JP2014093190A - Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device - Google Patents

Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device Download PDF

Info

Publication number
JP2014093190A
JP2014093190A JP2012242823A JP2012242823A JP2014093190A JP 2014093190 A JP2014093190 A JP 2014093190A JP 2012242823 A JP2012242823 A JP 2012242823A JP 2012242823 A JP2012242823 A JP 2012242823A JP 2014093190 A JP2014093190 A JP 2014093190A
Authority
JP
Japan
Prior art keywords
ultraviolet
discharge tube
tube
discharge
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012242823A
Other languages
Japanese (ja)
Inventor
Akihiro Inoue
昭浩 井上
Arata Ishii
新 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photoscience Japan Corp
Original Assignee
Photoscience Japan Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photoscience Japan Corp filed Critical Photoscience Japan Corp
Priority to JP2012242823A priority Critical patent/JP2014093190A/en
Publication of JP2014093190A publication Critical patent/JP2014093190A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a liquid treatment apparatus employing an electrodeless discharge ultraviolet irradiation device of which the lifetime is more prolonged than the prior arts.SOLUTION: An inner wall surface within a quartz electroless ultraviolet discharge tube in which a discharge medium is encapsulated, is covered with a material which shields or extinguishes ultraviolet rays of wavelengths equal to or less than 185 nm. Thus, when ultraviolet rays are generated in the ultraviolet discharge tube, since ultraviolet rays of wavelengths equal to or less than 185 nm are shielded or extinguished, it can be temporally delayed for the total quantity of received ultraviolet rays with the wavelength of 185 nm to reach about 700 W hour/cm. If the total quantity of received ultraviolet rays with the wavelength of 185 nm does not reach about 700 W hour/cm, cracking is prevented from being incurred by incurring binding/separation of quartz molecules and changing a density of the quartz constituting the discharge tube. Therefore, though the lifetime of the electrodeless ultraviolet discharge tube is longer than that of an electrode-fitted discharge tube originally, the lifetime can be further prolonged in comparison with the prior arts.

Description

本発明は、誘導コイルの高周波励起に応じて放電管から紫外線を放射する無電極の放電紫外線照射装置を用いた液体処理装置に関する。特に、紫外線の累積被爆による石英製放電管の破損を遅らせる技術に関する。   The present invention relates to a liquid processing apparatus using an electrodeless discharge ultraviolet irradiation device that emits ultraviolet rays from a discharge tube in response to high-frequency excitation of an induction coil. In particular, the present invention relates to a technique for delaying breakage of a quartz discharge tube due to cumulative exposure to ultraviolet rays.

従来から、液体の殺菌並びに液体中の微量有機物の酸化分解あるいは難分解性有機物の分解等の液体処理を行う液体処理装置が知られている。また、半導体や液晶などの製造に不可欠な超純水製造過程において微量の有機物を除去する液体処理装置も知られている。これらの液体処理装置では、放電管の管内に封入ガスとして水銀等を封入してなり、主に185nm波長の紫外線(真空紫外光と呼ばれる)及び254nm波長の紫外線(殺菌紫外光と呼ばれる)を放射する紫外線照射装置が用いられている。最近では、無電極放電を用いて蛍光ランプを点灯する長寿命蛍光ランプの構成で、放電管の材料を紫外線透過性を有する石英管(石英ガラス管など)に変更した無電極放電紫外線照射装置が利用されるようになっている。   2. Description of the Related Art Conventionally, liquid processing apparatuses that perform liquid processing such as sterilization of liquid and oxidative decomposition of trace organic substances in liquid or decomposition of hardly decomposable organic substances are known. There is also known a liquid processing apparatus that removes a small amount of organic substances in the process of producing ultrapure water, which is indispensable for the production of semiconductors and liquid crystals. In these liquid processing apparatuses, mercury or the like is enclosed as a sealing gas in a discharge tube, and mainly radiates ultraviolet rays having a wavelength of 185 nm (called vacuum ultraviolet light) and ultraviolet rays having a wavelength of 254 nm (called germicidal ultraviolet light). An ultraviolet irradiation device is used. Recently, there is an electrodeless discharge ultraviolet irradiation device that uses a long-life fluorescent lamp configuration that uses an electrodeless discharge to change the material of the discharge tube to a quartz tube (such as a quartz glass tube) that transmits ultraviolet light. It has come to be used.

下記に示す特許文献1には、食品包装材料の表面殺菌のために用いられる殺菌用紫外線ランプが開示されている。この紫外線ランプでは、両端に電極を備えてなる石英ガラス製バルブ(放電管)の外壁面に酸化ジルコニウム膜が形成されており、これにより殺菌用の254nm波長の紫外線の強度を維持しながらも人体に有害なオゾンを発生させる185nmの紫外線を減光することが行われている。   Patent Document 1 shown below discloses an ultraviolet lamp for sterilization used for surface sterilization of food packaging materials. In this ultraviolet lamp, a zirconium oxide film is formed on the outer wall surface of a quartz glass bulb (discharge tube) provided with electrodes at both ends, thereby maintaining the intensity of ultraviolet light having a wavelength of 254 nm for sterilization while maintaining the human body. It has been carried out to reduce ultraviolet rays of 185 nm which generate ozone harmful to the environment.

特開2011−23253号公報JP 2011-23253 A

ところで、石英製の放電管においては、当該放電管自身から放射される185nm波長の紫外線に長い時間にわたって晒されると、特に紫外線の累積被爆量の多い箇所ではひびや割れなどの無数の微細なクラックが生じる。本願発明人は、石英管壁単位面積当たりにおける185nm波長の紫外線の総受光量が概ね700W時/cm2程度になると、石英分子の結合分断による石英密度が変化して石英管壁に歪みが生じてしまい、その結果、石英管(放電管)に微細なクラックが生じ最終的に破損することを実験により突き止めた。したがって、紫外線照射装置の寿命をより長くするには、放電管から放射される185nm波長の紫外線の総受光量(累積被爆量)が概ね700W時/cm2程度に達するのを時間的に遅らせればよく、そのための1つの方策として紫外線照射装置の使用に伴って254nm波長の殺菌線と共に放射される185nm波長の紫外線を遮断若しくは減光すればよい、との結論に達した。 By the way, in a quartz discharge tube, when exposed to ultraviolet rays with a wavelength of 185 nm emitted from the discharge tube itself for a long time, innumerable fine cracks such as cracks and cracks particularly in a portion where the cumulative exposure amount of ultraviolet rays is large. Occurs. When the total amount of received 185 nm wavelength ultraviolet light per unit area of the quartz tube wall is about 700 Wh / cm 2 , the inventor of the present application changes the quartz density due to the bond breaking of the quartz molecules, and the quartz tube wall is distorted. As a result, it was experimentally determined that a fine crack was generated in the quartz tube (discharge tube) and eventually damaged. Therefore, in order to extend the life of the ultraviolet irradiation device, it is possible to delay the time until the total received light amount (cumulative exposure amount) of the 185 nm wavelength ultraviolet light emitted from the discharge tube reaches about 700 Wh / cm 2. As a result, it has been concluded that as a measure for that purpose, it is only necessary to block or diminish the 185 nm wavelength ultraviolet rays emitted along with the 254 nm wavelength germicidal line in accordance with the use of the ultraviolet irradiation device.

そこで、上述の特許文献1に記載のような紫外線ランプを液体処理装置に用いることが考えられるが、この紫外線ランプは通常の蛍光ランプと同様のフィラメント電極を用いた有電極タイプであって寿命時間が高々2万時間程度であり、そもそも無電極タイプに比較すると寿命が短いがために、液体処理装置に用いるには適さない。また、特許文献1に記載の紫外線ランプは、放電管外面にて当該放電管から放射される185nm波長の紫外線の減光/遮断するようにしたものであることから、当該放電管から外部へ放射される185nm波長の紫外線を減光/遮断することはできたが、185nm波長の紫外線による当該放電管(石英管)の劣化を食い止めることはできない。   Therefore, it is conceivable to use an ultraviolet lamp as described in Patent Document 1 for a liquid processing apparatus. This ultraviolet lamp is an electrode type using a filament electrode similar to a normal fluorescent lamp, and has a lifetime. However, since the lifetime is shorter than that of the electrodeless type, it is not suitable for use in a liquid processing apparatus. Further, since the ultraviolet lamp described in Patent Document 1 is designed to diminish / block ultraviolet rays having a wavelength of 185 nm radiated from the discharge tube on the outer surface of the discharge tube, it radiates from the discharge tube to the outside. Although it was possible to attenuate / block the 185 nm wavelength ultraviolet light, it was not possible to prevent the deterioration of the discharge tube (quartz tube) due to the 185 nm wavelength ultraviolet light.

