JP6120186B2 - Nondestructive inspection method for reinforced concrete floor slabs - Google Patents

Nondestructive inspection method for reinforced concrete floor slabs Download PDF

Info

Publication number
JP6120186B2
JP6120186B2 JP2015069923A JP2015069923A JP6120186B2 JP 6120186 B2 JP6120186 B2 JP 6120186B2 JP 2015069923 A JP2015069923 A JP 2015069923A JP 2015069923 A JP2015069923 A JP 2015069923A JP 6120186 B2 JP6120186 B2 JP 6120186B2
Authority
JP
Japan
Prior art keywords
inclined surface
reinforced concrete
electromagnetic wave
floor slab
radar device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015069923A
Other languages
Japanese (ja)
Other versions
JP2016188545A (en
Inventor
光弘 布施
光弘 布施
中村 好伸
好伸 中村
由美子 田島
由美子 田島
雅人 影沢
雅人 影沢
誠 亀岡
誠 亀岡
智 安中
智 安中
成一郎 永根
成一郎 永根
俊輔 石井
俊輔 石井
Original Assignee
首都高技術株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 首都高技術株式会社 filed Critical 首都高技術株式会社
Priority to JP2015069923A priority Critical patent/JP6120186B2/en
Publication of JP2016188545A publication Critical patent/JP2016188545A/en
Application granted granted Critical
Publication of JP6120186B2 publication Critical patent/JP6120186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、鉄筋コンクリート床版内部の非破壊検査方法に関する。     The present invention relates to a nondestructive inspection method for a reinforced concrete floor slab.

橋長2m以上の橋梁は全国に約70万橋あり、国は省令でこれらを対象に5年に一度、近接目視による全数監視を実施すると告示している。橋長15m以上の橋梁の数比データによれば、桁橋が75%であるので、鉄筋コンクリート床版を点検する機会は相当数存在すると考えられる。さらに、目視では十分にコンクリート内部の状態を看ることは不可能であるので、レーダー等の非破壊検査装置を使用した内部検査が必要になっており効率的な点検方法が求められている。   There are approximately 700,000 bridges with a length of 2 meters or more nationwide, and the national government has announced in a ministerial ordinance that all of them will be monitored by proximity visual inspection once every five years. According to the number ratio data of bridges with a bridge length of 15m or more, the girder bridge is 75%, so it is considered that there are considerable opportunities to inspect the reinforced concrete slabs. Furthermore, since it is impossible to see the state inside the concrete sufficiently visually, an internal inspection using a non-destructive inspection device such as a radar is required, and an efficient inspection method is required.

橋梁等に用いられている鉄筋コンクリート床版は、交通量の増加や車両の大型化等により疲労損傷が発生し、塩害や中性化、凍害、アルカリ骨材反応等を要因とする耐久性の低下や早期劣化等による損傷欠陥等が発生する。このため、鉄筋コンクリート床版に対しては非破壊検査を定期的に行い、必要に応じて補修工事等を行う必要がある。従来より、鉄筋コンクリート床版に対する非破壊検査方法としては、打音法、超音波法、衝撃弾性波法、電磁波法(特許文献1参照)等がある。   Reinforced concrete slabs used for bridges, etc. suffer fatigue damage due to increased traffic volume and larger vehicles, resulting in reduced durability due to salt damage, neutralization, frost damage, alkali aggregate reaction, etc. Damage defects due to premature deterioration and the like occur. For this reason, it is necessary to periodically perform nondestructive inspections on reinforced concrete slabs and perform repair work as necessary. Conventionally, as a nondestructive inspection method for a reinforced concrete floor slab, there are a hitting method, an ultrasonic method, a shock elastic wave method, an electromagnetic wave method (see Patent Document 1), and the like.

しかし、鉄筋コンクリート床版の上面すなわち舗装面から非破壊検査を行う場合、交通規制が必要となり、交通渋滞が不可避であった。また、鉄筋コンクリート床版の橋梁主桁上フランジとの接続部分であるハンチ部には応力が集中するためと施工上の問題から、コンクリート劣化等の進行が他の部分よりも速く、より高い精度の検査が求められる。しかし、舗装面からハンチ部は他の部分より鉛直方向で遠い位置にあるのでハンチ部周辺に対する非破壊検査を高精度に行うことは困難である。   However, when non-destructive inspection is performed from the upper surface of the reinforced concrete slab, that is, the pavement surface, traffic regulation is necessary and traffic congestion is inevitable. In addition, because stress concentrates on the haunch, which is the connection part of the reinforced concrete floor slab with the bridge upper girder flange, and due to construction problems, the progress of concrete deterioration is faster than other parts, and higher accuracy is achieved. Inspection is required. However, since the haunch part is farther in the vertical direction than the other parts from the pavement surface, it is difficult to perform nondestructive inspection around the haunch part with high accuracy.

そのため、非破壊検査を鉄筋コンクリート床版の下部から行う方法が提案されている(特許文献2参照)。そして、例えば、特許文献1及び特許文献2を用いれば、鉄筋コンクリート床版の下面から電磁波を照射してその反射波を検出する構成も考えられる。   For this reason, a method has been proposed in which nondestructive inspection is performed from the bottom of a reinforced concrete floor slab (see Patent Document 2). For example, if patent document 1 and patent document 2 are used, the structure which irradiates electromagnetic waves from the lower surface of a reinforced concrete floor slab and detects the reflected wave is also considered.

