JP2014095129A - Grain oriented silicon steel sheet and method for producing the same - Google Patents

Grain oriented silicon steel sheet and method for producing the same Download PDF

Info

Publication number
JP2014095129A
JP2014095129A JP2012247717A JP2012247717A JP2014095129A JP 2014095129 A JP2014095129 A JP 2014095129A JP 2012247717 A JP2012247717 A JP 2012247717A JP 2012247717 A JP2012247717 A JP 2012247717A JP 2014095129 A JP2014095129 A JP 2014095129A
Authority
JP
Japan
Prior art keywords
steel sheet
less
annealing
grain
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012247717A
Other languages
Japanese (ja)
Other versions
JP6031951B2 (en
Inventor
Makoto Watanabe
誠 渡邉
Yasuyuki Hayakawa
康之 早川
Hiroshi Yamaguchi
山口  広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012247717A priority Critical patent/JP6031951B2/en
Publication of JP2014095129A publication Critical patent/JP2014095129A/en
Application granted granted Critical
Publication of JP6031951B2 publication Critical patent/JP6031951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a grain oriented silicon steel sheet, even in the case where a film containing no chromium is applied as a tension film, having high hygroscopic properties on a level same as that in the case where a chromium-containing film is formed.SOLUTION: Regarding the grain oriented silicon steel sheet in which the surface of a steel sheet is provided with a forsterite-based base film and a phosphate-based tension application film containing no chromium, the tension application film is formed by applying a phosphate-based coating treatment liquid containing no chromium to the surface of the forsterite-based base film containing Mn by 0.02 to 0.20 g/mexpressed in terms of weight and S by 0.01 to 0.10 g/mexpressed in terms of weight after final finish annealing and performing baking.

Description

本発明は、方向性電磁鋼板およびその製造方法に関し、特にクロムを含まない張力付与被膜を方向性電磁鋼板の表面に形成させる際に、不可避的に発生する被膜欠陥を防止して表面被膜性状を改善すると共に、鋼板に付与する張力を高めて鉄損の改善を図ろうとするものである。   The present invention relates to a grain-oriented electrical steel sheet and a method for producing the same, and in particular, when a tension-imparting film not containing chromium is formed on the surface of a grain-oriented electrical steel sheet, unavoidably occurring coating defects are prevented and surface coating properties are improved. In addition to improving, it is intended to improve the iron loss by increasing the tension applied to the steel sheet.

一般に、方向性電磁鋼板においては、鉄損を低減する目的で、絶縁性を付与するとともに、鋼板に張力を付与する被膜を表面に施す。これらの被膜は、加工性、防錆性等を兼ね備えることも要求される。かかる表面被膜は、通常、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜とその上に被成されるリン酸塩系の上塗り被膜からなる。
これらの上塗り被膜は、低い熱膨張率の被膜を高温で成膜することにより、室温まで降温した際の鋼板と被膜の熱膨張率の違いにより鋼板に張力を付与している。
In general, in a grain-oriented electrical steel sheet, for the purpose of reducing iron loss, a coating for imparting tension and imparting tension to the steel sheet is applied to the surface. These coatings are also required to have workability, rust prevention properties and the like. Such a surface film is usually composed of a base film mainly composed of forsterite formed at the time of final finish annealing and a phosphate-based topcoat film formed thereon.
These top coat films form a film having a low coefficient of thermal expansion at a high temperature, thereby applying tension to the steel sheet due to the difference in coefficient of thermal expansion between the steel sheet and the film when the temperature is lowered to room temperature.

上記のような諸特性を付与するために、従来から種々のコーティング技術が提案されている。
例えば、特許文献1には、リン酸マグネシウムとコロイド状シリカと無水クロム酸を主体とするコーティングが、また特許文献2には、リン酸アルミニウムとコロイド状シリカと無水クロム酸を主体とするコーティングがそれぞれ提案されている。
Conventionally, various coating techniques have been proposed in order to impart the various characteristics as described above.
For example, Patent Document 1 has a coating mainly composed of magnesium phosphate, colloidal silica, and chromic anhydride, and Patent Document 2 has a coating mainly composed of aluminum phosphate, colloidal silica, and chromic anhydride. Each has been proposed.

一方、近年の環境保全への関心の高まりを受けて、クロムや鉛等の有害物質を含まない製品に対する要望が強まっており、方向性電磁鋼においてもクロムを含まない被膜を形成する方法の開発が望まれている。
しかしながら、クロム酸、クロム酸塩等のCr含有化合物(以下、単にクロム、Crと記載する場合もある)を用いないと、耐吸湿性の著しい劣化や張力低下による鉄損改善効果の消失等の品質上の問題が発生するため、クロムを無添加とすることは難しかった。ここに、被膜における耐吸湿性の劣化とは、被膜が大気中の水分により吸湿し、部分的に液化して膜厚が薄くなったり被膜のない部分ができたり、べとついたりして、絶縁性や防錆性が劣化してしまうことである。
On the other hand, in response to increasing interest in environmental conservation in recent years, there has been a growing demand for products that do not contain toxic substances such as chromium and lead, and the development of methods for forming coatings that do not contain chromium in grain-oriented electrical steels. Is desired.
However, if Cr-containing compounds such as chromic acid and chromate (hereinafter sometimes referred to simply as chromium and Cr) are not used, significant loss of hygroscopic resistance and loss of iron loss improvement effect due to reduced tension, etc. Due to quality problems, it was difficult to add no chromium. Here, the deterioration of moisture absorption resistance in the film means that the film absorbs moisture due to moisture in the atmosphere, and partially liquefies, resulting in a thin film thickness or a part without the film, That is, the insulation and rust prevention properties deteriorate.

上記の問題を解決する方法として、特許文献3において、コロイド状シリカとリン酸アルミニウム、ホウ酸および硫酸塩からなるコーティング液を塗布する方法が開発された。この方法により、従来のクロム含有被膜に近い張力付与効果による鉄損改善と耐吸湿性の改善がもたらされた。
しかしながら、この方法による鉄損ならびに耐吸湿性の改善は、効果にバラツキがあり、場合によっては問題となるレベルまで鉄損や耐吸湿性が劣化するという問題があった。
As a method for solving the above problem, Patent Document 3 has developed a method of applying a coating liquid composed of colloidal silica and aluminum phosphate, boric acid and sulfate. By this method, the iron loss was improved and the moisture absorption resistance was improved by the tension imparting effect similar to that of the conventional chromium-containing coating.
However, the improvement of the iron loss and the moisture absorption resistance by this method has a problem that the effect varies and the iron loss and the moisture absorption resistance are deteriorated to a problem level in some cases.

また、それ以外にもクロムを含まないコーティングとして、例えば特許文献4にはクロム化合物の代りにホウ酸化合物を添加する方法が、特許文献5には酸化物コロイドを添加する方法が、特許文献6には金属有機酸塩を添加する方法が、それぞれ開示されている。
しかしながら、いずれの技術を用いた場合も、やはり耐吸湿性や鉄損の改善効果にバラツキが大きく、完全な解決には至らなかった。
As other coatings not containing chromium, for example, Patent Document 4 discloses a method in which a boric acid compound is added instead of a chromium compound, and Patent Document 5 discloses a method in which an oxide colloid is added. Discloses a method of adding a metal organic acid salt.
However, even when using any of the techniques, the effect of improving the moisture absorption resistance and the iron loss is greatly varied, and a complete solution has not been achieved.

