JP2014090125A - Iron yoke integrally fitted outer rotor and manufacturing method of magnet therefor - Google Patents

Iron yoke integrally fitted outer rotor and manufacturing method of magnet therefor Download PDF

Info

Publication number
JP2014090125A
JP2014090125A JP2012240371A JP2012240371A JP2014090125A JP 2014090125 A JP2014090125 A JP 2014090125A JP 2012240371 A JP2012240371 A JP 2012240371A JP 2012240371 A JP2012240371 A JP 2012240371A JP 2014090125 A JP2014090125 A JP 2014090125A
Authority
JP
Japan
Prior art keywords
magnet
annular
iron
green compact
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012240371A
Other languages
Japanese (ja)
Other versions
JP6029205B2 (en
Inventor
Fumitoshi Yamashita
文敏 山下
Naoya Ota
直哉 太田
Toshinori Suzuki
淳詔 鈴木
Haruhiro Yukimura
治洋 幸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2012240371A priority Critical patent/JP6029205B2/en
Publication of JP2014090125A publication Critical patent/JP2014090125A/en
Application granted granted Critical
Publication of JP6029205B2 publication Critical patent/JP6029205B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of an iron yoke integrally fitted outer rotor magnet which has reliability such as high dimensional accuracy at an actual use temperature of an outer rotor or high weather resistance in an outer rotor magnet in which an annular iron yoke and an annular rare earth-iron based bond magnet are integrally fitted.SOLUTION: The manufacturing method includes: a first step of manufacturing an annular green compact containing a rare earth-iron based magnet foil, a thermosetting resin composition which is a solid at the normal temperature, and a residual cavity through compression molding; and a second step of inserting the annular green compact inside of an annular iron yoke, heating the green compact to expand an outer diameter of the annular green compact through thermal expansion of the thermosetting resin composition constituting the annular green compact, bringing an outer circumferential surface of the annular green compact and an inner circumferential surface of the annular iron yoke into a restricted state at a predetermined position before initiating a two-dimensional crosslinking reaction of the thermosetting resin composition, and thermally hardening the thermosetting resin composition constituting the annular green compact in the restricted state into an annular bond magnet.

Description

本発明は、小型モータに広く利用される、磁気的に等方性の環状希土類−鉄系ボンド磁石を用いた鉄ヨーク一体嵌合アウターロータ磁石の製造方法に関する。さらに詳しくは、圧縮成形により、希土類−鉄系磁石薄片と常温で固体の熱硬化性樹脂組成物と残留空隙とを含みて成る、高機械強度、低スプリングバックの環状圧粉体を構成する第1の工程と、環状鉄ヨークの内側に前記環状圧粉体を挿入し、加熱することにより、前記環状圧粉体を構成する熱硬化性樹脂組成物のゲル化前に環状圧粉体外周面と環状鉄ヨーク内周面とを所定の位置で拘束(密着)せしめ、該拘束状態にて熱硬化性樹脂組成物をゲル化、熱硬化せしめてボンド磁石とする第2の工程とを含む、鉄ヨーク一体嵌合アウターロータ磁石の製造方法に関する。   The present invention relates to a method for manufacturing an iron-yoke integral fitting outer rotor magnet using a magnetically isotropic annular rare earth-iron-based bonded magnet widely used in small motors. More specifically, a compression molding is used to form a high-mechanical strength, low-springback annular green compact comprising a rare earth-iron-based magnet flake, a thermosetting resin composition that is solid at room temperature, and residual voids. The outer peripheral surface of the annular green compact before gelation of the thermosetting resin composition constituting the annular green compact by inserting and heating the annular green compact inside the annular iron yoke in step 1 And a second step of constraining (adhering) the inner peripheral surface of the annular iron yoke at a predetermined position, and gelling and thermosetting the thermosetting resin composition in the constrained state to form a bonded magnet. The present invention relates to a method for manufacturing an iron rotor integrated fitting outer rotor magnet.

小型モータに広く利用される磁気的に等方性の環状希土類−鉄系ボンド磁石を用いたアウターロータ磁石は、例えば以下のように製造される。まず、NdFe14Bの化学量論組成に近い合金組成を有するNd12Fe77Co(atomic%)溶湯合金を急冷凝固した平均結晶粒径60nm以下のナノ結晶(nanocrystalline)薄帯を粉砕した磁石
薄片を、エポキシ樹脂のような熱硬化性樹脂組成物とともに所定の形状に圧縮成形して環状圧粉体を作製する。ついで、前記環状圧粉体を加熱し、圧粉体中のエポキシ樹脂組成物を熱硬化させ環状ボンド磁石とする。必要に応じて適宜、該環状ボンド磁石に表面処理を施した後、環状ボンド磁石の外周面を環状鉄ヨークの内周面と接着固定することにより、アウターロータ磁石を得る。また上述以外にも、熱硬化性樹脂組成物に代えてナイロン等の熱可塑性樹脂組成物を使用したもの、圧縮成形に代えて射出成形によりボンド磁石を作成するものなど、様々な方法が提案されている。なお一般に、環状ボンド磁石外周面と環状鉄ヨーク内周面とのクリアランスは通常20〜30μmとされる。
An outer rotor magnet using a magnetically isotropic annular rare earth-iron bond magnet widely used for a small motor is manufactured as follows, for example. First, a nanocrystalline ribbon having an average crystal grain size of 60 nm or less obtained by rapidly solidifying an Nd 12 Fe 77 Co 5 B 6 (atomic%) molten alloy having an alloy composition close to the stoichiometric composition of Nd 2 Fe 14 B The magnet flakes crushed are compressed into a predetermined shape together with a thermosetting resin composition such as an epoxy resin to produce an annular green compact. Next, the annular green compact is heated, and the epoxy resin composition in the green compact is thermoset to obtain an annular bonded magnet. If necessary, after subjecting the annular bond magnet to surface treatment, the outer peripheral surface of the annular bond magnet is bonded and fixed to the inner peripheral surface of the annular iron yoke, thereby obtaining an outer rotor magnet. In addition to the above, various methods have been proposed, such as using a thermoplastic resin composition such as nylon instead of the thermosetting resin composition, or creating a bonded magnet by injection molding instead of compression molding. ing. In general, the clearance between the outer circumferential surface of the annular bonded magnet and the inner circumferential surface of the annular iron yoke is usually 20 to 30 μm.

ところで、上記のようなアウターロータに使用する環状希土類−鉄系ボンド磁石は、アウターロータの小型化に伴う薄肉化に伴い、アウターロータの回転動作の安定化やパーミアンス係数の減少を補うため、ステータ鉄心と対向する該ボンド磁石内面の真円度、円筒度、同軸度などの寸法精度を高める必要がある。このような、アウターロータ磁石内面の寸法精度の改善に関し、従来から多くの工夫や提案がなされている。   By the way, the annular rare earth-iron-based bonded magnet used for the outer rotor as described above is used to compensate for the rotational movement of the outer rotor and the decrease in the permeance coefficient as the outer rotor is made thinner. It is necessary to increase the dimensional accuracy such as roundness, cylindricity, and coaxiality of the inner surface of the bond magnet facing the iron core. Many improvements and proposals have heretofore been made for improving the dimensional accuracy of the inner surface of the outer rotor magnet.

例えば、圧縮成形により作製した成形体(環状圧粉体)のスプリングバック(弾性回復現象)を利用して、接着剤を用いることなく、環状鉄ヨークと環状ボンド磁石とを一体嵌合する技術が提案されている[特許文献1]。具体的には成形型キャビティの開口部近傍に、該キャビティの外径以上の内径を有するリング状ヨークを、前記キャビティと略同軸的に配置する工程と、キャビティに充填したコンパウンドを圧縮する工程と、コンパウンドを圧縮して成形した成形体をキャビティの開口部から取り出し、前記リング状ヨークに圧入し、スプリングバックを利用して一体化(一体嵌合)する工程と、一体化した前記リング状鉄ヨーク及び成形体に熱処理を施して成形体中の熱硬化性樹脂を硬化させてボンド磁石とする工程により、ヨーク一体型希土類ボンド磁石を製造する技術が提案されている。   For example, using a springback (elastic recovery phenomenon) of a molded body (annular green compact) produced by compression molding, there is a technique for integrally fitting an annular iron yoke and an annular bonded magnet without using an adhesive. It has been proposed [Patent Document 1]. Specifically, a step of arranging a ring-shaped yoke having an inner diameter equal to or larger than the outer diameter of the cavity near the opening of the mold cavity, and a step of compressing the compound filled in the cavity; And a step of taking out the molded body formed by compressing the compound from the opening of the cavity, press-fitting into the ring-shaped yoke, and integrating (integrated fitting) using a spring back, and the integrated ring-shaped iron There has been proposed a technique for manufacturing a yoke-integrated rare earth bonded magnet by a process in which a heat treatment is performed on the yoke and the molded body to cure the thermosetting resin in the molded body to form a bonded magnet.

国際公開第2006/001304号パンフレットInternational Publication No. 2006/001304 Pamphlet

Nd−Fe−B系磁石薄片をエポキシ樹脂などとともに圧縮成形し熱硬化させることにより、環状ボンド磁石の磁石薄片の体積分率が80.5vol.%となり、このとき残留空隙が11vol.%程度存在することが知られている。
残留空隙は、その量が多くなるほど、硬化前の圧粉体(グリーンコンパクト)やボンド磁石におけるスプリングバック量を増加させる傾向をもたらすため、特許文献1に開示される技術の場合、適度な量の残留空隙量は、ヨークとボンド磁石の一体嵌合においては一見好適に作用するように思われる。
しかしながら、残留空隙は、とくに圧粉体の機械的強度を減少させる要因となる。特許文献1の技術において、キャビティの開口部から、例えば圧縮成形により得られた肉厚1mm以下の薄肉の成形体(環状圧粉体)を取り出すと同時にリング状ヨークへ圧入する際、残留空隙量の増加に伴い、環状圧粉体の亀裂、損壊、変形や、或いは環状圧粉体への異物の付着(型周辺に漏れたグラニュール状コンパウンドなど)などが起こり易くなる。したがって残留空隙は、工業的規模で成形作業を行う上で成形体の品質安定化を阻害する不安定な要素となり得、結果として磁石製造における歩留まりの低下につながることとなる。
By compressing and thermosetting the Nd-Fe-B magnet flakes together with an epoxy resin or the like, the volume fraction of the magnet flakes of the annular bonded magnet is 80.5 vol. %, And at this time, the residual void was 11 vol. % Is known to exist.
Since the residual void tends to increase the amount of spring back in the green compact before hardening and the bonded magnet as the amount increases, in the case of the technique disclosed in Patent Document 1, an appropriate amount The residual void amount seems to work favorably at the time of integrally fitting the yoke and the bonded magnet.
However, the residual voids are a factor that decreases the mechanical strength of the green compact. In the technique of Patent Document 1, when a thin molded body (annular green compact) having a thickness of 1 mm or less obtained by compression molding is taken out from an opening of a cavity, for example, and simultaneously press-fitted into a ring-shaped yoke, a residual void amount With the increase in the thickness, cracks, breakage, deformation of the annular green compact, or adhesion of foreign matters to the annular green compact (granular compound leaking around the mold) is likely to occur. Therefore, the residual void can be an unstable factor that hinders the stabilization of the quality of the molded body when the molding operation is performed on an industrial scale, and as a result, the yield in magnet manufacturing is reduced.

また本発明にかかる希土類−鉄系ボンド磁石は、長期間高温暴露し、その後、常温に戻して再着磁しても回復しない磁束損失があることが知られている。これは一般に永久減磁と呼ばれるものである。希土類−鉄系ボンド磁石は、射出成形、圧縮成形などの作製法に拘らず、該磁石の残留空隙の体積分率と永久減磁に一次相関があり、残留空隙が減少すれば、永久減磁も減少する。なおこうした永久減磁の主要因として、磁石内部に存在する空隙(すなわち残留空隙)に取り込まれた酸素、水分などが、磁石内部の磁石薄片の酸化、腐食などの組織変化を促進するためとされている。すなわち残留空隙の増大は永久減磁の増大をもたらし得る。
しかも、残留空隙量、すなわちスプリングバック量が大きな環状圧粉体は、該圧粉体をキャビティから離型する際、該圧粉体の外周面における摩擦力も増大することを意味し、これは環状鉄ヨークとの圧入面となる環状圧粉体外周表面近傍に存在する磁石薄片が、外周表面に露出し易くなることにつながる。このため、その後の熱処理で環状鉄ヨークと一体嵌合したのちも、ボンド磁石外周面(嵌合面)、あるいはその近傍の残留空隙内に存在する酸素、水分などが、露出した磁石薄片においても酸化、腐食などの組織変化を促進させる。
このように残留空隙は、長期にわたる高温暴露での寸法安定性、機械的強度、不可逆磁束損失など、一体嵌合アウターロータ磁石の信頼性の維持、確保に重大な影響を及ぼす虞がある。
Further, it is known that the rare earth-iron-based bonded magnet according to the present invention has a magnetic flux loss that does not recover even if it is exposed to a high temperature for a long period of time and then returned to room temperature and re-magnetized. This is generally called permanent demagnetization. Regardless of the production method such as injection molding, compression molding, etc., rare earth-iron-based bonded magnets have a linear correlation between the volume fraction of the residual voids of the magnet and permanent demagnetization. Also decreases. The main cause of such permanent demagnetization is that oxygen, moisture, etc. taken into voids (that is, residual voids) inside the magnet promote structural changes such as oxidation and corrosion of the magnet flakes inside the magnet. ing. That is, an increase in residual air gap can lead to an increase in permanent demagnetization.
In addition, an annular green compact with a large residual void amount, that is, a springback amount, means that when the green compact is released from the cavity, the frictional force on the outer peripheral surface of the green compact also increases. Magnet flakes present in the vicinity of the outer peripheral surface of the annular green compact serving as a press-fitting surface with the iron yoke are easily exposed on the outer peripheral surface. For this reason, oxygen, moisture, etc. present in the outer peripheral surface of the bonded magnet (fitting surface) or in the residual voids in the vicinity of the magnet after being integrally fitted with the annular iron yoke in the subsequent heat treatment are also present in the exposed magnet flakes. Promotes structural changes such as oxidation and corrosion.
As described above, the residual air gap may seriously affect the maintenance and securing of the reliability of the integrally fitted outer rotor magnet, such as dimensional stability, mechanical strength, and irreversible magnetic flux loss after long-term high temperature exposure.