このように、従来においては、そもそも185nm波長の紫外線によって石英分子の結合分断が引き起こされて、これに伴い石英管(放電管)を構成する石英の密度が変化してクラックが生じることの解明がなされていなかったために、185nm波長の紫外線による石英製放電管の劣化破損を防止することに関して何らの手立ても考えられていなかった。それ故に、より長期にわたって使用することが可能な、従来にない寿命の長い無電極放電紫外線照射装置を用いてなる液体処理装置を提供することは困難であった。   Thus, in the past, it has been clarified that, in the first place, bond breakage of quartz molecules is caused by ultraviolet rays having a wavelength of 185 nm, and accordingly, the density of quartz constituting the quartz tube (discharge tube) changes and cracks occur. Since it has not been made, no means has been considered for preventing deterioration and damage of the quartz discharge tube due to ultraviolet rays having a wavelength of 185 nm. Therefore, it has been difficult to provide a liquid processing apparatus that uses an electrodeless discharge ultraviolet irradiation apparatus that can be used for a longer period of time and has an unprecedented long life.

本発明は上述の点に鑑みてなされたもので、主要構成要素のひとつである紫外線照射装置に、水などの処理液体の誘電率が高いがために従来では無電極放電を用いることが難しかった無電極放電紫外線照射装置を適用した液体処理装置に関するものであり、この無電極放電紫外線照射装置において紫外線による放電管の劣化破損の発生を遅らせることにより、従来に比べてより寿命の長い無電極放電紫外線照射装置を用いてなる液体処理装置を提供しようとするものである。   The present invention has been made in view of the above points. Conventionally, it has been difficult to use an electrodeless discharge in an ultraviolet irradiation device, which is one of the main components, because of the high dielectric constant of a treatment liquid such as water. This relates to a liquid processing apparatus to which an electrodeless discharge ultraviolet irradiation device is applied. By delaying the occurrence of deterioration and damage of the discharge tube due to ultraviolet rays in this electrodeless discharge ultraviolet irradiation device, the electrodeless discharge has a longer life than conventional ones. An object of the present invention is to provide a liquid processing apparatus using an ultraviolet irradiation device.

本発明の請求項1に係る無電極放電紫外線照射装置を用いた液体処理装置は、処理液体の流入口及び流出口を備えた処理液体流路に配設されて、流路を通る処理液体に対して無電極放電紫外線照射装置で紫外線を放射するものである。その無電極放電紫外線照射装置は、水銀若しくは水銀合金と希ガスとを含んでなる放電媒体を管内に封入した石英製の無電極の紫外線放電管であって、前記紫外線放電管は、石英分子の結合分断により石英密度を変化させ得る185nm以下の波長の紫外線を遮断若しくは減光する材料で前記管内の内壁面を被覆したものと、前記紫外線放電管に高周波磁界を作用させて放電を生起させる誘導コイルと、前記誘導コイルに高周波電流又は電圧を供給する高周波電源であって、該高周波電源は前記誘導コイルを通電することにより前記紫外線放電管に紫外線を発生させるものとを備える。   A liquid processing apparatus using an electrodeless discharge ultraviolet irradiation device according to claim 1 of the present invention is disposed in a processing liquid flow path provided with an inlet and an outlet of a processing liquid so that the processing liquid passes through the flow path. In contrast, an electrodeless discharge ultraviolet irradiation device emits ultraviolet rays. The electrodeless discharge ultraviolet irradiation device is a quartz electrodeless ultraviolet discharge tube in which a discharge medium containing mercury or a mercury alloy and a rare gas is enclosed in a tube, and the ultraviolet discharge tube is made of quartz molecules. A material in which the inner wall surface of the tube is coated with a material that blocks or attenuates ultraviolet light having a wavelength of 185 nm or less that can change the quartz density by bond breaking, and induction that causes a discharge by causing a high-frequency magnetic field to act on the ultraviolet discharge tube. A coil and a high-frequency power source for supplying a high-frequency current or voltage to the induction coil, the high-frequency power source generating ultraviolet light in the ultraviolet discharge tube by energizing the induction coil.

この発明の無電極放電紫外線照射装置を用いた液体処理装置によれば、水銀若しくは水銀合金と希ガスとを含んでなる放電媒体を管内に封入した石英製の無電極の紫外線放電管の管内の内壁面を、185nm以下の波長の紫外線を遮断若しくは減光する材料で被覆する。誘導コイルを通電して紫外線放電管に紫外線を発生させた場合、185nm以下の波長の紫外線は管の内壁面で遮断若しくは減光される。これにより、使用時において185nm以下の波長の紫外線が遮断若しくは減光されることから、185nm波長の紫外線の総受光量(累積被爆量)が概ね700W時/cm2程度に達するのを時間的に遅らせることができる。185nm波長の紫外線の総受光量が概ね700W時/cm2程度に達しなければ、石英分子の結合分断が引き起こされて、放電管を構成する石英の密度が変化してクラックが生じることがない。したがって、そもそも無電極の紫外線放電管は有電極の放電管に比べて長寿命であるが、さらに従来に比較して寿命をより長くすることができるようになる、という利点を生ずる。 According to the liquid processing apparatus using the electrodeless discharge ultraviolet irradiation apparatus of the present invention, a quartz electrodeless ultraviolet discharge tube in a tube in which a discharge medium containing mercury or a mercury alloy and a rare gas is enclosed in the tube is provided. The inner wall surface is covered with a material that blocks or attenuates ultraviolet light having a wavelength of 185 nm or less. When the induction coil is energized to generate ultraviolet rays in the ultraviolet discharge tube, ultraviolet rays having a wavelength of 185 nm or less are blocked or dimmed by the inner wall surface of the tube. As a result, ultraviolet light having a wavelength of 185 nm or less is blocked or dimmed during use, so that the total amount of received light (cumulative exposure) of ultraviolet light having a wavelength of 185 nm reaches about 700 W / cm 2 in terms of time. Can be delayed. If the total received light amount of ultraviolet rays with a wavelength of 185 nm does not reach about 700 Wh / cm 2 , the quartz molecules are broken and the density of the quartz constituting the discharge tube does not change and cracks do not occur. Therefore, an electrodeless ultraviolet discharge tube has a longer life than an electroded discharge tube in the first place, but further has the advantage that it can have a longer life than conventional ones.

本発明の請求項2に係る無電極放電紫外線照射装置を用いた液体処理装置は、処理液体の流入口及び流出口を備えた処理液体流路に配設されて、流路を通る処理液体に対して無電極放電紫外線照射装置で紫外線を放射するものである。その無電極放電紫外線照射装置は、水銀若しくは水銀合金と希ガスとを含んでなる放電媒体を管内に封入した無電極の紫外線放電管であって、前記紫外線放電管は、石英分子の結合分断により石英密度を変化させ得る185nm以下の波長の紫外線を遮断若しくは減光する材料を石英に混入して生成したものと、前記紫外線放電管に高周波磁界を作用させて放電を生起させる誘導コイルと、前記誘導コイルに高周波電流又は電圧を供給する高周波電源であって、該高周波電源は前記誘導コイルを通電することにより前記紫外線放電管に紫外線を発生させるものとを備える。これによっても、放電管から放射される185nm以下の波長の紫外線を遮断若しくは減光することにより、185nm波長の紫外線の総受光量が概ね700W時/cm2程度に達するのを時間的に遅らせて、該放電管の寿命を著しく延長せしめることができる。 A liquid processing apparatus using an electrodeless discharge ultraviolet irradiation device according to claim 2 of the present invention is disposed in a processing liquid flow path having a processing liquid inlet and an outlet, and the processing liquid passes through the flow path. In contrast, an electrodeless discharge ultraviolet irradiation device emits ultraviolet rays. The electrodeless discharge ultraviolet irradiation device is an electrodeless ultraviolet discharge tube in which a discharge medium containing mercury or a mercury alloy and a rare gas is enclosed in a tube, and the ultraviolet discharge tube is formed by breaking a quartz molecule bond. A material produced by mixing quartz with a material that blocks or attenuates ultraviolet light having a wavelength of 185 nm or less that can change the quartz density, an induction coil that causes a high frequency magnetic field to act on the ultraviolet discharge tube, and A high-frequency power supply for supplying a high-frequency current or voltage to the induction coil, the high-frequency power supply including an ultraviolet ray generated in the ultraviolet discharge tube by energizing the induction coil. Also by this, by blocking or dimming ultraviolet light with a wavelength of 185 nm or less emitted from the discharge tube, the total amount of received light of ultraviolet light with a wavelength of 185 nm is delayed in time until it reaches approximately 700 Wh / cm 2. The life of the discharge tube can be significantly extended.