特開2008−039429号公報JP 2008-039429 A 特開2003−247964号公報JP 2003-247964 A

しかし、ハンチ部は、鉄筋コンクリート床版の下部において突出した形状を有するとともに橋梁主桁上フランジとの接続部分を除いて傾斜しているため、ハンチ部周辺を効率的かつ精度よく測定するのは困難である。
そこで、本発明は、上記問題点に着目し、鉄筋コンクリート床版のハンチ部周辺において効率的かつ精度よく非破壊検査が可能な鉄筋コンクリート床版内部の非破壊検査方法を提供することを目的とする。
However, the haunch part has a shape protruding at the bottom of the reinforced concrete floor slab and is inclined except for the connecting part with the upper flange of the bridge main girder, so it is difficult to measure the area around the haunch part efficiently and accurately. It is.
Then, this invention pays attention to the said problem, and it aims at providing the nondestructive inspection method inside the reinforced concrete floor slab which can perform a nondestructive inspection efficiently and accurately in the vicinity of the haunch part of a reinforced concrete floor slab.

上記目的を達成するため、本発明に係る鉄筋コンクリート床版内部の非破壊検査方法は、鉄筋コンクリート床版の下部であって橋梁主桁上フランジに接続するハンチ部に電磁波レーダー装置を対向させ、前記ハンチ部に向けて電磁波を照射し、その反射波を利用して前記鉄筋コンクリート床版内部の劣化や欠陥を検出する鉄筋コンクリート床版内部の非破壊検査方法であって、前記ハンチ部を構成し前記橋梁主桁上フランジとの接続部分から露出した傾斜面に対し、前記電磁波レーダー装置を構成し前記傾斜面の短辺方向の幅と略同一の長さを有するアンテナ部を対向させるものとし、前記アンテナ部の長手方向を前記短辺方向に向けた状態で前記電磁波レーダー装置を前記傾斜面に接触させて前記電磁波を照射することを特徴とする。   In order to achieve the above object, a non-destructive inspection method for a reinforced concrete floor slab according to the present invention is the bottom of the reinforced concrete floor slab, wherein an electromagnetic wave radar device is opposed to a haunch portion connected to a bridge main girder upper flange, A non-destructive inspection method for a reinforced concrete floor slab that irradiates electromagnetic waves toward a portion and uses the reflected waves to detect deterioration and defects inside the reinforced concrete floor slab. The antenna portion is configured to face the inclined surface exposed from the connecting portion with the carry flange, and to configure the electromagnetic wave radar device and to have an antenna portion having substantially the same length as the width in the short side direction of the inclined surface. The electromagnetic wave radar device is irradiated with the electromagnetic wave by bringing the electromagnetic wave radar device into contact with the inclined surface in a state where the longitudinal direction of the electromagnetic wave is directed to the short side direction.

上記方法により、アンテナ部の長さを傾斜面の短辺方向の長さと略同一とすることにより、装置の寸法も傾斜面の短辺方向の長さと略同一にすることができ、橋梁主桁上フランジ及び鉄筋コンクリート床版に干渉することなく検査を効率的に行うことができる。また、傾斜面に電磁波レーダー装置を接触させるので、電磁波レーダー装置と傾斜面との傾斜面方向の距離が一定となる。これにより電磁波レーダー装置を傾斜面上で橋軸方向に移動させた場合でも検査精度の偏りを軽減することができる。さらに、ハンチ部から斜め上方に電磁波を照射することになる。これにより、鉄筋コンクリート床版において鉄筋が厚み方向に複数配置されている場合であっても鉄筋の影となる領域が小さくなるので厚み方向に互いに隣接する鉄筋間のコンクリート部の検査を容易に行なうことができる。以上より、鉄筋コンクリート床版のハンチ部において効率的かつ精度よく非破壊検査が可能となる。   By making the length of the antenna part substantially the same as the length in the short side direction of the inclined surface by the above method, the dimensions of the device can also be made substantially the same as the length in the short side direction of the inclined surface. Inspection can be efficiently performed without interfering with the upper flange and the reinforced concrete slab. Further, since the electromagnetic wave radar device is brought into contact with the inclined surface, the distance in the inclined surface direction between the electromagnetic wave radar device and the inclined surface is constant. Thereby, even when the electromagnetic wave radar device is moved in the bridge axis direction on the inclined surface, it is possible to reduce the deviation in inspection accuracy. Furthermore, electromagnetic waves are irradiated obliquely upward from the haunch part. As a result, even in the case where a plurality of reinforcing bars are arranged in the thickness direction in the reinforced concrete floor slab, the area that becomes the shadow of the reinforcing bars is reduced, so that the concrete portion between the reinforcing bars adjacent to each other in the thickness direction can be easily inspected. Can do. As described above, the non-destructive inspection can be performed efficiently and accurately in the haunch portion of the reinforced concrete floor slab.

そして、前記電磁波レーダー装置の前記ハンチ部の傾斜面に対向する面にローラを取り付けて前記ローラを前記傾斜面に転接させ、前記ローラの回転とともに前記電磁波レーダー装置を前記傾斜面の橋軸方向に移動させることを特徴とする。
上記方法により、装置全体をハンチ部の傾斜面の橋軸方向に容易に移動させることができ、作業効率を向上させることができる。
Then, a roller is attached to a surface of the electromagnetic wave radar device that faces the inclined surface of the haunch portion, the roller is brought into rolling contact with the inclined surface, and the electromagnetic wave radar device is moved in the bridge axis direction of the inclined surface along with the rotation of the roller. It is made to move to.
By the above method, the entire apparatus can be easily moved in the bridge axis direction of the inclined surface of the haunch portion, and the working efficiency can be improved.