本発明は、このような事情に鑑みてなされたものであってアウターロータ磁石の製造方法をその対象としたものであり、その目的は、アウターロータ磁石に使用するボンド磁石として、残留磁化Mrや最大エネルギー積(BH)maxの水準を元の磁石薄片の水準に維持しながら、当該ボンド磁石の残留空隙を低減することにより、磁石としての高い性能と高い寸法精度や耐候性を兼ね備えたボンド磁石を検討すると共に、特にボンド磁石におけるバインダとなる熱硬化性樹脂硬化物のガラス状態にて、密着状態にある環状鉄ヨークの線膨張係数と、残留空隙が殆ど存在しない環状ボンド磁石の線膨張係数とをほぼ等しくすることで、長期間の高温暴露や低温暴露など、アウターロータの実使用温度で高い寸法精度や高い耐候性といった信頼性を有する鉄ヨーク一体嵌合アウターロータ磁石の製造方法を提供するものである。 The present invention has been made in view of such circumstances, and is intended for a method for manufacturing an outer rotor magnet. The purpose of the present invention is as a residual magnet Mr and a bond magnet used for an outer rotor magnet. Bond magnet with high performance as a magnet and high dimensional accuracy and weather resistance by reducing the residual gap of the bond magnet while maintaining the maximum energy product (BH) max level at the original magnet flake level In particular, in the glass state of the thermosetting resin cured material that becomes the binder in the bonded magnet, the linear expansion coefficient of the annular iron yoke in a close contact state and the linear expansion coefficient of the annular bonded magnet with almost no residual void The reliability of high dimensional accuracy and high weather resistance at the actual operating temperature of the outer rotor, such as long-term high-temperature exposure and low-temperature exposure. The manufacturing method of the iron rotor integral fitting outer rotor magnet which has the property is provided.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、鉄ヨーク一体アウターロータ磁石において、残留空隙量が極めて少ないボンド磁石を磁石材料として採用し、
またヨークとボンド磁石がほぼ等しい線膨張係数となるような構成を検討した。そして、圧縮成形により希土類−鉄系磁石薄片の体積分率が80vol.%以上となり且つ残留空隙量が極めて少ない環状ボンド磁石を用い、該ボンド磁石を構成する熱硬化性樹脂組成物の硬化点において、当該環状ボンド磁石の線膨張係数と、硬化過渡の液相で且つ2次元的架橋反応の開始前に該磁石と密着状態とした環状鉄ヨークの線膨張係数がほぼ等しくなるまで熱硬化処理を行ったのち、常温に戻すことにより、環状鉄ヨークと密着した環状ボンド磁石が互いにほぼ等しい線膨張係数を実使用温度域で実現できることを見出した。そしてこうした構成により、実使用温度で高い寸法精度や耐候性を有する鉄ヨーク一体アウターロータ磁石となることを見出し、本発明を完成させた。
As a result of intensive studies in order to achieve the above object, the present inventors have adopted a bonded magnet having a very small amount of residual voids as a magnet material in an iron yoke-integrated outer rotor magnet,
In addition, a configuration in which the yoke and the bonded magnet have substantially the same linear expansion coefficient was examined. And the volume fraction of the rare earth-iron-based magnet flakes is 80 vol. %, And the amount of residual voids is extremely small. At the curing point of the thermosetting resin composition constituting the bonded magnet, the linear expansion coefficient of the cyclic bonded magnet, the liquid phase of the curing transient, and After the thermosetting treatment is performed until the linear expansion coefficient of the annular iron yoke brought into close contact with the magnet becomes almost equal before the start of the two-dimensional crosslinking reaction, the annular bond is brought into close contact with the annular iron yoke by returning to room temperature. It has been found that the magnets can achieve substantially the same linear expansion coefficient in the actual operating temperature range. And it discovered that it became an iron yoke integrated outer rotor magnet which has high dimensional accuracy and a weather resistance by actual use temperature by such structure, and completed this invention.

すなわち本発明は、圧縮成形により、希土類−鉄系磁石薄片と常温で固体の熱硬化性樹脂組成物と残留空隙とを含みて成る環状圧粉体を製造する第1の工程と、環状鉄ヨークの内側に前記環状圧粉体を挿入し、加熱することにより、前記環状圧粉体を構成する熱硬化樹脂組成物の熱膨張によって該環状圧粉体の外径が拡張して、該熱硬化性樹脂組成物の2次元的架橋反応開始前に、該環状圧粉体の外周面と該環状鉄ヨークの内周面とを所定の位置にて拘束した状態とするとともに、該拘束状態にて前記環状圧粉体を構成する熱硬化樹脂組成物を熱硬化させて環状ボンド磁石とする第2の工程とを含むことを特徴とする、鉄ヨーク一体嵌合アウターロータ磁石の製造方法に関する。
上記製造方法において、前記第1工程で得られた環状圧粉体が、希土類−鉄系磁石薄片の体積分率が80vol.%以上、残留空隙の体積分率が3vol.%未満、残部が常温で固体の熱硬化性樹脂組成物とから成ることが好ましい。
また、得られた鉄ヨーク一体嵌合アウターロータ磁石において、硬化された熱硬化樹脂組成物がガラス状態にある環状ボンド磁石の線膨張係数が12×10−6−1以下であることが好ましい。
That is, the present invention provides a first step of producing an annular green compact comprising a rare earth-iron-based magnet flake, a thermosetting resin composition that is solid at room temperature, and residual voids by compression molding, and an annular iron yoke. By inserting and heating the annular green compact inside, the outer diameter of the annular green compact is expanded by the thermal expansion of the thermosetting resin composition constituting the annular green compact, and the thermosetting Before starting the two-dimensional crosslinking reaction of the conductive resin composition, the outer peripheral surface of the annular green compact and the inner peripheral surface of the annular iron yoke are constrained at predetermined positions, and in the constrained state, And a second step of thermosetting the thermosetting resin composition constituting the annular green compact to form an annular bonded magnet.
In the above manufacturing method, the annular green compact obtained in the first step has a volume fraction of rare earth-iron-based magnet flakes of 80 vol. % And the volume fraction of residual voids is 3 vol. The thermosetting resin composition is preferably composed of less than% and the balance being solid at room temperature.
Moreover, in the obtained iron yoke integral fitting outer rotor magnet, it is preferable that the linear expansion coefficient of the cyclic bond magnet in which the cured thermosetting resin composition is in a glass state is 12 × 10 −6 ° C. −1 or less. .

また前記第1の工程は、熱硬化性樹脂組成物と希土類−鉄系磁石薄片とを含むグラニュール状複合磁石材料を成形型キャビティに充填し、該グラニュール状複合磁石材料の融点以下の温度にて、該グラニュール状複合磁石材料に一軸の圧力を加えることにより、前記磁石薄片の脆性破壊と同時に前記熱硬化性樹脂組成物の塑性変形(流動)との相互作用によって残留空隙を減少させるとともに、前記グラニュール状複合磁石材料を圧力軸方向に積層させて、磁石薄片相互の位置関係がほぼ固定された環状圧粉体を製造することによりなされることが好ましい。   In the first step, a granule-shaped composite magnet material containing a thermosetting resin composition and a rare earth-iron-based magnet flake is filled in a mold cavity, and the temperature is equal to or lower than the melting point of the granule-shaped composite magnet material. By applying uniaxial pressure to the granular composite magnet material, the residual voids are reduced by the brittle fracture of the magnet flakes and the interaction with the plastic deformation (flow) of the thermosetting resin composition. At the same time, it is preferable that the granular composite magnetic material is laminated in the pressure axis direction to produce an annular green compact in which the positional relationship between the magnet flakes is substantially fixed.

さらに前記熱硬化性樹脂組成物は、不飽和ポリエステルアルキドとアリル系共重合性単量体との完溶物である降伏応力をもつ流動性を備えた不飽和ポリエステル樹脂と、有機過酸化物とを含むことが好ましく、このとき、前記アリル系共重合性単量体が、トリアリルイソシアヌレートであることが好ましい。   Further, the thermosetting resin composition comprises a unsaturated polyester resin having fluidity with yield stress that is a completely dissolved product of an unsaturated polyester alkyd and an allylic copolymerizable monomer, an organic peroxide, In this case, it is preferable that the allylic copolymerizable monomer is triallyl isocyanurate.

一方、本発明にかかる前記希土類−鉄系磁石薄片は、R−Fe−B系磁石、またはFeの一部をCoで置換したR−Fe(Co)−B系磁石と、更にはR−Fe−B−M系磁石、またはR−Fe(Co)−B−M系磁石、不可避不純物からなる合金組成を有するRFe14B、RFe(Co)14Bナノ結晶組織、またはαFeとRFe14B、RFe(Co)14Bとのナノ複合組織(前記RはYを含むCe、Pr、Nd、Gd、Tb、Dy及びHoから選択される希土類元素のいずれかを表し、前記MはSi、Al、Nb、Zr、Hf、Mo、Ga、P及びCから選択される1種または2種以上の組み合わせを表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片であることが好ましい。
あるいは前記希土類−鉄系磁石薄片は、Sm−Fe−N系磁石とSm−Fe−M’−N系磁石、並びに不可避不純物からなる合金組成を有するSmFe17Nx(x≒3)ナノ結晶組織(nanocrystalline)、またはαFeとSmFe17Nx(x≒3)とのナ
ノ複合組織(nanocomposite)(前記M’はHf、Zr、Si、Nb、Ti、Ga、Al、
Ta及びCから選択される1種または2種以上の組合せを表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片であることが好ましい。
On the other hand, the rare earth-iron-based magnet flakes according to the present invention include R-Fe-B-based magnets, R-Fe (Co) -B-based magnets in which part of Fe is substituted with Co, and further R-Fe. -B-M-based magnet or R-Fe (Co) -B- M -based magnet,, R 2 Fe 14 B having the alloy composition consisting of unavoidable impurities, R 2 Fe (Co) 14 B nanocrystalline structure, or a αFe R 2 Fe 14 B, nanocomposite texture (the R and R 2 Fe (Co) 14 B represents any rare earth element selected Ce containing Y, Pr, Nd, Gd, Tb, of Dy and Ho Wherein M represents one or a combination of two or more selected from Si, Al, Nb, Zr, Hf, Mo, Ga, P and C). A rapidly solidified flake is preferred.
Alternatively, the rare earth-iron-based magnet flakes are Sm 2 Fe 17 Nx (x≈3) nanocrystals having an alloy composition consisting of an Sm—Fe—N magnet, an Sm—Fe—M′—N magnet, and inevitable impurities. Nanocrystalline, or nanocomposite of αFe and Sm 2 Fe 17 Nx (x≈3), where M ′ is Hf, Zr, Si, Nb, Ti, Ga, Al,
It is preferably a magnetically isotropic rare earth-iron rapidly solidified flake containing one or a combination of two or more selected from Ta and C).

また第1工程で得られた環状圧粉体は、20MPa以上の圧環強度を有することが好ましい。
そして、得られた鉄ヨーク一体嵌合アウターロータ磁石において、環状ボンド磁石は、1mm以下の肉厚を有することが好ましい。
また前記環状ボンド磁石は、外部磁界Hm2.4MA/mにおいて0.74T以上の残留磁化Mr、および、90kJ/m以上の最大エネルギー積(BH)maxを有することが好ましい。
The annular green compact obtained in the first step preferably has a crushing strength of 20 MPa or more.
And in the obtained iron yoke integral fitting outer rotor magnet, it is preferable that an annular bond magnet has a thickness of 1 mm or less.
The annular bonded magnet preferably has a residual magnetization Mr of 0.74 T or more and a maximum energy product (BH) max of 90 kJ / m 3 or more in an external magnetic field Hm of 2.4 MA / m.

そして本発明は、上述の製造方法により得られる鉄ヨーク一体嵌合アウターロータ磁石、すなわちロータヨークの内径側に希土類−鉄系ボンド磁石を一体嵌合させてなるアウターロータ磁石を備えてなるアウターロータ型モータ用ロータも対象とする。   And this invention is an outer rotor type | mold provided with the outer rotor magnet which integrally fits the iron yoke integral fitting outer rotor magnet obtained by the above-mentioned manufacturing method, ie, the rare earth-iron type bonded magnet on the inner diameter side of the rotor yoke. Motor rotors are also targeted.

本発明の製造方法によれば、環状鉄ヨークの内側にボンド磁石のもととなる環状圧粉体を挿入し、加熱することにより、環状圧粉体を構成する熱硬化樹脂組成物の熱膨張によって、環状圧粉体の外周面と環状鉄ヨークの内周面が密着(拘束)され、この拘束状態で環状鉄ヨークと環状ボンド磁石が一体嵌合した鉄ヨーク一体嵌合アウターロータ磁石を製造することができる。このため、環状鉄ヨークと環状ボンド磁石の接触面積を増加させることができ、両者の嵌合力を高めることができる。   According to the manufacturing method of the present invention, the thermal expansion of the thermosetting resin composition constituting the annular green compact is performed by inserting and heating the annular green compact as a bond magnet inside the annular iron yoke. The outer peripheral surface of the annular green compact and the inner peripheral surface of the annular iron yoke are brought into close contact (restraint), and an iron yoke integrated outer rotor magnet in which the annular iron yoke and the annular bond magnet are integrally fitted in this constrained state is manufactured. can do. For this reason, the contact area of an annular iron yoke and an annular bond magnet can be increased, and the fitting force between the two can be increased.

