JP2014091102A - Apparatus and method for exhaust gas treatment - Google Patents

Apparatus and method for exhaust gas treatment Download PDF

Info

Publication number
JP2014091102A
JP2014091102A JP2012244196A JP2012244196A JP2014091102A JP 2014091102 A JP2014091102 A JP 2014091102A JP 2012244196 A JP2012244196 A JP 2012244196A JP 2012244196 A JP2012244196 A JP 2012244196A JP 2014091102 A JP2014091102 A JP 2014091102A
Authority
JP
Japan
Prior art keywords
fly ash
slaked lime
hydrogen chloride
exhaust gas
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012244196A
Other languages
Japanese (ja)
Other versions
JP5694276B2 (en
Inventor
Kei Watanabe
圭 渡邉
Koji Sunada
浩志 砂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2012244196A priority Critical patent/JP5694276B2/en
Publication of JP2014091102A publication Critical patent/JP2014091102A/en
Application granted granted Critical
Publication of JP5694276B2 publication Critical patent/JP5694276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress the concentration of hydrogen chloride in exhaust gas and adjust the pH of fly ash captured from exhaust gas in an appropriate range.SOLUTION: An exhaust gas treatment apparatus comprises a hydrated lime supply device 14 supplying hydrated lime to exhaust gas, a fly ash treating agent supply device 16 supplying a fly ash treating agent containing a ferrous salt to exhaust gas, a filter 10 capturing fly ash in exhaust gas, a fly ash treatment apparatus 18 kneading the captured fly ash with hydrated lime and the fly ash treating agent, a hydrogen chloride concentration detector 20 detecting a concentration of hydrogen chloride after filtration, a hydrogen chloride concentration controller 22 causing the hydrated lime supply device 14 to supply hydrated lime so that the detected concentration of hydrogen chloride approaches a target value and a fly ash treatment controller 24 determining the amount per unit time of the fly ash treating agent supplied for neutralization of unreacted hydrated lime on the basis of the detected concentration of hydrogen chloride and the amount per unit time of hydrated lime supplied and causing the fly ash treating agent supply device 16 to supply the fly ash treating agent by the determined supply amount.

Description

本発明は、焼却炉や溶融炉等を含む廃棄物処理設備から排出される排ガスを濾過して当該排ガスに含まれる飛灰を捕獲するとともに当該飛灰を混練処理するための装置及び方法に関するものである。   The present invention relates to an apparatus and method for filtering exhaust gas discharged from waste treatment facilities including incinerators and melting furnaces to capture fly ash contained in the exhaust gas and kneading the fly ash. It is.

焼却炉や溶融炉を含む廃棄物処理設備からは、廃棄物の燃焼により、飛灰を含む高温の排ガスが生成される。この排ガスの処理にあたっては、1)当該排ガスを例えばバグフィルタで濾過して当該排ガス中の飛灰を捕獲することと、2)濾過されて外気に排出されるガスの塩化水素濃度を一定以下に抑えることと、3)捕獲された飛灰を例えば混練処理して埋立てに適した材料にするとともに、その処理後の材料における重金属、特に六価クロム及び鉛、の溶出量を抑えることと、が要請される。   From waste treatment facilities including incinerators and melting furnaces, high-temperature exhaust gas containing fly ash is generated by combustion of waste. In the treatment of the exhaust gas, 1) the exhaust gas is filtered through, for example, a bag filter to capture fly ash in the exhaust gas, and 2) the hydrogen chloride concentration of the gas filtered and discharged to the outside air is kept below a certain level. And 3) Kneading the captured fly ash into a material suitable for landfill, for example, and suppressing the elution amount of heavy metals, particularly hexavalent chromium and lead, in the material after the treatment, Is requested.

このうち、2)の塩化水素ガス濃度を抑制する手段としては、当該塩化水素ガス濃度を検出してその検出濃度が一定以下に抑えられるように濾過前のガスに対して中和剤である消石灰を供給することが知られており、3)の六価クロム及び鉛の溶出量を抑制する手段としては、硫酸第一鉄や塩化第一鉄といった第一鉄塩を液体の状態で混練中の飛灰に供給することが知られている。この第一鉄塩は、前記飛灰に含まれる六価クロムを無害の三価クロムに還元する還元剤としての役割に加え、前記消石灰の供給により過度に上昇した飛灰のpHを適当な値に抑える酸としての役割も担う。このように飛灰中のpHを抑えることは、鉛の溶出量の低減に寄与する。混練される飛灰中からの鉛の溶出量はpHの過度の上昇(例えばpH>11)によって顕著に増加するため、当該pHの調整は鉛の溶出の抑制にきわめて効果的である。   Among these, as means for suppressing the hydrogen chloride gas concentration in 2), slaked lime which is a neutralizing agent for the gas before filtration so that the hydrogen chloride gas concentration is detected and the detected concentration is kept below a certain level. As a means for suppressing the elution amount of hexavalent chromium and lead in 3), ferrous sulfate such as ferrous sulfate and ferrous chloride is being kneaded in a liquid state. It is known to supply fly ash. This ferrous salt has a role as a reducing agent that reduces hexavalent chromium contained in the fly ash to harmless trivalent chromium, and has an appropriate value for the pH of the fly ash that is excessively increased by the supply of the slaked lime. It also plays a role as an acid that keeps it down. Thus, suppressing the pH in the fly ash contributes to a reduction in the amount of lead elution. Since the elution amount of lead from the fly ash to be kneaded increases remarkably due to an excessive increase in pH (for example, pH> 11), the adjustment of the pH is extremely effective for suppressing the elution of lead.

しかしながら、前記のように混練処理中の飛灰に対して液体状の第一鉄塩を供給する方法では、当該第一鉄塩の十分な混合が難しく、また、粉状の第一鉄塩を用いる場合に比べてコストが高くなり易いという欠点がある。この方法に対し、特許文献1には、前記第一鉄塩である粉状の硫酸第一鉄を含む粉状の煤塵処理剤を煙道すなわちバグフィルタの上流側の箇所に供給する方法が記載されている。この方法では、前記煤塵処理剤が排ガス中に混合された後に前記バグフィルタで前記飛灰とともに捕獲され、混練機において飛灰と十分に混合されることが可能である。   However, in the method of supplying the liquid ferrous salt to the fly ash during the kneading process as described above, it is difficult to sufficiently mix the ferrous salt. There is a drawback that the cost is likely to be higher than when using it. In contrast to this method, Patent Document 1 describes a method of supplying a powdery dust treatment agent containing powdered ferrous sulfate, which is the ferrous salt, to a flue, that is, a location upstream of the bag filter. Has been. In this method, after the dust treatment agent is mixed in the exhaust gas, it can be captured together with the fly ash by the bag filter and sufficiently mixed with the fly ash in a kneader.

この方法では、前記硫酸第一鉄の単位時間あたりの供給量の調整が重要である。当該硫酸第一鉄の過剰な供給は、コストの増大につながるとともに、pHを過剰に下げて(例えばpH<9)鉛の溶出量を逆に増やすおそれがある。この硫酸第一鉄の供給量を決定するための手段として、前記特許文献1は、得られる煤塵(飛灰)について予備試験を行うことにより煤塵処理剤の必要供給量を決定する方法を開示する。具体的に、この方法では、得られた煤塵に所定量の煤塵処理剤を添加及び混合して得られた溶液について溶出試験が行われ、その溶出液のpHが10.5〜12.0となるように前記煤塵処理剤の供給量が設定される。   In this method, it is important to adjust the supply amount of ferrous sulfate per unit time. The excessive supply of the ferrous sulfate leads to an increase in cost, and there is a risk that the pH is excessively lowered (for example, pH <9) and the amount of lead elution is increased. As means for determining the supply amount of this ferrous sulfate, the said patent document 1 discloses the method of determining the required supply amount of a dust processing agent by performing a preliminary test about the obtained dust (fly ash). . Specifically, in this method, a dissolution test is performed on a solution obtained by adding and mixing a predetermined amount of dust treatment agent to the obtained dust, and the pH of the solution is 10.5 to 12.0. The supply amount of the dust treatment agent is set so as to be.