この発明によれば、石英製の無電極の紫外線放電管の管内の内壁面を185nm以下の波長の紫外線を遮断若しくは減光する材料で被覆することによって、185nm波長の紫外線の総受光量が概ね700W時/cm2程度に達するのを時間的に遅らせることができるので、従来に比べてより寿命の長い無電極放電紫外線照射装置を用いた液体処理装置を提供でき、放電管交換などのメンテナンス回数が大幅に減る、という効果を奏する。また、効率的で安定的に紫外線を放射させることや液体処理に必要な紫外線放射を効果的に行うことが、簡易な構成で容易にできる。 According to the present invention, by covering the inner wall surface of the quartz electrodeless ultraviolet discharge tube made of quartz with a material that blocks or attenuates ultraviolet light having a wavelength of 185 nm or less, the total amount of received light of ultraviolet light having a wavelength of 185 nm is approximately. Since it can be delayed in time until it reaches about 700 Wh / cm 2, it can provide a liquid processing apparatus using an electrodeless discharge ultraviolet irradiation apparatus that has a longer life than conventional ones, and the number of maintenance such as discharge tube replacement Has the effect of significantly reducing. Further, it is possible to easily radiate ultraviolet rays efficiently and stably and to effectively perform ultraviolet radiation necessary for liquid processing with a simple configuration.

本発明に係る液体処理装置の全体構成の一実施例を示す概念図である。It is a conceptual diagram which shows one Example of the whole structure of the liquid processing apparatus which concerns on this invention. 図1に示した無電極放電紫外線照射装置を示す一部破断図である。It is a partially broken figure which shows the electrodeless discharge ultraviolet irradiation device shown in FIG. 放電管の別の実施例を示す斜視図である。It is a perspective view which shows another Example of a discharge tube.

以下、添付図面を参照してこの発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明に係る液体処理装置の全体構成の一実施例を示す概念図である。図1に示す液体処理装置1は、例えばステンレスなどの腐食し難い材質からなる筒状の容器A(例えば円筒容器であるがこれに限られない、シリンダなどとも呼ばれる)に、後述する図2に示すような無電極放電紫外線照射装置2を着脱可能に取り付けることのできるようになっており、この無電極放電紫外線照射装置2から放射される紫外線によって該円筒容器A内を通る処理液体Pに対し液体処理を行うタイプのものである。   FIG. 1 is a conceptual diagram showing an embodiment of the overall configuration of a liquid processing apparatus according to the present invention. A liquid processing apparatus 1 shown in FIG. 1 is provided in a cylindrical container A (for example, a cylindrical container but is not limited to this, but also called a cylinder) made of a material that hardly corrodes, such as stainless steel. An electrodeless discharge ultraviolet irradiation device 2 as shown in the figure can be detachably attached to the treatment liquid P passing through the cylindrical container A by ultraviolet rays emitted from the electrodeless discharge ultraviolet irradiation device 2. This is a type that performs liquid treatment.

円筒容器A(シリンダ)には、無電極放電紫外線照射装置2を取り付けるための取り付け部Acが設けられており、無電極放電紫外線照射装置2はフランジ2aを介して螺子N等の取り付け部材により当該取り付け部Acに取り付けられて、円筒容器Aに固定的に支持されるようになっている。前記取り付け部は円筒容器Aの内部にまで達する貫通孔を有していることから、図示のように無電極放電紫外線照射装置2はその一部が貫通孔から円筒容器A内に突出した状態で円筒容器Aに固定される。   The cylindrical container A (cylinder) is provided with a mounting portion Ac for mounting the electrodeless discharge ultraviolet irradiation device 2, and the electrodeless discharge ultraviolet irradiation device 2 is attached to the cylindrical container A (cylinder) by a mounting member such as a screw N via the flange 2 a. It is attached to the attachment portion Ac and is fixedly supported by the cylindrical container A. Since the attachment portion has a through hole reaching the inside of the cylindrical container A, the electrodeless discharge ultraviolet irradiation device 2 is partially protruded from the through hole into the cylindrical container A as shown in the figure. It is fixed to the cylindrical container A.

そして、この円筒容器Aは、その両端がシール部Fによって処理液体Pが外部に漏れ出すことのないように液密に密閉されることによって、該容器A側面に設けられた図中左側の処理液体流入口Aaから取り入れた処理液体P(図中において点線の矢印で示す)を、該容器A側面に設けられた図中右側の処理液体流出口Abから排出する流路が形成される。このため、図1に示す液体処理装置1では、処理液体流入口Aaから流れ込んだ処理液体Pが円筒容器A内を通過するときに、円筒容器A内部に突出した無電極放電紫外線照射装置2から発せられる紫外線が前記流路を通る処理液体Pに放射されて、処理液体Pの殺菌並びに処理液体P中の有機物(微生物等)の防除といった液体処理が行われる。このとき、無電極放電紫外線照射装置2からは、例えば260nm以下の波長の紫外線、典型的には254nmや185nmの波長の紫外線が発せられ、紫外線の波長が254nm前後であれば殺菌効果が、185nm前後であれば有機物分解効果がそれぞれ顕著に現われる。液体処理後の処理液体Pは、浄化水などとして処理液体流出口Abから外部に流れ出る。   And this cylindrical container A is liquid-tightly sealed so that the processing liquid P does not leak to the outside by the sealing part F at both ends thereof, and the processing on the left side in the figure provided on the side surface of the container A A flow path is formed through which the processing liquid P (indicated by a dotted arrow in the figure) taken from the liquid inlet Aa is discharged from the processing liquid outlet Ab on the right side of the figure provided on the side surface of the container A. For this reason, in the liquid processing apparatus 1 shown in FIG. 1, when the processing liquid P flowing from the processing liquid inlet Aa passes through the cylindrical container A, the electrodeless discharge ultraviolet irradiation apparatus 2 protruding into the cylindrical container A is used. The emitted ultraviolet rays are emitted to the processing liquid P passing through the flow path, and liquid processing such as sterilization of the processing liquid P and control of organic substances (microorganisms and the like) in the processing liquid P is performed. At this time, the electrodeless discharge ultraviolet irradiation device 2 emits ultraviolet light having a wavelength of, for example, 260 nm or less, typically ultraviolet light having a wavelength of 254 nm or 185 nm. If the wavelength of the ultraviolet light is around 254 nm, the bactericidal effect is 185 nm. If it is before and after, the organic matter decomposition effect appears remarkably. The treated liquid P after the liquid treatment flows out from the treated liquid outlet Ab as purified water or the like.

図2は、無電極放電紫外線照射装置2の一実施例を示す一部破断図である。図2に示すように、本発明に係る液体処理装置1の構成要素をなす無電極放電紫外線照射装置2は、放電管点灯回路部(図示せず)を収納したステンレス製のケーシング部材21と、紫外線を透過する石英やテフロン(登録商標)製の放電管収容管(保護管などとも呼ばれる、以下単に収容管と記す)22とが組み合わされてなる。放電管点灯回路部は図示を省略したが、誘導コイルE(より詳しくはフェライトコアコイル又は空芯コイル)を高周波励起するための駆動回路等を含んでおり、これらに電源を供給する外部の高周波電源に接続される。   FIG. 2 is a partially cutaway view showing an embodiment of the electrodeless discharge ultraviolet irradiation device 2. As shown in FIG. 2, an electrodeless discharge ultraviolet irradiation device 2 constituting a component of the liquid processing apparatus 1 according to the present invention includes a stainless casing member 21 that houses a discharge tube lighting circuit portion (not shown), It is combined with quartz or Teflon (registered trademark) discharge tube housing tube (also referred to as a protective tube, hereinafter simply referred to as a housing tube) 22 that transmits ultraviolet rays. Although not shown, the discharge tube lighting circuit unit includes a drive circuit for exciting the induction coil E (more specifically, a ferrite core coil or an air core coil) at high frequency, and external high frequency signals for supplying power to them. Connected to power.