特公昭56-52117号公報Japanese Patent Publication No.56-52117 特公昭53-28375号公報Japanese Patent Publication No.53-28375 特公昭57-9631号公報Japanese Patent Publication No.57-9631 特開2000-169973号公報JP 2000-169973 A 特開2000-169972号公報JP 2000-169972 A 特開2000-178760号公報JP 2000-178760

この発明は、上記の実情に鑑み開発されたもので、張力被膜としてクロムを含まない被膜を適用した場合にあっても、クロム含有被膜を被成した場合と同レベルの高い耐吸湿性と低鉄損を達成した方向性電磁鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above circumstances, and even when a coating that does not contain chromium is applied as a tension coating, it has the same level of moisture absorption and low resistance as when a chromium-containing coating is formed. It is an object of the present invention to propose a grain-oriented electrical steel sheet that has achieved iron loss together with its advantageous manufacturing method.

さて、発明者らは、特許文献3に記載された、クロムを含まない被膜において、耐吸湿性や鉄損改善効果にバラツキが生じるのは、何らかの外乱要因があって所望の特性が達成できないものと考え、この原因を究明するために数多くの実験と検討を重ねた。
その結果、コーティング液中のMnやS、およびこれらの化合物イオンを下地被膜からコーティングに供給することにより、良好な特性が得られることを突き止めた。
本発明は、上記の知見に立脚するものである。
Now, the inventors described in Patent Document 3 that the coating containing no chromium has a variation in moisture absorption resistance and iron loss improvement effect due to some disturbance factor and the desired characteristics cannot be achieved. Many experiments and examinations were repeated to investigate the cause.
As a result, it was found that good characteristics can be obtained by supplying Mn and S in the coating liquid and their compound ions from the undercoat to the coating.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板表面に、フォルステライト系の下地被膜とクロムを含まないリン酸塩系の張力付与被膜をそなえる方向性電磁鋼板であって、
該張力付与被膜は、最終仕上焼鈍後にMnを目付量換算で0.02g/m2以上0.20g/m2以下と、Sを目付量換算で0.01g/m2以上0.10g/m2以下含有させたフォルステライト系下地被膜の表面に、クロムを含まないリン酸塩系のコーティング処理液を塗布し、焼き付けて得たことを特徴とする方向性電磁鋼板。
That is, the gist configuration of the present invention is as follows.
1. A grain-oriented electrical steel sheet having a forsterite-based undercoat and a chromium-based phosphate-based tension-imparting coating on the steel sheet surface,
The tension-imparting coating contains Mn 0.02 g / m 2 or more and 0.20 g / m 2 or less in terms of basis weight after final finish annealing, and S is 0.01 g / m 2 or more and 0.10 g / m 2 or less in terms of basis weight. A grain-oriented electrical steel sheet obtained by applying and baking a phosphate-based coating treatment liquid not containing chromium on the surface of a forsterite-based undercoat.

2.前記鋼板の成分組成が、質量%で、Si:2.0%〜4.0%およびMn:0.03〜3.0%を含有し、残部はFeおよび不可避的不純物であることを特徴とする前記1に記載の方向性電磁鋼板。 2. 2. The directionality according to 1 above, wherein the composition of the steel sheet is, by mass%, Si: 2.0% to 4.0% and Mn: 0.03 to 3.0%, the balance being Fe and inevitable impurities. Electrical steel sheet.

3.前記鋼板が、質量%でさらに、Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%、Cr:0.03〜1.50%、Ti:0.002〜0.2%、B:0.001〜0.1%、Nb:0.002〜0.02%、Ge:0.01〜0.03%、Te:0.002〜0.05%、As:0.002〜0.05%、Bi:0.001〜0.02%およびV:0.01〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする前記2に記載の方向性電磁鋼板。 3. The steel sheet is further in terms of mass%: Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10% Cr: 0.03-1.50%, Ti: 0.002-0.2%, B: 0.001-0.1%, Nb: 0.002-0.02%, Ge: 0.01-0.03%, Te: 0.002-0.05%, As: 0.002-0.05%, 3. The grain-oriented electrical steel sheet according to 2 above, containing at least one selected from Bi: 0.001 to 0.02% and V: 0.01 to 0.03%.

4.質量%で、C:0.08%以下、Si:2.0〜4.0%およびMn:0.03〜3.0%を含有し、Alを100ppm以下、N,S,Seをそれぞれ50ppm以下に抑制し、残部はFeおよび不可避的不純物からなる鋼スラブを、加熱後、熱間圧延を施し、1回または中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を行い、その後クロムを含まないリン酸塩系の張力付与被膜を形成させる一連の工程よりなる方向性電磁鋼板の製造方法において、
該焼鈍分離剤中に、S含有添加剤としてMg,Ca,Sr,Ba,Na,K,Mn,Fe,Cu,Sn,SbおよびNiの硫酸塩または硫化物のうちから選んだ一種または二種以上をSO3量に換算して合計で1.5%以上 20%以下含有させることにより、最終仕上焼鈍後のフォルステライト系下地被膜中に、Mnを目付量換算で0.02g/m2以上0.20g/m2以下、Sを目付量換算で0.01g/m2以上0.10g/m2以下含有させることを特徴とする、方向性電磁鋼板の製造方法。
4). In mass%, C: 0.08% or less, Si: 2.0-4.0% and Mn: 0.03-3.0% are contained, Al is suppressed to 100ppm or less, N, S, and Se are suppressed to 50ppm or less respectively, and the balance is Fe and inevitable Steel slabs made of natural impurities are heated and then hot rolled, and after one or multiple cold rolling sandwiching intermediate annealing to the final sheet thickness, primary recrystallization annealing is performed, and then steel plate Manufacture of grain-oriented electrical steel sheets consisting of a series of steps in which an annealing separator containing magnesia as a main component is applied to the surface, followed by final finish annealing, and then forming a phosphate-based tension-imparting coating that does not contain chromium. In the method
One or two selected from the sulfate or sulfide of Mg, Ca, Sr, Ba, Na, K, Mn, Fe, Cu, Sn, Sb and Ni as the S-containing additive in the annealing separator By converting the above into SO 3 amount and containing 1.5% or more and 20% or less in total, Mn is converted to 0.02g / m 2 or more and 0.20g / in terms of basis weight in the forsterite undercoat after final finish annealing. m 2, characterized in that is contained in the basis weight in terms 0.01 g / m 2 or more 0.10 g / m 2 or less S, the manufacturing method of the grain-oriented electrical steel sheet.

5.前記鋼スラブが、質量%でさらに、Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%、Cr:0.03〜1.50%、Ti:0.002〜0.2%、B:0.001〜0.1%、Nb:0.002〜0.02%、Ge:0.01〜0.03%、Te:0.002〜0.05%、As:0.002〜0.05%、Bi:0.001〜0.02%およびV:0.01〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする前記4に記載の方向性電磁鋼板の製造方法。 5. The steel slab is further in mass%, Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10. %, Cr: 0.03-1.50%, Ti: 0.002-0.2%, B: 0.001-0.1%, Nb: 0.002-0.02%, Ge: 0.01-0.03%, Te: 0.002-0.05%, As: 0.002-0.05% Bi: 0.001 to 0.02% and V: 0.01 to 0.03%. The method for producing a grain-oriented electrical steel sheet according to 4 above, which contains at least one selected from 0.01 to 0.03%.

本発明によれば、クロムを含まない上塗りコーティングを使用して、磁気特性および被膜特性がともに優れた方向性電磁鋼板を安定して得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the grain-oriented electrical steel sheet which was excellent in both the magnetic characteristic and the film characteristic can be obtained stably using the top coat which does not contain chromium.

下地被膜中のMn量およびS量とコーティング焼付け後の磁気特性との関係を示す図である。It is a figure which shows the relationship between the amount of Mn and S in a base film, and the magnetic characteristic after coating baking. 下地被膜中のMn量およびS量とコーティング焼付け後のP溶出量との関係を示す図である。It is a figure which shows the relationship between the amount of Mn and S in a base film, and the amount of P elution after coating baking. 下地被膜中のMn量およびS量とコーティング焼付け後の錆発生率との関係を示す図である。It is a figure which shows the relationship between the amount of Mn and S in a base film, and the rust generation rate after a coating baking.