また本発明の製造方法によれば、得られた鉄ヨーク一体嵌合アウターロータ磁石を構成する環状ボンド磁石において、磁石材料(磁石薄片)の体積分率を80vol.%超に維持しながら、すなわち、残留磁化Mr及び最大エネルギー積(BH)maxの水準を高い状態に維持しながら、残留空隙を低減できる。そして残留空隙量の低減は、環状ボンド磁石の弾性回復現象(スプリングバック)の抑制や、圧環強度の向上につながり、高い寸法精度を有する環状ボンド磁石を得ることができる。このため、得られた環状鉄ヨーク一体嵌合アウターロータ磁石は、同軸度などにおいて寸法精度を向上させることができ、ヨークとボンド磁石のクリアランスが一定な状態(ほぼゼロの状態)を確保できる。
さらに残留空隙の低減は、環状ボンド磁石の外周面(表面)に残存する残留空隙も少なくできることから、環状鉄ヨーク内周面と、環状ボンド磁石の外周面の真実接触面積を増加させ、両者の嵌合力をより向上させることができる。
しかも、残留空隙の低減は、永久減磁の主要因となる残留空隙に存在し得る水分や酸素などの減少につながり、こうした成分による希土類磁石材料の腐食、組織変化を抑制でき、高温長期暴露でのボンド磁石の耐久性(すなわち耐候性)を改善できる。
Further, according to the manufacturing method of the present invention, the volume fraction of the magnet material (magnet flake) is set to 80 vol. The residual air gap can be reduced while maintaining the level of the residual magnetization Mr and the maximum energy product (BH) max at a high level while maintaining the ratio higher than%. The reduction of the residual void amount leads to suppression of the elastic recovery phenomenon (spring back) of the annular bond magnet and improvement of the crushing strength, and an annular bond magnet having high dimensional accuracy can be obtained. For this reason, the obtained annular iron yoke integrated fitting outer rotor magnet can improve the dimensional accuracy in terms of coaxiality and the like, and a state where the clearance between the yoke and the bond magnet is constant (a substantially zero state) can be ensured.
Furthermore, the reduction of the residual air gap can also reduce the residual air gap remaining on the outer peripheral surface (surface) of the annular bond magnet, thereby increasing the real contact area between the inner peripheral surface of the annular iron yoke and the outer peripheral surface of the annular bond magnet. The fitting force can be further improved.
Moreover, the reduction of residual voids leads to a decrease in moisture, oxygen, etc. that can exist in the residual voids, which is the main cause of permanent demagnetization, and it can suppress the corrosion and structural changes of rare earth magnet materials due to these components. The durability (namely, weather resistance) of the bonded magnet can be improved.

さらに本発明の製造方法によれば、得られた環状鉄ヨーク一体嵌合アウターロータ磁石において、環状ボンド磁石を構成する熱硬化性樹脂組成物の硬化物のガラス状態において、環状ボンド磁石と環状鉄ヨークの線膨張係数をほぼ等しいものとすることができる。このため、鉄ヨークとボンド磁石の接合面における嵌合状態を良好に維持することができ、またこの嵌合面での真実接触面積を従来よりも増加させた状態に保つことができる。   Furthermore, according to the manufacturing method of the present invention, in the obtained annular iron yoke integrated outer rotor magnet, in the glass state of the cured product of the thermosetting resin composition constituting the annular bond magnet, the annular bond magnet and the annular iron The linear expansion coefficient of the yoke can be made substantially equal. For this reason, the fitting state in the joint surface of an iron yoke and a bonded magnet can be maintained favorably, and the true contact area on the fitting surface can be maintained in an increased state as compared with the prior art.

以上より、本発明の製造方法によって得られる環状鉄ヨーク一体嵌合アウターロータ磁石は、高温暴露や低温暴露などを含む実使用温度において、その性能を長期にわたり維持し且つ確保することが可能となる。   As described above, the annular iron yoke-integrated outer rotor magnet obtained by the manufacturing method of the present invention can maintain and ensure its performance over a long period of time at the actual use temperature including high temperature exposure and low temperature exposure. .

図1は、環状圧粉体に含まれる熱硬化性樹脂組成物の硬化過渡における外径変化を示す概念図である。FIG. 1 is a conceptual diagram showing changes in the outer diameter of the thermosetting resin composition contained in the annular green compact during the curing transient. 図2は、熱硬化性樹脂組成物の体積分率Vrに対する残留空隙の体積分率Va、および磁石薄片の体積分率Vmの関係を示す特性図である。FIG. 2 is a characteristic diagram showing the relationship between the volume fraction Va of the residual void and the volume fraction Vm of the magnet flakes with respect to the volume fraction Vr of the thermosetting resin composition. 図3は、熱硬化性樹脂組成物の硬化過渡における環状圧粉体(環状ボンド磁石)と環状鉄ヨークとのクリアランスの変化を示す特性図である。FIG. 3 is a characteristic diagram showing a change in the clearance between the annular green compact (annular bonded magnet) and the annular iron yoke during the curing transition of the thermosetting resin composition.

以下、本発明を更に詳しく説明する。
本発明は、鉄ヨーク一体嵌合アウターロータ磁石の製造方法に関し、具体的には、該磁石を構成する環状鉄ヨークと環状ボンド磁石が接着剤を用いることなく密着した状態にあり、且つ前記環状鉄ヨークと前記環状ボンド磁石の線膨張係数が実使用温度範囲でほぼ等しい値となっている、鉄ヨーク一体嵌合アウターロータ磁石の製造方法に関する。
Hereinafter, the present invention will be described in more detail.
The present invention relates to a method for manufacturing an outer yoke magnet integrated with an iron yoke, and specifically, an annular iron yoke and an annular bond magnet constituting the magnet are in close contact without using an adhesive, and the annular The present invention relates to a method of manufacturing an iron yoke integrated fitting outer rotor magnet in which the linear expansion coefficients of the iron yoke and the annular bonded magnet are substantially equal in the actual use temperature range.

[第1の工程]
本工程は、ボンド磁石の元となる環状圧粉体(グリーンコンパクト)を製造する工程である。
まず、本発明にかかる上記圧粉体について、従来のグラニュール状複合磁石材料、たとえば、NdFe14Bの化学量論組成に近い合金組成Nd12Fe77Co(atomic%)溶湯合金を急冷凝固した磁石薄片(密度7.59Mg/m)と、常温で固体あるいは液体のエポキシ樹脂組成物などから構成される磁石材料を用い、これを成形型リングキャビティに充填し、圧縮成形し得られる圧粉体との相違点の観点を踏まえ以下に説明する。
[First step]
This step is a step of manufacturing an annular green compact (green compact) that is the basis of the bonded magnet.
First, for the green compact according to the present invention, a conventional granular composite magnet material, for example, an alloy composition Nd 12 Fe 77 Co 5 B 6 (atomic%) close to the stoichiometric composition of Nd 2 Fe 14 B A magnet material composed of a magnet flake (density 7.59 Mg / m 3 ) obtained by rapidly solidifying the alloy and an epoxy resin composition that is solid or liquid at room temperature is filled into a mold ring cavity and compression molded. The following description is based on the viewpoint of the difference from the obtained green compact.

従来の熱硬化性樹脂組成物(例えば常温で固体のエポキシオリゴマー)を使用した従来のグラニュールの複合磁石材料(磁石薄片)は、キャビティに充填された後、圧縮圧力を受けると脆性破壊を起こし、分離しながら周囲の間隙を埋めて緻密化が進む。また、同時に、その一部は回転して圧力軸方向へ積層するようになる。ここでグラニュール(磁石薄片)相互の位置関係が、ほぼ安定するようになる。勿論、圧縮圧力が小さければ、グラニュール(磁石薄片)の脆性破壊と間隙充填の程度も小さくなり、よって、圧粉体(グリーンコンパクト)の密度も小さくなる。
その後、圧縮圧力を開放し、成形型キャビティから圧粉体を離型した段階において、基本的には弾性範囲にある圧力軸方向に、ある角度をもつグラニュール(磁石薄片)は元の位置に戻ろうとして回転する現象が起こることにより、一般に離型した圧粉体は弾性回復現象(スプリングバック)を示すことになる。
なお、2wt.%程度のエポキシ樹脂を配合した複合磁石材料を圧力1GPa程度で圧縮し、磁石薄片の体積分率が80vol.%を超えるような圧粉体においては、そのスプリングバックは0.4%程度であり、残留空隙は体積分率で8〜11vol.%程度にもなる。
Conventional granule composite magnet materials (magnet flakes) using conventional thermosetting resin compositions (such as epoxy oligomers that are solid at room temperature) cause brittle fracture when filled with cavities and then subjected to compression pressure. , While separating, the surrounding gaps are filled and densification proceeds. At the same time, some of them rotate to be stacked in the pressure axis direction. Here, the positional relationship between the granules (magnet flakes) becomes almost stable. Of course, if the compression pressure is small, the degree of brittle fracture and gap filling of the granules (magnet flakes) will be small, and the density of the green compact (green compact) will also be small.
After that, at the stage where the compression pressure is released and the green compact is released from the mold cavity, the granules (magnet flakes) with an angle in the pressure axis direction, which is basically in the elastic range, are returned to their original positions. When the phenomenon of rotating to return occurs, generally the released green compact exhibits an elastic recovery phenomenon (spring back).
2 wt. % Of a composite magnet material containing about 1% epoxy resin is compressed at a pressure of about 1 GPa, and the volume fraction of the magnet flakes is 80 vol. %, The spring back is about 0.4% and the residual voids are 8 to 11 vol. %.

一方、本発明においては、環状圧粉体の残留空隙を減少させるために、磁石材料のバインダとして、従来のエポキシ樹脂を含む熱硬化性樹脂組成物に代えて、組成物の融点以下の温度において降伏応力を越える圧力によって塑性変形(流動)を引き起こす性質、すなわち、ビンガム流動(降伏応力をもつ流動)する性質が付与された樹脂組成物を採用することを一つの特徴とする。
このため、本発明の第1の工程において、たとえば、NdFe14Bの化学量論組成に近い合金組成Nd12Fe77Co(atomic%)溶湯合金を急冷凝固した磁石薄片(密度7.59Mg/m)と、上述の性質をもつ熱硬化性樹脂組成物とから成るグラニュール状複合磁石材料を成形型リングキャビティに定法により所定量充填した後、該複合磁石材料に一軸の該熱硬化性樹脂組成物の降伏応力以上の圧力を加える。すると本発明に係る複合磁石材料は、緻密化過渡(圧縮)の初期ではグラニュール相互が密着し、続い
て、当該グニュールに含まれる磁石薄片の脆性破壊と同時に、熱硬化性樹脂組成物が塑性変形(流動)を引き起こし、これにより隣接するグラニュールの接触面が拡張し、間隙が減少し、さらに同時に、該グラニュール(磁石薄片)の一部が回転して圧力軸方向へ積層するようになる。そしてここでグラニュール(磁石薄片)相互の位置関係は、ほぼ安定し固定化されることとなる。その結果、残留空隙が極めて少ない圧粉体を得ることができる。
本発明の第1の工程は、こうした緻密化作用が緻密化過渡(圧縮)において起こるため、たとえば1GPa程度で圧縮成形した環状圧粉体において、その残留空隙を体積分率で容易に3vol.%以下の値とすることができる。
On the other hand, in the present invention, in order to reduce the residual void of the annular green compact, instead of a conventional thermosetting resin composition containing an epoxy resin as a binder for the magnet material, at a temperature below the melting point of the composition. One characteristic is that a resin composition having a property of causing plastic deformation (flow) due to a pressure exceeding the yield stress, that is, a property of causing Bingham flow (flow with yield stress) is employed.
For this reason, in the first step of the present invention, for example, an alloy composition Nd 12 Fe 77 Co 5 B 6 (atomic%) close to the stoichiometric composition of Nd 2 Fe 14 B is rapidly cooled and solidified. 7.75Mg / m 3 ) and a thermosetting resin composition having the above-mentioned properties are filled with a predetermined amount of granulated composite magnet material in a mold ring cavity by a conventional method, and the composite magnet material is uniaxially loaded. A pressure higher than the yield stress of the thermosetting resin composition is applied. Then, in the composite magnet material according to the present invention, in the initial stage of densification transient (compression), the granules are brought into close contact with each other. Subsequently, at the same time as the brittle fracture of the magnet flakes contained in the granule, Causes deformation (flow), which expands the contact surface of adjacent granules, reduces the gap, and at the same time causes a part of the granules (magnet flakes) to rotate and stack in the pressure axis direction Become. Here, the positional relationship between the granules (magnet flakes) is almost stable and fixed. As a result, a green compact with very little residual voids can be obtained.
In the first step of the present invention, such a densification action occurs in a densification transient (compression). Therefore, for example, in an annular green compact that is compression-molded at about 1 GPa, the residual voids can easily be 3 vol. % Or less.

本発明に係る、上述したような降伏応力を持つ流動性を備えた熱硬化性樹脂組成物を構成する熱硬化性樹脂として、不飽和ポリエステルアルキドと、アリル系共重合性単量体との完溶物である不飽和ポリエステル樹脂を例示できる。そして本発明にかかる熱硬化性樹脂組成物は、前記不飽和ポリエステル樹脂と、加熱硬化の際の重合開始剤となる有機化酸化物とを含む。   As the thermosetting resin constituting the thermosetting resin composition having flowability with yield stress as described above according to the present invention, the completion of unsaturated polyester alkyd and allylic copolymerizable monomer is completed. Examples thereof include unsaturated polyester resins that are solutes. And the thermosetting resin composition concerning this invention contains the said unsaturated polyester resin and the organication oxide used as the polymerization initiator in the case of heat-hardening.

前記熱硬化性樹脂組成物として、好ましくは、常温で固体であり、かつ粘着性がなく、融点80〜120℃、酸価20以下である不飽和ポリエステルアルキド(A)と、融点30℃以下のアリル系共重合性単量体(B)との完溶物と、有機過酸化物を含みて構成される熱硬化性樹脂組成物を挙げることができる。   The thermosetting resin composition is preferably an unsaturated polyester alkyd (A) that is solid at room temperature and is not sticky, has a melting point of 80 to 120 ° C. and an acid value of 20 or less, and a melting point of 30 ° C. or less. The thermosetting resin composition comprised including the complete solution with an allylic copolymerizable monomer (B) and an organic peroxide can be mentioned.

前述の常温で固体であり、かつ粘着性のない、融点80〜120℃、酸価20以下の不飽和ポリエステルアルキド(A)は、ジカルボン酸成分とグリコール(ジオール)成分からなる。   The above-mentioned unsaturated polyester alkyd (A) which is solid at ordinary temperature and has no tackiness, and has a melting point of 80 to 120 ° C. and an acid value of 20 or less comprises a dicarboxylic acid component and a glycol (diol) component.