特開2010−279930号公報JP 2010-279930 A

前記方法は、溶出試験の結果すなわち処理中または処理後の飛灰のpHの検出結果に基づいて硫酸第一鉄の単位時間あたりの供給量をフィードバック制御するものであるが、この方法では硫酸第一鉄が供給されてから実際にpHが測定されて硫酸第一鉄の供給量が決定されるまでのタイムラグが非常に大きく、すなわち応答遅れが著しく、よって適正な制御を行うことが難しい、という課題がある。具体的に、前記方法では、溶出試験を開始してからpHを測定して硫酸第一鉄の供給量を決定するまでに長い時間(最低でも30分)を要するため、その間に実際のpHが大きく変動するおそれがある。このことは、実際の飛灰のpHと硫酸第一鉄の供給量との不整合を招き、当該飛灰のpHを好適な値にコントロールすることを困難にする。   In the above method, the supply amount of ferrous sulfate per unit time is feedback controlled based on the result of the dissolution test, that is, the detection result of the pH of fly ash during or after the treatment. The time lag from when ferrous iron is supplied until the pH is actually measured and the supply amount of ferrous sulfate is determined is very large, that is, the response delay is significant, and it is difficult to perform proper control. There are challenges. Specifically, in the above method, since it takes a long time (at least 30 minutes) from the start of the dissolution test to determine the supply amount of ferrous sulfate by measuring pH, May fluctuate significantly. This leads to inconsistency between the actual fly ash pH and the supply amount of ferrous sulfate, making it difficult to control the fly ash pH to a suitable value.

本発明の目的は、廃棄物処理設備から排出される排ガスを濾過して前記飛灰を捕獲してから排出するとともに、その濾過後のガスにおける塩化水素濃度を抑え、かつ、捕獲した飛灰のpHを適正な範囲に調整することが可能な排ガス処理装置及び方法を提供することにある。   The purpose of the present invention is to filter the exhaust gas discharged from the waste treatment facility and capture the fly ash and then discharge it, suppress the hydrogen chloride concentration in the filtered gas, and An object of the present invention is to provide an exhaust gas treatment apparatus and method capable of adjusting pH to an appropriate range.

当該目的を達成するために、本発明者らは、濾過された後のガスの塩化水素濃度に着目した。この塩化水素濃度は、消石灰の供給量を決定するために検出されるが、その検出された塩化水素濃度と実際の消石灰の供給量とに基づき、供給された消石灰のうち塩化水素との中和反応に寄与していない未反応消石灰の量を推定することが可能である。そして、この未反応消石灰の量に基づき、当該未反応消石灰を中和して飛灰のpHを好適な値に制御するための飛灰処理剤の供給量を決定することが可能である。   In order to achieve the object, the present inventors paid attention to the hydrogen chloride concentration of the gas after being filtered. This hydrogen chloride concentration is detected in order to determine the supply amount of slaked lime. Based on the detected hydrogen chloride concentration and the actual supply amount of slaked lime, neutralization of the supplied slaked lime with hydrogen chloride is performed. It is possible to estimate the amount of unreacted slaked lime that has not contributed to the reaction. And based on the quantity of this unreacted slaked lime, it is possible to determine the supply amount of the fly ash processing agent for neutralizing the said unreacted slaked lime and controlling the pH of fly ash to a suitable value.

本発明は、このような観点からなされたものであり、廃棄物処理設備から排出される排ガスを処理するための排ガス処理装置であって、廃棄物処理設備から排出される排ガスに消石灰を供給する消石灰供給装置と、前記排ガス中に第一鉄塩を含む飛灰処理剤を供給する飛灰処理剤供給装置と、前記消石灰及び前記飛灰処理剤が供給された前記排ガスを濾過して当該排ガスに含まれる飛灰、前記消石灰及び前記飛灰処理剤を捕獲する濾過器と、当該濾過器が捕獲した飛灰を前記消石灰及び前記飛灰処理剤とともに混練処理する飛灰処理装置と、前記濾過器により濾過された後のガスの塩化水素濃度を検出する塩化水素濃度検出器と、この塩化水素濃度検出器が検出する塩化水素濃度を目標値に近づけるための単位時間あたりの消石灰の供給量を決定し、その決定した供給量で前記消石灰供給装置に前記消石灰の供給を行わせる塩化水素濃度制御器と、前記塩化水素濃度検出器が検出する塩化水素濃度と前記消石灰供給装置による単位時間当たりの消石灰の供給量とに基づいて、前記消石灰との中和反応に寄与していない未反応消石灰を中和するための単位時間あたりの飛灰処理剤の供給量を決定し、その決定した供給量で前記飛灰処理剤供給装置に前記飛灰処理剤の供給を行わせる飛灰処理制御器と、を備えた装置を、提供する。   The present invention has been made from such a viewpoint, and is an exhaust gas treatment apparatus for treating exhaust gas discharged from a waste treatment facility, and supplies slaked lime to the exhaust gas discharged from the waste treatment facility. Slaked lime supply device, fly ash treatment agent supply device for supplying fly ash treatment agent containing ferrous salt in the exhaust gas, and filtering the exhaust gas supplied with the slaked lime and fly ash treatment agent A filter that captures the fly ash contained in the slaked lime and the fly ash treatment agent, a fly ash treatment device that kneads the fly ash captured by the filter together with the slaked lime and the fly ash treatment agent, and the filtration The hydrogen chloride concentration detector that detects the hydrogen chloride concentration of the gas after being filtered by the vessel, and the supply amount of slaked lime per unit time to bring the hydrogen chloride concentration detected by the hydrogen chloride concentration detector closer to the target value And a hydrogen chloride concentration controller that causes the slaked lime supply device to supply the slaked lime with the determined supply amount, a hydrogen chloride concentration detected by the hydrogen chloride concentration detector, and a unit time by the slaked lime supply device Based on the supply amount of slaked lime, determine the supply amount of fly ash treatment agent per unit time for neutralizing unreacted slaked lime that does not contribute to the neutralization reaction with the slaked lime, and the determined supply amount And a fly ash treatment controller that causes the fly ash treatment agent supply device to supply the fly ash treatment agent.