一方、ケーシング部材21と収容管22とを組み合わせることにより確保される内部空間には、石英製の無電極紫外線放射放電管H(以下、単に放電管と記す)と、磁性材料からなるフェライトコアCと、前記フェライトコアCに巻き回された誘導コイルE(巻線)と、誘導コイルEの高周波励起に伴いフェライトコアC及び/又は誘起コイルEから発生する熱を放熱する放熱フィンDとが収納されている。この構成では、上述のようにして円筒容器Aに無電極放電紫外線照射装置2を取り付けた場合に、収容管22が、放電管H,フェライトコアC(誘導コイルEを含む),放熱フィンDを、処理液体Pから隔離するようになっている。   On the other hand, in the internal space secured by combining the casing member 21 and the housing tube 22, an electrodeless ultraviolet radiation discharge tube H made of quartz (hereinafter simply referred to as a discharge tube) and a ferrite core C made of a magnetic material are used. And an induction coil E (winding) wound around the ferrite core C, and a heat radiation fin D that dissipates heat generated from the ferrite core C and / or the induction coil E due to high-frequency excitation of the induction coil E. Has been. In this configuration, when the electrodeless discharge ultraviolet irradiation device 2 is attached to the cylindrical container A as described above, the storage tube 22 includes the discharge tube H, the ferrite core C (including the induction coil E), and the radiation fin D. , So as to be isolated from the processing liquid P.

この実施形態に示される放電管Hは、紫外線を放射するガスとなる例えば水銀粒あるいは水銀アマルガム(水銀合金)と、キセノン、クリプトン、アルゴン、ネオンなどの希ガスとを含んでなる放電媒体を管内に封入した二重管形状の無電極水銀放電管であり、フェライトコアコイルにより電磁波で励起駆動されることにより185nm波長並びに254nm波長の紫外線を発する。すなわち、高周波電源から高周波電流又は電圧が供給されると、誘導コイルEが通電されて高周波の電磁波が励起され、これにより放電管Hから紫外線が発生される。図2に示すように、長尺状のフェライトコアCの外周に誘導コイルEが巻き回されてフェライトコアコイルを形成してなり、このフェライトコアコイルを囲むようにして放電管Hは配置される。言い換えれば、放電管Hはフェライトコアコイルを囲むことのできる形状であればどのような形状であってもよい。例えば、図2に示した例は、中央部にくぼみ(空洞部)を有する半球状(ナス状、半楕円状)の放電管Hであって、前記くぼみ部分にフェライトコアコイルを配置することのできる形状である。こうした形状では、効率的に紫外線を放射させることができる。   The discharge tube H shown in this embodiment includes a discharge medium containing, for example, mercury particles or mercury amalgam (mercury alloy), which is a gas that emits ultraviolet rays, and a rare gas such as xenon, krypton, argon, or neon. Is a double tube-shaped electrodeless mercury discharge tube enclosed in a tube, and emits ultraviolet rays having a wavelength of 185 nm and a wavelength of 254 nm by being driven by electromagnetic waves by a ferrite core coil. That is, when a high frequency current or voltage is supplied from a high frequency power source, the induction coil E is energized to excite high frequency electromagnetic waves, thereby generating ultraviolet rays from the discharge tube H. As shown in FIG. 2, an induction coil E is wound around an outer periphery of a long ferrite core C to form a ferrite core coil, and the discharge tube H is disposed so as to surround the ferrite core coil. In other words, the discharge tube H may have any shape as long as it can surround the ferrite core coil. For example, the example shown in FIG. 2 is a hemispherical (egg-shaped, semi-elliptical) discharge tube H having a depression (cavity) in the center, and a ferrite core coil is disposed in the depression. It is a shape that can be made. With such a shape, ultraviolet rays can be efficiently emitted.

なお、誘導コイルEは、銀、銅、アルミニウムなどの良導体、あるいはニッケル、ステンレスなどの難腐食性金属の材質からなる。また、誘導コイルEの表面はテフロン(登録商標)などの耐紫外線材料で被覆してあるとよい。なお、放電管Hの周囲温度が高くなるような場合には、最適な水銀蒸気圧を確保するために放電管Hに水銀アマルガムを封入するとよい。   The induction coil E is made of a good conductor such as silver, copper, or aluminum, or a hardly corrosive metal such as nickel or stainless steel. The surface of the induction coil E may be coated with an ultraviolet resistant material such as Teflon (registered trademark). When the ambient temperature of the discharge tube H becomes high, mercury amalgam may be enclosed in the discharge tube H in order to ensure an optimum mercury vapor pressure.

本実施形態において、放電媒体を封入した放電管Hの管内の内壁面には、少なくとも水銀放電により発せられる真空紫外光である185nm付近以下の紫外線(より具体的には、長時間の放射に伴い石英分子を結合分断して、放電管Hを構成している石英の密度を変化させ得る185nm以下の波長の紫外線)を遮断もしくは減光する、例えば酸化イットリウム、酸化ジルコニウム、酸化亜鉛、酸化チタンなどの材料からなる金属酸化膜Bが形成(被覆)される。あるいは、上記した酸化イットリウム、酸化ジルコニウム、酸化亜鉛、酸化チタンなどの金属酸化物を石英に混入して、放電管H自体を生成してもよい。   In the present embodiment, the inner wall surface of the discharge tube H in which the discharge medium is sealed has at least ultraviolet light of about 185 nm or less, which is vacuum ultraviolet light emitted by mercury discharge (more specifically, with long-term radiation). The quartz molecules are bonded and cut off to block or attenuate (ultraviolet rays having a wavelength of 185 nm or less that can change the density of quartz constituting the discharge tube H), for example, yttrium oxide, zirconium oxide, zinc oxide, titanium oxide, etc. A metal oxide film B made of the above material is formed (coated). Alternatively, the discharge tube H itself may be generated by mixing metal oxides such as yttrium oxide, zirconium oxide, zinc oxide, and titanium oxide described above into quartz.

また、放電管Hの内壁面には、水銀原子あるいは水銀化合物が放電により石英管壁に付着して紫外線出力が低下するのを防ぐために、酸化希土類金属膜や酸化アルミニウム膜等の保護膜(図示せず)が形成されるとよい。一般的には、この水銀原子の管壁への付着を防ぐ保護膜と、上述の185nm波長の紫外線を減光乃至遮断する金属酸化膜Bとは異なる個別の膜として放電管Hの内壁面に別々に形成されるが、両者を兼ねた1種類の膜として放電管Hの内壁面に形成されてよいのは勿論である。   Further, a protective film (such as a rare earth metal oxide film or an aluminum oxide film) is provided on the inner wall surface of the discharge tube H in order to prevent mercury atoms or mercury compounds from adhering to the quartz tube wall due to discharge and lowering the ultraviolet output. (Not shown) may be formed. In general, the protective film for preventing the mercury atoms from adhering to the tube wall and the metal oxide film B for dimming or blocking the 185 nm wavelength ultraviolet light are separated on the inner wall surface of the discharge tube H as separate films. Although formed separately, it is needless to say that it may be formed on the inner wall surface of the discharge tube H as one type of film that serves as both.

185nm波長の紫外線を減光乃至遮断するのに最適な材料としては、酸化イットリウム、酸化ジルコニウム、酸化亜鉛、酸化チタンなどの金属酸化物がある。そして、本実施形態においては上述のように、放電管Hの内壁面にそれらの薄膜を形成する、もしくは石英にそれら金属酸化物を混入して放電管H自体を作成することによって、放電管Hから発せられて放電管Hの壁面に放射される185nm波長の紫外線の照射量を従来よりも抑制し、紫外線の累積被爆による放電管Hの破損が生じるのを遅らせるようにしている(詳しくは後述する)。なお、酸化チタンを石英材料に混入させて管として成形された石英管はオゾンレス石英管として市販されているので、これを利用するとよい。   Suitable materials for dimming or blocking ultraviolet rays having a wavelength of 185 nm include metal oxides such as yttrium oxide, zirconium oxide, zinc oxide, and titanium oxide. In the present embodiment, as described above, the discharge tube H is formed by forming those thin films on the inner wall surface of the discharge tube H or by mixing the metal oxide into quartz to create the discharge tube H itself. The irradiation amount of the 185 nm wavelength ultraviolet light emitted from the discharge tube H and radiated to the wall surface of the discharge tube H is suppressed as compared with the conventional case, and the breakage of the discharge tube H due to the cumulative exposure of ultraviolet rays is delayed (details will be described later). To do). Note that a quartz tube formed as a tube by mixing titanium oxide into a quartz material is commercially available as an ozoneless quartz tube.