前記ジカルボン成分は、フタル酸とフマル酸とからなることが好ましく、フタル酸またはその誘導体と、フマル酸を原料として用いる。なお、以降の本明細書において、「フタル酸」なる記載には「フタル酸又はその誘導体」の意味が含まれる。フマル酸の代わりに例えば仮に無水マレイン酸またはマレイン酸を用いた場合、常温で粘着性がなく、耐ブロッキング性に優れたグラニュール状複合磁石材料が得られない。
フタル酸/フマル酸の使用割合は5/5〜1/9、とくに4/6〜2/8(モル比)が好ましい。
The dicarboxylic component is preferably composed of phthalic acid and fumaric acid, and phthalic acid or a derivative thereof and fumaric acid are used as raw materials. In the following description, the term “phthalic acid” includes the meaning of “phthalic acid or a derivative thereof”. For example, if maleic anhydride or maleic acid is used instead of fumaric acid, a granular composite magnet material having no tackiness at room temperature and excellent blocking resistance cannot be obtained.
The use ratio of phthalic acid / fumaric acid is preferably 5/5 to 1/9, particularly 4/6 to 2/8 (molar ratio).

前記グリコール成分は、1,4−ブタンジオール単独、もしくは1,4−ブタンジオールと他のグリコールとを併用することが好ましい。このとき、1,4−ブタンジオール/他のグリコールの割合は7/3〜10/0、とくに8/2〜9.5/0.5(モル比)であることが好ましい。
1,4−ブタンジオールと併用される他のグリコール成分としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ジメチル−3−ヒドロキシプロピル、2,2−ジメチル−6,3−ヒドロキシプロピオネート、水素化ビスフェノールA、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイド付加物を挙げることができる。ここで、他のグリコール成分として好ましくは、プロピレングリコール、ネオペンチルグリコール、ジプロピレングリコールを用いることができる。
The glycol component is preferably 1,4-butanediol alone, or 1,4-butanediol and other glycols in combination. At this time, the ratio of 1,4-butanediol / other glycol is preferably 7/3 to 10/0, more preferably 8/2 to 9.5 / 0.5 (molar ratio).
Other glycol components used in combination with 1,4-butanediol include ethylene glycol, propylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, 1, 5-pentanediol, 1,6-hexanediol, 2,2-dimethyl-3-hydroxypropyl, 2,2-dimethyl-6,3-hydroxypropionate, hydrogenated bisphenol A, ethylene oxide or propylene of bisphenol A An oxide adduct can be mentioned. Here, propylene glycol, neopentyl glycol, or dipropylene glycol can be preferably used as the other glycol component.

ここで、ジカルボン酸成分のフタル酸/フマル酸のモル比が5/5〜9/1の範囲にあっても、グリコール成分である1,4−ブタンジオール/他のグリコールのモル比が7/3より小さい(1,4−ブタンジオールのモル比が7を超える)場合は、常温で粘着性のない耐ブロッキング性に優れたグラニュール状複合磁石材料を得ることができない。
また、ジオール成分の1,4−ブタンジオール/他のグリコールのモル比が7/3〜10/0の範囲にあっても、ジカルボン酸成分であるテレフタル酸/フマル酸のモル比が5/5より大きい場合(フタル酸のモル比が5を超える)、または、1/9より小さい場合(フタル酸のモル比が1を下回る)場合においては、常温で粘着性がなく、耐ブロッキング性に優れたグラニュール状複合磁石材料は得られるものの、後に得られる環状ボンド磁石の熱的、機械的特性が十分なものとはならない。
Here, even if the molar ratio of diphthalic acid component phthalic acid / fumaric acid is in the range of 5 / 5-9 / 1, the molar ratio of 1,4-butanediol / other glycol as the glycol component is 7 / If it is smaller than 3 (1,4-butanediol molar ratio exceeds 7), a granular composite magnet material having no tackiness at room temperature and excellent in blocking resistance cannot be obtained.
Further, even if the molar ratio of 1,4-butanediol of the diol component / other glycol is in the range of 7/3 to 10/0, the molar ratio of terephthalic acid / fumaric acid which is the dicarboxylic acid component is 5/5. When larger (molar ratio of phthalic acid exceeds 5) or smaller than 1/9 (molar ratio of phthalic acid is less than 1), there is no stickiness at room temperature and excellent blocking resistance Although a granular composite magnet material can be obtained, the thermal and mechanical properties of the annular bonded magnet obtained later are not sufficient.

本発明にかかる不飽和ポリエステルアルキド(A)の融点は80〜120℃が好ましい。融点が80℃より低い場合は、常温で粘着性がなく、耐ブロッキング性に優れたグラニュール状複合磁石材料とならないばかりか、均質なグラニュール状複合磁石材料すら得ることができない。また、融点が120℃より高い場合には、常温で粘着性がなく、耐ブロッキング性に優れたグラニュール状複合磁石材料が得られるものの、常温で1GPa以下での塑性変形(流動)性、すなわちビンガム流動(降伏応力をもつ流動)性が減少するので好ましくない。   The unsaturated polyester alkyd (A) according to the present invention preferably has a melting point of 80 to 120 ° C. When the melting point is lower than 80 ° C., not only does it become a granular composite magnet material having no stickiness at room temperature and excellent blocking resistance, but even a homogeneous granular composite magnet material cannot be obtained. In addition, when the melting point is higher than 120 ° C., a granular composite magnet material having no stickiness at room temperature and excellent in blocking resistance can be obtained, but plastic deformation (fluidity) at 1 GPa or less at room temperature, that is, Bingham flow (flow with yield stress) is reduced, which is not preferable.

本発明にかかるアリル系共重合性単量体(B)としては、例えばジアリルイソフタレート、ジアリルテレフタレート、ジアリルオルソフタレートなどの2官能性単量体、あるいはトリアジン環化合物であるトリアリルイソシアヌレートなどの3官能性単量体などが挙げられる。これらは1種単独で使用され得、また2種以上を併用することで降伏応力をもつ流動性を調整することも可能である。   Examples of the allyl copolymerizable monomer (B) according to the present invention include bifunctional monomers such as diallyl isophthalate, diallyl terephthalate and diallyl orthophthalate, or triallyl isocyanurate which is a triazine ring compound. A trifunctional monomer etc. are mentioned. These can be used singly or in combination of two or more, it is possible to adjust the fluidity with yield stress.

なお一般に、共重合性単量体としてはビニル基(CH=CH−)を有する単量体と、アリル基(CH=CH−CH−)を有する単量体に区分される。後者の単量体においてアリル基は、重合開始剤である過酸化物のラジカルにより活性化されても、共鳴構造によって安定化され(退化性連鎖移動反応〜R・+CH=CH−CH−X→〜RH+C
=CH−・CH−X⇔・CH−CH=CH−X)、重合反応の連鎖反応が阻害される。この共鳴作用により、アリル基を有する単量体は常温域で重合不活性であり、後に調製する圧粉体(硬化前のボンド磁石材料)の常温での保存安定性において有利となる。また、アリル系共重合性単量体は、何れも蒸気圧が高く、揮発し難い。こうした点からも、不飽和ポリエステル樹脂を構成する共重合性単量体としてアリル系共重合性単量体を使用することにより、常温で優れた保存安定性があるグラニュール状複合磁石材料が得られる。
In general, the copolymerizable monomer is classified into a monomer having a vinyl group (CH 2 ═CH—) and a monomer having an allyl group (CH 2 ═CH—CH 2 —). In the latter monomer, the allyl group is stabilized by the resonance structure even when activated by the peroxide radical as a polymerization initiator (degenerate chain transfer reaction˜R · + CH 2 ═CH—CH 2 − X → ~ RH + C
H 2 = CH- · CH-X⇔ · CH 2 -CH = CH-X), a chain reaction of the polymerization reaction is inhibited. By this resonance action, the monomer having an allyl group is inactive in the normal temperature range, which is advantageous in the storage stability at normal temperature of the green compact (bonded magnet material before curing) to be prepared later. In addition, all of the allyl copolymerizable monomer has a high vapor pressure and hardly volatilizes. From these points, the use of an allylic copolymerizable monomer as the copolymerizable monomer constituting the unsaturated polyester resin provides a granular composite magnet material with excellent storage stability at room temperature. It is done.

また、熱硬化性樹脂組成物の硬化物の架橋密度を高めてガラス転移温度を高い値とし、該硬化物がガラス状態にあるボンド磁石の線膨張係数を、鉄の線膨張係数と同程度である12×10−6−1程度の値を確保するためには、磁石薄片の体積分率を80vol.%以上にするとともに、前記アリル系共重合性単量体としてトリアジン環を有する3官能性単量体であるトリアリルイソシアヌレートとすることが好ましい。 Further, the crosslink density of the cured product of the thermosetting resin composition is increased to increase the glass transition temperature, and the linear expansion coefficient of the bonded magnet in which the cured product is in the glass state is approximately the same as the linear expansion coefficient of iron. In order to secure a certain value of about 12 × 10 −6 ° C.− 1 , the volume fraction of the magnet flakes is set to 80 vol. It is preferable to use triallyl isocyanurate which is a trifunctional monomer having a triazine ring as the allyl copolymerizable monomer.

前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)の割合(濃度)は、質量比でB/(A+B)=5〜40wt.%である。たとえば、アリル系共重合性単量体(B)の濃度が5wt.%未満の場合、粘着性のないグラニュール状複合磁石材料が得られるものの、常温で1GPa以下での塑性変形能(流動)が低下する(ビンガム流動性が減少する)ので好ましくない。またアリル系共重合性単量体(B)の濃度が40wt.%を越えると、後に調製する環状圧粉体(グリーンコンパクト)の圧環強度(剛性)が低下するので好ましくない。   The ratio (concentration) of the unsaturated polyester alkyd (A) and the allylic copolymerizable monomer (B) was B / (A + B) = 5 to 40 wt. %. For example, the concentration of the allylic copolymerizable monomer (B) is 5 wt. If it is less than%, a non-adhesive granular composite magnet material can be obtained, but the plastic deformability (flow) at 1 GPa or less at normal temperature is lowered (bingham fluidity is reduced), which is not preferable. The concentration of the allylic copolymerizable monomer (B) is 40 wt. If the ratio exceeds 50%, the crushing strength (rigidity) of the annular green compact (green compact) to be prepared later is lowered, which is not preferable.

本発明にかかる熱硬化性樹脂組成物に含まれる重合開始剤としては有機過酸化物を例示できる。有機過酸化物としてはメチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジ
イソプロピルベンゼンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエートなどを挙げることができる。
An organic peroxide can be illustrated as a polymerization initiator contained in the thermosetting resin composition concerning this invention. Examples of the organic peroxide include methyl ethyl ketone peroxide, cyclohexanone peroxide, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, p- Menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxylaurate , T-butyl peroxybenzoate and the like.

さらに、本発明にかかる熱硬化性樹脂組成物には、重合禁止剤としてp−ベンゾキノン、ナフトキノン、p−トルキノン、2,5−ジフェニル−p−ベンゾキノン、2,5−アセトキシ−p−ベンゾキノン、ハイドロキノン、p−t−ブチルカテコール、2,5−ジ−t−ブチルハイドロキノン、ジ−t−ブチル−p−クレゾール、ハイドロキノンモノメチルエーテルなどを挙げることができる。これらの重合禁止剤は2種以上を混合して使用することもできる。なお、重合禁止剤の使用量は、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)の合計質量100質量部に対して0.5質量部以下である。   Furthermore, the thermosetting resin composition according to the present invention includes p-benzoquinone, naphthoquinone, p-toluquinone, 2,5-diphenyl-p-benzoquinone, 2,5-acetoxy-p-benzoquinone, hydroquinone as a polymerization inhibitor. , P-t-butylcatechol, 2,5-di-t-butylhydroquinone, di-t-butyl-p-cresol, hydroquinone monomethyl ether, and the like. These polymerization inhibitors can be used in combination of two or more. In addition, the usage-amount of a polymerization inhibitor is 0.5 mass part or less with respect to 100 mass parts of total mass of the said unsaturated polyester alkyd (A) and the said allylic copolymerizable monomer (B).

本発明にかかる希土類−鉄系磁石薄片は、R−Fe−B系磁石(但しRはYを含むCe、Pr、Nd、Gd、Tb、Dy、Ho等の希土類元素)または前記磁石においてFeの一部をCoで置換したR−Fe(Co)−B系磁石(但しRは前述の意味を表す)と、更にはSi、Al、Nb、Zr、Hf、Mo、Ga、P、Cの1種または2種以上の組み合わせを用いたR−Fe−B−M系磁石またはR−Fe(Co)−B−M系磁石(但しRは前述の意味を表し、MはSi、Al、Nb、Zr、Hf、Mo、Ga、P、Cの1種または2種以上の組み合わせを表す)、不可避不純物からなる合金組成を有するRFe14B、RFe(Co)14Bナノ結晶組織(nanocrystalline)、またはαFeとR
14B、RFe(Co)14Bとのナノ複合組織(nanocomposite)(前記Rは前述
の意味を表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片が好ましい。
或いは、本発明にかかる希土類−鉄系磁石薄片は、Sm−Fe−N系磁石と、Hf、Zr、Si、Nb、Ti、Ga、Al、TaおよびCの1種または2種以上の組合せを用いたSm−Fe−M’−N系磁石(但しM’はHf、Zr、Si、Nb、Ti、Ga、Al、TaおよびCの1種または2種以上の組合せを表す)、並びに、不可避不純物からなる合金組成を有するSmFe17Nx(x≒3)ナノ結晶組織(nanocrystalline)、ま
たはαFeとSmFe17Nx(x≒3)とのナノ複合組織(nanocomposite)を含む
、磁気的に等方性の希土類−鉄系急冷凝固薄片を使用しても差し支えない。
なお、一般に、小型モータに搭載する磁石としては、常温での保磁力は600kA/m以上で、かつ飽和磁化Msが高く、かつ残留磁化Mrはレマネンスエンハンスメントが発現するナノ組織、ナノ複合組織の磁石薄片が好ましい。
The rare earth-iron magnet flake according to the present invention is an R—Fe—B magnet (where R is a rare earth element such as Ce, Pr, Nd, Gd, Tb, Dy, Ho, etc., including Y) or R—Fe (Co) —B based magnet partially substituted with Co (where R represents the above-mentioned meaning), and further Si, Al, Nb, Zr, Hf, Mo, Ga, P, C 1 R-Fe-BM type magnet or R-Fe (Co) -BM type magnet using a seed or a combination of two or more types (where R represents the aforementioned meaning, M represents Si, Al, Nb, Zr, Hf, Mo, Ga, P, C represents one or a combination of two or more), R 2 Fe 14 B, R 2 Fe (Co) 14 B nanocrystalline structure having an alloy composition composed of inevitable impurities ( nanocrystalline), or αFe and R 2 F
Magnetically isotropic rare earth-iron rapidly solidified flakes containing a nanocomposite with e 14 B and R 2 Fe (Co) 14 B (wherein R represents the aforementioned meaning) are preferred.
Alternatively, the rare earth-iron-based magnet flake according to the present invention includes a Sm—Fe—N-based magnet and a combination of one or more of Hf, Zr, Si, Nb, Ti, Ga, Al, Ta and C. Sm—Fe—M′—N-based magnet used (where M ′ represents one or a combination of two or more of Hf, Zr, Si, Nb, Ti, Ga, Al, Ta and C), and unavoidable including Sm 2 Fe 17 Nx having an alloy composition consisting of impurities (x ≒ 3) nanocrystal structure (nanocrystalline), or αFe and Sm 2 Fe 17 Nx (x ≒ 3) and nanocomposite structure of the (nanocomposite), magnetic It is possible to use isotropic rare earth-iron rapidly solidified flakes.
In general, as a magnet mounted on a small motor, the coercive force at room temperature is 600 kA / m or more, the saturation magnetization Ms is high, and the residual magnetization Mr is a nanostructure or nanocomposite structure in which remanence enhancement is expressed. The magnet flakes are preferred.