以下、本発明を具体的に説明する。
まず、本発明を由来するに至った実験について述べる。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.045%、Si:3.25%およびMn:0.07%を含み、残部はFeおよび不可避的不純物からなる鋼スラブを、1180℃で30分間加熱後、熱間圧延により2.2mm厚とし、ついで950℃で1分間の熱延板焼鈍後、1000℃で1分間の中間焼鈍を挟む冷間圧延により0.23mmの最終板厚に仕上げたのちに、雰囲気酸化性〔P(H2O)/P(H2)〕=0.6の条件下で850℃で2分間の脱炭焼鈍を施した。その後、鋼板表面に、酸化マグネシウム:100質量部、酸化チタン:2質量部および硫酸ストロンチウムを種々の割合で添加した焼鈍分離剤を、鋼板表面に両面で12g/m2塗布し、乾燥したのち、二次再結晶焼鈍を施し、引続き乾H2中で1200℃、10時間の純化焼鈍を行ったのち、未反応分離剤を除去した。
Hereinafter, the present invention will be specifically described.
First, the experiment that led to the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.045%, Si: 3.25%, and Mn: 0.07%, the remainder of the steel slab consisting of Fe and inevitable impurities was heated at 1180 ° C for 30 minutes, then hot rolled to a thickness of 2.2mm, then 950 ° C After hot-rolled sheet annealing for 1 minute, after finishing to a final sheet thickness of 0.23 mm by cold rolling with intermediate annealing at 1000 ° C. for 1 minute, atmospheric oxidation [P (H 2 O) / P (H 2 )] Decarburization annealing was performed at 850 ° C. for 2 minutes under the condition of 0.6. Thereafter, an annealing separator added with various proportions of magnesium oxide: 100 parts by mass, titanium oxide: 2 parts by mass and strontium sulfate was applied to the steel sheet surface on both sides at 12 g / m 2 and dried. Secondary recrystallization annealing was performed, followed by purification annealing in dry H 2 at 1200 ° C. for 10 hours, and then the unreacted separating agent was removed.

このようにして得られた鋼板の一部を採取し、膜付き鋼板および地鉄のMn,S分析を行い、これにより膜中のMn,Sを目付量換算で算出した。ついで、リン酸酸洗後、コーティング処理液として、特許文献3に記載のリン酸アルミニウム:50質量部、コロイド状シリカ:40質量部、ホウ酸:5質量部、硫酸マンガン:10質量部の配合割合になるコーティング液(Crレス)を、乾燥重量で両面で10g/m2塗布したのち、乾N2雰囲気中にて800℃、2分間の条件で焼付けた。なお、比較として、リン酸アルミニウム:50質量部、コロイド状シリカ:40質量部、無水クロム酸:10質量部からなるコーティング液(Cr入り)も、同様の方法で塗布、焼付けた。 A part of the steel sheet thus obtained was collected, and Mn, S analysis of the steel sheet with film and the ground iron was performed, and thereby Mn, S in the film was calculated in terms of basis weight. Next, after phosphoric acid pickling, the composition of aluminum phosphate: 50 parts by mass, colloidal silica: 40 parts by mass, boric acid: 5 parts by mass, manganese sulfate: 10 parts by mass described in Patent Document 3 as a coating treatment liquid A coating solution (Cr-less) in a proportion was applied at a dry weight of 10 g / m 2 on both sides, and then baked in a dry N 2 atmosphere at 800 ° C. for 2 minutes. For comparison, a coating solution (containing Cr) composed of aluminum phosphate: 50 parts by mass, colloidal silica: 40 parts by mass, and chromic anhydride: 10 parts by mass was applied and baked in the same manner.

かくして得られた鋼板の磁気測定を行った。
また、Pの溶出試験も行った。P溶出試験は、50mm×50mmの試験片3枚を100℃蒸留水中で5分間浸漬煮沸することによって被膜表面からPを溶出させ、そのPを定量分析した。このPの溶出量によって被膜の水分による溶解のし易さを判別することにより、耐吸湿性を評価することができる。
さらに、耐食性の試験として、50mm×100mmの試験片を温度:50℃、露点:50℃、時間:50hで暴露した後の鋼板の錆発生率(面積率)を測定した。
Magnetic measurement was performed on the steel sheet thus obtained.
Further, a dissolution test of P was also performed. In the P dissolution test, three 50 mm × 50 mm test pieces were immersed and boiled in 100 ° C. distilled water for 5 minutes to elute P from the coating surface and quantitatively analyze the P. The moisture absorption resistance can be evaluated by discriminating the easiness of dissolution of the coating film by the moisture content of P.
Further, as a corrosion resistance test, the rust generation rate (area ratio) of the steel sheet after a 50 mm × 100 mm test piece was exposed at a temperature of 50 ° C., a dew point of 50 ° C., and a time of 50 h was measured.

かくして得られた調査結果について、磁気特性、P溶出量および錆発生率と仕上焼鈍後の下地被膜中のMn量およびS量との関係を整理して、図1(a),(b)、図2(a),(b)、図3(a),(b)にそれぞれ示す。なお、下地被膜中のMn量およびS量はいずれも両面当たりの目付量換算で示している。
図3(a),(b)に示したように、クロム含有コーティングを用いた場合には全体的に錆発生率は低く、また錆発生率のMn目付量,S目付量依存性も低い。
これに対し、クロムを含まないコーティングでは、多くの領域で錆発生率は高いが、Mn目付量が0.02〜0.20g/m2、S目付量が0.01〜0.10g/m2の領域では良好な耐食性を示し、Cr含有コーティングに遜色ない耐食性が得られている。
As for the investigation results thus obtained, the relationship between the magnetic properties, the P elution amount and the rust generation rate, and the Mn amount and S amount in the undercoat after finish annealing are arranged, and FIG. 1 (a), (b), 2 (a), 2 (b), 3 (a) and 3 (b), respectively. In addition, both the amount of Mn and the amount of S in the undercoat are shown in terms of basis weight per side.
As shown in FIGS. 3A and 3B, when a chromium-containing coating is used, the overall rust generation rate is low, and the rust generation rate is less dependent on the Mn basis weight and S basis weight.
In contrast, in the coating not containing chromium is high in rust incidence in many areas, Mn basis weight 0.02~0.20g / m 2, S basis weight is good in the region of 0.01~0.10g / m 2 Corrosion resistance is exhibited and corrosion resistance comparable to Cr-containing coatings is obtained.

また、図1(a),(b)に示した鉄損や図2(a),(b)に示したP溶出量についても、図3(a),(b)に示した錆発生率と同様の傾向が得られた。
すなわち、Crを含有しないコーティングでも、Mn目付量が0.02〜0.20g/m2の範囲、S目付量が0.01〜0.10g/m2の範囲を満足する場合は、Crを含有するコーティングと同等の優れた鉄損改善効果およびP溶出抑制効果が認められた。
The iron loss shown in FIGS. 1 (a) and 1 (b) and the P elution amount shown in FIGS. 2 (a) and 2 (b) are also shown in FIGS. 3 (a) and 3 (b). A similar tendency was obtained.
That is, even if the coating does not contain Cr, if the Mn basis weight satisfies the range of 0.02 to 0.20 g / m 2 and the S basis weight satisfies the range of 0.01 to 0.10 g / m 2 , it is equivalent to the coating containing Cr. Excellent iron loss improvement effect and P elution suppression effect were observed.