本実施形態の無電極放電紫外線照射装置2における紫外線の累積被爆による放電管破損の評価結果について、従来装置と比較して説明する。上記したように185nm波長の紫外線を抑制する手段として金属酸化膜Bが内壁面に形成されてなる石英製の無電極放電管H内に(外管φ85mm、内管φ32mm、長さ200mm)、水銀を10mg含む水銀合金とアルゴンガスを67パスカル(0.5torr)封入してなり、高周波電源により200Wの電力(ランプ入力)を投入するといった条件下でこの放電管Hを連続点灯した場合の評価結果であるが、本実施形態の無電極放電紫外線照射装置2を用いた場合には、使用累積時間が6万時間経過しても、石英管(放電管H)には微細なクラックが生じることなく何らの変化も見られなかった。   The evaluation result of the discharge tube breakage due to the cumulative exposure of ultraviolet rays in the electrodeless discharge ultraviolet irradiation device 2 of the present embodiment will be described in comparison with the conventional device. As described above, in a quartz electrodeless discharge tube H in which the metal oxide film B is formed on the inner wall surface as means for suppressing ultraviolet rays having a wavelength of 185 nm (outer tube φ85 mm, inner tube φ32 mm, length 200 mm), mercury Evaluation results when the discharge tube H is continuously lit under the condition that a mercury alloy containing 10 mg of mercury and argon gas is sealed in 67 Pascals (0.5 torr) and 200 W of electric power (lamp input) is supplied from a high frequency power source. However, in the case where the electrodeless discharge ultraviolet irradiation device 2 of the present embodiment is used, even if the use accumulated time has passed 60,000 hours, the quartz tube (discharge tube H) is not cracked finely. No change was seen.

他方、同じ条件で185nm波長の紫外線を抑制する手段を講じていない従来の無電極放電紫外線照射装置を用いた場合には、使用累積時間が1万時間程度経過すると石英管(放電管H)に紫外線の影響による歪が現れ始めて、2万時間程度経過すると微細なクラックが生じてきた。そして、さらに継続点灯するとクラックが大きくなって放電管Hは破損した。ばらつきはあるが、従来装置では、概ね無電極放電管Hの内壁面の単位面積当たりにおける185nm波長の紫外線の総受光量が700W時/cm2程度になると放電管Hに微細なクラックが現れ始め、さらに使用を続けることでついには破損に至ることが、本願発明人が行った実験の結果から確認された。特にランプ入力が大きく、185nm波長の紫外線放射量の強い、放電管電力が大きく、放電管容積の小さい、高密度電力型放電管ほど、短時間で放電管の管壁に歪が生じて微細クラックが発生しやすい傾向がある。したがって、高密度紫外線放射、長寿命の無電極放電紫外線照射装置において、水銀原子の発生する185nm波長の紫外線(真空紫外光)を低減することは必須の技術である。そこで、本願発明人は、水銀発光を用いた無電極放電紫外線照射装置において、石英製の無電極放電管Hに対して上述したような少なくとも185nm波長の紫外線(真空紫外光)を抑制する手段を講じることにより、従来に比べてより長寿命の無電極放電紫外線照射装置を実現できることを見出したのである。 On the other hand, when a conventional electrodeless discharge ultraviolet irradiation device that does not take measures to suppress ultraviolet rays having a wavelength of 185 nm under the same conditions is used, a quartz tube (discharge tube H) is used after about 10,000 hours have elapsed. Strain due to the influence of ultraviolet rays began to appear, and after about 20,000 hours, fine cracks were generated. Further, when the lamp is continuously turned on, the crack becomes large and the discharge tube H is damaged. Although there are variations, in the conventional apparatus, when the total amount of received light of 185 nm wavelength per unit area of the inner wall surface of the electrodeless discharge tube H is about 700 W / cm 2 , fine cracks begin to appear in the discharge tube H. Further, it was confirmed from the results of experiments conducted by the inventors of the present invention that the use of the product finally led to breakage. In particular, the higher the lamp input, the greater the amount of ultraviolet radiation with a wavelength of 185 nm, the larger the discharge tube power, the smaller the discharge tube volume, and the higher density power type discharge tube, the shorter the distortion occurs on the tube wall of the discharge tube and the smaller the crack Tend to occur. Therefore, it is an essential technique to reduce ultraviolet rays (vacuum ultraviolet light) having a wavelength of 185 nm generated by mercury atoms in a high-density ultraviolet radiation and long-life electrodeless discharge ultraviolet irradiation apparatus. Therefore, the inventors of the present application have means for suppressing ultraviolet rays (vacuum ultraviolet light) having a wavelength of at least 185 nm as described above for the quartz electrodeless discharge tube H in the electrodeless discharge ultraviolet irradiation device using mercury emission. As a result, it has been found that an electrodeless discharge ultraviolet irradiation device having a longer life than conventional ones can be realized.

さらには、放電管H内の水銀原子あるいは不純物として放電管H内に混入した空気成分や排気系油成分などと結合して生成された酸化水銀、窒化水銀などの水銀化合物が、放電により放電管Hの管壁に付着して紫外線出力が低下するのを防ぐために、放電管Hの内壁面に酸化希土類金属や酸化アルミニウム等からなる保護膜を形成すれば、より一層寿命の長い無電極放電紫外線照射装置を得ることができる。酸化希土類金属のうち例えば酸化イットリウムや酸化セリウムなどは、185nm波長の紫外線の減光/遮断と水銀原子付着防止との両者の働きをする材料であるので、酸化イットリウムや酸化セリウムなどで上記した金属酸化膜Bを形成するのが有利である。   Further, mercury compounds such as mercury oxide and mercury nitride produced by combining with air components and exhaust system oil components mixed in the discharge tube H as mercury atoms or impurities in the discharge tube H are discharged into the discharge tube. If a protective film made of rare earth metal oxide, aluminum oxide or the like is formed on the inner wall surface of the discharge tube H in order to prevent the ultraviolet light output from decreasing due to adhering to the H tube wall, the electrodeless discharge ultraviolet ray having a longer life can be obtained. An irradiation apparatus can be obtained. Among rare earth oxides, for example, yttrium oxide and cerium oxide are materials that serve to both reduce / block ultraviolet rays with a wavelength of 185 nm and prevent mercury atom adhesion. Therefore, the above-described metals such as yttrium oxide and cerium oxide are used. It is advantageous to form the oxide film B.

また、図2に示すように、処理液体Pから隔離するために、放電管H等は石英やテフロン(登録商標)などで構成された収容管22に収容してある。この収容管22においても、放電管Hから放射される185nm波長の紫外線により、収容管22が劣化して放電管Hと同様にクラックが生じて破損する不具合が生じ得る。そこで、これを防止するために、放電管Hの外壁面に185nm波長の紫外線を遮断もしくは減光する酸化チタン膜等を形成するとよい。   Further, as shown in FIG. 2, in order to isolate from the processing liquid P, the discharge tube H and the like are housed in a housing tube 22 made of quartz, Teflon (registered trademark), or the like. Also in the housing tube 22, the housing tube 22 is deteriorated by ultraviolet rays having a wavelength of 185 nm radiated from the discharge tube H, so that the housing tube 22 may be broken due to cracks similarly to the discharge tube H. Therefore, in order to prevent this, it is preferable to form a titanium oxide film or the like on the outer wall surface of the discharge tube H to block or reduce ultraviolet light having a wavelength of 185 nm.

なお、無電極放電紫外線照射装置2は254nm波長の紫外線を放射することから、これを利用して殺菌のみならず、不快な物質や有害物質、例えばS‐H結合(87.9kcal/mol)、オゾンO3 の分解など、分子結合エネルギーが254nm波長の紫外線が有するエネルギーよりも低い物質の分解にも有効である。例えば、6×1023個(1モル)の254nm波長の紫外線が有する光量子(フォトン)エネルギーは112.8kcal/molに相当し、6×1023個(1モル)の電子を移動させるに必要な電圧で表示すると4.89eV(電子ボルト)となるので、これより低い結合エネルギーの分子結合を分解することができる。 In addition, since the electrodeless discharge ultraviolet irradiation device 2 emits ultraviolet rays having a wavelength of 254 nm, not only sterilization but also unpleasant substances and harmful substances such as SH bonds (87.9 kcal / mol), It is also effective for decomposing substances whose molecular bond energy is lower than that of ultraviolet light having a wavelength of 254 nm, such as decomposition of ozone O 3 . For example, the photon energy of 6 × 10 23 (1 mol) UV light having a wavelength of 254 nm corresponds to 112.8 kcal / mol, and is necessary to move 6 × 10 23 (1 mol) electrons. When expressed in terms of voltage, it becomes 4.89 eV (electron volt), so that molecular bonds having a lower binding energy can be decomposed.

