 2013-03-11 2014-09-22 Tobishima Corp Transmission origin and physical property condition (deterioration condition) simultaneous identification method in elastic wave tomography performed on measurement target with heterogeneous physical properties
JP2017009415A (en) * 2015-06-22 2017-01-12 東電設計株式会社 Deformed-state monitoring method of road bridge floor slab
US11668681B2 (en) 2015-11-12 2023-06-06 Kabushiki Kaisha Toshiba Detection device, detection system, and detection method
JP2017090311A (en) * 2015-11-12 2017-05-25 株式会社東芝 Detection device, detection system and detection method
US10955383B2 (en) 2015-11-12 2021-03-23 Kabushiki Kaisha Toshiba Detection device, detection system, and detection method
US10365250B2 (en) 2015-11-12 2019-07-30 Kabushiki Kaisha Toshiba Detection device, detection system, and detection method
CN113092592A (en) * 2016-05-17 2021-07-09 株式会社东芝 Structure evaluation system, structure evaluation device, and structure evaluation method
JPWO2017199544A1 (en) * 2016-05-17 2018-05-31 株式会社東芝 Structure evaluation system, structure evaluation apparatus, and structure evaluation method
CN107624160A (en) * 2016-05-17 2018-01-23 株式会社东芝 Structure evaluation system, structure evaluating apparatus and structure evaluation method
WO2017199542A1 (en) * 2016-05-17 2017-11-23 株式会社東芝 Structure assessment system, structure assessment device and structure assessment method
US20170336365A1 (en) * 2016-05-17 2017-11-23 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
CN107850579A (en) * 2016-05-17 2018-03-27 株式会社东芝 Structure evaluation system, structure evaluating apparatus and structure evaluation method
CN107624160B (en) * 2016-05-17 2021-05-28 株式会社东芝 Structure evaluation system, structure evaluation device, and structure evaluation method
US20170336364A1 (en) * 2016-05-17 2017-11-23 Kabushiki Kaisha Toshiba Structure Evaluation System, Structure Evaluation Apparatus, and Structure Evaluation Method
US10648949B2 (en) 2016-05-17 2020-05-12 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
WO2017199544A1 (en) * 2016-05-17 2017-11-23 株式会社東芝 Structure assessment system, structure assessment device and structure assessment method
JPWO2017199542A1 (en) * 2016-05-17 2018-06-07 株式会社東芝 Structure evaluation system, structure evaluation apparatus, and structure evaluation method
EP3264076A4 (en) * 2016-05-17 2018-06-27 Kabushiki Kaisha Toshiba, Aka Toshiba Corporation Structure assessment system, structure assessment device and structure assessment method
CN113092592B (en) * 2016-05-17 2024-04-16 株式会社东芝 Structure evaluation system, structure evaluation device, and structure evaluation method
EP3428635A4 (en) * 2016-05-17 2020-03-04 Kabushiki Kaisha Toshiba Structure assessment system, structure assessment device and structure assessment method
JP2018194553A (en) * 2016-05-17 2018-12-06 株式会社東芝 Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10371666B2 (en) 2016-05-17 2019-08-06 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10330646B2 (en) 2016-05-17 2019-06-25 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
US10613060B2 (en) 2016-06-15 2020-04-07 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
CN107850577B (en) * 2016-06-15 2020-12-15 株式会社东芝 Structure evaluation system, structure evaluation device, and structure evaluation method
US10345275B2 (en) 2016-06-15 2019-07-09 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
CN107850577A (en) * 2016-06-15 2018-03-27 株式会社东芝 Structure evaluation system, structure evaluating apparatus and structure evaluation method
CN108076656B (en) * 2016-09-15 2021-08-10 株式会社东芝 Structure evaluation system, structure evaluation device, and structure evaluation method
EP3321673A4 (en) * 2016-09-15 2018-06-27 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation device, and structure evaluation method
CN108076656A (en) * 2016-09-15 2018-05-25 株式会社东芝 Structure evaluation system, structure evaluating apparatus and structure evaluation method
US10458954B2 (en) 2016-09-15 2019-10-29 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
EP3321674A4 (en) * 2016-09-15 2019-05-15 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation device, and structure evaluation method
WO2018051535A1 (en) 2016-09-15 2018-03-22 株式会社東芝 Structure evaluation system, structure evaluation device, and structure evaluation method
US10352912B2 (en) 2016-09-15 2019-07-16 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method
WO2018051534A1 (en) 2016-09-15 2018-03-22 株式会社東芝 Structure evaluation system, structure evaluation device, and structure evaluation method
CN106525976A (en) * 2016-11-18 2017-03-22 金陵科技学院 Method for quantitative analysis of damaged part of concrete structure based on acoustic emission tomography
CN107870201B (en) * 2017-11-10 2019-11-26 河海大学 A kind of air bubble mix light-textured soil embankment lossless detection method
CN107870201A (en) * 2017-11-10 2018-04-03 河海大学 A kind of air bubble mix light-textured soil embankment lossless detection method
JP2018165731A (en) * 2018-08-07 2018-10-25 株式会社東芝 Arrangement method for detection device
US11519883B2 (en) 2019-03-15 2022-12-06 Kabushiki Kaisha Toshiba Structure evaluation system, structure evaluation apparatus, and structure evaluation method

Also Published As

Publication number Publication date
JP6171214B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6171214B2 (en) Nondestructive inspection system for structures using tomographic analysis
RU2683137C2 (en) Method and apparatus to determine structural parameters of railway track
US8640544B2 (en) Method for analyzing structure safety
JP4966616B2 (en) Shape variation monitoring method and shape variation monitoring system
JP6159926B2 (en) Simultaneous identification method of transmission point and physical properties (degradation status) in elastic wave tomography performed on measurement object of inhomogeneous physical properties
JP6819909B2 (en) Structure abnormality detection system, structure abnormality detection method and recording medium
JP5164100B2 (en) Bridge passing vehicle monitoring system, bridge passing vehicle monitoring method, and computer program
JP6205091B2 (en) Protective fence support soundness evaluation method and soundness evaluation device
JP6735034B2 (en) Structure abnormality detection device, structure abnormality detection method, recording medium and structure abnormality detection system
JP5271941B2 (en) Non-destructive detection system and non-destructive detection method
JP2016050876A (en) Hammering inspection recording device
Patel et al. Infrastructure health monitoring using signal processing based on an industry 4.0 System
JP6120186B2 (en) Nondestructive inspection method for reinforced concrete floor slabs
JP2007051873A (en) Soundness diagnostic method for structure
Morichika et al. Estimation of displacement response in steel plate girder bridge using a single MEMS accelerometer
JP2003043019A (en) Condition measuring instrument for concrete
JP6773878B1 (en) Concrete structure internal condition inspection method and system used for that method
JP2002296244A (en) Method and device for diagnosing concrete structure
JPH1114782A (en) Method and device for evaluating deterioration of piping
JP2008051675A (en) Maximum response member angle measuring instrument for elevated bridge post
JP5252447B2 (en) Building vibration level prediction method and system
JP6258010B2 (en) Elastic wave velocity measuring method and elastic wave velocity measuring system
US20210341352A1 (en) Diagnosis apparatus, diagnosis method, and computer readable recording medium
Tomaszkiewicz et al. Estimation of the bridge damping decrement for in-situ recorded signal with unusual features
JP6426568B2 (en) Crack occurrence diagnosis method and crack occurrence diagnosis program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170613

R150 Certificate of patent or registration of utility model

Ref document number: 6171214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250