また本発明は、廃棄物処理設備から排出される排ガスを処理するための排ガス処理方法であって、廃棄物処理設備から排出される排ガスに消石灰を供給することと、前記排ガス中に第一鉄塩を含む飛灰処理剤を供給することと、前記消石灰及び前記飛灰処理剤が供給された前記排ガスを濾過器により濾過して当該排ガスに含まれる飛灰、前記消石灰及び前記飛灰処理剤を捕獲することと、その捕獲した飛灰を前記消石灰及び前記飛灰処理剤とともに混練処理することと、前記濾過器により濾過された後のガスの塩化水素濃度を検出することと、を含み、前記消石灰の供給については、検出した塩化水素濃度を目標値に近づけるように単位時間あたりの消石灰の供給量を決定し、前記飛灰処理剤の供給については、検出した塩化水素濃度と前記のように決定した単位時間当たりの消石灰の供給量とに基づいて、前記消石灰との中和反応に寄与していない未反応消石灰を中和するための単位時間あたりの飛灰処理剤の供給量を決定する方法を、提供する。   The present invention is also an exhaust gas treatment method for treating exhaust gas discharged from a waste treatment facility, wherein slaked lime is supplied to the exhaust gas discharged from the waste treatment facility, and ferrous iron is contained in the exhaust gas. Supplying the fly ash treatment agent containing salt, and filtering the exhaust gas supplied with the slaked lime and the fly ash treatment agent with a filter, the fly ash contained in the exhaust gas, the slaked lime, and the fly ash treatment agent , Kneading the captured fly ash together with the slaked lime and the fly ash treatment agent, and detecting the hydrogen chloride concentration of the gas after being filtered by the filter, For the supply of slaked lime, the supply amount of slaked lime per unit time is determined so that the detected hydrogen chloride concentration approaches the target value, and for the supply of the fly ash treatment agent, the detected hydrogen chloride concentration and the aforementioned The supply amount of fly ash treatment agent per unit time for neutralizing unreacted slaked lime that does not contribute to the neutralization reaction with the slaked lime based on the supply amount of slaked lime determined per unit time A method of determining is provided.

前記装置及び方法では、塩化水素濃度検出器が検出する(濾過後のガスの)塩化水素濃度に基づき、当該塩化水素濃度を目標値に制御するための消石灰供給量を決定するとともに、その検出された塩化水素濃度とこれに基づき決定される消石灰供給量を利用して、前記消石灰との中和反応に寄与しなかった未反応消石灰を中和するための飛灰処理剤供給量を決定することができる。従って、従来のような溶出試験を要することなく、タイムラグの小さい、すなわち応答性の高い、適正な飛灰処理制御を実現することができる。   In the apparatus and method, based on the hydrogen chloride concentration (of the gas after filtration) detected by the hydrogen chloride concentration detector, the supply amount of slaked lime for controlling the hydrogen chloride concentration to the target value is determined and detected. Determining the supply amount of fly ash treatment agent to neutralize unreacted slaked lime that did not contribute to the neutralization reaction with the slaked lime using the concentration of hydrogen chloride and the amount of slaked lime determined based on this Can do. Therefore, appropriate fly ash treatment control with a small time lag, that is, high responsiveness can be realized without requiring a conventional dissolution test.

具体的に、前記排ガス処理装置における飛灰処理制御器は、前記塩化水素濃度検出器が検出する塩化水素濃度と前記塩化水素濃度制御器が決定した単位時間当たりの消石灰供給量とに基づいて前記濾過器に流入する塩化水素ガスの流量を算定する塩化水素流入量算定部と、その算定された塩化水素ガスの流量に基づいて前記消石灰のうち前記塩化水素ガスとの中和反応に寄与していない未反応消石灰の量を算定する未反応消石灰量算定部と、その算定された未反応消石灰の量に基づいて単位時間当たりの飛灰処理剤の供給量を決定する飛灰処理剤供給量決定部と、を含むものが、好適である。   Specifically, the fly ash treatment controller in the exhaust gas treatment apparatus is based on the hydrogen chloride concentration detected by the hydrogen chloride concentration detector and the slaked lime supply amount per unit time determined by the hydrogen chloride concentration controller. A hydrogen chloride inflow calculation unit that calculates the flow rate of hydrogen chloride gas flowing into the filter, and contributes to the neutralization reaction with the hydrogen chloride gas of the slaked lime based on the calculated flow rate of hydrogen chloride gas. The unreacted slaked lime amount calculation unit that calculates the amount of unreacted slaked lime, and the fly ash treatment agent supply amount determination that determines the supply amount of the fly ash treatment agent per unit time based on the calculated unreacted slaked lime amount Are preferably included.

この場合、前記飛灰処理剤供給決定部は、例えば、前記未反応消石灰の全量を中和するのに必要な飛灰処理剤の量を前記供給量として決定するのが、よい。   In this case, for example, the fly ash treatment agent supply determining unit may determine, as the supply amount, the amount of fly ash treatment agent necessary for neutralizing the total amount of the unreacted slaked lime.

同様に、前記排ガス処理方法においては、前記飛灰処理剤の供給量の決定にあたり、検出した塩化水素濃度と決定した単位時間当たりの消石灰供給量とに基づいて前記濾過器に流入する塩化水素ガスの流量を算定し、その算定された塩化水素ガスの流量に基づいて前記消石灰のうち前記塩化水素ガスとの中和反応に寄与していない未反応消石灰の量を算定し、その算定された未反応消石灰の量に基づいて単位時間当たりの飛灰処理剤の供給量を決定するのが、好ましい。   Similarly, in the exhaust gas treatment method, in determining the supply amount of the fly ash treatment agent, the hydrogen chloride gas flowing into the filter based on the detected hydrogen chloride concentration and the determined slaked lime supply amount per unit time The amount of unreacted slaked lime that does not contribute to the neutralization reaction with the hydrogen chloride gas of the slaked lime is calculated based on the calculated flow rate of the hydrogen chloride gas. It is preferable to determine the supply amount of the fly ash treatment agent per unit time based on the amount of reaction slaked lime.

この場合、前記飛灰処理剤の供給量は、例えば、前記未反応消石灰の全量を中和するのに必要な飛灰処理剤の量を前記供給量として決定するのが、よい。   In this case, the supply amount of the fly ash treatment agent may be determined, for example, by determining the amount of fly ash treatment agent necessary for neutralizing the total amount of the unreacted slaked lime as the supply amount.

以上のように、本発明によれば、廃棄物処理設備から排出される排ガスを濾過して前記飛灰を捕獲してから排出するとともに、その濾過後のガスにおける塩化水素濃度を消石灰の供給によって抑えることができ、かつ、その消石灰の供給に起因する飛灰のpHの上昇を適正に抑えることが可能な排ガス処理装置及び方法が提供される。   As described above, according to the present invention, the exhaust gas discharged from the waste treatment facility is filtered and captured after capturing the fly ash, and the hydrogen chloride concentration in the filtered gas is determined by supplying slaked lime. There is provided an exhaust gas treatment apparatus and method that can be suppressed and can appropriately suppress an increase in the pH of fly ash caused by the supply of the slaked lime.

本発明の実施の形態に係る排ガス処理装置を示す図である。It is a figure which shows the waste gas processing apparatus which concerns on embodiment of this invention. 前記排ガス処理装置の飛灰処理制御器を示すブロック図である。It is a block diagram which shows the fly ash process controller of the said waste gas processing apparatus. 前記飛灰処理制御器での演算において利用される当量比と脱塩率との関係を示すグラフである。It is a graph which shows the relationship between the equivalent ratio utilized in the calculation in the said fly ash treatment controller, and a desalination rate.

本発明の好ましい実施の形態を、図面を参照しながら説明する。   Preferred embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る排ガス処理装置を示したものである。この排ガス処理装置は、図略の廃棄物処理設備から排出される排ガスを処理するためのものである。廃棄物処理設備は、都市ごみ等の廃棄物を熱分解処理するものであって、溶融炉、焼却炉、複合炉、あるいはその他の熱分解炉を含む種々のものについて本発明の装置が適用されることが可能である。   FIG. 1 shows an exhaust gas treatment apparatus according to an embodiment of the present invention. This exhaust gas treatment apparatus is for treating exhaust gas discharged from a waste treatment facility (not shown). The waste treatment facility is for pyrolyzing waste such as municipal waste, and the apparatus of the present invention is applied to various types including a melting furnace, an incinerator, a combined furnace, or other pyrolysis furnace. Is possible.