このような、185nm波長の紫外線を抑制して、強力な254nm波長の紫外線を得るためには、水銀もしくは水銀合金と希ガスとが封入され電磁波で励起駆動する無電極放電紫外線照射装置2において、放電管H内に封入する封入ガスのガス圧は、アルゴンガス、アルゴンとネオンの混合ガス、あるいはアルゴン、ネオン、クリプトン、キセノンなど希ガスの混合ガスなど、そのガス圧が低いほど効果的であることから、133Pa(1torr)以下が望ましい。しかもこのような低圧であると放電の開始電圧も低くなるので、電力消費が少なく有利である。   In order to suppress the ultraviolet ray having a wavelength of 185 nm and obtain a strong ultraviolet ray having a wavelength of 254 nm, in the electrodeless discharge ultraviolet irradiation device 2 in which mercury or a mercury alloy and a rare gas are enclosed and excited by electromagnetic waves, The gas pressure of the sealed gas sealed in the discharge tube H is more effective as the gas pressure is lower, such as argon gas, a mixed gas of argon and neon, or a mixed gas of rare gas such as argon, neon, krypton, and xenon. For this reason, 133 Pa (1 torr) or less is desirable. In addition, such a low voltage is advantageous because the discharge starting voltage is also low, so that power consumption is low.

また、本実施形態においては、そもそも無電極の放電管Hを利用している。無電極の放電管Hは有電極放電管に比較して、寿命が数倍から数十倍程度に長くほぼメンテナンスを必要としないことから、無電極放電紫外線照射装置2を用いた液体処理装置1の製造乃至運用コストを低くに抑えられる。   In this embodiment, an electrodeless discharge tube H is used in the first place. Since the electrodeless discharge tube H has a life several times to several tens of times longer than that of the electroded discharge tube and does not require maintenance, the liquid processing apparatus 1 using the electrodeless discharge ultraviolet irradiation device 2 is used. Manufacturing and operating costs can be kept low.

上述した本発明に係る液体処理装置1で処理液体Pの殺菌や処理液体P中の有機物分解などの液体処理を行う場合には、上記したように本発明の液体処理装置1の構成要素のひとつである無電極放電紫外線照射装置2を長寿命とするために、電極を用いずに電磁波で駆動する無電極放電システムを採用している。この無電極放電紫外線照射装置2において駆動電磁波を効果的に放電管Hに投入するためには、磁束を集める鉄心などのフェライトコアCを有したフェライトコアコイルを用いるとよく、その場合に高周波でも損失の少ないフェライトコアCを用いるのがよい。フェライトコアコイルを用いる場合、周波数が高いとフェライトコアCの発熱損失が多くなり、フェライトコアCの許容動作温度上限(キュリー温度)を超えてしまうことにもなることから、このようなフェライトコアCの限界以下で用いるために5MHz以下の周波数でフェライトコアコイルを駆動するのが望ましい。   When performing liquid processing such as sterilization of the processing liquid P or decomposition of organic substances in the processing liquid P with the liquid processing apparatus 1 according to the present invention described above, one of the components of the liquid processing apparatus 1 of the present invention as described above. In order to extend the life of the electrodeless discharge ultraviolet irradiation apparatus 2 as described above, an electrodeless discharge system driven by electromagnetic waves without using electrodes is employed. In order to effectively drive the drive electromagnetic wave into the discharge tube H in the electrodeless discharge ultraviolet irradiation device 2, it is preferable to use a ferrite core coil having a ferrite core C such as an iron core that collects magnetic flux. It is preferable to use a ferrite core C with little loss. When a ferrite core coil is used, if the frequency is high, the heat loss of the ferrite core C increases and the allowable operating temperature upper limit (Curie temperature) of the ferrite core C is exceeded. Therefore, it is desirable to drive the ferrite core coil at a frequency of 5 MHz or less.

他方、空芯コイルである場合には、法的に許容されたISM帯(13.56MHz)以下の周波数で空芯コイルを駆動するのが望ましい。   On the other hand, in the case of an air-core coil, it is desirable to drive the air-core coil at a frequency below the legally allowed ISM band (13.56 MHz).

更には、処理液体Pが誘電率が高いがために高周波電磁波をより多く吸収して高周波電力損失の大きい水などを主体とした液体であるような場合には、コイルEの駆動周波数が高いと紫外線を放射するべきエネルギーが、紫外線を放射しないで処理液体に直接吸収されてしまい多大な電力損失をきたす原因となる。そのために、フェライトコアコイルあるいは空芯コイルの駆動周波数は1MHz以下が望ましい。   Furthermore, since the treatment liquid P has a high dielectric constant and absorbs more high-frequency electromagnetic waves and is a liquid mainly composed of water having a high high-frequency power loss, the driving frequency of the coil E is high. Energy that should radiate ultraviolet rays is directly absorbed by the treatment liquid without radiating ultraviolet rays, causing a great power loss. Therefore, the drive frequency of the ferrite core coil or air core coil is desirably 1 MHz or less.

なお、フェライトコアCの動作効率上の観点からすれば、高周波電源によるフェライトコアコイルの駆動周波数が高ければ高いほど損失が大きくなることから、前記駆動周波数はできれば高くないほうが望ましい。反対に、高周波電源によるフェライトコアコイルの駆動周波数が低すぎる場合には、フェライトコアCを太くつまりは直径を大きくしなければならずコスト的に不利である。これらに鑑みれば、高周波電源によるフェライトコアコイルの駆動周波数は、20kHz以上1MHz以下であるのが望ましい。   From the viewpoint of operating efficiency of the ferrite core C, the higher the driving frequency of the ferrite core coil by the high frequency power source, the higher the loss. Therefore, it is desirable that the driving frequency is not as high as possible. On the other hand, if the drive frequency of the ferrite core coil by the high frequency power source is too low, the ferrite core C must be thickened, that is, the diameter must be increased, which is disadvantageous in terms of cost. In view of these, it is desirable that the drive frequency of the ferrite core coil by the high frequency power source is 20 kHz or more and 1 MHz or less.

すなわち、フェライトコアCの透磁率をμ、磁界強度をHとすると、フェライトコアCを介して高周波電源から放電管Hへと伝達されるエネルギーは、フェライトコアCの単位体積当り「μfH2/2」で表される。したがって、周波数(f)が低くなると単位体積当りのエネルギー伝達量が少なくなるので、一定量のエネルギーを伝達するためにはフェライトコアCを大きくしなければならなくなる。例えば20kHzの周波数で駆動する場合には、200kHzの周波数で駆動する場合に比べて約10倍の大きさのフェライトコアCが必要になる。そこで、本実施形態においては放電管Hから紫外線を発生させるための駆動周波数の下限がフェライトコアCの外周に巻き回されたコイルEへの駆動周波数で決まり、望ましくは20kHz以上(更に望ましくは50kHz以上)の周波数で駆動するように調整するのがよい。そうすることで、フェライトコアCをあえて大きくしなくても、高周波電源から放電管Hへと効率的にエネルギーを伝達させることが簡単にできるようになる。すなわち、空芯コイルよりもフェライトコアコイルを用いたほうが、より効率的且つ安定的に紫外線を放射させ得る。 That is, the permeability of the ferrite core C mu, when the magnetic field intensity and H, energy transferred from the high-frequency power supply to the discharge tube H through the ferrite cores C are per unit volume of the ferrite core C "μfH 2/2 Is represented. Therefore, since the amount of energy transfer per unit volume decreases as the frequency (f) decreases, the ferrite core C must be enlarged in order to transmit a certain amount of energy. For example, in the case of driving at a frequency of 20 kHz, a ferrite core C that is about 10 times larger than that in the case of driving at a frequency of 200 kHz is required. Therefore, in the present embodiment, the lower limit of the driving frequency for generating ultraviolet rays from the discharge tube H is determined by the driving frequency to the coil E wound around the outer periphery of the ferrite core C, preferably 20 kHz or more (more preferably 50 kHz). It is preferable to adjust so as to drive at the above frequency. By doing so, it is possible to easily transfer energy from the high-frequency power source to the discharge tube H without having to enlarge the ferrite core C. That is, the use of a ferrite core coil can radiate ultraviolet rays more efficiently and stably than an air-core coil.