また、本発明に係る鉄筋コンクリート床版内部検査用の非破壊検査では、鉄筋コンクリート床版の下部であって橋梁主桁上フランジに接続するハンチ部に電磁波レーダー装置を対向させ、前記ハンチ部に向けて電磁波を照射し、その反射波を利用して前記鉄筋コンクリート床版内部の劣化や欠陥を検出しており、前記ハンチ部の傾斜面の短辺方向の幅と略同一の長さを有するアンテナ部と、前記アンテナ部を収容する筐体と、有し、前記アンテナ部は、前記電磁波の照射時において、前記アンテナ部の長手方向が前記短辺方向に向けた状態で前記傾斜面に対向しており、前記筐体は、前記電磁波の照射時において、前記傾斜面に接触していることを特徴とする。   Further, in the non-destructive inspection for the inside inspection of the reinforced concrete floor slab according to the present invention, the electromagnetic wave radar device is opposed to the hunch part connected to the upper flange of the bridge main girder at the lower part of the reinforced concrete floor slab, and directed toward the hunch part. The antenna part which irradiates electromagnetic waves, has detected the deterioration and the defect inside the reinforced concrete floor slab using the reflected wave, and has a length substantially the same as the width in the short side direction of the inclined surface of the hunch part; A housing for housing the antenna unit, and the antenna unit is opposed to the inclined surface in a state where a longitudinal direction of the antenna unit is directed to the short side direction when the electromagnetic wave is irradiated. The housing is in contact with the inclined surface when the electromagnetic wave is irradiated.

上記構成により、アンテナ部の長さを傾斜面の短辺方向の長さと略同一とすることにより、装置の寸法も傾斜面の短辺方向の長さと略同一にすることができ、橋梁鉄骨及び床版に干渉することなく検査を効率的に行うことができる。また、傾斜面に電磁波レーダー装置を接触させるので、電磁波レーダー装置と傾斜面との距離が一定となる。これにより電磁波レーダー装置を傾斜面上で移動させた場合でも検査精度の偏りを軽減することができる。さらに、ハンチ部から斜め上方に電磁波を照射することになる。これにより、コンクリートにおいて鉄筋が厚み方向に複数並ぶように配置されている場合であっても鉄筋の影となる領域が小さくなるので厚み方向に互いに隣接する鉄筋間の検査を容易に行なうことができる。以上より、鉄筋コンクリート床版のハンチ部周辺において効率的かつ精度よく非破壊検査が可能な鉄筋コンクリート床版内部の非破壊検査方法となる。また、装置全体をハンチ部の傾斜面の橋軸方向に容易に移動させることができ、作業効率を向上させることができる。   With the above configuration, by making the length of the antenna portion substantially the same as the length of the inclined surface in the short side direction, the dimensions of the device can be made substantially the same as the length of the inclined surface in the short side direction, and the bridge steel and Inspection can be performed efficiently without interfering with the floor slab. Further, since the electromagnetic wave radar device is brought into contact with the inclined surface, the distance between the electromagnetic wave radar device and the inclined surface is constant. Thereby, even when the electromagnetic wave radar device is moved on the inclined surface, it is possible to reduce the deviation in inspection accuracy. Furthermore, electromagnetic waves are irradiated obliquely upward from the haunch part. Accordingly, even when a plurality of reinforcing bars are arranged in the thickness direction in the concrete, the shadow area of the reinforcing bars is reduced, so that inspection between reinforcing bars adjacent to each other in the thickness direction can be easily performed. . As described above, the non-destructive inspection method for the inside of the reinforced concrete floor slab is capable of efficiently and accurately performing the non-destructive inspection around the haunch portion of the reinforced concrete floor slab. Further, the entire apparatus can be easily moved in the direction of the bridge axis of the inclined surface of the haunch portion, and work efficiency can be improved.

本発明に係る鉄筋コンクリート床版内部の非破壊検査方法によれば、アンテナ部の長さを傾斜面の短辺方向の長さと略同一とすることにより、電磁波レーダー装置の寸法も傾斜面の短辺方向の長さと略同一にすることができ、橋梁主桁上フランジ及び鉄筋コンクリート床版に干渉することなく検査を効率的に行うことができる。また、傾斜面に電磁波レーダー装置を接触させるので、電磁波レーダー装置と傾斜面との距離が一定となる。これにより装置を傾斜面上で移動させた場合でも検査精度の偏りを軽減することができる。さらに、ハンチ部から斜め上方に電磁波を照射することになる。これにより、鉄筋コンクリート床版において鉄筋が厚み方向に複数並ぶように配置されている場合であっても鉄筋の影となる領域が小さくなるので厚み方向に互いに隣接する鉄筋間の検査を容易に行なうことができる。以上より、鉄筋コンクリ―ト床版のハンチ部周辺において効率的かつ精度よく非破壊検査が可能となる。   According to the non-destructive inspection method for a reinforced concrete floor slab according to the present invention, the length of the antenna portion is substantially the same as the length in the short side direction of the inclined surface, so that the dimensions of the electromagnetic wave radar device can be reduced to the short side of the inclined surface. The length of the direction can be made substantially the same, and the inspection can be efficiently performed without interfering with the bridge main girder upper flange and the reinforced concrete slab. Further, since the electromagnetic wave radar device is brought into contact with the inclined surface, the distance between the electromagnetic wave radar device and the inclined surface is constant. Thereby, even when the apparatus is moved on an inclined surface, it is possible to reduce the deviation in inspection accuracy. Furthermore, electromagnetic waves are irradiated obliquely upward from the haunch part. As a result, even when multiple reinforcing bars are arranged in the thickness direction on the reinforced concrete floor slab, the area that becomes the shadow of the reinforcing bars becomes small, so inspection between adjacent reinforcing bars in the thickness direction can be easily performed. Can do. As described above, the non-destructive inspection can be performed efficiently and accurately in the vicinity of the haunch portion of the reinforcing bar concrete slab.