前記排ガス処理装置は、濾過器10と、誘引送風機12と、消石灰供給装置14と、飛灰処理剤供給装置16と、飛灰処理装置18と、塩化水素濃度検出器20と、塩化水素濃度制御器22と、飛灰処理制御器24と、を備える。   The exhaust gas treatment device includes a filter 10, an induction blower 12, a slaked lime supply device 14, a fly ash treatment agent supply device 16, a fly ash treatment device 18, a hydrogen chloride concentration detector 20, and a hydrogen chloride concentration control. And a fly ash treatment controller 24.

前記濾過器10は、前記廃棄物処理設備から排出される排ガスを濾過するためのもので、例えばバグフィルタからなる。濾過器10は、ガス入口及びガス出口を有し、ガス入口は煙道26を介して前記廃棄物処理設備に接続され、ガス出口は前記誘引送風機12に接続される。濾過器10は、前記煙道26を通じて導入される排ガスを濾過し、当該排ガス中に含まれる飛灰を捕獲して前記飛灰処理装置18に導出する。前記誘引送風機12は、例えばファンからなり、前記濾過器10から排出される濾過後のガスが煙突28を通じて外気に排出されるガス流れを形成する。   The filter 10 is for filtering the exhaust gas discharged from the waste treatment facility, and is composed of, for example, a bag filter. The filter 10 has a gas inlet and a gas outlet. The gas inlet is connected to the waste treatment facility via a flue 26, and the gas outlet is connected to the induction blower 12. The filter 10 filters the exhaust gas introduced through the flue 26, captures the fly ash contained in the exhaust gas, and guides it to the fly ash treatment device 18. The induction blower 12 is composed of, for example, a fan, and forms a gas flow in which the filtered gas discharged from the filter 10 is discharged to the outside air through the chimney 28.

前記消石灰供給装置14は、前記排ガスに含まれる塩化水素を中和するための消石灰を貯留し、かつ、これを前記煙道26内の排ガスに供給する。この消石灰供給装置14による単位時間当たりの消石灰の供給量は可変であり、この供給量は前記塩化水素濃度制御器22から入力される制御信号によって調節される。具体的に、この消石灰供給装置14は、例えば、消石灰を貯留する貯留ホッパーと、その貯留された消石灰を切り出して前記煙道26内に供給する切り出し装置と、を備える。前記切り出し装置は、例えばスクリューコンベアと供給ブロワとを有し、前記塩化水素濃度制御器22から入力される制御信号に基づいて作動することにより、前記消石灰の供給量を変化させる。   The slaked lime supply device 14 stores slaked lime for neutralizing hydrogen chloride contained in the exhaust gas, and supplies this to the exhaust gas in the flue 26. The supply amount of slaked lime per unit time by the slaked lime supply device 14 is variable, and this supply amount is adjusted by a control signal input from the hydrogen chloride concentration controller 22. Specifically, this slaked lime supply device 14 includes, for example, a storage hopper that stores slaked lime, and a cutting device that cuts out the stored slaked lime and supplies it into the flue 26. The cutting device includes, for example, a screw conveyor and a supply blower, and changes the supply amount of the slaked lime by operating based on a control signal input from the hydrogen chloride concentration controller 22.

前記飛灰処理剤供給装置16は、固形状(例えば粉状)の第一鉄塩を含む飛灰処理剤を貯留し、かつ、これを前記煙道26内の排ガスに供給する。前記飛灰処理剤は、前記第一鉄塩そのものであってもよいし、これに他の成分が付加されたものでもよい。この実施形態では前記第一鉄塩として硫酸第一鉄が用いられるが、その他の第一鉄塩、例えば塩化第一鉄が用いられてもよい。いずれの第一鉄塩も高温下での使用が可能であるが、硫酸第一鉄は塩化第一鉄に比べて貯留時の取扱いが容易でありまた潮解性を有しないという利点がある。当該第一鉄塩は、前記排ガスに含まれる六価クロムを三価クロムに還元する還元剤として機能するとともに、前記消石灰供給装置14により排ガスに供給される消石灰のうち塩化水素との中和反応に寄与しなかった消石灰を中和することにより飛灰のpHを調整するpH調整剤として機能する。   The fly ash treatment agent supply device 16 stores a fly ash treatment agent containing a solid (for example, powdered) ferrous salt and supplies it to the exhaust gas in the flue 26. The fly ash treatment agent may be the ferrous salt itself, or may be obtained by adding other components thereto. In this embodiment, ferrous sulfate is used as the ferrous salt, but other ferrous salts such as ferrous chloride may be used. Any ferrous salt can be used at high temperatures, but ferrous sulfate has the advantage that it is easier to handle during storage than ferrous chloride and does not have deliquescence. The ferrous salt functions as a reducing agent that reduces hexavalent chromium contained in the exhaust gas to trivalent chromium, and also neutralizes with hydrogen chloride in the slaked lime supplied to the exhaust gas by the slaked lime supply device 14. It functions as a pH adjuster that adjusts the pH of fly ash by neutralizing slaked lime that has not contributed to the ash.

この飛灰処理剤供給装置16による前記飛灰処理剤の単位時間当たりの供給量は可変であり、当該供給量は前記飛灰処理制御器24から入力される制御信号によって調節される。具体的に、この飛灰処理剤供給装置16は、例えば、前記飛灰処理剤を貯留する処理剤貯留ホッパーとその貯留された飛灰処理剤を切り出して煙道26内に供給する切り出し装置とを備え、そのうちの切り出し装置が前記飛灰処理制御器24から入力される制御信号に基づいて作動することにより、前記消石灰の供給量を変化させるように作動する。   The supply amount per unit time of the fly ash treatment agent by the fly ash treatment agent supply device 16 is variable, and the supply amount is adjusted by a control signal input from the fly ash treatment controller 24. Specifically, the fly ash treatment agent supply device 16 includes, for example, a treatment agent storage hopper that stores the fly ash treatment agent, and a cutting device that cuts out the stored fly ash treatment agent and supplies the fly ash treatment agent into the flue 26. And the cutting device is operated based on a control signal input from the fly ash treatment controller 24 so as to change the supply amount of the slaked lime.

前記濾過器10は、前記排ガスに含まれる飛灰に加え、前記消石灰供給装置14により供給される消石灰、及び、前記飛灰処理剤供給装置16により供給される飛灰処理剤中の少なくとも硫酸第一鉄を捕獲する能力を有する。   In addition to the fly ash contained in the exhaust gas, the filter 10 includes at least sulfuric acid in the slaked lime supplied by the slaked lime supply device 14 and the fly ash treatment agent supplied by the fly ash treatment agent supply device 16. Has the ability to capture ferrous iron.