上述の熱硬化性樹脂組成物と希土類−鉄系磁石薄片より環状圧粉体を製造する工程は、好ましくは以下のように実施される。   The step of producing the annular green compact from the above-mentioned thermosetting resin composition and rare earth-iron-based magnet flakes is preferably carried out as follows.

まず前記熱硬化性樹脂組成物を、例えば、ミキシングロールを用いて溶融状態として、ここに所定量の前記希土類−鉄系磁石薄片を加えて混練し、溶融混練物とし、常温で固体のグラニュール状複合磁石材料(以降、単に“グラニュール”とも称する)を得る。あるいは、当該樹脂組成物を構成する不飽和ポリエステルアルキド(粉末状)、共重合性単量体(液状)、重合開始剤(液状または粉末状)などと希土類−鉄系磁石薄片とを予め一括して混合し、例えば、ミキシングロールを用いて不飽和ポリエステルアルキドの融点付近の温度で該不飽和ポリエステルアルキドの共重合性単量体溶液である溶融不飽和ポリエステル樹脂の作製と同時に、該溶融樹脂と該磁石薄片との混練を行なっても差し支えない。
ここで、熱硬化性樹脂組成物の溶融状態下で該磁石薄片を混練することにより、各グラニュール中の空隙を減少させることができ、こうした観点から本工程の全てを無溶剤で行う、所謂、無溶剤型で実施することが望ましい。
First, the thermosetting resin composition is made into a molten state using, for example, a mixing roll, and a predetermined amount of the rare earth-iron-based magnet flakes are added and kneaded to obtain a melt-kneaded product. A composite magnetic material (hereinafter, also simply referred to as “granule”) is obtained. Alternatively, the unsaturated polyester alkyd (powder), the copolymerizable monomer (liquid), the polymerization initiator (liquid or powder), etc., and the rare earth-iron magnet flakes constituting the resin composition are previously bundled together. For example, using a mixing roll at a temperature near the melting point of the unsaturated polyester alkyd, simultaneously with the production of the molten unsaturated polyester resin that is a copolymerizable monomer solution of the unsaturated polyester alkyd, The magnet flakes may be kneaded.
Here, by kneading the magnet flakes in the molten state of the thermosetting resin composition, the voids in each granule can be reduced. From this point of view, all of this step is performed without a solvent. It is desirable to carry out in a solvent-free type.

続いて、得られたグラニュール状複合磁石材料を成形型キャビティに充填し、前記グラニュール状複合磁石材料の融点以下の温度、例えば常温(20℃±15℃(5〜35℃))で、一軸の圧力を加えて、環状圧粉体とする。
本工程を詳細に説明すると、まず該グラニュール状複合磁性材料をキャビティに充填し、該グラニュールの融点以下の温度にて、該グラニュールに一軸の圧力、すなわち前記熱硬化性樹脂組成物の降伏応力以上の圧力、例えば0.8GPa〜1.0GPa程度の圧力を加える。すると本発明にかかるグラニュールは、緻密化過渡(圧縮)の降伏応力以上で、該グラニュールに含まれる磁石薄片の脆性破壊と同時に、前記熱硬化性樹脂組成物が塑性変形(流動)し、それらの相乗効果によって、グラニュール周辺の間隙が埋められる(減少する)こととなる。さらに同時に、該グラニュール(磁石薄片)の一部が回転して圧力軸方向へ積層するようになる。ここでグラニュール(磁石薄片)相互の位置関係は、ほぼ安定し固定化されることとなる。
つぎに圧力を開放し、成形型キャビティから環状圧粉体を離型する。この段階では、基本的には弾性範囲にある圧力軸方向に、ある角度をもつグラニュール(磁石薄片)は元の位置に戻ろうとして回転する現象、すなわち弾性回復現象(スプリングバック)を示すことになるが、本発明にかかる環状圧粉体においては、成形型キャビティから離型後において、弾性回復現象(スプリングバック)を従来よりも低く抑えることできる。
Subsequently, the granule-shaped composite magnet material thus obtained is filled into a mold cavity, and at a temperature not higher than the melting point of the granule-shaped composite magnet material, for example, normal temperature (20 ° C. ± 15 ° C. (5-35 ° C.)) Uniaxial pressure is applied to form an annular green compact.
This process will be described in detail. First, the granule-like composite magnetic material is filled in a cavity, and at a temperature not higher than the melting point of the granule, uniaxial pressure is applied to the granule, that is, the thermosetting resin composition. A pressure higher than the yield stress, for example, a pressure of about 0.8 GPa to 1.0 GPa is applied. Then, the granule according to the present invention is more than the yield stress of densification transient (compression), and simultaneously with the brittle fracture of the magnet flakes contained in the granule, the thermosetting resin composition is plastically deformed (flowed), Their synergistic effect fills (decreases) the gap around the granule. At the same time, a part of the granules (magnet flakes) rotate to be stacked in the pressure axis direction. Here, the positional relationship between the granules (magnet flakes) is almost stable and fixed.
Next, the pressure is released, and the annular green compact is released from the mold cavity. At this stage, basically, a granule (magnet flake) with a certain angle in the direction of the pressure axis in the elastic range rotates to return to its original position, that is, exhibits an elastic recovery phenomenon (spring back). However, in the annular green compact according to the present invention, the elastic recovery phenomenon (spring back) can be suppressed to be lower than that in the prior art after releasing from the mold cavity.

こうして得られた環状圧粉体は、該環状圧粉体に占める磁石薄片の体積分率を80vol.%以上、残留空隙の体積分率を3vol.%以下、残部を熱硬化性樹脂組成物とすることができる。そしてこうした構成により、少なくとも該熱硬化性樹脂組成物の硬化物がガラス状態にある本発明にかかるボンド磁石において、該磁石の線膨張係数の値を環状鉄ヨークの線膨張係数と同等の12×10−6−1以下とすることができる。 The annular green compact thus obtained has a volume fraction of magnet flakes in the annular green compact of 80 vol. %, The volume fraction of residual voids is 3 vol. % Or less, and the balance can be the thermosetting resin composition. With such a configuration, in the bonded magnet according to the present invention in which at least the cured product of the thermosetting resin composition is in a glass state, the value of the linear expansion coefficient of the magnet is 12 × equivalent to the linear expansion coefficient of the annular iron yoke. It can be made into 10 <-6> (degreeC) -1 or less.

[第2の工程]
本工程は、第1の工程で得られた環状圧粉体を環状鉄ヨークと組み合わせて加熱し、ヨークと密着させた状態で圧粉体を熱硬化させて環状ボンド磁石とする工程である。詳細には、環状圧粉体を構成する熱硬化性樹脂組成物の硬化過程にて、該圧粉体と密着した状態にある環状鉄ヨークの線膨張係数と該環状ボンド磁石の線膨張係数がほぼ等しい値(12×10−6−1以下)となる硬化点まで、熱硬化させる工程である
[Second step]
This step is a step in which the annular green compact obtained in the first step is heated in combination with the annular iron yoke, and the green compact is thermally cured in a state of being in close contact with the yoke to form an annular bonded magnet. Specifically, in the curing process of the thermosetting resin composition constituting the annular green compact, the linear expansion coefficient of the annular iron yoke that is in close contact with the green compact and the linear expansion coefficient of the annular bonded magnet are It is a process of thermosetting up to a curing point that is almost equal (12 × 10 −6 ° C. −1 or less).

ここで図1に、本発明に係る環状圧粉体を構成する熱硬化性樹脂組成物の加熱硬化過渡における外径変化を示す概念図を示す。なお、このような加熱硬化処理前に、本発明にかかる当該環状圧粉体外周面と、本発明に係る環状鉄ヨーク内周面は、軸方向の所定位置に、例えば20〜30μmクリアランスをもって、略同軸的に対向している。ここで環状鉄ヨークは、該環状鉄ヨーク内周面の軸方向の所定の位置において、予備加熱により内周面の径が常温よりも拡張された状態で、環状圧粉体と対向させるように位置させても差し支えない。本発明に係る第2の工程では、上記のような環状鉄ヨークと環状圧粉体との組立体とした後に、当該環状圧粉体の熱硬化性樹脂組成物に加熱硬化処理を施す。   Here, in FIG. 1, the conceptual diagram which shows the outer-diameter change in the thermosetting transition of the thermosetting resin composition which comprises the cyclic | annular green compact concerning this invention is shown. Before such heat curing treatment, the outer peripheral surface of the annular green compact according to the present invention and the inner peripheral surface of the annular iron yoke according to the present invention have a clearance of, for example, 20 to 30 μm at predetermined positions in the axial direction. Opposite coaxially. Here, the annular iron yoke is opposed to the annular green compact at a predetermined position in the axial direction of the inner peripheral surface of the annular iron yoke in a state where the diameter of the inner peripheral surface is expanded from room temperature by preheating. It can be positioned. In the second step according to the present invention, after making the assembly of the annular iron yoke and the annular green compact as described above, the thermosetting resin composition of the annular green compact is subjected to a heat curing treatment.

図1において、符号Aは加熱開始時点の常温における前記熱硬化性樹脂組成物(環状圧粉体)の外径である。また符号Bは熱硬化性樹脂組成物の融点、符号Cは熱硬化性樹脂組成物の2次元的な架橋反応開始点、符号Dは熱硬化性樹脂組成物のゲル化点、符号Eは熱硬化性樹脂組成物の硬化点、符号Fは熱硬化性樹脂硬化物のガラス転移点(そしてこれら各温度における外径)を示す。そして符号Gは硬化物を常温に戻した際の熱硬化性樹脂硬化物(環状ボンド磁石)の外径を示す。
また、環状鉄ヨークと環状圧粉体との組立体を考慮すると、符号CNTは環状圧粉体の外周面が熱膨張により拡張し、環状鉄ヨークの内周面によって圧粉体の外周面が拘束された密着(拘束)点、符号C’及びD’は、それぞれ環状圧粉体の外周面が環状鉄ヨークの
内周面に拘束された状態での2次元的な架橋反応開始点、およびゲル化点である。
In FIG. 1, symbol A is the outer diameter of the thermosetting resin composition (annular green compact) at room temperature at the start of heating. Further, symbol B is a melting point of the thermosetting resin composition, symbol C is a two-dimensional crosslinking reaction starting point of the thermosetting resin composition, symbol D is a gel point of the thermosetting resin composition, and symbol E is a heat. The curing point of the curable resin composition, symbol F, indicates the glass transition point (and the outer diameter at each temperature) of the thermosetting resin cured product. And the code | symbol G shows the outer diameter of the thermosetting resin hardened | cured material (cyclic bond magnet) at the time of returning hardened | cured material to normal temperature.
Considering the assembly of the annular iron yoke and the annular green compact, the outer peripheral surface of the annular compact is expanded by thermal expansion, and the outer peripheral surface of the green compact is formed by the inner peripheral surface of the annular iron yoke. The constrained contact (restraint) points, C ′ and D ′, respectively, are two-dimensional crosslinking reaction start points in a state where the outer peripheral surface of the annular green compact is constrained by the inner peripheral surface of the annular iron yoke, and It is a gel point.

図1に示すように、区間A−Bは、主として常温で固体の熱硬化性樹脂組成物の熱膨張による環状圧粉体の熱膨張による外径拡張を示している。なお、環状圧粉体は前述の本発明にかかる第1の工程によって残留空隙が殆どなく、固体の熱硬化性樹脂組成物が連続相を形成している。
区間B−Cは、液相となった熱硬化性樹脂組成物の熱膨張による環状圧粉体の外径拡張を示している。この区間では、昇温による液相の熱硬化性樹脂組成物の粘度低下に伴い、、外径の拡張速度が増加する。本発明では、この区間B−Cにおける接触点CNTにて、環状鉄ヨーク内周面が環状圧粉体の外周面を密着(拘束)した状態とすることになる。なお、区間B−Cにおける外径の拡張(膨張)率は、熱硬化性樹脂組成物中の重合開始剤の選択により適宜調整することができる。また、本発明にかかる環状鉄ヨークと環状圧粉体の一体嵌合をより強固にするために、環状圧粉体との密着面となる環状鉄ヨーク内周面の表面粗さを筋立加工、ローレット加工或いはブラスト加工などにより粗くして、本発明に係る環状圧粉体の密着面積(真実接触面積)を増やすことが望ましい。
As shown in FIG. 1, the section AB shows the expansion of the outer diameter due to the thermal expansion of the annular green compact mainly due to the thermal expansion of the thermosetting resin composition that is solid at room temperature. The annular green compact has almost no residual voids in the first step according to the present invention, and the solid thermosetting resin composition forms a continuous phase.
Section B-C shows expansion of the outer diameter of the annular green compact due to thermal expansion of the thermosetting resin composition in a liquid phase. In this section, the expansion speed of the outer diameter increases as the viscosity of the liquid-phase thermosetting resin composition decreases due to temperature rise. In the present invention, at the contact point CNT in the section BC, the inner peripheral surface of the annular iron yoke is brought into close contact (restraint) with the outer peripheral surface of the annular green compact. In addition, the expansion | extension (expansion) rate of the outer diameter in area BC can be suitably adjusted with selection of the polymerization initiator in a thermosetting resin composition. In addition, in order to further strengthen the integral fitting of the annular iron yoke and the annular green compact according to the present invention, the surface roughness of the inner peripheral surface of the annular iron yoke that serves as a contact surface with the annular green compact is streaked. It is desirable to increase the contact area (true contact area) of the annular green compact according to the present invention by roughening by knurling or blasting.