鉄筋コンクリート床版内部の非破壊検査方法の適用対象となる橋梁の断面の模式図である。It is a schematic diagram of the cross section of the bridge used as the application object of the nondestructive inspection method inside a reinforced concrete floor slab. 橋梁のハンチ部周辺の断面の模式図である。It is a schematic diagram of the cross section around the haunch part of a bridge. 本実施形態の鉄筋コンクリート床版内部の非破壊検査方法を実施する非破壊検査装置の模式図である。It is a schematic diagram of the nondestructive inspection apparatus which implements the nondestructive inspection method inside the reinforced concrete floor slab of this embodiment. 本実施形態の鉄筋コンクリート床版内部の非破壊検査方法を実施する非破壊検査装置のセンサー部の模式図である。It is a mimetic diagram of the sensor part of the nondestructive inspection device which performs the nondestructive inspection method inside the reinforced concrete floor slab of this embodiment. 本実施形態の鉄筋コンクリート床版内部の非破壊検査方法の実施態様を表す模式図である。It is a schematic diagram showing the embodiment of the nondestructive inspection method inside the reinforced concrete floor slab of this embodiment.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .

図1に、鉄筋コンクリート床版内部の非破壊検査方法の適用対象となる橋梁の断面の模式図を示し、図2に、橋梁を構成するハンチ部の断面の模式図を示す。図1に示すように、橋梁100は橋脚(不図示)上に等間隔に配置される複数の主桁102(橋梁主桁、橋梁鋼構造部)と、主桁102上に配置された鉄筋コンクリート床版(以後、床版104とする。)により構成されている。   FIG. 1 shows a schematic diagram of a cross section of a bridge to which a nondestructive inspection method inside a reinforced concrete slab is applied, and FIG. 2 shows a schematic diagram of a cross section of a haunch portion constituting the bridge. As shown in FIG. 1, a bridge 100 includes a plurality of main girders 102 (bridge main girders and bridge steel structures) arranged at equal intervals on a pier (not shown), and a reinforced concrete floor arranged on the main girder 102. It consists of a plate (hereinafter referred to as a floor plate 104).

主桁102は、その上部が主桁上フランジ102a(橋梁主桁上フランジ)となっており、下部が主桁下フランジ102b(橋梁主桁下フランジ)となっており、主桁上フランジ102aが床版104に接続している。床版104において主桁上フランジ102aと接続する部分は床版104の他の部分より下方に突出したハンチ部106となっており、床版104において他の部分よりも厚くなっている。一方、床版104の上面には、道路となる舗装116が形成されている。また、図2に示すように、主桁上フランジ102aの上面にはスタッド102cが取り付けられている。スタッド102cは道路の進行方向に沿って一定の間隔で取り付けられ、床版104内部に埋設される。   The upper part of the main girder 102 is a main girder upper flange 102a (bridge main girder upper flange), and the lower part is a main girder lower flange 102b (bridge main girder lower flange). It is connected to the floor slab 104. A portion connected to the main girder upper flange 102 a in the floor slab 104 is a haunch portion 106 that protrudes downward from the other portion of the floor slab 104, and the floor slab 104 is thicker than the other portions. On the other hand, a pavement 116 serving as a road is formed on the upper surface of the floor slab 104. As shown in FIG. 2, a stud 102c is attached to the upper surface of the main girder upper flange 102a. The studs 102c are attached at regular intervals along the road traveling direction, and are embedded in the floor slab 104.

ハンチ部106は、主桁上フランジ102aに接続するとともにスタッド102cが差し込まれる底部108と、底部108に隣接する配置であって主桁上フランジ102aから露出した傾斜面110と、を有する。床版104は、その長手方向が橋軸方向、すなわち道路の進行方向となっている。よって、ハンチ部106(底部108、傾斜面110)の長手方向も道路の進行方向であり、ハンチ部106の底部108の短辺方向は橋軸直角方向、すなわち道路の幅方向となる。ハンチ部106の傾斜面110は、その短辺方向が一定の傾斜角度により底部108側が低くなるように傾斜している。なお傾斜面110の傾斜角度θは、tan−1(1/3)となる値よりも緩やかに形成されることが一般的である。 The haunch portion 106 has a bottom portion 108 that is connected to the main girder upper flange 102a and into which the stud 102c is inserted, and an inclined surface 110 that is disposed adjacent to the bottom portion 108 and is exposed from the main girder upper flange 102a. The longitudinal direction of the floor slab 104 is the bridge axis direction, that is, the traveling direction of the road. Therefore, the longitudinal direction of the haunch portion 106 (the bottom portion 108, the inclined surface 110) is also the traveling direction of the road, and the short side direction of the bottom portion 108 of the haunch portion 106 is the direction perpendicular to the bridge axis, that is, the width direction of the road. The inclined surface 110 of the haunch portion 106 is inclined such that the bottom side thereof is lowered in the short side direction at a constant inclination angle. Note that the inclination angle θ of the inclined surface 110 is generally formed more gently than a value of tan −1 (1/3).