前記飛灰処理装置18は、前記濾過器10が捕獲した飛灰を前記消石灰及び前記飛灰処理剤とともに混練処理するものであり、この実施の形態では飛灰搬送コンベア30と、飛灰貯留槽32と、混練機34と、を有する。前記飛灰搬送コンベア30は、前記濾過器10から排出される飛灰を受け取って前記飛灰貯留槽32に搬入し、前記飛灰貯留槽32はこれを貯留しかつ適当なタイミング及び速度で混練機34に供給する。混練機34は、前記飛灰貯留槽32から供給される飛灰を水と混練して埋立てに適した状態にし、排出する。この排出される混練済の飛灰のpHは、前記消石灰供給装置14からの消石灰の供給量及び前記飛灰処理剤供給装置16からの飛灰処理剤の供給量によって変化し、当該pHが適当な範囲(例えば9.0〜11.0)に収められていれば当該飛灰からの鉛の溶出量が有効に抑えられる。   The fly ash treatment device 18 kneads the fly ash captured by the filter 10 together with the slaked lime and the fly ash treatment agent. In this embodiment, the fly ash conveyor 30 and the fly ash storage tank 32 and a kneading machine 34. The fly ash transport conveyor 30 receives the fly ash discharged from the filter 10 and carries the fly ash into the fly ash storage tank 32, which stores the fly ash storage tank 32 and kneads it at an appropriate timing and speed. Supply to machine 34. The kneader 34 kneads the fly ash supplied from the fly ash storage tank 32 with water to make it suitable for landfill and discharges it. The pH of the kneaded fly ash discharged depends on the amount of slaked lime supplied from the slaked lime supply device 14 and the amount of fly ash treatment agent supplied from the fly ash treatment agent supply device 16, and the pH is appropriate. If it is contained in a certain range (for example, 9.0 to 11.0), the elution amount of lead from the fly ash is effectively suppressed.

前記混練機で供給される水は混練後の飛灰の含水率が15〜35%となるように添加されることが好ましい。煙道に添加される第一鉄塩(例えば硫酸第一鉄・1水和物の乾燥物)は水を加えることによって酸の中和作用や還元作用を発揮する。そのため、混練機で水を添加することによって、重金属溶出防止作用が発揮されるが、含水率が15%以下であれば添加した第一鉄塩の反応が確実に起こり得ない可能性がある。一方で含水率が35%以上となると得られる混練物が水を多量に含むため別途後処理が必要になってしまう。   The water supplied by the kneader is preferably added so that the water content of the fly ash after kneading is 15 to 35%. Ferrous salts added to the flue (for example, dried ferrous sulfate monohydrate) exert an acid neutralizing action and a reducing action by adding water. Therefore, by adding water with a kneader, the effect of preventing heavy metal elution is exhibited, but if the water content is 15% or less, the reaction of the added ferrous salt may not occur reliably. On the other hand, if the water content is 35% or more, the resulting kneaded product contains a large amount of water, and thus a separate post-treatment is required.

前記塩化水素濃度検出器20は、例えば前記誘引送風機12の下流側に設けられ、前記濾過器10により濾過された後のガスにおける塩化水素濃度を検出する。この塩化水素濃度検出器20には、例えば、煙道中から排ガスの一部を吸い出して当該排ガス中の塩化水素濃度を測定するイオン電極連続分析型の塩化水素濃度計を用いることができる。また、レーザー出力部とこれに対応する受光部を有し、吸収スペクトルから塩化水素濃度を測定するレーザー式の塩化水素濃度測定装置を利用することもできる。   The hydrogen chloride concentration detector 20 is provided, for example, on the downstream side of the induction blower 12 and detects the hydrogen chloride concentration in the gas after being filtered by the filter 10. As this hydrogen chloride concentration detector 20, for example, an ion electrode continuous analysis type hydrogen chloride concentration meter that sucks out a part of exhaust gas from the flue and measures the hydrogen chloride concentration in the exhaust gas can be used. Further, a laser-type hydrogen chloride concentration measuring device that has a laser output unit and a light receiving unit corresponding to the laser output unit and measures the hydrogen chloride concentration from the absorption spectrum can be used.

前記塩化水素濃度制御器22は、例えばマイクロコンピュータを含み、前記塩化水素濃度検出器20が検出する塩化水素濃度を目標値(例えば40ppm)に近づけるための単位時間あたりの消石灰の供給量を例えばPID演算により決定し、その決定した供給量で前記消石灰供給装置14に前記消石灰の供給を行わせる。すなわち、塩化水素濃度制御器22は、前記塩化水素濃度検出器20の検出信号に基づき前記消石灰の供給量を利用してフィードバック制御を行う。   The hydrogen chloride concentration controller 22 includes, for example, a microcomputer. The supply amount of slaked lime per unit time for bringing the hydrogen chloride concentration detected by the hydrogen chloride concentration detector 20 close to a target value (for example, 40 ppm) is, for example, PID. The slaked lime supply device 14 is caused to supply the slaked lime with the determined supply amount. That is, the hydrogen chloride concentration controller 22 performs feedback control using the supply amount of the slaked lime based on the detection signal of the hydrogen chloride concentration detector 20.

前記飛灰処理制御器24は、例えばマイクロコンピュータを含むものであって、前記塩化水素濃度制御器22と共通のコンピュータあるいはその他の制御回路によって構成されることも可能である。この飛灰処理制御器24は、前記塩化水素濃度検出器20が検出する塩化水素濃度と、前記塩化水素濃度検出器22が決定する、前記消石灰供給装置14による単位時間当たりの消石灰の供給量と、に基づいて、前記消石灰との中和反応に寄与していない未反応消石灰を中和するための単位時間あたりの飛灰処理剤の供給量を決定し、その決定した供給量で前記飛灰処理剤供給装置16に前記飛灰処理剤の供給を行わせる。すなわち、飛灰処理制御器24は、前記塩化水素濃度と前記消石灰の供給量とに基づいて前記未反応消石灰の量を推定し、その推定した量に基づいて前記飛灰処理剤供給量の決定を行う。   The fly ash treatment controller 24 includes, for example, a microcomputer, and may be configured by a computer common to the hydrogen chloride concentration controller 22 or other control circuit. The fly ash treatment controller 24 includes a hydrogen chloride concentration detected by the hydrogen chloride concentration detector 20, and a supply amount of slaked lime per unit time by the slaked lime supply device 14 determined by the hydrogen chloride concentration detector 22. Based on the above, the supply amount of the fly ash treatment agent per unit time for neutralizing unreacted slaked lime that has not contributed to the neutralization reaction with the slaked lime is determined, and the fly ash is determined with the determined supply amount The processing agent supply device 16 is made to supply the fly ash processing agent. That is, the fly ash treatment controller 24 estimates the amount of the unreacted slaked lime based on the hydrogen chloride concentration and the supply amount of the slaked lime, and determines the supply amount of the fly ash treatment agent based on the estimated amount. I do.

具体的に、この飛灰処理制御器24は、図2に示すようなHCl流入量算定部36、飛反応消石灰量算定部37、および飛灰処理剤供給量決定部38を、有する。   Specifically, the fly ash treatment controller 24 includes an HCl inflow amount calculation unit 36, a fly reaction slaked lime amount calculation unit 37, and a fly ash treatment agent supply amount determination unit 38 as shown in FIG.

前記HCl流入量算定部36は、前記塩化水素濃度検出器20が検出する塩化水素濃度と、前記塩化水素濃度制御器22が決定した単位時間当たりの消石灰供給量とに基づき、前記濾過器10に流入している塩化水素ガスの流量である塩化水素流入量Qinを算定、すなわち推定演算する。その原理は次のとおりである。   The HCl inflow amount calculation unit 36 adds the filter 10 to the filter 10 based on the hydrogen chloride concentration detected by the hydrogen chloride concentration detector 20 and the slaked lime supply amount per unit time determined by the hydrogen chloride concentration controller 22. A hydrogen chloride inflow amount Qin, which is a flow rate of the inflowing hydrogen chloride gas, is calculated, that is, estimated. The principle is as follows.