以上の結果から、Crを含有しないコーティングにおいてMn,S目付量が耐吸湿性や磁気特性および耐食性に及ぼす影響について、発明者らは以下のとおり考えた。
まず、リン酸塩系コーティングがCrを含有しない場合は、リン酸の一部がガラスとしてネットワーク形成されず、遊離しており、これが水と反応することにより、耐吸湿性や張力効果が劣る傾向にある。
ここで、Crを含有させると、上記のネットワーク形成されていないフリーのリン酸分をCr含有イオンが固定化することにより、吸湿やそれに伴う張力効果の低下を防ぐ。
From the above results, the inventors considered the following effects of Mn and S basis weight on moisture absorption resistance, magnetic properties, and corrosion resistance in coatings not containing Cr.
First, when the phosphate coating does not contain Cr, part of the phosphoric acid is not formed as a network and is free, and it reacts with water, which tends to have poor moisture absorption and tension effects. It is in.
Here, when Cr is contained, the free phosphoric acid content in which the network is not formed is immobilized by the Cr-containing ions, thereby preventing moisture absorption and the accompanying decrease in the tension effect.

Crを含有しないコーティングの場合には、このリン酸イオンを固定化する役目を持つCrの代替となる無機化合物が添加されていることが多いが、これまで提案されてきた硫酸マンガンやその他の化合物ではその効果は十分でなかった。
この原因として、発明者らは、これらの化合物が凝集するために局所的にこれらのイオンが濃化した部位と濃化していない部位が生じ、濃化していない部位でP溶出が起こったものと推定している。
In the case of coatings that do not contain Cr, an inorganic compound that replaces Cr, which has the role of immobilizing phosphate ions, is often added, but manganese sulfate and other compounds that have been proposed so far Then the effect was not enough.
As a cause of this, the inventors agglomerated these compounds, resulting in locally concentrated and unconcentrated sites of these ions, and P elution occurred in the unconcentrated sites. Estimated.

これに対し、本発明では、焼鈍分離剤中の添加剤からSが鋼中に侵入し、Mnと結びついてMnSを形成し、さらに純化焼鈍中にこれが下地被膜に移動して、下地被膜中にMnSが存在している。このMnSは、コーティング焼付け中に溶解し、コーティング中に溶け込むが、これらのイオンがリン酸捕捉効果をより有効に働かせることができるのである。   On the other hand, in the present invention, S penetrates into the steel from the additive in the annealing separator, and is combined with Mn to form MnS. Further, during the purification annealing, it moves to the base film and enters the base film. MnS is present. This MnS dissolves during coating baking and dissolves into the coating, but these ions can make the phosphate scavenging effect more effective.

次に、本発明の鋼板および素材である鋼スラブの成分組成を、前記の範囲に限定した理由について説明する。
まず、本発明鋼板の成分組成について説明すると、次のとおりである。
Si:2.0〜4.0%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0%に満たないと十分な鉄損低減効果が達成できず、一方4.0%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜4.0%の範囲とする。
Next, the reason why the composition of the steel slab, which is the steel plate and material of the present invention, is limited to the above range will be described.
First, the component composition of the steel sheet of the present invention will be described as follows.
Si: 2.0-4.0%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss, but if the content is less than 2.0%, a sufficient iron loss reduction effect cannot be achieved, while if it exceeds 4.0% Since the workability is remarkably lowered and the magnetic flux density is also lowered, the Si content is set in the range of 2.0 to 4.0%.

Mn:0.03〜3.0%
本発明では、Mnは、仕上焼鈍後に下地被膜中に濃化させる必要があり、このためには少なくとも0.03%のMnが必要である。また、Mnは、熱間加工性を良好にする上で有用な元素であるが、3.0%を超えると製品板の磁束密度が低下するため、Mn量は0.03〜3.0%の範囲とする。
Mn: 0.03-3.0%
In the present invention, Mn needs to be concentrated in the base film after finish annealing, and for this purpose at least 0.03% of Mn is required. Mn is an element useful for improving the hot workability, but if it exceeds 3.0%, the magnetic flux density of the product plate decreases, so the Mn content is in the range of 0.03 to 3.0%.

また、本発明では、上記した成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%、Cr:0.03〜1.50%、Ti:0.002〜0.2%、B:0.001〜0.1%、Nb:0.002〜0.02%、Ge:0.01〜0.03%、Te:0.002〜0.05%、As:0.002〜0.05%、Bi:0.001〜0.02%およびV:0.01〜0.03%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03%未満では磁気特性の向上効果が小さく、一方1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するため、Ni量は0.03〜1.50%の範囲とするのが好ましい。
また、Sn,Sb,Cu,P,Mo,Cr,Ti,B,Nb,Ge,Te,As、BiおよびVはそれぞれ、磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと磁気特性の向上効果が小さく、一方上記した各成分の上限量を超えると二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
Further, in the present invention, in addition to the above-described components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10%, Cr: 0.03-1.50%, Ti : 0.002-0.2%, B: 0.001-0.1%, Nb: 0.002-0.02%, Ge: 0.01-0.03%, Te: 0.002-0.05%, As: 0.002-0.05%, Bi: 0.001-0.02% and V: At least one selected from 0.01 to 0.03%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03%, the effect of improving the magnetic properties is small. On the other hand, if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the Ni content is in the range of 0.03 to 1.50%. Is preferred.
Sn, Sb, Cu, P, Mo, Cr, Ti, B, Nb, Ge, Te, As, Bi, and V are elements useful for improving magnetic properties. If the lower limit is not satisfied, the effect of improving the magnetic properties is small. On the other hand, if the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

次に、鋼スラブの成分組成について説明すると、次のとおりである。
なお、Si含有量およびMn含有量は、本発明鋼板について規定した成分組成範囲と同じである。
また、上記した任意成分についても、本発明鋼板の場合と同じである。
Next, the component composition of the steel slab will be described as follows.
In addition, Si content and Mn content are the same as the component composition range prescribed | regulated about this invention steel plate.
The above-mentioned optional components are also the same as in the case of the steel sheet of the present invention.

C:0.08%以下
Cは、熱延板組織の改善のために添加をするが、0.08%を超えると製造工程中に磁気時効の起こらない0.005%以下までCを低減することが困難になるため、0.08%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
C: 0.08% or less C is added to improve the hot-rolled sheet structure, but if it exceeds 0.08%, it is difficult to reduce C to 0.005% or less where magnetic aging does not occur during the manufacturing process. , 0.08% or less is preferable. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, it is not particularly necessary to provide it.

Al:100ppm以下
本発明では、下地被膜中にMn,Sを濃化させる必要があるが、Alは仕上焼鈍中に表面に濃化して、MnやSが被膜中に侵入するのを妨害する働きがある。従って、これを抑えるために、Alは100ppm以下に抑制することが好ましい。
Al: 100 ppm or less In the present invention, it is necessary to concentrate Mn and S in the base coating, but Al concentrates on the surface during finish annealing and prevents Mn and S from entering the coating. There is. Therefore, in order to suppress this, Al is preferably suppressed to 100 ppm or less.

N:50ppm以下
本発明では、Alを100ppm以下に抑えることから、N量も低下させることが好ましい。Nが高いと、AlNとして消費されない余剰のNが存在して、スラブ加熱時にフクレの原因となるからである。そのためにNは50ppm以下に抑制することが好ましい。
N: 50 ppm or less In the present invention, since the Al content is suppressed to 100 ppm or less, the amount of N is also preferably reduced. This is because if N is high, there is surplus N that is not consumed as AlN, which causes blistering during slab heating. Therefore, it is preferable to suppress N to 50 ppm or less.

S:50ppm以下
本発明では、仕上焼鈍後に表面にSを濃化させるために焼鈍分離剤中に多量のS化合物を添加するので、鋼中のSは特に必要ない。また、過度なS添加はスラブ加熱時に固溶が不完全となり、磁気特性の劣化を招く。従ってSは50ppm以下とすることが好ましい。
S: 50 ppm or less In the present invention, a large amount of S compound is added to the annealing separator to concentrate S on the surface after finish annealing, so S in steel is not particularly necessary. Further, excessive addition of S causes incomplete solid solution during slab heating, leading to deterioration of magnetic properties. Therefore, S is preferably 50 ppm or less.