以上詳述したように、本発明に係る液体処理装置1によれば、その構成要素である無電極放電紫外線照射装置2の石英製の放電管Hの内壁面(内周)に185nm波長の紫外線(真空紫外光)を減光/遮断する酸化金属膜を形成する、あるいは石英に金属酸化物を混入して作成された放電管Hを用いることで、185nm波長の紫外線の総受光量(累積被爆量)が概ね700W時/cm2程度に達するのを時間的に遅らせることができるので、該放電管Hの寿命を著しく延長せしめることができるようになる。さらには、フェライトコアコイルを用いることにより、効率よく且つ安定した紫外線の放射を行うことが容易にできる。封入希ガス圧を1torr(133パスカル)以下とすれば、紫外線放射効率を高くすることが容易にできる。放電管Hの内壁面に保護膜を形成するだけで、放電管Hの寿命をより長くすることができる。駆動周波数を50kHz以上とすることにより、紫外線放射能力が高く効率良く紫外線を放射させることが容易にできる。また、処理液体Pと放電管Hとが大きく隔離されて配置されているような場合には、ISM帯もしくはそれ以下の周波数で駆動することにより、紫外線放射能力が高く効率良く紫外線を放射させることが容易にできる。他方、処理液体Pと放電管Hとが接近して配置されているような場合には、5MHz以下のより望ましくは1MHz以下の周波数で駆動することにより、紫外線放射能力が高く効率良く紫外線を放射させることが容易にできる。これらの利点を有した、従来に比較してより寿命の長い且つ安定した放電を行う無電極放電紫外線照射装置2を備えた液体処理装置1を提供することができるようになる。 As described in detail above, according to the liquid processing apparatus 1 of the present invention, ultraviolet light having a wavelength of 185 nm is applied to the inner wall surface (inner circumference) of the quartz discharge tube H of the electrodeless discharge ultraviolet irradiation apparatus 2 that is a constituent element thereof. By forming a metal oxide film that reduces or blocks (vacuum ultraviolet light), or by using a discharge tube H prepared by mixing metal oxide into quartz, the total amount of received light (cumulative exposure) of 185 nm wavelength ultraviolet light The amount) can be delayed in time until it reaches approximately 700 Wh / cm 2, so that the life of the discharge tube H can be significantly extended. Furthermore, by using a ferrite core coil, it is possible to easily and efficiently emit ultraviolet rays. If the filled rare gas pressure is 1 torr (133 Pascal) or less, the ultraviolet radiation efficiency can be easily increased. By simply forming a protective film on the inner wall surface of the discharge tube H, the life of the discharge tube H can be extended. By setting the drive frequency to 50 kHz or higher, the ultraviolet radiation ability is high and the ultraviolet radiation can be easily radiated efficiently. In addition, when the processing liquid P and the discharge tube H are arranged in a largely separated manner, the ultraviolet rays can be radiated efficiently with high ultraviolet radiation ability by driving at a frequency of the ISM band or lower. Can be easily done. On the other hand, when the processing liquid P and the discharge tube H are arranged close to each other, driving with a frequency of 5 MHz or less, more desirably 1 MHz or less, emits ultraviolet rays with high ultraviolet radiation capability and high efficiency. Can be easily done. It is possible to provide the liquid processing apparatus 1 having the electrodeless discharge ultraviolet irradiation apparatus 2 that has these advantages and performs longer-lasting and stable discharge than the conventional one.

更に、例えば紫外線被照射物が食品もしくはその原材料関連品等であり、これに対し185nm波長の紫外線が254nm波長の紫外線と共に放射された場合には、185nm波長の紫外線の分解作用により食品の味変わり(食味の変化)が起きるが、本実施形態によれば185nm波長の紫外線を遮断もしくは大幅に減光することから、そうした食味の変化を生じさせることなしに良好な殺菌結果を得ることのできるようになることが見出された。例えば牛乳の殺菌に用いる場合、185nm波長の紫外線を遮断しないと牛乳が煙臭く変質するという食味の変化が見られるが、185nm波長の紫外線を遮断するとそのような食味の変化が見られず、かつ良好な殺菌状態が得られた。   Furthermore, for example, when the UV irradiated object is food or a product related to its raw material, and ultraviolet light having a wavelength of 185 nm is emitted together with ultraviolet light having a wavelength of 254 nm, the taste of the food is changed by the decomposition action of the ultraviolet light having a wavelength of 185 nm. (Change in taste) occurs, but according to the present embodiment, ultraviolet rays having a wavelength of 185 nm are blocked or greatly reduced, so that a good sterilization result can be obtained without causing such taste change. Was found to be. For example, when used for sterilization of milk, if the UV light at 185 nm wavelength is not blocked, the taste changes that the milk becomes smoky, but if the UV light at 185 nm wavelength is blocked, such a change in taste is not seen, and A good sterilization condition was obtained.

以上、図面に基づいて実施形態の一例を説明したが、本発明はこれに限定されるものではなく、様々な実施形態が可能であることは言うまでもない。例えば、本発明に係る液体処理装置1の構成要素をなす無電極放電紫外線照射装置2において、放電管は図3に示すような構成であってもよい。すなわち、放電管Hには、開口された一方の端部から開口された他方の端部までにわたって内部を貫通する中空部(空洞部)Haが形成されてなり(つまり放電管Hの断面は環状になる)、該中空部Ha(空洞部)に管軸に沿って長尺形状のフェライトコアCが配置される。ここに示す実施例では、例えばセラミック製のフェライトコアCが放電管Hと同様の円筒形状に構成されてなり、該放電管Hとほぼ同軸になるように放電管H内に配設されている。この実施形態では、フェライトコアCではなく放電管Hの外周に誘導コイルEが巻き回されている。勿論、上述した図2の実施形態においても、誘起コイルEをフェライトコアCを中に配した放電管Hの外周に巻き回してもよい。反対に、図3の実施形態において、フェライトコアCに誘導コイルEを巻き回してよいのは言うまでもない。更には、図示を省略したが、ループ状の放電管にコイルを懸回したリング状のフェライトコアを鎖交させた構造のものでも良いことは自明である。   As mentioned above, although an example of embodiment was demonstrated based on drawing, this invention is not limited to this, It cannot be overemphasized that various embodiment is possible. For example, in the electrodeless discharge ultraviolet irradiation device 2 that is a constituent element of the liquid processing apparatus 1 according to the present invention, the discharge tube may have a configuration as shown in FIG. That is, the discharge tube H is formed with a hollow portion (hollow portion) Ha penetrating the inside from one open end to the other open end (that is, the discharge tube H has a circular cross section). The elongated ferrite core C is disposed along the tube axis in the hollow portion Ha (hollow portion). In the embodiment shown here, for example, a ceramic ferrite core C is formed in a cylindrical shape similar to that of the discharge tube H, and is disposed in the discharge tube H so as to be substantially coaxial with the discharge tube H. . In this embodiment, the induction coil E is wound around the outer periphery of the discharge tube H instead of the ferrite core C. Of course, also in the embodiment of FIG. 2 described above, the induction coil E may be wound around the outer periphery of the discharge tube H in which the ferrite core C is disposed. Conversely, it goes without saying that the induction coil E may be wound around the ferrite core C in the embodiment of FIG. Further, although not shown, it is obvious that a ring-shaped ferrite core in which a coil is suspended in a loop-shaped discharge tube may be linked.

なお、本発明に係る液体処理装置1としては、図1に示したような無電極放電紫外線照射装置2が処理槽に貯められた処理液体P中に浸漬されて、当該無電極放電紫外線照射装置2から発せられる紫外線が放電管Hの周囲に存在する処理液体Pに対して放射されることにより液体処理を行うタイプのものであってもよい。   In addition, as the liquid processing apparatus 1 according to the present invention, an electrodeless discharge ultraviolet irradiation device 2 as shown in FIG. 1 is immersed in the processing liquid P stored in a processing tank, and the electrodeless discharge ultraviolet irradiation device is used. It may be of a type that performs liquid treatment by radiating ultraviolet rays emitted from 2 to the treatment liquid P existing around the discharge tube H.

1・・・液体処理装置
2・・・無電極放電紫外線照射装置
21・・・ケーシング部材
22・・・放電管収容管
A・・・円筒容器(密閉容器)
Aa・・・処理液体流入口
Ab・・・処理液体流出口
B・・・酸化金属膜
C・・・フェライトコア
D・・・放熱フィン
E・・・誘導コイル
F・・・シール部
H・・・無電極紫外線放射放電管
Ha・・・中空部
N・・・螺子
P・・・処理液体
DESCRIPTION OF SYMBOLS 1 ... Liquid processing apparatus 2 ... Electrodeless ultraviolet irradiation apparatus 21 ... Casing member 22 ... Discharge tube accommodating tube A ... Cylindrical container (sealed container)
Aa ... Treatment liquid inlet Ab ... Treatment liquid outlet B ... Metal oxide film C ... Ferrite core D ... Radiation fin E ... Inductive coil F ... Sealing part H ... -Electrodeless ultraviolet radiation discharge tube Ha ... Hollow part N ... Screw P ... Treatment liquid

Claims (6)