区間C−Dに示すように、非拘束状態では熱硬化性樹脂組成物の2次元的な架橋反応(ゲル化)の進行により、環状圧粉体の熱膨張に基づく外径拡張率は減速するか、あるいは外径は多少収縮することとなる。しかし本発明に係る区間C’−D’では、環状鉄ヨーク内周面に環状圧粉体の外周面が拘束された状態でゲル化に至る。
そして区間D−Eに示すように、非拘束状態では熱硬化性樹脂組成物は固体として振る舞い、その架橋密度を高めることで厳密には僅かな収縮(変化量:S1)を起こして硬化点Eに至る。しかし、本発明に係る拘束された状態での環状圧粉体は区間D’−Eのように推移し、非拘束の状態よりも収縮の変化量(S1)が抑制された状態で硬化点Eに至る。ここで磁石薄片の体積分率が80vol.%を超える本発明にかかる環状圧粉体は、熱硬化性樹脂組成物の硬化物がガラス状態にあるなかで、線膨張係数の値が環状鉄ヨークの線膨張係数の値と同等の12×10−6−1以下であり、且つ環状鉄ヨークと殆ど空隙なく一体嵌合してなる環状ボンド磁石となる。
As shown in the section CD, the outer diameter expansion rate based on the thermal expansion of the annular green compact is reduced by the progress of the two-dimensional crosslinking reaction (gelation) of the thermosetting resin composition in the unconstrained state. Or the outer diameter will shrink somewhat. However, in the section C′-D ′ according to the present invention, gelation occurs while the outer peripheral surface of the annular green compact is constrained to the inner peripheral surface of the annular iron yoke.
Then, as shown in the section D-E, the thermosetting resin composition behaves as a solid in an unconstrained state, and strictly increases the crosslinking density to cause a slight shrinkage (change amount: S1) to cause the curing point E. To. However, the annular green compact in the constrained state according to the present invention changes as in the section D′-E, and the curing point E in a state in which the amount of change in shrinkage (S1) is suppressed as compared with the unconstrained state. To. Here, the volume fraction of the magnet flakes is 80 vol. % Of the annular green compact according to the present invention having a linear expansion coefficient value equal to the linear expansion coefficient value of the cyclic iron yoke is 12 × while the cured product of the thermosetting resin composition is in a glass state. It becomes 10 <-6> (degreeC) -1 or less, and becomes a cyclic | annular bond magnet formed by integral fitting with a cyclic | annular iron yoke and almost no space | gap.

そして区間E−Fでは、熱硬化性樹脂組成物の硬化物のガラス転移点(Tg)以上における線膨張係数で環状ボンド磁石は収縮し、区間F−Gでは環状鉄ヨークと環状ボンド磁石とが常温まで冷却され、このとき両者の線膨張係数の値はほぼ同じであるため、同じだけ収縮することとなる。区間E−F−Gの環状ボンド磁石の収縮の変化量はS2である。   In the section EF, the annular bond magnet contracts due to the linear expansion coefficient above the glass transition point (Tg) of the cured product of the thermosetting resin composition, and in the section FG, the annular iron yoke and the annular bond magnet are separated. Since it is cooled to room temperature and the values of the linear expansion coefficients of both are substantially the same, it shrinks by the same amount. The amount of change in contraction of the annular bonded magnet in the section E-F-G is S2.

なお、環状圧粉体の常温における外径Aと環状ボンド磁石の常温における外径Gの差は、硬化過渡における熱硬化性樹脂組成物の熱膨張による外径の拡張に基づくものである。本発明に係る磁石薄片の体積分率が80vol.%を超える圧粉体の場合、区間A−B−C−D−E−F−G(非拘束状態)における拡張率((G−A)/A)×100(%)は0.06%程度であり、区間A−B−(CNT)−C’−D’−E−F−G(拘束状態)においてもほぼ同じ拡張率である。この外径拡張により、環状鉄ヨーク内周面に沿うように環状ボンド磁石が一体嵌合した構成が完成する。加えて、環状鉄ヨークと環状ボンド磁石の線膨張係数の値が同程度であるため、同軸度などの寸法精度の向上につながる。   The difference between the outer diameter A of the annular green compact at normal temperature and the outer diameter G of the annular bonded magnet at normal temperature is based on the expansion of the outer diameter due to thermal expansion of the thermosetting resin composition during the curing transient. The volume fraction of the magnet flakes according to the present invention is 80 vol. In the case of a green compact exceeding 100%, the expansion rate ((GA) / A) × 100 (%) in the section A-B-C-D-E-F-G (unconstrained state) is 0.06% The expansion rate is substantially the same in the section AB- (CNT) -C'-D'-EFG (restrained state). By this outer diameter expansion, a configuration in which the annular bonded magnet is integrally fitted along the inner peripheral surface of the annular iron yoke is completed. In addition, since the values of the linear expansion coefficients of the annular iron yoke and the annular bonded magnet are approximately the same, the dimensional accuracy such as coaxiality is improved.

以下、本発明を実施例により、さらに詳しく説明する。ただし、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this.

[第1の工程:圧粉体の製造工程]
本実施例において、本発明に係る降伏応力をもつ塑性変形(流動)性を備えた熱硬化性樹脂組成物として、酸成分がフタル酸/フマル酸=4/6(モル比)、グリコール成分が
1,4−ブタンジオール/他のグリコール=10/0(モル比)であり、融点102℃である不飽和ポリエステルアルキド(A)と、アリル系共重合性単量体として融点23〜27℃のトリアリルイソシアヌレート(B)とを、配合比:B/(A+B)が25wt.%となるように配合し、溶融混練して完溶物とし、ここに前記完溶物100質量部に対し、重合開始剤としてジクミルパーオキサイド1.5質量部を加え、溶融混練して調製した熱硬化性樹脂組成物を用いた。なお、この熱硬化性樹脂組成物の硬化物のアルキメデス法による真密度は1.25Mg/mであった。
[First step: Manufacturing process of green compact]
In this example, as the thermosetting resin composition having plastic deformation (fluidity) having a yield stress according to the present invention, the acid component is phthalic acid / fumaric acid = 4/6 (molar ratio), and the glycol component is 1,4-butanediol / other glycol = 10/0 (molar ratio), unsaturated polyester alkyd (A) having a melting point of 102 ° C., and melting point of 23 to 27 ° C. as an allylic copolymerizable monomer Triallyl isocyanurate (B), blending ratio: B / (A + B) is 25 wt. %, And melt-kneaded to make a completely dissolved material. To 100 parts by weight of the completely dissolved material, 1.5 parts by weight of dicumyl peroxide is added as a polymerization initiator, and melt-kneaded to prepare. The obtained thermosetting resin composition was used. In addition, the true density by the Archimedes method of the hardened | cured material of this thermosetting resin composition was 1.25 Mg / m < 3 >.

本実施例では、ナノ結晶組織(nanocrystalline)の磁石薄片として、NdFe14
Bの化学量論組成に近い合金組成を有するNd12Fe77Co(atomic%)溶湯合金を急冷凝固した真密度7.59Mg/m、粒子径150μm以下(乾式篩法(JIS Z 8815)による測定)、残留磁化Mr:0.90T、保磁力HcJ:0.8MA/mの磁石薄片を使用した。
In this embodiment, Nd 2 Fe 14 is used as a nanocrystalline magnet flake.
A true density of 7.59 Mg / m 3 obtained by rapidly solidifying an Nd 12 Fe 77 Co 5 B 6 (atomic%) molten alloy having an alloy composition close to the stoichiometric composition of B, and a particle diameter of 150 μm or less (dry sieving method (JIS Z 8815)), a magnetic flake having a residual magnetization Mr: 0.90 T and a coercive force HcJ: 0.8 MA / m was used.

<a)グラニュール状複合磁石材料の製造>
前記磁石薄片と、前記熱硬化性樹脂組成物とを、無溶剤下で、表面温度を100℃に設定した8−インチ双ロールミルを用いて溶融混練し、溶融混練物とした。ここで熱硬化性樹脂組成物の割合が、前記溶融混練物において(すなわち複合磁石材料の総質量に対して)2.5、3.0、3.5、4.0wt.%となるように、磁石薄片と熱硬化性樹脂組成物を種々配合した。
続いて、前記溶融混練物を、表面温度80℃の等速ロールミルを用いて厚さ1mm以下とし、ヘンシェルミキサーで粗粉砕した。さらに、電動石臼による解砕と篩による分級にて、粒子径53〜250μmのグラニュール状複合磁石材料とした。
得られたグラニュール状複合磁石材料は、常温で粘着性がなく、耐ブロッキング性に優れるグラニュール状複合磁石材料となった。この材料は外部滑剤なしで40秒/50gの粉末流動性を有していた。このため、後述の<b)圧粉体の製造>において、既存の粉末成形機のフィーダカップから成形型リングキャビティに定法により充填可能であった。
<A) Production of granular composite magnet material>
The magnet flakes and the thermosetting resin composition were melt-kneaded using a 8-inch twin roll mill having a surface temperature set to 100 ° C. in the absence of a solvent to obtain a melt-kneaded product. Here, the ratio of the thermosetting resin composition is 2.5, 3.0, 3.5, 4.0 wt.% In the melt-kneaded product (that is, based on the total mass of the composite magnet material). %, Various magnetic flakes and a thermosetting resin composition were blended.
Subsequently, the melt-kneaded product was adjusted to a thickness of 1 mm or less using a constant speed roll mill having a surface temperature of 80 ° C., and coarsely pulverized with a Henschel mixer. Furthermore, it was set as the granule-shaped composite magnet material with a particle diameter of 53-250 micrometers by crushing with an electric stone mill and classification with a sieve.
The obtained granule-like composite magnet material became a granule-like composite magnet material having no stickiness at room temperature and excellent blocking resistance. This material had a powder flow of 40 seconds / 50 g without an external lubricant. For this reason, in <b) Production of green compact> described later, it was possible to fill the mold ring cavity from the feeder cup of an existing powder molding machine by a conventional method.

<b)圧粉体の製造>
前述の工程で得られたグラニュール状複合磁石材料3.3gを成形型キャビティ(内径10.08mm)に充填し、常温にて圧力1.0GPaで圧縮して圧粉体を得た。
図2に、得られた圧粉体(実施例)を構成する熱硬化性樹脂組成物の体積分率Vrに対する残留空隙の体積分率Vaの関係(図中、□で表示)、およびVrに対する磁石薄片の体積分率Vmの関係(図中、○で表示)を示す特性図を示す。
なお、前述の熱硬化性樹脂組成物に代えて、常温で固体のエポキシ樹脂(ジグリシジルエーテルビスフェノールA型エポキシオリゴマー:epikote1002と4−4’ジフェニルメタンジイソシアネート再生体とをOH/NCO=1としたもの)を有機溶媒溶液として磁石薄片と湿式混合し、脱溶媒・解砕・分級し、粒度調整した、エポキシ樹脂組成物含有のグラニュール状複合磁石材料(複合磁石材料の総質量に対してエポキシ樹脂の配合量:2.0wt.%)を用いて、前記<a)グラニュール状複合磁石材料の製造>と同一条件で作製した圧粉体(比較例)における、エポキシ樹脂組成物の体積分率Vrに対する残留空隙の体積分率Vaの関係(図中、■で表示)、およびVrに対する磁石薄片の体積分率Vmの関係(図中、●で表示)についても同時に図2に示す。
ここで、従来例である上記エポキシ樹脂組成物のみを熱硬化した試料のアルキメデス法による真密度は1.16Mg/mであった。
<B) Production of green compact>
3.3 g of the granular composite magnet material obtained in the above-described process was filled in a mold cavity (inner diameter 10.08 mm) and compressed at a normal pressure of 1.0 GPa to obtain a green compact.
FIG. 2 shows the relationship between the volume fraction Va of the residual void to the volume fraction Vr of the thermosetting resin composition constituting the obtained green compact (Example) (indicated by □ in the figure), and Vr The characteristic view which shows the relationship (indicated by ○ in the figure) of the volume fraction Vm of the magnet flakes is shown.
In place of the thermosetting resin composition described above, an epoxy resin that is solid at room temperature (diglycidyl ether bisphenol A type epoxy oligomer: epikote 1002 and 4-4 ′ diphenylmethane diisocyanate regenerated material with OH / NCO = 1) ) Is mixed with the magnetic flakes as an organic solvent solution, desolvated, crushed, classified, and adjusted in particle size. Granular composite magnet material containing an epoxy resin composition (epoxy resin relative to the total mass of the composite magnet material) The volume fraction of the epoxy resin composition in the green compact (comparative example) produced under the same conditions as in <a) Production of granular composite magnet material> using 2.0 wt. The relationship between the volume fraction Va of the residual void with respect to Vr (indicated by ■ in the figure), and the relationship between the volume fraction Vm of the magnet flakes with respect to Vr (with ● in the figure). The display is also shown in FIG.
Here, the true density by the Archimedes method of the sample which heat-cured only the said epoxy resin composition which is a prior art example was 1.16 Mg / m < 3 >.

図2に示すように、実施例の圧粉体において、熱硬化性樹脂組成物の体積分率を増加させると、圧粉体の磁石薄片体積分率Vmを80vol.%程度に維持しながら、残留空隙の体積分率Vaのみが減少するという結果、すなわち、圧粉体中の残留空隙が樹脂組成物に置き換わったとする結果を得た。例えば、本実施例の圧粉体の磁石薄片の体積分率Vm
を80.05vol.%、熱硬化性樹脂組成物の体積分率を17.97vol.%(3.5wt.%)、残留空隙の体積分率を1.97vol.%としたとき、圧粉体のスプリングバックは0.2〜0.3%、圧環強度は20〜22MPaであり、それらの値を従来例(比較例)と比較するとスプリングバックは40%減、圧環強度は200%増であった。
As shown in FIG. 2, in the green compact of the example, when the volume fraction of the thermosetting resin composition is increased, the volume fraction Vm of the magnetic flakes of the green compact is 80 vol. As a result, only the volume fraction Va of the residual voids was reduced while maintaining at about%, that is, the result that the residual voids in the green compact were replaced with the resin composition was obtained. For example, the volume fraction Vm of the magnet flakes of the green compact of this example
80.05 vol. %, The volume fraction of the thermosetting resin composition was 17.97 vol. % (3.5 wt.%), The volume fraction of residual voids is 1.97 vol. %, The spring back of the green compact is 0.2 to 0.3% and the crushing strength is 20 to 22 MPa. Compared with the conventional example (comparative example), the spring back is reduced by 40%. The crushing strength was increased by 200%.