いま、前記塩化水素濃度検出器20が検出する塩化水素濃度をChc(ppm)、排ガス流量をQex(Nm/h)、単位時間当たりの消石灰の供給量をGsc(kg/h)とすると、当量比x(理論上前記塩化水素ガス流入量Qin(Nm/h)に相当する塩化水素を全て中和するのに必要な消石灰の量に対する実際の消石灰の供給量の割合)および脱塩率R(%)はそれぞれ次式にて表わされる。 If the hydrogen chloride concentration detected by the hydrogen chloride concentration detector 20 is Chc (ppm), the exhaust gas flow rate is Qex (Nm 3 / h), and the supply amount of slaked lime per unit time is Gsc (kg / h), Equivalent ratio x (theoretically, the ratio of the actual slaked lime supply rate to the amount of slaked lime required to neutralize all hydrogen chloride corresponding to the hydrogen chloride gas inflow rate Qin (Nm 3 / h)) and the desalination rate R (%) is represented by the following formula, respectively.

x=(2×Gsc×1000/74)/(Qin×1000/22.4) …(1)
R=(Qin−Chc×Qex)/Qin×100 …(2)
ここで、(2)式のChc×Qexは前記塩化水素濃度検出器20の検出点を通過して系外に排出される塩化水素ガス流出量Qout(Nm/h)に相当する量である。また、(1)式の分子で消石灰供給量Gscが2倍されているのは、消石灰と塩化水素との反応比が下記のとおり1:2であるからである。
x = (2 × Gsc × 1000/74) / (Qin × 1000 / 22.4) (1)
R = (Qin−Chc × Qex) / Qin × 100 (2)
Here, Chc × Qex in the equation (2) is an amount corresponding to the outflow amount Qout (Nm 3 / h) of the hydrogen chloride gas that passes through the detection point of the hydrogen chloride concentration detector 20 and is discharged out of the system. . The reason why the slaked lime supply amount Gsc is doubled in the molecule of the formula (1) is that the reaction ratio between slaked lime and hydrogen chloride is 1: 2 as follows.

Ca(OH)+2HCl→CaCl+2H
一方、前記当量比xと前記脱塩率Rとの間には経験則的に図3に示すような関係が存在する。この関係は次式にて表わされる。
Ca (OH) 2 + 2HCl → CaCl 2 + 2H 2 O
On the other hand, a relationship as shown in FIG. 3 exists between the equivalent ratio x and the desalting rate R as a rule of thumb. This relationship is expressed by the following equation.

R=A×ln(x)+B …(3)
前記(3)式におけるA,Bはいずれも定数であるがバグフィルタ部の温度や吹き込む塩化水素中和剤の種類によって変化するものである。
R = A × ln (x) + B (3)
Although A and B in the formula (3) are both constants, they vary depending on the temperature of the bag filter section and the type of hydrogen chloride neutralizing agent to be blown.

前記(1)及び(2)式を(3)式に導入すると、未知数は塩化水素流入量Qinのみであるから、同式より塩化水素流入量Qinを推定演算することが可能である。   When the equations (1) and (2) are introduced into the equation (3), since the unknown quantity is only the hydrogen chloride inflow amount Qin, the hydrogen chloride inflow amount Qin can be estimated and calculated from the equation.

前記未反応消石灰量算定部37は、前記のように推定された塩化水素ガスの流入量に基づいて前記消石灰のうち前記塩化水素ガスとの中和反応に寄与していない未反応消石灰の量である未反応消石灰量Gnr(kg/h)を算定する。この未反応消石灰量Gnrは次式(4)により算定することができる。   The unreacted slaked lime amount calculation unit 37 is an amount of unreacted slaked lime that does not contribute to the neutralization reaction with the hydrogen chloride gas among the slaked lime based on the inflow amount of hydrogen chloride gas estimated as described above. A certain amount of unreacted slaked lime Gnr (kg / h) is calculated. This unreacted slaked lime amount Gnr can be calculated by the following equation (4).

Gnr=Gsc−(反応した消石灰量(mol/h))×74
=Gsc−(反応した塩化水素の量(mol/h))/2×74
=Gsc−(Qin−Qout)/22.4/2×74 …(4)
前記飛灰処理剤供給量決定部38は、前記未反応消石灰量Gnrに基づき、未反応消石灰を中和するための単位時間当たりの飛灰処理剤の供給量を決定する。この飛灰処理剤供給量は、鉛の溶出量の低減の観点から、捕獲され混練される飛灰のpHが9.0〜11.0の範囲に収まるように設定されるのが好ましく、さらに、性状の急激な変化に対応できるようにするにはpHが9.5〜10.5の範囲に収まるように設定するのがより好ましい。通常の廃棄物が熱分解処理される場合に生成される排ガスのpHは前記範囲内にあるから、原則として前記飛灰処理剤供給量はちょうど前記未反応消石灰の全量を中和する量に設定されるのがよい。ただし、当該排ガスのpHが9.0に近い値である場合は、若干アルカリ側すなわち若干少なめに飛灰処理剤供給量が設定されるのがよい。
Gnr = Gsc− (reaction amount of slaked lime (mol / h)) × 74
= Gsc- (Amount of reacted hydrogen chloride (mol / h)) / 2 × 74
= Gsc− (Qin−Qout) /22.4/2×74 (4)
The fly ash treatment agent supply amount determination unit 38 determines the supply amount of the fly ash treatment agent per unit time for neutralizing the unreacted slaked lime based on the unreacted slaked lime amount Gnr. The amount of fly ash treatment agent supplied is preferably set so that the pH of the fly ash that is captured and kneaded falls within the range of 9.0 to 11.0 from the viewpoint of reducing the amount of lead elution. In order to be able to cope with a sudden change in properties, it is more preferable to set the pH so that it falls within the range of 9.5 to 10.5. Since the pH of the exhaust gas produced when normal waste is pyrolyzed is within the above range, in principle, the fly ash treatment agent supply amount is set to an amount that neutralizes the total amount of the unreacted slaked lime. It is good to be done. However, when the pH of the exhaust gas is a value close to 9.0, the fly ash treatment agent supply amount is preferably set slightly on the alkali side, that is, slightly less.

以上説明した排ガス処理装置及び当該装置により実行される排ガス処理方法では、塩化水素濃度検出器20が検出する(濾過後のガスの)塩化水素濃度に基づき、当該塩化水素濃度を目標値に制御するための消石灰供給量を決定するとともに、その検出された塩化水素濃度とこれに基づき決定される消石灰供給量を利用して、前記消石灰との中和反応に寄与しなかった未反応消石灰を中和するための飛灰処理剤供給量を決定することができる。従って、従来のような溶出試験を要することなく、タイムラグの小さい、すなわち応答性の高い、適正な飛灰処理制御を実現することができる。   In the exhaust gas treatment apparatus and the exhaust gas treatment method executed by the apparatus described above, the hydrogen chloride concentration is controlled to a target value based on the hydrogen chloride concentration (of the gas after filtration) detected by the hydrogen chloride concentration detector 20. And determining the amount of slaked lime to be supplied and neutralizing unreacted slaked lime that did not contribute to the neutralization reaction with the slaked lime using the detected hydrogen chloride concentration and the amount of slaked lime supplied based on the detected hydrogen chloride concentration The amount of fly ash treatment agent to be supplied can be determined. Therefore, appropriate fly ash treatment control with a small time lag, that is, high responsiveness can be realized without requiring a conventional dissolution test.