水銀若しくは水銀合金と希ガスとを含んでなる放電媒体を管内に封入した石英製の無電極の紫外線放電管であって、前記紫外線放電管は、石英分子の結合分断により石英密度を変化させ得る185nm以下の波長の紫外線を遮断若しくは減光する材料で前記管内の内壁面を被覆したものと、
前記紫外線放電管に高周波磁界を作用させて放電を生起させる誘導コイルと、
前記誘導コイルに高周波電流又は電圧を供給する高周波電源であって、該高周波電源は前記誘導コイルを通電することにより前記紫外線放電管に紫外線を発生させるものと
を備え、
処理液体の流入口及び流出口を備えた処理液体流路に配設され、前記流路を通る処理液体に対し紫外線を照射して前記処理液体を処理する液体処理装置。
An electrodeless ultraviolet discharge tube made of quartz in which a discharge medium containing mercury or a mercury alloy and a rare gas is enclosed in a tube, and the ultraviolet discharge tube can change the quartz density by breaking the binding of quartz molecules. The inner wall surface of the tube covered with a material that blocks or attenuates ultraviolet light having a wavelength of 185 nm or less;
An induction coil that causes a discharge by causing a high-frequency magnetic field to act on the ultraviolet discharge tube;
A high-frequency power source for supplying a high-frequency current or voltage to the induction coil, the high-frequency power source comprising: generating ultraviolet rays in the ultraviolet discharge tube by energizing the induction coil;
A liquid processing apparatus that is disposed in a processing liquid flow path having a processing liquid inlet and an outlet and irradiates the processing liquid passing through the flow path with ultraviolet rays to process the processing liquid.
水銀若しくは水銀合金と希ガスとを含んでなる放電媒体を管内に封入した無電極の紫外線放電管であって、前記紫外線放電管は、石英分子の結合分断により石英密度を変化させ得る185nm以下の波長の紫外線を遮断若しくは減光する材料を石英に混入して生成したものと、
前記紫外線放電管に高周波磁界を作用させて放電を生起させる誘導コイルと、
前記誘導コイルに高周波電流又は電圧を供給する高周波電源であって、該高周波電源は前記誘導コイルを通電することにより前記紫外線放電管に紫外線を発生させるものと
を備え、
処理液体の流入口及び流出口を備えた処理液体流路に配設され、前記流路を通る処理液体に対し紫外線を照射して前記処理液体を処理する液体処理装置。
An electrodeless ultraviolet discharge tube in which a discharge medium containing mercury or a mercury alloy and a rare gas is enclosed in a tube, the ultraviolet discharge tube having a crystal density of 185 nm or less capable of changing a quartz density by bond breaking of quartz molecules Produced by mixing quartz with a material that blocks or attenuates ultraviolet light of wavelength,
An induction coil that causes a discharge by causing a high-frequency magnetic field to act on the ultraviolet discharge tube;
A high-frequency power source for supplying a high-frequency current or voltage to the induction coil, the high-frequency power source comprising: generating ultraviolet rays in the ultraviolet discharge tube by energizing the induction coil;
A liquid processing apparatus that is disposed in a processing liquid flow path having a processing liquid inlet and an outlet and irradiates the processing liquid passing through the flow path with ultraviolet rays to process the processing liquid.
前記紫外線放電管は、長手方向に沿って内部を貫通する空洞部を有してなる筒状の二重管又は空洞部を有してなる半球状の二重管であって、該二重管の管内に1torr以下で前記放電媒体を封入することを特徴とする請求項1又は2に記載の液体処理装置。   The ultraviolet discharge tube is a cylindrical double tube having a hollow portion penetrating the inside along the longitudinal direction or a hemispherical double tube having a hollow portion, the double tube The liquid processing apparatus according to claim 1, wherein the discharge medium is sealed in a tube of 1 torr or less. 前記紫外線放電管を収容する収容管をさらに備えた請求項1乃至3のいずれかに記載の液体処理装置。   The liquid processing apparatus according to claim 1, further comprising a storage tube that stores the ultraviolet discharge tube. 前記紫外線放電管の管内の内壁面を当該管内に封入されている放電媒体との反応を防止する保護膜で被覆することを特徴とする請求項1乃至4のいずれかに記載の液体処理装置。   5. The liquid processing apparatus according to claim 1, wherein an inner wall surface of the ultraviolet discharge tube is covered with a protective film that prevents a reaction with a discharge medium sealed in the tube. フェライトコアをさらに備え、前記誘導コイルは前記フェライトコア又は前記紫外線放電管に巻き回されてなり、当該誘導コイルを駆動する際の前記高周波電源の周波数は5MHz以下且つ50kHz以上であることを特徴とする請求項1乃至5のいずれかに記載の液体処理装置。   A ferrite core is further provided, wherein the induction coil is wound around the ferrite core or the ultraviolet discharge tube, and the frequency of the high-frequency power source when driving the induction coil is 5 MHz or less and 50 kHz or more. The liquid processing apparatus according to claim 1.
JP2012242823A 2012-11-02 2012-11-02 Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device Pending JP2014093190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242823A JP2014093190A (en) 2012-11-02 2012-11-02 Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242823A JP2014093190A (en) 2012-11-02 2012-11-02 Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device

Publications (1)

Publication Number Publication Date
JP2014093190A true JP2014093190A (en) 2014-05-19

Family

ID=50937129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242823A Pending JP2014093190A (en) 2012-11-02 2012-11-02 Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device

Country Status (1)

Country Link
JP (1) JP2014093190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170405A (en) * 2020-03-06 2020-05-19 佛山市南海科日超声电子有限公司 Ultraviolet sterilization type atomization device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684498A (en) * 1992-09-03 1994-03-25 Toshiba Lighting & Technol Corp Low pressure mercury vapor electric discharge lamp for ultraviolet irradiation
JPH1069886A (en) * 1996-08-28 1998-03-10 Iwasaki Electric Co Ltd Mercury vapor discharge lamp
JP2003208874A (en) * 2002-12-24 2003-07-25 Toshiba Lighting & Technology Corp Electrodeless discharge lamp
JP2005506676A (en) * 2001-10-24 2005-03-03 松下電工株式会社 Electrodeless low-pressure lamp with many ferrite cores and induction coils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684498A (en) * 1992-09-03 1994-03-25 Toshiba Lighting & Technol Corp Low pressure mercury vapor electric discharge lamp for ultraviolet irradiation
JPH1069886A (en) * 1996-08-28 1998-03-10 Iwasaki Electric Co Ltd Mercury vapor discharge lamp
JP2005506676A (en) * 2001-10-24 2005-03-03 松下電工株式会社 Electrodeless low-pressure lamp with many ferrite cores and induction coils
JP2003208874A (en) * 2002-12-24 2003-07-25 Toshiba Lighting & Technology Corp Electrodeless discharge lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170405A (en) * 2020-03-06 2020-05-19 佛山市南海科日超声电子有限公司 Ultraviolet sterilization type atomization device

Similar Documents

Publication Publication Date Title
JP5074381B2 (en) UVC radiation generator
US6633109B2 (en) Dielectric barrier discharge-driven (V)UV light source for fluid treatment
US7794673B2 (en) Sterilizer
WO2014148325A1 (en) Fluorescent excimer lamp and fluid treatment apparatus
JP2016036772A (en) Ultraviolet irradiation type water purifier
US10453669B2 (en) Electrodeless gas discharge lamps and methods of making the same
JP2007323995A (en) Ultraviolet light emitting device
JP2002373625A (en) Electric discharge lamp, black light and operating method therefor
JPS61208743A (en) Ultraviolet treatment device
JP2014093190A (en) Liquid treatment apparatus employing electrodeless discharge ultraviolet irradiation device
TW201422538A (en) Liquid processing apparatus using electrodeless-discharge ultraviolet ray irradiation apparatus
JP2013118072A (en) Ultraviolet discharge lamp
KR100832398B1 (en) Zirconium ion uv light source and disinfection system device using microwave discharge electrodeless lamp
JP2006210249A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, and illumination apparatus
JP2016225037A (en) Double tube type microwave discharge lamp
JPH1012197A (en) Electrodeless discharge lamp, electrodeless discharge lamp device, electrodeless discharge lamp lighting device, infrared-ray radiator, and fluid processor
JP6377528B2 (en) Liquid processing apparatus and method
RU2390498C2 (en) Apparatus for disinfecting water using ultraviolet radiation
JP2014086182A (en) Liquid treatment apparatus using electrodeless discharge ultraviolet irradiation device
TW200535902A (en) Dielctric shielded discharging lamp and ultraviolet radiating device
JP4203651B2 (en) Electrodeless discharge lamp and electrodeless discharge lamp light source device
JP2012256568A (en) Liquid processor using electrodeless discharge ultraviolet irradiation device
JP2004146077A (en) Ultraviolet irradiation device
JP2014086183A (en) Liquid treatment apparatus using electrodeless discharge ultraviolet irradiation device
JP2018198175A (en) Optical processing device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161108