Se:50ppm以下
Seは、Sと同様、過度なSe添加はスラブ加熱時に固溶が不完全となり、磁気特性の劣化を招く。従って、Seは50ppm以下とすることが好ましい。
Se: 50 ppm or less Se, like S, excessive addition of Se causes incomplete solid solution during slab heating, leading to deterioration of magnetic properties. Therefore, Se is preferably 50 ppm or less.

次に、本発明の製造方法について説明する。
上記の好適成分組成に調整した鋼スラブを、公知の方法で熱間圧延し、1回または中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで鋼板表面に焼鈍分離剤を塗布してから最終仕上焼鈍を施す。このとき、下地被膜としてフォルステライト被膜を形成させるために、焼鈍分離剤の主成分として、50%以上のマグネシア(MgO)を用いる。なお、特に断らない限り、焼鈍分離剤、上塗りコーティングの成分比率で%表示した場合は、質量%とする。
そして、Sを下地被膜中に存在させるために、S源を焼鈍分離剤に添加すればよい。S源の形態は特に限定するものではないが、Mg,Ca,Sr,Ba,Na,K,Mn,Fe,Cu,Sn,SbおよびNiの硫酸塩または硫化物のうちから選んだ一種または二種以上をSO3量に換算して合計で1.5%以上 20%以下含有させればよい。これにより、仕上焼鈍中にSが鋼中のMnと結びついてMnSとなり、さらに純化焼鈍中に表面に移動して下地被膜中に濃化させることができる。なお、これらの硫酸塩または硫化物の含有量がSO3量に換算して合計で1.5%に満たないと、下地被膜中に所定量のS目付量を確保することが難しく、また、SO3量に換算して合計で20%を超えると、下地被膜中にMnやSが濃化しすぎる場合があるため、1.5〜20%が好ましい。
Next, the manufacturing method of this invention is demonstrated.
The steel slab adjusted to the above preferred component composition is hot-rolled by a known method, finished to the final sheet thickness by one or multiple cold rolling sandwiching intermediate annealing, and then subjected to primary recrystallization annealing, Next, a final finish annealing is performed after an annealing separator is applied to the surface of the steel sheet. At this time, in order to form a forsterite film as a base film, 50% or more of magnesia (MgO) is used as a main component of the annealing separator. Unless otherwise specified, when expressed as a percentage by the component ratio of the annealing separator and the top coat, it is mass%.
And in order to make S exist in an undercoat, what is necessary is just to add S source to an annealing separation agent. The form of the S source is not particularly limited, but one or two selected from sulfates or sulfides of Mg, Ca, Sr, Ba, Na, K, Mn, Fe, Cu, Sn, Sb, and Ni. It is sufficient to contain more than 1.5% of the seeds in terms of SO 3 amount and not more than 1.5% and not more than 20%. Thereby, S is combined with Mn in the steel during the finish annealing to become MnS, and further moves to the surface during the purification annealing and can be concentrated in the undercoat. If the content of these sulfates or sulfides is less than 1.5% in total in terms of SO 3 amount, it is difficult to secure a predetermined amount of S per unit area in the undercoat, and SO 3 If the total amount exceeds 20% in terms of amount, Mn and S may be excessively concentrated in the undercoat, so 1.5 to 20% is preferable.

なお、この他にも、公知の焼鈍分離剤添加物、例えば、TiやSn,Mg,Sr,Na,K,Mn,Fe,Cu,Sn,Sb等の酸化物、水酸化物および炭酸塩の一種または二種以上を用いることもできる。   In addition to this, known annealing separator additives such as oxides, hydroxides and carbonates of Ti, Sn, Mg, Sr, Na, K, Mn, Fe, Cu, Sn, Sb, etc. One kind or two or more kinds can also be used.

このようにして製造した仕上焼鈍済みの方向性電磁鋼板のフォルステライト系下地被膜中に、Mnを目付量換算で0.02g/m2以上0.20g/m2以下、Sを目付量換算で0.01g/m2以上0.10g/m2以下含有させることができる。Mn目付量やS目付量が下限値よりも低いと耐吸湿性が劣り、一方上限値より高いと、下地被膜からの遊離分が増えすぎて下地被膜が損傷を受け、磁気特性や被膜密着性が劣化する。 Mn is 0.02g / m 2 or more and 0.20g / m 2 or less in terms of basis weight, and S is 0.01g in terms of basis weight in the forsterite-based undercoating of the directionally annealed grain-oriented electrical steel sheet thus manufactured. / m 2 or more and 0.10 g / m 2 or less. If the Mn basis weight or the S basis weight is lower than the lower limit value, the moisture absorption resistance is inferior. On the other hand, if the Mn basis weight is lower than the upper limit value, the amount of liberation from the base coat increases so much that the base coat is damaged, resulting in magnetic properties and film adhesion. Deteriorates.

ついで、得られた鋼板の表面に、クロムを含まないリン酸塩系コーティング液を塗布する。コーティング成分としては、従来公知のもの、例えば、特許文献3に記載のコロイド状シリカとリン酸アルミニウム、ホウ酸及び硫酸塩からなるコーティング液、特許文献4に記載のホウ酸化合物を添加する方法、特許文献5に記載の酸化物コロイドを添加する方法、特許文献6に記載の金属有機酸塩を添加する方法等のいずれもが使用可能である。また、これらにさらに、シリカやアルミナ等の無機鉱物粒子を添加して、耐スティッキング性を改善することも可能である。   Next, a phosphate-based coating solution not containing chromium is applied to the surface of the obtained steel plate. As a coating component, a conventionally known one, for example, a coating solution composed of colloidal silica and aluminum phosphate described in Patent Document 3, boric acid and sulfate, a method of adding a boric acid compound described in Patent Document 4, Any of the method of adding the oxide colloid described in Patent Document 5 and the method of adding the metal organic acid salt described in Patent Document 6 can be used. Further, it is possible to improve the sticking resistance by adding inorganic mineral particles such as silica and alumina to these.

なお、リン酸塩系の張力付与被膜の目付量は両面で4〜15g/m2が望ましい。4g/m2より少ないと層間抵抗が低下し、15g/m2より多いと占積率が低下するためである。
このコーティングを塗布、乾燥した後、焼付けを兼ねて平坦化焼鈍する。平坦化焼鈍の条件は特に限定されるものではないが、焼鈍温度は700〜950℃の温度範囲で2〜120秒程度の均熱時間とするのが望ましい。温度が低すぎたり、時間が短すぎると平坦化が不十分で形状不良のために歩留りが低下し、一方温度が高すぎたり時間が長すぎると平坦化焼鈍の効果が強すぎ、クリープ変形を生じて磁気特性が劣化する。
The basis weight of the phosphate-based tension applying coating is desirably 4 to 15 g / m 2 on both sides. Less the interlayer resistance than 4g / m 2 is reduced, because the larger the space factor than 15 g / m 2 is reduced.
After this coating is applied and dried, it is flattened and annealed for baking. The conditions for the flattening annealing are not particularly limited, but the annealing temperature is desirably a soaking time of about 2 to 120 seconds in a temperature range of 700 to 950 ° C. If the temperature is too low or the time is too short, the flattening will be insufficient and the yield will decrease due to the shape defect.On the other hand, if the temperature is too high or the time is too long, the effect of flattening annealing will be too strong and creep deformation will occur. It occurs and the magnetic properties deteriorate.