10 濾過器
12 誘引送風機
14 消石灰供給装置
16 飛灰処理剤供給装置
18 飛灰処理装置
20 塩化水素濃度検出器
22 塩化水素濃度制御器
24 飛灰処理制御器
36 流入量算定部
37 飛反応消石灰量算定部
38 飛灰処理剤供給量決定部
DESCRIPTION OF SYMBOLS 10 Filter 12 Attracting fan 14 Slaked lime supply device 16 Fly ash treatment agent supply device 18 Fly ash treatment device 20 Hydrogen chloride concentration detector 22 Hydrogen chloride concentration controller 24 Fly ash treatment controller 36 Inflow amount calculation part 37 Fly reaction slaked lime amount Calculation section 38 Fly ash treatment agent supply volume determination section

Claims (6)

廃棄物処理設備から排出される排ガスを処理するための排ガス処理装置であって、
前記廃棄物処理設備から排出される排ガスに消石灰を供給する消石灰供給装置と、
前記排ガス中に第一鉄塩を含む飛灰処理剤を供給する飛灰処理剤供給装置と、
前記消石灰及び前記飛灰処理剤が供給された前記排ガスを濾過して当該排ガスに含まれる飛灰、前記消石灰及び前記飛灰処理剤を捕獲する濾過器と、
前記濾過器が捕獲した飛灰を前記消石灰及び前記飛灰処理剤とともに混練処理する飛灰処理装置と、
前記濾過器により濾過された後のガスの塩化水素濃度を検出する塩化水素濃度検出器と、
この塩化水素濃度検出器が検出する塩化水素濃度を目標値に近づけるための単位時間あたりの消石灰の供給量を決定し、その決定した供給量で前記消石灰供給装置に前記消石灰の供給を行わせる塩化水素濃度制御器と、
前記塩化水素濃度検出器が検出する塩化水素濃度と前記消石灰供給装置による単位時間当たりの消石灰の供給量とに基づいて、前記消石灰との中和反応に寄与していない未反応消石灰を中和するための単位時間あたりの飛灰処理剤の供給量を決定し、その決定した供給量で前記飛灰処理剤供給装置に前記飛灰処理剤の供給を行わせる飛灰処理制御器と、を備えた、排ガス処理装置。
An exhaust gas treatment device for treating exhaust gas discharged from a waste treatment facility,
Slaked lime supply device for supplying slaked lime to the exhaust gas discharged from the waste treatment facility;
A fly ash treatment agent supply device for supplying a fly ash treatment agent containing ferrous salt in the exhaust gas;
A filter that filters the exhaust gas supplied with the slaked lime and the fly ash treatment agent to capture the fly ash contained in the exhaust gas, the slaked lime and the fly ash treatment agent,
A fly ash treatment apparatus for kneading the fly ash captured by the filter together with the slaked lime and the fly ash treatment agent;
A hydrogen chloride concentration detector for detecting the hydrogen chloride concentration of the gas after being filtered by the filter;
A supply amount of slaked lime per unit time for bringing the hydrogen chloride concentration detected by the hydrogen chloride concentration detector closer to the target value is determined, and the slaked lime supply device supplies the slaked lime with the determined supply amount. A hydrogen concentration controller;
Based on the hydrogen chloride concentration detected by the hydrogen chloride concentration detector and the supply amount of slaked lime per unit time by the slaked lime supply device, neutralize unreacted slaked lime that does not contribute to the neutralization reaction with the slaked lime. A fly ash treatment controller for determining a supply amount of the fly ash treatment agent per unit time for causing the fly ash treatment agent supply device to supply the fly ash treatment agent with the determined supply amount; Exhaust gas treatment equipment.
請求項1記載の排ガス処理装置において、前記飛灰処理制御器は、前記塩化水素濃度検出器が検出する塩化水素濃度と前記塩化水素濃度制御器が決定した単位時間当たりの消石灰供給量とに基づいて前記濾過器に流入する塩化水素ガスの流量を算定する塩化水素流入量算定部と、その算定された塩化水素ガスの流量に基づいて前記消石灰のうち前記塩化水素ガスとの中和反応に寄与していない未反応消石灰の量を算定する未反応消石灰量算定部と、その算定された未反応消石灰の量に基づいて単位時間当たりの飛灰処理剤の供給量を決定する飛灰処理剤供給量決定部と、を含む、排ガス処理装置。   2. The exhaust gas treatment apparatus according to claim 1, wherein the fly ash treatment controller is based on a hydrogen chloride concentration detected by the hydrogen chloride concentration detector and a slaked lime supply amount per unit time determined by the hydrogen chloride concentration controller. And a hydrogen chloride inflow amount calculating unit for calculating a flow rate of hydrogen chloride gas flowing into the filter, and contributing to a neutralization reaction with the hydrogen chloride gas in the slaked lime based on the calculated flow rate of hydrogen chloride gas. The unreacted slaked lime amount calculation unit that calculates the amount of unreacted slaked lime that has not been processed, and the fly ash treatment agent supply that determines the supply amount of the fly ash treatment agent per unit time based on the calculated amount of unreacted slaked lime An exhaust gas treatment device including an amount determination unit. 請求項2記載の排ガス処理装置において、前記飛灰処理剤供給決定部は、前記未反応消石灰の全量を中和するのに必要な飛灰処理剤の量を前記供給量として決定する、排ガス処理装置。   3. The exhaust gas treatment apparatus according to claim 2, wherein the fly ash treatment agent supply determination unit determines the amount of fly ash treatment agent necessary to neutralize the total amount of the unreacted slaked lime as the supply amount. apparatus. 廃棄物処理設備から排出される排ガスを処理するための排ガス処理方法であって、
前記廃棄物処理設備から排出される排ガスに消石灰を供給することと、
前記排ガス中に第一鉄塩を含む飛灰処理剤を供給することと、
前記消石灰及び前記飛灰処理剤が供給された前記排ガスを濾過器により濾過して当該排ガスに含まれる飛灰、前記消石灰及び前記飛灰処理剤を捕獲することと、
その捕獲した飛灰を前記消石灰及び前記飛灰処理剤とともに混練処理することと、前記濾過器により濾過された後のガスの塩化水素濃度を検出することと、を含み、
前記消石灰の供給については、検出した塩化水素濃度を目標値に近づけるように単位時間あたりの消石灰の供給量を決定し、
前記飛灰処理剤の供給については、検出した塩化水素濃度と前記のように決定した単位時間当たりの消石灰の供給量とに基づいて、前記消石灰との中和反応に寄与していない未反応消石灰を中和するための単位時間あたりの飛灰処理剤の供給量を決定する、排ガス処理方法。
An exhaust gas treatment method for treating exhaust gas discharged from a waste treatment facility,
Supplying slaked lime to the exhaust gas discharged from the waste treatment facility;
Supplying a fly ash treatment agent containing ferrous salt in the exhaust gas;
Filtering the exhaust gas supplied with the slaked lime and the fly ash treatment agent with a filter to capture the fly ash contained in the exhaust gas, the slaked lime and the fly ash treatment agent;
Kneading the captured fly ash with the slaked lime and the fly ash treatment agent, and detecting the hydrogen chloride concentration of the gas after being filtered by the filter,
For the supply of slaked lime, determine the supply amount of slaked lime per unit time so that the detected hydrogen chloride concentration approaches the target value,
Regarding the supply of the fly ash treatment agent, based on the detected hydrogen chloride concentration and the supply amount of slaked lime per unit time determined as described above, unreacted slaked lime that does not contribute to the neutralization reaction with the slaked lime An exhaust gas treatment method for determining a supply amount of a fly ash treatment agent per unit time for neutralizing water.
請求項4記載の排ガス処理方法において、前記飛灰処理剤の供給量の決定にあたり、検出した塩化水素濃度と決定した単位時間当たりの消石灰供給量とに基づいて前記濾過器に流入する塩化水素ガスの流量を算定し、その算定された塩化水素ガスの流量に基づいて前記消石灰のうち前記塩化水素ガスとの中和反応に寄与していない未反応消石灰の量を算定し、その算定された未反応消石灰の量に基づいて単位時間当たりの飛灰処理剤の供給量を決定する、排ガス処理方法。   5. The exhaust gas treatment method according to claim 4, wherein in determining the supply amount of the fly ash treatment agent, hydrogen chloride gas flowing into the filter based on the detected hydrogen chloride concentration and the determined slaked lime supply amount per unit time. The amount of unreacted slaked lime that does not contribute to the neutralization reaction with the hydrogen chloride gas of the slaked lime is calculated based on the calculated flow rate of the hydrogen chloride gas. An exhaust gas treatment method for determining a supply amount of a fly ash treatment agent per unit time based on the amount of reaction slaked lime. 請求項5記載の排ガス処理方法において、前記飛灰処理剤の供給量は、前記未反応消石灰の全量を中和するのに必要な飛灰処理剤の量を前記供給量として決定する、排ガス処理方法。   6. The exhaust gas treatment method according to claim 5, wherein the supply amount of the fly ash treatment agent is determined as the supply amount of fly ash treatment agent necessary to neutralize the total amount of the unreacted slaked lime. Method.
JP2012244196A 2012-11-06 2012-11-06 Exhaust gas treatment apparatus and method Active JP5694276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012244196A JP5694276B2 (en) 2012-11-06 2012-11-06 Exhaust gas treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012244196A JP5694276B2 (en) 2012-11-06 2012-11-06 Exhaust gas treatment apparatus and method

Publications (2)

Publication Number Publication Date
JP2014091102A true JP2014091102A (en) 2014-05-19
JP5694276B2 JP5694276B2 (en) 2015-04-01

Family

ID=50935585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012244196A Active JP5694276B2 (en) 2012-11-06 2012-11-06 Exhaust gas treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP5694276B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027622A1 (en) * 2017-08-04 2019-02-07 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
WO2020090829A1 (en) * 2018-10-29 2020-05-07 電源開発株式会社 Method for producing reclaimed land
CN113301984A (en) * 2019-01-15 2021-08-24 栗田工业株式会社 Exhaust gas treatment system and exhaust gas treatment method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132534U (en) * 1982-02-26 1983-09-07 古河鉱業株式会社 Equipment for removing HCl from incinerator exhaust gas
JPS58183232U (en) * 1982-05-28 1983-12-06 古河鉱業株式会社 Dry exhaust gas treatment equipment
JPH09308817A (en) * 1996-05-22 1997-12-02 Babcock Hitachi Kk Method for treating exhaust gas and apparatus therefor
JP2000262854A (en) * 1999-03-16 2000-09-26 Nkk Corp Method and apparatus for treating exhaust gas
JP2000317264A (en) * 1999-05-17 2000-11-21 Nkk Corp Method for removing harmful component in waste gas and device for treating waste gas
JP2005199198A (en) * 2004-01-16 2005-07-28 Takuma Co Ltd Method for controlling exhaust gas treatment facility
JP2008049244A (en) * 2006-08-23 2008-03-06 Takuma Co Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132534U (en) * 1982-02-26 1983-09-07 古河鉱業株式会社 Equipment for removing HCl from incinerator exhaust gas
JPS58183232U (en) * 1982-05-28 1983-12-06 古河鉱業株式会社 Dry exhaust gas treatment equipment
JPH09308817A (en) * 1996-05-22 1997-12-02 Babcock Hitachi Kk Method for treating exhaust gas and apparatus therefor
JP2000262854A (en) * 1999-03-16 2000-09-26 Nkk Corp Method and apparatus for treating exhaust gas
JP2000317264A (en) * 1999-05-17 2000-11-21 Nkk Corp Method for removing harmful component in waste gas and device for treating waste gas
JP2005199198A (en) * 2004-01-16 2005-07-28 Takuma Co Ltd Method for controlling exhaust gas treatment facility
JP2008049244A (en) * 2006-08-23 2008-03-06 Takuma Co Ltd Exhaust gas treatment apparatus and exhaust gas treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019027622A1 (en) * 2017-08-04 2019-02-07 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
US20190039012A1 (en) * 2017-08-04 2019-02-07 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
US10898851B2 (en) 2017-08-04 2021-01-26 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
AU2018311553B2 (en) * 2017-08-04 2021-02-25 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
US11883776B2 (en) 2017-08-04 2024-01-30 Graymont (Pa) Inc. Systems and methods for removal of mercury and/or hydrochloric acid from gas streams using calcium-containing particles
WO2020090829A1 (en) * 2018-10-29 2020-05-07 電源開発株式会社 Method for producing reclaimed land
JPWO2020090829A1 (en) * 2018-10-29 2021-09-16 電源開発株式会社 Production method of landfill site
JP7301066B2 (en) 2018-10-29 2023-06-30 電源開発株式会社 Reclamation land production method
CN113301984A (en) * 2019-01-15 2021-08-24 栗田工业株式会社 Exhaust gas treatment system and exhaust gas treatment method
TWI787570B (en) * 2019-01-15 2022-12-21 日商栗田工業股份有限公司 Exhaust gas treatment system and exhaust gas treatment method
CN113301984B (en) * 2019-01-15 2022-12-27 栗田工业株式会社 Exhaust gas treatment system and exhaust gas treatment method

Also Published As

Publication number Publication date
JP5694276B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP4966940B2 (en) Fly ash treatment apparatus, fly ash treatment method, waste treatment system, and operation method of waste treatment system
JP4221194B2 (en) A low-corrosive and low-release simultaneous incineration method for highly halogenated waste in a waste incineration plant.
JP2001198434A (en) Method for treating mercury in exhaust gas and treatment system of exhaust gas
JP5694276B2 (en) Exhaust gas treatment apparatus and method
JP2017200668A (en) Exhaust gas desalination apparatus
JP6194840B2 (en) Exhaust gas treatment apparatus and method
JP5024735B2 (en) Exhaust gas treatment method
KR20150010606A (en) Sulfite control to reduce mercury re-emission
TW201524584A (en) Method for treating acidic gas
JP2013006143A (en) Exhaust gas treatment apparatus, and orp control method therefor
JP2009208078A (en) Method for treating mercury in tail gas, and treatment system for tail gas
WO2017197049A1 (en) Sulfite preconditioning systems and methods to reduce mercury concentrations in waste water
JP2013017956A (en) Method for controlling additive rate of chelating agent to fly ash
JPH0615278A (en) Control of injection amount of slaked lime in treatment of fluorine-containing waste water and fluorine component removing apparatus
JP2014195790A (en) Exhaust gas treatment method
JP2009247998A (en) Exhaust gas treatment method
WO2003008072A1 (en) Method for treating mercury in exhaust gas and exhaust gas treating system
JP7019562B2 (en) Mercury control in seawater flue gas desulfurization system
JP6980592B2 (en) Sludge incinerator and sludge incineration method
JP6939677B2 (en) Method of controlling the amount of drug added
JP5374105B2 (en) Method for melting waste incineration residue
JP6984684B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JPH10296046A (en) Removing process for acidic component in exhaust gas
JP2008238033A (en) Calcium removing method and calcium removing apparatus
JP2019171301A (en) Sludge incineration equipment and sludge incineration method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5694276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250