表1に、上記本発明例(不飽和ポリエステル樹脂組成物含有)と比較例(エポキシ樹脂組成物含有)の圧粉体の磁石薄片、残留空隙および樹脂組成物の体積分率の構成と、各圧粉体の磁気特性(保持力、残留磁化、最大エネルギー積)を示す。なお磁気特性はDCB−Hトレーサ(測定磁界±2.4MA/m)による測定値である。
表1に示すように、本発明にかかる実施例の圧粉体は、圧縮成形法により作製した圧粉体でありながら、磁石薄片の体積分率を80vol.%以上に維持し且つ残留空隙の体積分率を1.97vol%にまで減少させており、これは、射出成形法により作製したボンド磁石と同等の水準にまで残留空隙を減少でき且つ磁石薄片の体積分率を増大させたことを示すものである。
Table 1 shows the configurations of the magnetic flakes, residual voids, and volume fraction of the resin composition of the green compacts of the present invention example (containing the unsaturated polyester resin composition) and the comparative example (containing the epoxy resin composition). The magnetic properties (retention force, residual magnetization, maximum energy product) of the green compact are shown. The magnetic characteristics are values measured with a DCB-H tracer (measuring magnetic field ± 2.4 MA / m).
As shown in Table 1, while the green compact of the example according to the present invention is a green compact produced by a compression molding method, the volume fraction of the magnet flakes is 80 vol. % And the volume fraction of residual voids is reduced to 1.97 vol%, which can reduce the residual voids to a level equivalent to that of a bonded magnet produced by injection molding and It shows that the volume fraction was increased.

Figure 2014090125
Figure 2014090125

[第2の工程(一体嵌合)]
板厚1.0mmの冷延鋼板に深さ10mmの絞り加工を施した内周面の表面粗さ8〜10μmRz、内径50.035mmの環状鉄ヨークの内側に、外径50.005mm、厚さ0.9mm、高さ5mmの前述の工程で得られた環状圧粉体を常温で所定位置に挿入し、環状鉄ヨークと表1に示した構成の環状圧粉体との組立体を構成した。
[Second step (integrated fitting)]
A cold rolled steel sheet having a thickness of 1.0 mm, a 10 mm deep drawing process, an inner peripheral surface having a surface roughness of 8 to 10 μm Rz, an inner diameter of 500.035 mm, an inner diameter of 50.005 mm, a thickness The annular green compact obtained by the above-mentioned process of 0.9 mm and height 5 mm was inserted into a predetermined position at room temperature to form an assembly of the annular iron yoke and the annular green compact having the configuration shown in Table 1. .

つぎに、上記組立体を大気中130℃で10分間加熱し、さらに170℃で20分間加熱し、常温まで自然放冷した。その結果、環状鉄ヨークと希土類−鉄系ボンド磁石が一体嵌合した本発明に係るアウターロータ磁石を得た。   Next, the assembly was heated in air at 130 ° C. for 10 minutes, further heated at 170 ° C. for 20 minutes, and allowed to cool naturally to room temperature. As a result, an outer rotor magnet according to the present invention in which an annular iron yoke and a rare earth-iron bond magnet were integrally fitted was obtained.

ここで、本実施例に係る一体嵌合アウターロータ磁石の熱硬化性樹脂組成物の硬化過渡の振る舞いについて調査した。
先ず、実施例の熱硬化性樹脂組成物は、90℃付近に融点B、150℃付近に熱硬化性樹脂組成物の2次元的な架橋反応(ゲル化)開始点C(拘束状態ではC’)、160℃では20秒程度のゲル化点D(拘束状態ではD’)、170℃では180秒以内の硬化点E、そして150℃付近に該組成物の硬化物のガラス転移点Fを有していた。
また本発明にかかる磁石薄片を80vol.%含む環状圧粉体の常温から130℃までの平均線膨張係数は略16×10−6−1であり、一方の冷延鋼板の線膨張係数は11.8〜12×10−6−1であった。
これらより本発明に係る環状鉄ヨークと環状圧粉体との組立体におけるクリアランスの温度変化を推定した。クリアランスの温度変化を示す特性図を図3に示す。なお図3中の符号は図1に対応している。
Here, the behavior of the curing transient of the thermosetting resin composition of the integrally fitted outer rotor magnet according to this example was investigated.
First, the thermosetting resin composition of the example has a melting point B near 90 ° C., and a two-dimensional crosslinking reaction (gelation) starting point C around 150 ° C. (C ′ in a restrained state). ), A gel point D of about 20 seconds at 160 ° C. (D ′ in a constrained state), a curing point E within 180 seconds at 170 ° C., and a glass transition point F of the cured product of the composition around 150 ° C. Was.
Further, the magnet flakes according to the present invention are 80 vol. The average linear expansion coefficient from room temperature to 130 ° C. of the annular green compact containing 1% is about 16 × 10 −6 ° C.− 1 , and the linear expansion coefficient of one cold-rolled steel sheet is 11.8 to 12 × 10 −6 ° C. -1 .
From these, the temperature change of the clearance in the assembly of the annular iron yoke and the annular green compact according to the present invention was estimated. A characteristic diagram showing the temperature change of the clearance is shown in FIG. Note that the reference numerals in FIG. 3 correspond to those in FIG.

図3に示すように、環状鉄ヨークと環状圧粉体の線膨張係数の差から、環状圧粉体の外
周面が環状鉄ヨークの内周面により密着した密着(拘束)点CNTは120℃程度となり、この温度は熱硬化性樹脂組成物の融点B(90℃付近)よりも高く、かつ熱硬化性樹脂組成物の2次元的な架橋反応開始点C(150℃付近)よりも低い。したがって、密着点CNTにおいて、熱硬化性樹脂組成物が液相状態であって、環状圧粉体の外径が拡張している状態で環状鉄ヨークと密着しており、表面粗さ8〜10μmRzの環状鉄ヨーク内周面と環状圧粉体との真実接触面積を増すことができていると推定される。
さらに、拘束状態にて熱硬化性樹脂組成物のゲル化点D’、硬化点Eに至るまで、環状鉄ヨークと環状圧粉体のクリアランスはゼロの状態となり、熱硬化性樹脂組成物の硬化点Eから常温Gまでの自然放冷において、熱硬化性樹脂組成物の硬化物のガラス転移点F(150℃付近)を通過する。ここで、磁石薄片が体積分率で80vol.%を超える本発明例の環状ボンド磁石は、熱硬化性樹脂組成物の硬化物がガラス状態にあるときの線膨張係数が11.8×10−6−1であり、ガラス転移領域を含めた170℃から常温までの平均線膨張係数は20×10−6−1以下であった。したがって、見掛け上、環状鉄ヨークと環状ボンド磁石のクリアランスは、熱硬化性樹脂組成物の硬化点Eから常温Gへの冷却過程において、ほぼゼロの状態を維持するのである。
As shown in FIG. 3, due to the difference in coefficient of linear expansion between the annular iron yoke and the annular green compact, the adhesion (restraint) point CNT where the outer peripheral surface of the annular green compact is in close contact with the inner peripheral surface of the annular iron yoke is 120 ° C. This temperature is higher than the melting point B (around 90 ° C.) of the thermosetting resin composition and lower than the two-dimensional crosslinking reaction start point C (around 150 ° C.) of the thermosetting resin composition. Therefore, in the adhesion point CNT, the thermosetting resin composition is in a liquid phase state and is in close contact with the annular iron yoke in a state where the outer diameter of the annular green compact is expanded, and the surface roughness is 8 to 10 μm Rz. It is estimated that the real contact area between the inner peripheral surface of the annular iron yoke and the annular green compact can be increased.
Furthermore, the clearance between the annular iron yoke and the annular green compact is zero until the gelation point D ′ and the curing point E of the thermosetting resin composition are constrained, and the thermosetting resin composition is cured. In natural cooling from point E to room temperature G, it passes the glass transition point F (around 150 ° C.) of the cured product of the thermosetting resin composition. Here, the magnet flakes are 80 vol. % Of the bonded bond magnets of the present invention example exceeding 1% has a linear expansion coefficient of 11.8 × 10 −6 ° C.− 1 when the cured product of the thermosetting resin composition is in a glass state, and includes the glass transition region. The average linear expansion coefficient from 170 ° C. to room temperature was 20 × 10 −6 ° C. −1 or less. Therefore, apparently, the clearance between the annular iron yoke and the annular bonded magnet remains substantially zero during the cooling process from the curing point E to the room temperature G of the thermosetting resin composition.

また、得られた本発明にかかるアウターロータ磁石の内径の真円度は20μm以下、100℃での嵌合強度(ヨークを固定し、磁石端全面にせん断荷重を印加したときの抜け荷重)は500N以上であった。   Further, the roundness of the inner diameter of the obtained outer rotor magnet according to the present invention is 20 μm or less, and the fitting strength at 100 ° C. (the unloading load when the yoke is fixed and a shear load is applied to the entire surface of the magnet) is 500 N or more.

上述の通り、本発明に係る環状鉄ヨーク一体嵌合アウターロータ磁石の製造方法は、上述の工程を経ることにより、該磁石を構成する環状ボンド磁石において残留空隙量の低減を実現し、また80vol.%を超える高い磁石薄片の体積分率に加え、環状ボンド磁石を構成する熱硬化性樹脂組成物のガラス状態において、環状ボンド磁石の線膨張係数を環状鉄ヨークの線膨張係数(11.8〜12×10−6−1)とほぼ等しい値である12×10−6−1以下を有するものとなる点に特徴を有する。
そして1)残留空隙が低減されたことによる効果として、1−1)同軸度など寸法精度の向上(スプリングバック低減、圧環状強度向上による)、1−2)嵌合力の向上(嵌合面での真実接触面積の増加による)、1−3)永久減磁の抑制(残留空隙に含まれる酸素、水分などの減少による)、1−4)耐蝕性の向上(圧縮成形法であっても射出成形法と同じ程度の残留空隙量(例えばおよそ3vol.%未満)による)などを実現することができる。さらに、2)80vol.%を超える磁石薄片の体積分率と、環状ボンド磁石と鉄ヨークの線膨張係数を同程度とすることによる効果として、2−1)一体嵌合とその寸法安定性の向上、2−2)残留磁化、(BH)maxなどのボンド磁石の初期特性の高位安定化(磁石薄片の高い充填率による)などを実現できる。
このため高温暴露・低温暴露などを含む実使用温度(例えば動作時及び保管時をいずれも考慮するとおよそ−30℃〜+80℃程度)において、磁石性能、寸法変化、機会強度等、その性能を長期にわたり維持することができ、産業上の利用価値は極めて大きい。これらの効果は、環状鉄ヨーク(11.8〜12×10−6−1)との線膨張率の佐差が無視できない射出成形ボンド磁石(43×10−6−1程度)や、体積分率で9〜11vol.%もの残留空隙が存在する従来技術による圧縮成形ボンド磁石を用いた場合には得られない本発明特有の効果である。
そして本発明の製造方法によれば、高磁気性能、高寸法精度、高機械的強度を兼ね備えた一体嵌合アウターロータ磁石を歩留まりよく、工業的規模で安定した製造を可能とするばかりか、長期間の高温暴露や低温暴露など実使用温度の全領域で高い信頼性を維持、確保できる希土類−鉄系ボンド磁石と環状鉄ヨークとの一体嵌合アウターロータ磁石を提供できる。
As described above, the manufacturing method of the annular iron yoke-integrated outer rotor magnet according to the present invention achieves a reduction in the amount of residual voids in the annular bonded magnet constituting the magnet by performing the above-described steps, and 80 vol. . In addition to the volume fraction of high magnet flakes exceeding%, in the glass state of the thermosetting resin composition constituting the annular bonded magnet, the linear expansion coefficient of the annular bonded magnet is set to the linear expansion coefficient (11.8 to 12 × 10 −6 ° C. −1 ), which is approximately equal to 12 × 10 −6 ° C. −1 or less.
And 1) As an effect due to the reduction of the residual gap, 1-1) Improvement of dimensional accuracy such as concentricity (by reduction of springback and improvement of pressure ring strength), 1-2) Improvement of fitting force (by fitting surface) 1-3) Suppression of permanent demagnetization (due to reduction of oxygen, moisture, etc. contained in residual voids) 1-4) Improvement of corrosion resistance (injection even in compression molding method) Residual void amount (for example, less than about 3 vol.%), Which is the same as the molding method, can be realized. 2) 80 vol. 2-1) Improvement of integral fitting and its dimensional stability, 2-2) Effects of volume fraction of magnet flakes exceeding 50% and linear expansion coefficient of annular bonded magnet and iron yoke being comparable. Residual magnetization, high stability of the initial characteristics of the bonded magnet such as (BH) max (due to a high filling rate of the magnet flakes), etc. can be realized.
For this reason, the magnet performance, dimensional change, opportunity strength, etc. are long-term at the actual use temperature including high temperature exposure and low temperature exposure (for example, about -30 ° C to + 80 ° C when considering both operation and storage). The industrial utility value is extremely large. These effects annular yoke (11.8~12 × 10 -6-1) and injection molded bonded magnet (43 × 10 -6 ℃ about -1) adjuvant difference coefficient of linear expansion can not be ignored and, The volume fraction is 9-11 vol. This is an effect peculiar to the present invention that cannot be obtained when a compression-molded bonded magnet according to the prior art having as many% residual voids is used.
According to the manufacturing method of the present invention, an integrally fitted outer rotor magnet having high magnetic performance, high dimensional accuracy, and high mechanical strength can be manufactured with good yield and stable on an industrial scale. An integrally fitted outer rotor magnet of a rare earth-iron-based bond magnet and an annular iron yoke that can maintain and ensure high reliability in the entire range of actual use temperatures such as high temperature exposure and low temperature exposure during a period can be provided.