実施例1
C:0.05%、Si:3.2%、Mn:0.05%およびSb:0.02%含有し、残部はFeおよび不可避的不純物からなる鋼スラブを、1180℃で30分間加熱後、熱間圧延により2.2mm厚とし、ついで950℃で1分間の熱延板焼鈍後、冷間圧延により0.30mmの最終板厚に仕上げたのち、雰囲気酸化性〔P(H2O)/P(H2)〕=0.5の条件下で850℃で2分間の脱炭焼鈍を施した。その後、鋼板表面に酸化マグネシウム:100質量部に対し、酸化チタンを2質量部と、硫酸ストロンチウムを種々の割合で添加した焼鈍分離剤を、鋼板表面に両面で12g/m2塗布し、乾燥したのち、二次再結晶焼鈍を施し、引続き乾H2中で1200℃、10時間の純化焼鈍を行ったのち、未反応分離剤を除去した。
Example 1
C: 0.05%, Si: 3.2%, Mn: 0.05% and Sb: 0.02%, steel slab consisting of Fe and unavoidable impurities in the balance is heated at 1180 ° C for 30 minutes and hot-rolled to a thickness of 2.2 mm Then, after hot-rolled sheet annealing at 950 ° C. for 1 minute, after finishing to a final sheet thickness of 0.30 mm by cold rolling, atmospheric oxidation [P (H 2 O) / P (H 2 )] = 0.5 Under conditions, decarburization annealing was performed at 850 ° C. for 2 minutes. Thereafter, an annealing separator containing 2 parts by mass of titanium oxide and various proportions of strontium sulfate with respect to 100 parts by mass of magnesium oxide on the steel sheet surface was coated on the steel sheet surface at 12 g / m 2 on both sides and dried. Thereafter, secondary recrystallization annealing was performed, followed by purification annealing in dry H 2 at 1200 ° C. for 10 hours, and then the unreacted separating agent was removed.

このようにして得られた鋼板を300mm×100mmのサイズにせん断し、SST(Single Sheet Tester:単板磁気測定試験機)で磁気測定を行った。なお、仕上焼鈍後の鋼板の磁束密度はいずれもB8で1.90(T)であった。
また、鋼板の一部を採取して、膜付き鋼板および地鉄のMn,S分析を行い、これにより膜中のMn,Sを目付量換算(両面あたり)で算出した。
ついで、リン酸酸洗後、成分組成が乾固形分比率で、コロイド状シリカ:50%、リン酸マグネシウム:40%、硫酸マンガン:9.5%、微粉末シリカ粒子:0.5%となるコーティングを両面で10g/m2施したのち、乾N2雰囲気中にて850℃で30秒の焼付け処理を施した。
かくして得られた鋼板の諸特性を調査した結果を、表1に示す。
The steel plate thus obtained was sheared to a size of 300 mm × 100 mm and subjected to magnetic measurement with an SST (Single Sheet Tester). Incidentally, the magnetic flux density of the steel sheet after finish annealing was both at B 8 1.90 (T).
Further, a part of the steel plate was sampled and subjected to Mn, S analysis of the steel plate with film and the ground iron, and thereby Mn, S in the membrane was calculated in basis weight conversion (per both sides).
Next, after phosphoric acid pickling, the coating composition on both sides is such that the component composition is in the ratio of dry solids, colloidal silica: 50%, magnesium phosphate: 40%, manganese sulfate: 9.5%, fine powder silica particles: 0.5% After applying 10 g / m 2, it was baked at 850 ° C. for 30 seconds in a dry N 2 atmosphere.
Table 1 shows the results of investigation of various properties of the steel sheet thus obtained.

なお、各特性の評価方法は次のとおりである。
発粉性
走査型電子顕微鏡で鋼板表面を観察し、次のように評価した。
○:表面のフクレ、割れがない
△:わずかに表面にフクレ、割れ有り
×:表面のフクレ、割れが著しい
In addition, the evaluation method of each characteristic is as follows.
Flourability The steel plate surface was observed with a scanning electron microscope and evaluated as follows.
○: No swelling or cracking on the surface △: Slight swelling or cracking on the surface ×: Significant swelling or cracking on the surface

耐熱性
50mm×50mmの試験片10枚を積層し、乾窒素雰囲気中にて2kg/mm2の圧縮荷重付与下で800℃,2hの焼鈍後、試験片の表面に500gの分銅を落下させ、試験片が全て剥離したときの落下高さにより、次のように判定した。
○:20cm
△:40cm
×:60cm以上
Heat-resistant
Ten test pieces of 50 mm x 50 mm were laminated, annealed at 800 ° C for 2 hours under a compressive load of 2 kg / mm 2 in a dry nitrogen atmosphere, and then a 500 g weight was dropped on the surface of the test piece. Based on the drop height when all of the films were peeled off, it was determined as follows.
○: 20cm
Δ: 40cm
×: More than 60cm

磁歪
λP-Pが4×10-4となる圧縮応力値(kg/mm2)で評価した。
The magnetostriction λ PP was evaluated by a compressive stress value (kg / mm 2 ) at 4 × 10 −4 .

密着性
300mm×30mmの試験片を、種々の径を有する丸棒に押し付けながら180°折り曲げ、折り曲げ部分が剥離しない最小径(mm)で評価した。
Adhesion
A test piece of 300 mm × 30 mm was bent 180 ° while being pressed against a round bar having various diameters, and the minimum diameter (mm) at which the bent portion was not peeled was evaluated.

占積率
JIS C 2550(2000)に記載の方法に準拠して測定した。
Space factor
Measurement was performed in accordance with the method described in JIS C 2550 (2000).

防錆性
温度:50℃、露点:50℃の空気中に50時間保持後の表面を観察して、次のように判定した。
○:錆がほとんどない(0〜5%)
△:若干、錆が発生した(5%超〜20%)
×:著しく錆が発生した(20%超)
Rust prevention property The surface after being kept in air at a temperature of 50 ° C. and a dew point of 50 ° C. for 50 hours was determined as follows.
○: almost no rust (0 to 5%)
Δ: Some rust was generated (over 5% to 20%)
×: Remarkably rusted (over 20%)

Figure 2014095129
Figure 2014095129

同表に示したとおり、本発明に従い、焼鈍分離剤中に適正量の硫酸ストロンチウムを添加して、下地被膜中におけるMn目付量とS目付量を適正範囲に制御した場合には、いずれも良好な表面特性と鉄損特性が得られている。   As shown in the table, according to the present invention, when an appropriate amount of strontium sulfate is added to the annealing separator, and the Mn basis weight and S basis weight in the undercoat are controlled within an appropriate range, both are good. Surface characteristics and iron loss characteristics are obtained.

実施例2
実施例1と同様の方法で脱炭焼鈍まで行った鋼板に、焼鈍分離剤として、MgOに、TiO2を2%、硫酸マグネシウムをSO3量に換算して0.7%と8%の2条件で添加した焼鈍分離剤を塗布し、ついで実施例1と同様の方法で仕上焼鈍まで行ったのち、未反応分離剤を除去した。ついで、リン酸酸洗後、成分組成が乾固形分比率で、コロイド状シリカ:50%、各種第一リン酸塩化合物:40%、各種無機化合物(Cr代替品):9.5%および微粉末シリカ粒子:0.5%となるコーティングを両面で10g/m2施したのち、乾N2雰囲気中にて850℃で30秒の焼付け処理を施した。
かくして得られた鋼板の諸特性を調査した結果を、表2に示す。
Example 2
The steel plate that was subjected to decarburization annealing in the same manner as in Example 1 was subjected to two conditions of 0.7% and 8% in terms of MgO, 2% TiO 2 and magnesium sulfate in terms of SO 3 as the annealing separator. The added annealing separator was applied, and after finishing annealing in the same manner as in Example 1, the unreacted separating agent was removed. Next, after phosphoric acid pickling, the component composition is in the ratio of dry solids, colloidal silica: 50%, various primary phosphate compounds: 40%, various inorganic compounds (Cr substitutes): 9.5% and fine powder silica Particles: A coating of 0.5% was applied on both sides at 10 g / m 2 , followed by baking at 850 ° C. for 30 seconds in a dry N 2 atmosphere.
Table 2 shows the results of investigating various properties of the steel sheet thus obtained.

Figure 2014095129
Figure 2014095129

同表に示したとおり、本発明によれば、張力付与被膜としてクロムを含まないリン酸塩系の被膜を用いた場合であっても、良好な表面特性と鉄損特性が併せて得られている。   As shown in the table, according to the present invention, even when a phosphate-based film not containing chromium is used as the tension-imparting film, good surface characteristics and iron loss characteristics can be obtained together. Yes.

実施例3
表3に示す成分組成からなる鋼スラブを、実施例1と同様の方法で最終仕上焼鈍まで行い、その後未反応分離剤を除去してから、リン酸酸洗を行った。ついで、コロイド状シリカ:50%、リン酸マグネシウム:40%、硫酸鉄:10%となるコーティングを両面で10g/m2施したのち、200〜700℃まで20℃/sの速度で昇温したのち、乾N2雰囲気中にて850℃、30秒の焼付け処理を施した。
かくして得られた鋼板の諸特性を調査した結果を、表4に示す。
Example 3
A steel slab having the component composition shown in Table 3 was subjected to final finish annealing in the same manner as in Example 1, and then the unreacted separating agent was removed, followed by phosphoric acid pickling. Next, after applying 10 g / m 2 of coating on both sides of colloidal silica: 50%, magnesium phosphate: 40%, iron sulfate: 10%, the temperature was increased from 200 to 700 ° C. at a rate of 20 ° C./s. After that, it was baked at 850 ° C. for 30 seconds in a dry N 2 atmosphere.
Table 4 shows the results of investigating various properties of the steel sheet thus obtained.

Figure 2014095129
Figure 2014095129

Figure 2014095129
同表から明らかなように、本発明によれば、各種の抑制力補強元素を添加した場合でも、良好な表面特性と鉄損特性が得られている。
Figure 2014095129
As is apparent from the table, according to the present invention, even when various restraining force reinforcing elements are added, good surface characteristics and iron loss characteristics are obtained.

実施例4
実施例1と同様の方法で脱炭焼鈍まで行った鋼板に、焼鈍分離剤としてMgOにTiO2を2%と各種薬剤を種々の割合で添加した焼鈍分離剤を塗布したのち、実施例1と同様の方法で仕上焼鈍を行った。ついで、リン酸酸洗後、コロイド状シリカ:50%、リン酸マグネシウム:40%、硫酸鉄:10%となるコーティングを両面で10g/m2施したのち、200〜700℃まで20℃/sの速度で昇温したのち、乾N2雰囲気中にて850℃、30秒の焼付け処理を施した。
かくして得られた鋼板の諸特性を調査した結果を、表5に示す。
Example 4
After applying to the steel sheet that had been decarburized and annealed in the same manner as in Example 1, an annealing separator containing 2% TiO 2 and various chemicals added in various proportions to MgO as an annealing separator, Example 1 and Finish annealing was performed in the same manner. Then, after phosphorus Sansan'arai, colloidal silica: 50%, magnesium phosphate: 40%, iron sulfate: After subjecting 10 g / m 2 to 10% become coated on both sides, 20 ° C. / s up to 200 to 700 ° C. After the temperature was raised at a rate of 850 ° C., a baking treatment was performed at 850 ° C. for 30 seconds in a dry N 2 atmosphere.
Table 5 shows the results of investigation of various properties of the steel sheet thus obtained.

Figure 2014095129
Figure 2014095129

同表に示したとおり、本発明によれば、分離剤中に各種の薬剤を添加した場合であっても、良好な表面特性と鉄損特性が得られている。   As shown in the table, according to the present invention, good surface characteristics and iron loss characteristics are obtained even when various chemicals are added to the separating agent.

Claims (5)

鋼板表面に、フォルステライト系の下地被膜とクロムを含まないリン酸塩系の張力付与被膜をそなえる方向性電磁鋼板であって、
該張力付与被膜は、最終仕上焼鈍後にMnを目付量換算で0.02g/m2以上0.20g/m2以下と、Sを目付量換算で0.01g/m2以上0.10g/m2以下含有させたフォルステライト系下地被膜の表面に、クロムを含まないリン酸塩系のコーティング処理液を塗布し、焼き付けて得たことを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet having a forsterite-based undercoat and a chromium-based phosphate-based tension-imparting coating on the steel sheet surface,
The tension-imparting coating contains Mn 0.02 g / m 2 or more and 0.20 g / m 2 or less in terms of basis weight after final finish annealing, and S is 0.01 g / m 2 or more and 0.10 g / m 2 or less in terms of basis weight. A grain-oriented electrical steel sheet obtained by applying and baking a phosphate-based coating treatment liquid not containing chromium on the surface of a forsterite-based undercoat.
前記鋼板の成分組成が、質量%で、Si:2.0%〜4.0%およびMn:0.03〜3.0%を含有し、残部はFeおよび不可避的不純物であることを特徴とする請求項1に記載の方向性電磁鋼板。   2. The direction according to claim 1, wherein the composition of the steel sheet is, by mass%, Si: 2.0% to 4.0% and Mn: 0.03 to 3.0%, with the balance being Fe and inevitable impurities. Electrical steel sheet. 前記鋼板が、質量%でさらに、Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%、Cr:0.03〜1.50%、Ti:0.002〜0.2%、B:0.001〜0.1%、Nb:0.002〜0.02%、Ge:0.01〜0.03%、Te:0.002〜0.05%、As:0.002〜0.05%、Bi:0.001〜0.02%およびV:0.01〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする請求項2に記載の方向性電磁鋼板。   The steel sheet is further in terms of mass%: Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10% Cr: 0.03-1.50%, Ti: 0.002-0.2%, B: 0.001-0.1%, Nb: 0.002-0.02%, Ge: 0.01-0.03%, Te: 0.002-0.05%, As: 0.002-0.05%, The grain-oriented electrical steel sheet according to claim 2, containing at least one selected from Bi: 0.001 to 0.02% and V: 0.01 to 0.03%. 質量%で、C:0.08%以下、Si:2.0〜4.0%およびMn:0.03〜3.0%を含有し、Alを100ppm以下、N,S,Seをそれぞれ50ppm以下に抑制し、残部はFeおよび不可避的不純物からなる鋼スラブを、加熱後、熱間圧延を施し、1回または中間焼鈍を挟む複数回の冷間圧延を施して最終板厚に仕上げたのち、一次再結晶焼鈍を施し、ついで鋼板表面にマグネシアを主成分とする焼鈍分離剤を塗布してから、最終仕上焼鈍を行い、その後クロムを含まないリン酸塩系の張力付与被膜を形成させる一連の工程よりなる方向性電磁鋼板の製造方法において、
該焼鈍分離剤中に、S含有添加剤としてMg,Ca,Sr,Ba,Na,K,Mn,Fe,Cu,Sn,SbおよびNiの硫酸塩または硫化物のうちから選んだ一種または二種以上をSO3量に換算して合計で1.5%以上 20%以下含有させることにより、最終仕上焼鈍後のフォルステライト系下地被膜中に、Mnを目付量換算で0.02g/m2以上0.20g/m2以下、Sを目付量換算で0.01g/m2以上0.10g/m2以下含有させることを特徴とする、方向性電磁鋼板の製造方法。
In mass%, C: 0.08% or less, Si: 2.0-4.0% and Mn: 0.03-3.0% are contained, Al is suppressed to 100ppm or less, N, S, and Se are suppressed to 50ppm or less respectively, and the balance is Fe and inevitable Steel slabs made of natural impurities are heated and then hot rolled, and after one or multiple cold rolling sandwiching intermediate annealing to the final sheet thickness, primary recrystallization annealing is performed, and then steel plate Manufacture of grain-oriented electrical steel sheets consisting of a series of steps in which an annealing separator containing magnesia as a main component is applied to the surface, followed by final finish annealing, and then forming a phosphate-based tension-imparting coating that does not contain chromium. In the method
One or two selected from the sulfate or sulfide of Mg, Ca, Sr, Ba, Na, K, Mn, Fe, Cu, Sn, Sb and Ni as the S-containing additive in the annealing separator By converting the above into SO 3 amount and containing 1.5% or more and 20% or less in total, Mn is converted to 0.02g / m 2 or more and 0.20g / in terms of basis weight in the forsterite undercoat after final finish annealing. m 2, characterized in that is contained in the basis weight in terms 0.01 g / m 2 or more 0.10 g / m 2 or less S, the manufacturing method of the grain-oriented electrical steel sheet.
前記鋼スラブが、質量%でさらに、Ni:0.03〜1.50%、Sn:0.01〜1.50%、Sb:0.005〜1.50%、Cu:0.03〜3.0%、P:0.03〜0.50%、Mo:0.005〜0.10%、Cr:0.03〜1.50%、Ti:0.002〜0.2%、B:0.001〜0.1%、Nb:0.002〜0.02%、Ge:0.01〜0.03%、Te:0.002〜0.05%、As:0.002〜0.05%、Bi:0.001〜0.02%およびV:0.01〜0.03%のうちから選んだ少なくとも1種を含有することを特徴とする請求項4に記載の方向性電磁鋼板の製造方法。   The steel slab is further in mass%, Ni: 0.03-1.50%, Sn: 0.01-1.50%, Sb: 0.005-1.50%, Cu: 0.03-3.0%, P: 0.03-0.50%, Mo: 0.005-0.10. %, Cr: 0.03-1.50%, Ti: 0.002-0.2%, B: 0.001-0.1%, Nb: 0.002-0.02%, Ge: 0.01-0.03%, Te: 0.002-0.05%, As: 0.002-0.05% 5. The method for producing a grain-oriented electrical steel sheet according to claim 4, comprising at least one selected from Bi: 0.001 to 0.02% and V: 0.01 to 0.03%.
JP2012247717A 2012-11-09 2012-11-09 Oriented electrical steel sheet and manufacturing method thereof Active JP6031951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247717A JP6031951B2 (en) 2012-11-09 2012-11-09 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012247717A JP6031951B2 (en) 2012-11-09 2012-11-09 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014095129A true JP2014095129A (en) 2014-05-22
JP6031951B2 JP6031951B2 (en) 2016-11-24

Family

ID=50938443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247717A Active JP6031951B2 (en) 2012-11-09 2012-11-09 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6031951B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104962815A (en) * 2015-07-15 2015-10-07 东北大学 High magnetic induction oriented silicon steel and manufacturing method thereof
WO2016076471A1 (en) * 2014-11-14 2016-05-19 주식회사 포스코 Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
WO2016129015A1 (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 Oriented electrical steel sheet and method for producing same
KR20170074478A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
WO2018117599A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
CN111406126A (en) * 2017-11-28 2020-07-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JPWO2020138069A1 (en) * 2018-12-28 2021-11-11 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
US20220010402A1 (en) * 2018-11-30 2022-01-13 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
EP3992324A4 (en) * 2019-08-13 2023-08-02 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction oriented silicon steel and manufacturing mathod therefor
JP7575386B2 (ja) 2019-02-06 2024-10-29 カンサイ ヘリオス オーストリア ゲーエムベーハー 方向性電磁鋼のコーティング用水性組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579631B2 (en) * 1978-04-28 1982-02-22
JP2005240078A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Grain oriented silicon steel sheet having excellent secular stability of low magnetic field magnetic characteristic, and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579631B2 (en) * 1978-04-28 1982-02-22
JP2005240078A (en) * 2004-02-25 2005-09-08 Jfe Steel Kk Grain oriented silicon steel sheet having excellent secular stability of low magnetic field magnetic characteristic, and method for manufacturing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10385218B2 (en) 2014-11-14 2019-08-20 Posco Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
WO2016076471A1 (en) * 2014-11-14 2016-05-19 주식회사 포스코 Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
KR20160057753A (en) * 2014-11-14 2016-05-24 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, oriented electrical steel steet formed insulation coating film on using the same insulation coating composite, and method of manufacturing the same oriented electrical steel steet
KR102177038B1 (en) 2014-11-14 2020-11-10 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, oriented electrical steel steet formed insulation coating film on using the same insulation coating composite, and method of manufacturing the same oriented electrical steel steet
JP6020768B1 (en) * 2015-02-13 2016-11-02 Jfeスチール株式会社 Oriented electrical steel sheet and manufacturing method thereof
CN107250403A (en) * 2015-02-13 2017-10-13 杰富意钢铁株式会社 Grain-oriented magnetic steel sheet and its manufacture method
WO2016129015A1 (en) * 2015-02-13 2016-08-18 Jfeスチール株式会社 Oriented electrical steel sheet and method for producing same
CN104962815A (en) * 2015-07-15 2015-10-07 东北大学 High magnetic induction oriented silicon steel and manufacturing method thereof
KR102177523B1 (en) * 2015-12-22 2020-11-11 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
KR20170074478A (en) * 2015-12-22 2017-06-30 주식회사 포스코 Grain orientied electrical steel sheet and method for manufacturing the same
US10907231B2 (en) 2015-12-22 2021-02-02 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
WO2018117599A1 (en) * 2016-12-19 2018-06-28 주식회사 포스코 Grain-oriented electrical steel sheet and manufacturing method therefor
CN111406126A (en) * 2017-11-28 2020-07-10 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
US20220010402A1 (en) * 2018-11-30 2022-01-13 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
JPWO2020138069A1 (en) * 2018-12-28 2021-11-11 日本製鉄株式会社 Directional electrical steel sheet and its manufacturing method
JP7265186B2 (en) 2018-12-28 2023-04-26 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
JP7575386B2 (ja) 2019-02-06 2024-10-29 カンサイ ヘリオス オーストリア ゲーエムベーハー 方向性電磁鋼のコーティング用水性組成物
EP3992324A4 (en) * 2019-08-13 2023-08-02 Baoshan Iron & Steel Co., Ltd. High-magnetic-induction oriented silicon steel and manufacturing mathod therefor

Also Published As

Publication number Publication date
JP6031951B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6031951B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5194641B2 (en) Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film
JP5181571B2 (en) Chromium-free insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet with insulation film
KR101175059B1 (en) Solution for treatment of insulating coating film for oriented electromagnetic steel sheet, and method for production of oriented electromagnetic steel sheet having insulating coating film thereon
US11572602B2 (en) Method for manufacturing a grain-oriented electrical steel sheet
KR101620763B1 (en) Grain-oriented electrical steel sheet and method of producing the same
JP2005240079A (en) Grain oriented silicon steel sheet low in iron loss deterioration ratio
JP4983334B2 (en) Insulating coating solution for grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
JP4682590B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
JP5633401B2 (en) Treatment liquid for chromeless tension coating and method for forming chromeless tension coating
JP4321181B2 (en) Method for forming an overcoat insulating film containing no chromium
KR20210046756A (en) Treatment agent for forming chromium-free insulating film, grain-oriented electrical steel sheet with insulating film, and method for manufacturing same
JP4677765B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
JP4626155B2 (en) Oriented electrical steel sheet with low magnetic field magnetic properties and excellent stability over time and method for producing the same
JP4810820B2 (en) Directional electrical steel sheet with chromeless coating and method for producing the same
JP2004332072A (en) Method of forming chromiumless film for grain oriented magnetic steel sheet
WO2021171766A1 (en) Insulating-coated oriented electromagnetic steel sheet and method for producing same
CN114555860B (en) Electromagnetic steel sheet with insulating coating film
WO2022250163A1 (en) Oriented electromagnetic steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161010

R150 Certificate of patent or registration of utility model

Ref document number: 6031951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250