また床版104内部には、床版104を構成する主鉄筋112、配力鉄筋113がそれぞれ複数埋設されている。主鉄筋112は床版104の幅方向に延びる部材であって床版104の厚み方向及び道路の進行方向に所定の間隔で並ぶように埋設されている。また、配力鉄筋113は、床版104の道路の進行方向、すなわち橋軸方向に延びる部材であって、床版104の厚み方向、及び道路の幅方向に所定の間隔で並ぶように埋設されている。さらに、床版104の長手方向の所定の長さごとにハンチ部106を補強するためのハンチ用心鉄筋114が埋設されている。   A plurality of main reinforcing bars 112 and distribution reinforcing bars 113 constituting the floor slab 104 are embedded in the floor slab 104. The main reinforcing bars 112 are members extending in the width direction of the floor slab 104, and are embedded so as to be arranged at predetermined intervals in the thickness direction of the floor slab 104 and the traveling direction of the road. Further, the distribution reinforcing bars 113 are members extending in the road traveling direction of the floor slab 104, that is, the bridge axis direction, and are embedded so as to be arranged at predetermined intervals in the thickness direction of the floor slab 104 and the width direction of the road. ing. Further, a hunch core reinforcing bar 114 for reinforcing the haunch part 106 is embedded every predetermined length in the longitudinal direction of the floor slab 104.

図3に、本実施形態の鉄筋コンクリート床版内部の非破壊検査方法を実施する非破壊検査装置の模式図を示し、図4に、本実施形態の鉄筋コンクリート床版内部の非破壊検査方法を実施する非破壊検査装置のセンサー部の模式図を示す。図3に示すように、本実施形態の非破壊検査装置10は、センサー部12(電磁波レーダー装置)と信号処理部28とから構成され、センサー部12と信号処理部28はセンサーケーブル34により接続されている。また、信号処理部28は電源ケーブル32により電源(不図示)に接続され、電源ケーブル32を介して信号処理部28に給電され、また電源ケーブル32及びセンサーケーブル34を介してセンサー部12に給電される。   FIG. 3 shows a schematic diagram of a non-destructive inspection apparatus for performing the non-destructive inspection method inside the reinforced concrete floor slab of this embodiment, and FIG. 4 executes the non-destructive inspection method inside the reinforced concrete floor slab of this embodiment. The schematic diagram of the sensor part of a nondestructive inspection device is shown. As shown in FIG. 3, the nondestructive inspection apparatus 10 of this embodiment includes a sensor unit 12 (electromagnetic wave radar device) and a signal processing unit 28, and the sensor unit 12 and the signal processing unit 28 are connected by a sensor cable 34. Has been. The signal processing unit 28 is connected to a power source (not shown) by a power cable 32, and is fed to the signal processing unit 28 through the power cable 32, and is fed to the sensor unit 12 through the power cable 32 and the sensor cable 34. Is done.

センサー部12は、全体の外形を形成するとともにハンチ部106の傾斜面110に接触(対向)させる直方体の筐体14と、後述のように筐体14の傾斜面110に対向する面(対向面16)側に収容されたアンテナ部18(図4)と、を有する。また、筐体14の前記対向面16の四隅にはローラ24(図4)が取り付けられている。一方、筐体14の前記対向面16の反対側の面にはハンドル26が取り付けられている。   The sensor unit 12 includes a rectangular parallelepiped housing 14 that forms the entire outer shape and contacts (opposes) the inclined surface 110 of the haunch unit 106, and a surface (opposing surface) that faces the inclined surface 110 of the housing 14 as described later. 16) the antenna part 18 (FIG. 4) accommodated in the side. Rollers 24 (FIG. 4) are attached to the four corners of the facing surface 16 of the housing 14. On the other hand, a handle 26 is attached to the surface opposite to the facing surface 16 of the housing 14.

図4に示すように、アンテナ部18は、筐体14の対向面16に配置された矩形の送信アンテナ20と、送信アンテナ20に平行に並んだ矩形の受信アンテナ22と、から構成される。送信アンテナ20と受信アンテナ22はほぼ同様の寸法を有している。   As shown in FIG. 4, the antenna unit 18 includes a rectangular transmission antenna 20 disposed on the facing surface 16 of the housing 14 and a rectangular reception antenna 22 arranged in parallel with the transmission antenna 20. The transmitting antenna 20 and the receiving antenna 22 have substantially the same dimensions.

本実施形態において、アンテナ部18(送信アンテナ20、受信アンテナ22)の長さがハンチ部106の傾斜面110の短辺方向の長さと略同一(やや短い)の長さに設計されている。これにより、筐体14のアンテナ部18の長手方向に平行な辺の長さも傾斜面110の短辺方向の長さと略同一(やや短い)の長さに設計されている。また、前述のように筐体14の対向面16の四隅にはローラ24が取り付けられているが、その回転軸は、アンテナ部18の長手方向に平行である。よって、センサー部12を図4に示す矢印の方向、すなわちアンテナ部18の長手方向に直交する方向(傾斜面110の橋軸方向)に移動させることによりローラ24が回転する。   In the present embodiment, the length of the antenna unit 18 (the transmission antenna 20 and the reception antenna 22) is designed to be substantially the same (slightly shorter) as the length of the inclined surface 110 of the hunch unit 106 in the short side direction. Thereby, the length of the side parallel to the longitudinal direction of the antenna portion 18 of the housing 14 is designed to be substantially the same (slightly shorter) as the length of the inclined surface 110 in the short side direction. As described above, the rollers 24 are attached to the four corners of the facing surface 16 of the housing 14, and the rotation axis thereof is parallel to the longitudinal direction of the antenna unit 18. Therefore, the roller 24 is rotated by moving the sensor unit 12 in the direction of the arrow shown in FIG. 4, that is, the direction orthogonal to the longitudinal direction of the antenna unit 18 (the bridge axis direction of the inclined surface 110).

アンテナ部18は、いわゆるマルチパス方式により電磁波の放射及び反射波の受信を行う。なお、上記マルチパス方式によって得られる反射波を用いた解析方法については、例えば特開2003−107169号公報等に記載されているように従来技術であるので説明を省略する。   The antenna unit 18 receives electromagnetic waves and receives reflected waves by a so-called multipath method. The analysis method using the reflected wave obtained by the multipath method is a conventional technique as described in, for example, Japanese Patent Application Laid-Open No. 2003-107169, and the description thereof is omitted.

信号処理部28は、パーソナルコンピュータ30に、計測したコンクリート内部の画像データを格納し、必要に応じて、画像データから内部の状態を解析することができる。   The signal processing unit 28 stores the measured image data inside the concrete in the personal computer 30 and can analyze the internal state from the image data as necessary.

図5に、本実施形態の鉄筋コンクリート床版内部の非破壊検査方法の実施態様を表す模式図である。上記構成の非破壊検査装置10(図3)を用いた非破壊検査の流れについて説明する。まず、橋脚(不図示)の床版104よりも低い位置であってハンチ部106の傾斜面110の真下になる位置(例えば、主桁102間に形成した吊り足場118)において作業員がハンドル26を握ってセンサー部12(筐体14)を持ち上げ、筐体14の対向面16(図4)を傾斜面110に向け、ローラ24を傾斜面110に接触させる。このとき、アンテナ部18(図4)の長手方向が傾斜面110の短辺方向に向くようにする。   FIG. 5 is a schematic diagram showing an embodiment of the nondestructive inspection method inside the reinforced concrete floor slab of this embodiment. A flow of nondestructive inspection using the nondestructive inspection apparatus 10 (FIG. 3) having the above configuration will be described. First, the worker handles the handle 26 at a position lower than the floor slab 104 of the bridge pier (not shown) and just below the inclined surface 110 of the haunch portion 106 (for example, a suspension scaffold 118 formed between the main girders 102). The sensor unit 12 (housing 14) is lifted up, the facing surface 16 (FIG. 4) of the housing 14 is directed to the inclined surface 110, and the roller 24 is brought into contact with the inclined surface 110. At this time, the longitudinal direction of the antenna unit 18 (FIG. 4) is set to face the short side of the inclined surface 110.

次に、信号処理部28を立ち上げ、パーソナルコンピュータ30(図4)に画像データを格納する準備をする。そして、傾斜面110に転接するローラ24を回転させつつセンサー部12を傾斜面110の橋軸方向に沿って移動させる(図5に示す矢印の方向、図4参照)ことにより、センサー部12を隣の検査範囲を測定するための位置に移動させることができる。   Next, the signal processing unit 28 is started up and preparations for storing image data in the personal computer 30 (FIG. 4) are made. Then, the sensor unit 12 is moved along the bridge axis direction of the inclined surface 110 while rotating the roller 24 that is in rolling contact with the inclined surface 110 (see the direction of the arrow shown in FIG. 5, see FIG. 4). It can be moved to a position for measuring the next inspection range.

本実施形態の非破壊検査装置10(非破壊検査方法)によれば、アンテナ部18の長さを傾斜面110の短辺方向の長さと略同一とすることにより、センサー部12の筐体14(装置)の寸法も傾斜面110の短辺方向の長さと略同一にすることができ、主桁102(橋梁主桁上フランジ)及び床版104に干渉することなく検査を効率的に行うことができる。また、傾斜面110にセンサー部12(ローラ24)を接触させるので、センサー部12と傾斜面110との距離が一定となる。これによりセンサー部12を傾斜面110上で移動させた場合でも検査精度のムラを軽減することができる。さらに、ハンチ部106から斜め上方に電磁波を照射することになる。これにより、床版104において主鉄筋112、配力鉄筋113が厚み方向に複数並ぶように配置されている場合であっても主鉄筋112、配力鉄筋113の影となる領域が小さくなるので厚み方向に互いに隣接する主鉄筋112、配力鉄筋113間の検査を容易に行なうことができる。以上より、床版104のハンチ部106周辺において効率的かつ精度よく非破壊検査が可能となる。   According to the nondestructive inspection apparatus 10 (nondestructive inspection method) of the present embodiment, the length of the antenna unit 18 is made substantially the same as the length of the inclined surface 110 in the short side direction, whereby the housing 14 of the sensor unit 12. The size of the (device) can be made substantially the same as the length of the inclined surface 110 in the short side direction, and the inspection can be efficiently performed without interfering with the main girder 102 (the bridge main girder upper flange) and the floor slab 104. Can do. Further, since the sensor unit 12 (roller 24) is brought into contact with the inclined surface 110, the distance between the sensor unit 12 and the inclined surface 110 is constant. Thereby, even when the sensor unit 12 is moved on the inclined surface 110, unevenness in inspection accuracy can be reduced. Further, electromagnetic waves are irradiated obliquely upward from the haunch portion 106. As a result, even if a plurality of main reinforcing bars 112 and distributing reinforcing bars 113 are arranged in the thickness direction on the floor slab 104, the shadow area of the main reinforcing bars 112 and distributing reinforcing bars 113 is reduced, so that the thickness is reduced. Inspection between the main reinforcing bar 112 and the distribution reinforcing bar 113 adjacent to each other in the direction can be easily performed. As described above, the non-destructive inspection can be performed efficiently and accurately around the haunch portion 106 of the floor slab 104.

前述のように、床版104に対する非破壊検査方法としては、打音法、超音波法、衝撃弾性波法、電磁波法がある。このうち、打音法は床版104の表層よりも深い位置の空洞の検出は困難であり、これはハンチ部106においても同様である。超音波法では、測定箇所を発信子と受信子で挟み込む必要があるので、ハンチ部106の内部の欠陥を検出することは困難である。また、三角形の治具をハンチ部106の形状に合わせて制作し、主桁102を挟むように左右に探触子を配置させる方法も考えられるが、超音波をハンチ部106の傾斜面110に対して斜めに入射する形になるので現場での測定は困難になる。衝撃弾性波法では、電磁波法と同様に交通規制は不要であるが、弾性波により評価するため、交通振動の影響を受けやすい。   As described above, the nondestructive inspection method for the floor slab 104 includes a hitting method, an ultrasonic method, a shock elastic wave method, and an electromagnetic wave method. Of these, the percussion method is difficult to detect a cavity at a position deeper than the surface layer of the floor slab 104, and this is also the case with the hunch portion 106. In the ultrasonic method, since it is necessary to sandwich the measurement location between the transmitter and the receiver, it is difficult to detect a defect inside the haunch portion 106. In addition, a method in which a triangular jig is produced in accordance with the shape of the haunch portion 106 and probes are arranged on the left and right sides so as to sandwich the main beam 102 may be considered, but ultrasonic waves are applied to the inclined surface 110 of the haunch portion 106. On the other hand, since it is incident obliquely, on-site measurement becomes difficult. The impact elastic wave method does not require traffic regulation like the electromagnetic wave method, but is easily affected by traffic vibration because it is evaluated by elastic waves.

これに対して、電磁波法では、反射波の有無により検査するため深さ方向の測定精度が高いことが特徴となっている。超音波法や衝撃弾性波法は、電磁波法よりも低い周波数(数KHz〜数百KHz)を用いるため、電磁波法よりの深い位置の情報を得ることができる。しかし、これらの方法は波の変化の有無で欠陥の有無を判断する手法であるため、電磁波法よりも、測定位置から深さ方向の測定精度が低い。また、超音波法及び衝撃弾性波法では、点での測定のため、欠陥の識別は可能であるが、その大きさ計測することは困難である。しかし、電磁波法では上述のマルチパス方式を用いることにより欠陥の3次元映像を得ることができる。したがって、マルチパス方式を用いた電磁波法であれば、深さ方向の測定精度の高い3次元映像を得ることができ、ハンチ部106(床版104の他の場所についても同様)おける欠陥の位置、形状、大きさを高精度に測定することができる。   On the other hand, the electromagnetic wave method is characterized by high measurement accuracy in the depth direction because inspection is performed based on the presence or absence of reflected waves. Since the ultrasonic method and the impact elastic wave method use a lower frequency (several KHz to several hundred KHz) than the electromagnetic wave method, information at a deeper position than the electromagnetic wave method can be obtained. However, since these methods are methods for determining the presence or absence of defects based on the presence or absence of wave changes, the measurement accuracy in the depth direction from the measurement position is lower than that of the electromagnetic wave method. Further, in the ultrasonic method and the impact elastic wave method, the defect can be identified because of the point measurement, but it is difficult to measure the size. However, in the electromagnetic wave method, a three-dimensional image of a defect can be obtained by using the above-described multipath method. Therefore, if the electromagnetic wave method using the multipath method is used, a three-dimensional image with high measurement accuracy in the depth direction can be obtained, and the position of the defect in the hunch part 106 (the same applies to other locations of the floor slab 104). The shape and size can be measured with high accuracy.

10………非破壊検査装置、12………センサー部、14………筐体、16………対向面、18………アンテナ部、20………送信アンテナ、22………受信アンテナ、24………ローラ、26………ハンドル、28………信号処理部、30………パーソナルコンピュータ、32………電源ケーブル、34………センサーケーブル、100………橋梁、102………主桁、102a………主桁上フランジ、102b………主桁下フランジ、102c………スタッド、104………床版、106………ハンチ部、108………底部、110………傾斜面、112………主鉄筋、113………配力鉄筋、114………ハンチ用心鉄筋、116………舗装、118………吊り足場。 DESCRIPTION OF SYMBOLS 10 ......... Non-destructive inspection apparatus, 12 ......... Sensor part, 14 ......... Case, 16 ...... An opposing surface, 18 ......... Antenna part, 20 ......... Transmitting antenna, 22 ......... Receiving antenna 24 ......... Roller 26 ......... Handle 28 ......... Signal processing unit 30 ......... Personal computer 32 ......... Power cable 34 ......... Sensor cable 100 ......... Bridge 102 ... ... Main girder, 102a ......... Main girder upper flange, 102b ......... Main girder lower flange, 102c ......... Stud, 104 ......... Slab, 106 ......... Haunch part, 108 ......... Bottom part, 110 ……… Inclined surface, 112 ……… Main rebar, 113 ……… Distributing rebar, 114 ……… Haunch heart rebar, 116 ……… Pavement, 118 ……… Suspended scaffolding.

Claims (2)

鉄筋コンクリート床版の下部であって橋梁主桁上フランジに接続するハンチ部に電磁波レーダー装置を対向させ、前記ハンチ部に向けて電磁波を照射し、その反射波を利用して前記鉄筋コンクリート床版内部の劣化や欠陥を検出する鉄筋コンクリート床版内部の非破壊検査方法であって、
前記ハンチ部を構成し前記橋梁主桁上フランジとの接続部分から露出した傾斜面に対し、前記電磁波レーダー装置を構成し前記傾斜面の短辺方向の幅と略同一の長さを有するアンテナ部を対向させるものとし、
前記アンテナ部の長手方向を前記短辺方向に向けた状態で前記電磁波レーダー装置を前記傾斜面に接触させて前記電磁波を照射することを特徴とする鉄筋コンクリート床版内部の非破壊検査方法。
An electromagnetic wave radar device is opposed to the lower part of the reinforced concrete slab and connected to the upper flange of the bridge main girder. A non-destructive inspection method for detecting deterioration and defects inside a reinforced concrete floor slab,
An antenna portion that constitutes the electromagnetic wave radar device and has a length substantially the same as the width of the inclined surface in the short side direction with respect to the inclined surface that forms the haunch portion and is exposed from the connection portion with the flange on the bridge main girder. And facing each other,
A nondestructive inspection method inside a reinforced concrete slab, wherein the electromagnetic wave radar device is irradiated with the electromagnetic wave while the electromagnetic wave radar device is brought into contact with the inclined surface in a state where the longitudinal direction of the antenna portion is directed in the short side direction.
前記電磁波レーダー装置の前記ハンチ部の傾斜面に対向する面にローラを取り付けて前記ローラを前記傾斜面に転接させ、前記ローラの回転とともに前記電磁波レーダー装置を前記傾斜面の橋軸方向に移動させることを特徴とする請求項1に記載の鉄筋コンクリート床版内部の非破壊検査方法。 A roller is attached to a surface of the electromagnetic wave radar device that faces the inclined surface of the haunch portion, the roller is brought into rolling contact with the inclined surface, and the electromagnetic wave radar device is moved in the bridge axis direction of the inclined surface as the roller rotates. The nondestructive inspection method for the inside of a reinforced concrete floor slab according to claim 1, wherein:
JP2015069923A 2015-03-30 2015-03-30 Nondestructive inspection method for reinforced concrete floor slabs Active JP6120186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015069923A JP6120186B2 (en) 2015-03-30 2015-03-30 Nondestructive inspection method for reinforced concrete floor slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015069923A JP6120186B2 (en) 2015-03-30 2015-03-30 Nondestructive inspection method for reinforced concrete floor slabs

Publications (2)

Publication Number Publication Date
JP2016188545A JP2016188545A (en) 2016-11-04
JP6120186B2 true JP6120186B2 (en) 2017-04-26

Family

ID=57239705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015069923A Active JP6120186B2 (en) 2015-03-30 2015-03-30 Nondestructive inspection method for reinforced concrete floor slabs

Country Status (1)

Country Link
JP (1) JP6120186B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7291325B2 (en) * 2019-02-01 2023-06-15 国立大学法人 鹿児島大学 Non-Destructive Exploration Method and Apparatus for Internal Corners of Concrete Structures Using Electromagnetic Radar
JP6675656B1 (en) * 2019-04-01 2020-04-01 ジオ・サーチ株式会社 Steel slab bridge evaluation device, steel slab bridge evaluation method, and program
JP6751957B1 (en) * 2019-11-21 2020-09-09 ジオ・サーチ株式会社 Reinforcing bar corrosion degree evaluation device, rebar corrosion degree evaluation method, and computer program
USD987832S1 (en) 2022-01-03 2023-05-30 Therabody, Inc. Pneumatic compression device
CN115236662B (en) * 2022-09-23 2023-02-10 中公智联(北京)科技有限公司 Single-column pier bridge overturning monitoring equipment based on microwave radar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580957B2 (en) * 2001-11-12 2010-11-17 正吾 田中 Non-destructive inspection method for concrete structures
JP2007327935A (en) * 2006-05-11 2007-12-20 Yamaguchi Univ Method for measuring object in medium
JP6105859B2 (en) * 2012-05-24 2017-03-29 日本無線株式会社 Buried object exploration equipment

Also Published As

Publication number Publication date
JP2016188545A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6120186B2 (en) Nondestructive inspection method for reinforced concrete floor slabs
Wolf et al. Detection of crack propagation in concrete with embedded ultrasonic sensors
JP2010014472A (en) Nondestructive inspection device, nondestructive inspection system, and vehicle for nondestructive inspection
JP6159926B2 (en) Simultaneous identification method of transmission point and physical properties (degradation status) in elastic wave tomography performed on measurement object of inhomogeneous physical properties
Bunnori et al. The use of acoustic emission for the early detection of cracking in concrete structures
JP2014095555A (en) Nondestructive inspection system for structure using tomography
Shokouhi et al. Nondestructive detection of delamination in concrete slabs: Multiple-method investigation
Takamine et al. Efficient damage inspection of deteriorated RC bridge deck with rain-induced elastic wave
Zhou et al. Electromagnetic pulse-induced acoustic testing enables reliable evaluation of debonding between rebar and concret
Lachowicz et al. Numerical modeling of GPR field in damage detection of a reinforced concrete footbridge
JP6684575B2 (en) Synthetic concrete structure inspection method, soundness evaluation method, and inspection result display system
Beben et al. Ground penetrating radar application to testing of reinforced concrete beams
JP6271070B1 (en) Telescopic device inspection method
Kurz et al. Condition assessment of reinforced concrete structures using automated multi-sensor systems
JP2005338056A (en) Method of measuring crack in inside of reinforced concrete beam by p-wave penetration, and structure safety evaluation method
Helmerich et al. Non-destructive detection of surface-bond defects in carbon composite-strengthened concrete structures
Algernon et al. NDT validation facility at the Florida Department of Transportation
JP3834660B2 (en) Crack detection device for structures
JP7440008B2 (en) Non-destructive testing method for reinforced concrete structures
Owerko et al. GPR identification of prestressing tendons in areas with high density of ordinary reinforcement
Hammarström Non-destructive testing of concrete with ground penetrating radar
Salles Short continuously reinforced concrete pavement design recommendations based on non-destructive ultrasonic data and stress simulation.
Beben et al. GPR testing of reinforced concrete viaduct beams
Tachibana et al. Detection of Water Ponding State on Steel Plate Using Guided Waves
Schulze Investigation of Pre-stressed Concrete Using the Imaging Ultrasound Echo Method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170316

R150 Certificate of patent or registration of utility model

Ref document number: 6120186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250