符号A:加熱開始時点の常温における熱硬化性樹脂組成物(環状圧粉体)における外径
符号B:熱硬化性樹脂組成物の融点
符号C:熱硬化性樹脂組成物の2次元的な架橋反応開始点
符号D:熱硬化性樹脂組成物のゲル化点
符号E:熱硬化性樹脂組成物の硬化点
符号F:熱硬化性樹脂硬化物のガラス転移点
符号G:常温に戻した熱硬化性樹脂硬化物(環状ボンド磁石)における外径
符号CNT:環状圧粉体の外周面が環状鉄ヨークの内周面により拘束された密着(拘束)点
符号C’:拘束された状態での2次元的な架橋反応開始点
符号D’:拘束された状態でのゲル化点
Symbol A: Outer diameter symbol B of thermosetting resin composition (annular green compact) at normal temperature at the start of heating B: Melting point symbol C of thermosetting resin composition Two-dimensional crosslinking of thermosetting resin composition Reaction starting point code D: Gelation point code of thermosetting resin composition E: Curing point code of thermosetting resin composition F: Glass transition point code of thermosetting resin cured product G: Thermosetting returned to room temperature Outer diameter code CNT in the cured resin (annular bonded magnet): adhesion (constraint) point code in which the outer peripheral surface of the annular green compact is constrained by the inner peripheral surface of the annular iron yoke C ′: 2 in a constrained state Dimensional cross-linking reaction start point code D ′: gel point in a constrained state

Claims (12)

圧縮成形により、希土類−鉄系磁石薄片と常温で固体の熱硬化性樹脂組成物と残留空隙とを含みて成る環状圧粉体を製造する第1の工程と、
環状鉄ヨークの内側に前記環状圧粉体を挿入し、加熱することにより、
前記環状圧粉体を構成する熱硬化樹脂組成物の熱膨張によって該環状圧粉体の外径が拡張して、該熱硬化性樹脂組成物の2次元的架橋反応開始前に、該環状圧粉体の外周面と該環状鉄ヨークの内周面とを所定の位置にて拘束した状態とするとともに、
該拘束状態にて前記環状圧粉体を構成する熱硬化樹脂組成物を熱硬化させて環状ボンド磁石とする第2の工程
とを含むことを特徴とする、鉄ヨーク一体嵌合アウターロータ磁石の製造方法。
A first step of producing an annular green compact comprising a rare earth-iron-based magnet flake, a thermosetting resin composition that is solid at room temperature, and residual voids by compression;
By inserting the annular green compact inside the annular iron yoke and heating,
The outer diameter of the annular green compact is expanded by the thermal expansion of the thermosetting resin composition constituting the annular green compact, and before the two-dimensional crosslinking reaction of the thermosetting resin composition is started, While keeping the outer peripheral surface of the powder and the inner peripheral surface of the annular iron yoke at a predetermined position,
A second step of thermosetting the thermosetting resin composition constituting the annular green compact in the constrained state to form an annular bonded magnet. Production method.
前記第1工程で得られた環状圧粉体が、希土類−鉄系磁石薄片の体積分率が80vol.%以上、残留空隙の体積分率が3vol.%未満、残部が常温で固体の熱硬化性樹脂組成物とから成る、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 The annular green compact obtained in the first step has a volume fraction of rare earth-iron-based magnet flakes of 80 vol. % And the volume fraction of residual voids is 3 vol. The manufacturing method of the iron-yoke integral fitting outer rotor magnet of Claim 1 which consists of a thermosetting resin composition which is less than% and a remainder is solid at normal temperature. 得られた鉄ヨーク一体嵌合アウターロータ磁石において、硬化された熱硬化樹脂組成物がガラス状態にある環状ボンド磁石の線膨張係数が12×10−6−1以下である、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 In the obtained iron yoke integrated fitting outer rotor magnet, the linear expansion coefficient of the annular bond magnet in which the cured thermosetting resin composition is in a glass state is 12 × 10 −6 ° C. −1 or less. The manufacturing method of the iron yoke integral fitting outer rotor magnet of description. 前記第1の工程が、熱硬化性樹脂組成物と希土類−鉄系磁石薄片とを含むグラニュール状複合磁石材料を成形型キャビティに充填し、該グラニュール状複合磁石材料の融点以下の温度にて、該グラニュール状複合磁石材料に一軸の圧力を加えることにより、前記磁石薄片の脆性破壊と同時に前記熱硬化性樹脂組成物の塑性変形(流動)との相互作用によって残留空隙を減少させるとともに、前記グラニュール状複合磁石材料を圧力軸方向に積層することにより、磁石薄片相互の位置関係がほぼ固定された環状圧粉体を製造することを特徴とする、
請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。
In the first step, a granule-shaped composite magnet material containing a thermosetting resin composition and a rare earth-iron-based magnet flake is filled into a mold cavity, and the temperature is equal to or lower than the melting point of the granule-shaped composite magnet material. In addition, by applying uniaxial pressure to the granular composite magnet material, the residual voids are reduced by the brittle fracture of the magnet flakes and the interaction with plastic deformation (flow) of the thermosetting resin composition. The annular composite magnetic material is laminated in the pressure axis direction to produce an annular green compact in which the positional relationship between the magnet flakes is substantially fixed.
The manufacturing method of the iron rotor integral fitting outer rotor magnet of Claim 1.
前記熱硬化性樹脂組成物が、不飽和ポリエステルアルキドとアリル系共重合性単量体との完溶物である降伏応力をもつ流動性を備えた不飽和ポリエステル樹脂と、有機過酸化物とを含むことを特徴とする、
請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。
The thermosetting resin composition comprises a flowable unsaturated polyester resin having a yield stress, which is a complete solution of an unsaturated polyester alkyd and an allylic copolymerizable monomer, and an organic peroxide. Including,
The manufacturing method of the iron rotor integral fitting outer rotor magnet of Claim 1.
前記アリル系共重合性単量体が、トリアリルイソシアヌレートである、請求項5に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 The method for producing an iron rotor-integrated outer rotor magnet according to claim 5, wherein the allylic copolymerizable monomer is triallyl isocyanurate. 前記希土類−鉄系磁石薄片が、R−Fe−B系磁石、またはFeの一部をCoで置換したR−Fe(Co)−B系磁石と、更にはR−Fe−B−M系磁石、またはR−Fe(Co)−B−M系磁石、不可避不純物からなる合金組成を有するRFe14B、RFe(Co)14Bナノ結晶組織、またはαFeとRFe14B、RFe(Co)14Bとのナノ複合組織(前記RはYを含むCe、Pr、Nd、Gd、Tb、Dy及びHoから選択される希土類元素のいずれかを表し、前記MはSi、Al、Nb、Zr、Hf、Mo、Ga、P及びCから選択される1種または2種以上の組み合わせを表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片である、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 The rare earth-iron-based magnet flakes are R-Fe-B-based magnets, R-Fe (Co) -B-based magnets in which part of Fe is replaced with Co, and further R-Fe-BM-based magnets. R 2 Fe 14 B, R 2 Fe (Co) 14 B nanocrystalline structure having an alloy composition of inevitable impurities, or αFe and R 2 Fe 14 B, R 2 Fe (Co) 14 B and nanocomposite structure (wherein R represents any of rare earth elements selected from Ce, Pr, Nd, Gd, Tb, Dy and Ho containing Y, and M represents Si, A magnetically isotropic rare earth-iron rapidly solidified flake containing one or a combination of two or more selected from Al, Nb, Zr, Hf, Mo, Ga, P and C). The iron yoke integrated fitting outer rotor magnet according to claim 1. Method. 前記希土類−鉄系磁石薄片が、Sm−Fe−N系磁石とSm−Fe−M’−N系磁石、並びに不可避不純物からなる合金組成を有するSmFe17Nx(x≒3)ナノ結晶組織(nanocrystalline)、またはαFeとSmFe17Nx(x≒3)とのナノ複合組織
(nanocomposite)(前記M’はHf、Zr、Si、Nb、Ti、Ga、Al、Ta及びCから選択される1種または2種以上の組合せを表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片である、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。
The rare earth-iron-based magnet flakes are Sm 2 Fe 17 Nx (x≈3) nanocrystal structure having an alloy composition composed of Sm—Fe—N magnet, Sm—Fe—M′—N magnet, and inevitable impurities. (Nanocrystalline) or a nanocomposite of αFe and Sm 2 Fe 17 Nx (x≈3) (wherein M ′ is selected from Hf, Zr, Si, Nb, Ti, Ga, Al, Ta and C) The method for producing an iron-yoke integrated fitting outer rotor magnet according to claim 1, which is a magnetically isotropic rare earth-iron rapidly solidified flake.
前記環状圧粉体が、20MPa以上の圧環強度を有する、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 The method for manufacturing an iron-yoke integrated fitting outer rotor magnet according to claim 1, wherein the annular green compact has a crushing strength of 20 MPa or more. 前記環状ボンド磁石が、1mm以下の肉厚を有する、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 The manufacturing method of the iron rotor integrated fitting outer rotor magnet according to claim 1, wherein the annular bonded magnet has a thickness of 1 mm or less. 前記環状ボンド磁石が、外部磁界Hm2.4MA/mにおいて0.74T以上の残留磁化Mr、および、90kJ/m以上の最大エネルギー積(BH)maxを有する、請求項1に記載の鉄ヨーク一体嵌合アウターロータ磁石の製造方法。 2. The iron yoke integrated body according to claim 1, wherein the annular bonded magnet has a residual magnetization Mr of 0.74 T or more and a maximum energy product (BH) max of 90 kJ / m 3 or more in an external magnetic field Hm of 2.4 MA / m. Manufacturing method of fitting outer rotor magnet. 請求項1乃至請求項11のうち何れか一項に記載の製造方法により製造された、ロータヨークの内径側に希土類−鉄系ボンド磁石を一体嵌合させてなる鉄ヨーク一体嵌合アウターロータ磁石を備えてなる、アウタロータ型モータ用ロータ。 An iron yoke integrated fitting outer rotor magnet obtained by integrally fitting a rare earth-iron-based bond magnet to the inner diameter side of the rotor yoke, manufactured by the manufacturing method according to any one of claims 1 to 11. An outer rotor type motor rotor.
JP2012240371A 2012-10-31 2012-10-31 Iron yoke integral fitting outer rotor and method for producing the magnet Expired - Fee Related JP6029205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012240371A JP6029205B2 (en) 2012-10-31 2012-10-31 Iron yoke integral fitting outer rotor and method for producing the magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012240371A JP6029205B2 (en) 2012-10-31 2012-10-31 Iron yoke integral fitting outer rotor and method for producing the magnet

Publications (2)

Publication Number Publication Date
JP2014090125A true JP2014090125A (en) 2014-05-15
JP6029205B2 JP6029205B2 (en) 2016-11-24

Family

ID=50791795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012240371A Expired - Fee Related JP6029205B2 (en) 2012-10-31 2012-10-31 Iron yoke integral fitting outer rotor and method for producing the magnet

Country Status (1)

Country Link
JP (1) JP6029205B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109136656A (en) * 2018-08-29 2019-01-04 北京科技大学 Gd, Fe adulterate DyCo2And HoCo2Compound and preparation method between type Laves phase zero expanding metal
JP2019054664A (en) * 2017-09-15 2019-04-04 ミネベアミツミ株式会社 Permanent magnet for motor and dc motor using the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6158499B2 (en) * 2012-11-28 2017-07-05 ミネベアミツミ株式会社 Spherical magnet compound and rare earth-iron bond magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184642A (en) * 1998-12-09 2000-06-30 Daidoo Denshi:Kk Yoke integrated rotating magnet for spindle motor and manufacture thereof
JP2002223539A (en) * 2001-01-25 2002-08-09 Daido Electronics Co Ltd Yoke-integrated rotating magnet and manufacturing method therefor
WO2006001304A1 (en) * 2004-06-28 2006-01-05 Neomax Co., Ltd. Method for manufacturing yoke-integrated rare earth bonded magnet and yoke-integrated rare earth bonded magnet
WO2011126026A1 (en) * 2010-04-05 2011-10-13 愛知製鋼株式会社 Case-body bonded magnet, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184642A (en) * 1998-12-09 2000-06-30 Daidoo Denshi:Kk Yoke integrated rotating magnet for spindle motor and manufacture thereof
JP2002223539A (en) * 2001-01-25 2002-08-09 Daido Electronics Co Ltd Yoke-integrated rotating magnet and manufacturing method therefor
WO2006001304A1 (en) * 2004-06-28 2006-01-05 Neomax Co., Ltd. Method for manufacturing yoke-integrated rare earth bonded magnet and yoke-integrated rare earth bonded magnet
WO2011126026A1 (en) * 2010-04-05 2011-10-13 愛知製鋼株式会社 Case-body bonded magnet, and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054664A (en) * 2017-09-15 2019-04-04 ミネベアミツミ株式会社 Permanent magnet for motor and dc motor using the same
CN109136656A (en) * 2018-08-29 2019-01-04 北京科技大学 Gd, Fe adulterate DyCo2And HoCo2Compound and preparation method between type Laves phase zero expanding metal

Also Published As

Publication number Publication date
JP6029205B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5752094B2 (en) Method for producing full-dense rare earth-iron bond magnet
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
JP5397540B2 (en) Case-integrated bonded magnet and manufacturing method thereof
JP2007180368A (en) Method for manufacturing magnetic circuit part
JP2010258412A (en) Method of producing rare-earth magnet
JP6029205B2 (en) Iron yoke integral fitting outer rotor and method for producing the magnet
JP5267800B2 (en) Self-repairing rare earth-iron magnet
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JP4710830B2 (en) Anisotropic rare earth bonded magnet with self-organized network boundary phase and permanent magnet type motor using the same
JP2015029016A (en) Bond magnet
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JP6158499B2 (en) Spherical magnet compound and rare earth-iron bond magnet
JP2004296874A (en) Hybrid rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP6393737B2 (en) Rare earth bonded magnet
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP2016162853A (en) Resin composite magnet material and rare earth-iron bonded magnet using the same
JP2007142032A (en) Composite for resin bonded magnet, resin bonded magnet using same, and method of manufacturing same
JP4706412B2 (en) Anisotropic composite magnet
JP4887617B2 (en) Resin composition for anisotropic bonded magnet, anisotropic bonded magnet, and motor
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP2015035538A (en) Rare-earth-ferrous bond magnet
JP2615781B2 (en) Method for manufacturing resin magnet structure
KR102236096B1 (en) Method for manufacturing ceramic bonded magnet and ceramic bonded magnet manufactured therefrom
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP6709766B2 (en) Rare earth bonded magnet, method of manufacturing rare earth bonded magnet, and motor having rare earth bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161014

R150 Certificate of patent or registration of utility model

Ref document number: 6029205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees