JP2015035538A - Rare-earth-ferrous bond magnet - Google Patents

Rare-earth-ferrous bond magnet Download PDF

Info

Publication number
JP2015035538A
JP2015035538A JP2013166450A JP2013166450A JP2015035538A JP 2015035538 A JP2015035538 A JP 2015035538A JP 2013166450 A JP2013166450 A JP 2013166450A JP 2013166450 A JP2013166450 A JP 2013166450A JP 2015035538 A JP2015035538 A JP 2015035538A
Authority
JP
Japan
Prior art keywords
iron
rare earth
magnet
resin composition
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013166450A
Other languages
Japanese (ja)
Inventor
紫保 大矢
Shiho Oya
紫保 大矢
幸村 治洋
Haruhiro Yukimura
治洋 幸村
淳詔 鈴木
Toshinori Suzuki
淳詔 鈴木
俊己 成瀬
Toshiki Naruse
俊己 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2013166450A priority Critical patent/JP2015035538A/en
Publication of JP2015035538A publication Critical patent/JP2015035538A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rare earth bond magnet, excellent in magnetic flux density, having density higher than density of a compact before heat hardening.SOLUTION: The rare-earth-ferrous bond magnet formed by making a rare-earth-ferrous magnet compound containing rare-earth-ferrous magnet flakes and a thermosetting resin composition, press-molding the compound to make a compressed compact, and heat hardening the compressed compact has density higher than density of the compressed compact before heat hardening, with heating hardening of the compressed compact.

Description

本発明は、希土類−鉄系磁石薄片を樹脂で結合した希土類−鉄系ボンド磁石に関し、より詳しくは、希土類−鉄系磁石薄片を樹脂で結合し圧縮成形法で製造した希土類−鉄系ボンド磁石に関する。   The present invention relates to a rare earth-iron based bonded magnet in which rare earth-iron based magnet flakes are bonded with a resin, and more particularly, a rare earth-iron based bonded magnet manufactured by compression molding by bonding rare earth-iron based magnetic flakes with a resin. About.

希土類−鉄系永久磁石は、優れた磁気特性を有することから、モータなどの回転機器を代表とした一般家電製品や音響機器、医療機器、一般産業機器など、幅広い分野で利用されている。これら永久磁石の中でも、希土類−鉄系磁石薄片とそれらの結合を担う樹脂組成物との組み合わせからなる希土類−鉄系ボンド磁石は、形状自由度が高い特徴を活かし、上記のような利用例において、機器の小型化や高性能化などに貢献している。
希土類−鉄系ボンド磁石の成形プロセスは、圧縮成形、射出成形、押出成形などに分類され、これら成形プロセスに応じて使用する樹脂組成物は異なるものとなる。例えば圧縮成形では熱硬化性樹脂組成物が、射出成形及び押出成形では熱可塑性樹脂組成物が用いられ、永久磁石の用途に応じてこれらが使い分けられるのが一般である。中でも、熱硬化性樹脂組成物を用いて圧縮成形プロセスによって作製される希土類−鉄系ボンド磁石は、他の成形プロセスによるものと比べて永久磁石内部における希土類−鉄系磁石薄片の含有量を多くすることができ、より高い磁気特性を発揮する永久磁石を得ることができる。
Since rare earth-iron permanent magnets have excellent magnetic properties, they are used in a wide range of fields such as general household electrical appliances, acoustic devices, medical devices, general industrial devices such as rotating devices such as motors. Among these permanent magnets, rare earth-iron based bonded magnets composed of a combination of rare earth-iron based magnetic flakes and a resin composition responsible for their bonding take advantage of the high degree of freedom in shape, and in the above usage examples This contributes to miniaturization and high performance of equipment.
The molding process of the rare earth-iron-based bonded magnet is classified into compression molding, injection molding, extrusion molding, and the like, and the resin composition to be used differs depending on these molding processes. For example, a thermosetting resin composition is used for compression molding, and a thermoplastic resin composition is used for injection molding and extrusion molding, and these are generally used depending on the application of the permanent magnet. Among them, rare earth-iron-based bonded magnets produced by a compression molding process using a thermosetting resin composition have a higher content of rare earth-iron-based magnet flakes inside permanent magnets than those by other molding processes. And a permanent magnet exhibiting higher magnetic properties can be obtained.

一方、希土類−鉄系ボンド磁石は、長期間高温暴露し、その後常温に戻して再着磁しても回復しない磁束損失があることが知られている。これは一般に永久減磁と呼ばれるものである。希土類−鉄系ボンド磁石は、射出成形、圧縮成形などの作製法に拘らず、該磁石の残留空隙の体積分率と永久減磁との関係に一次相関があり、残留空隙が減少すれば永久減磁率も減少することが知られている。さらに、永久減磁の主要因として、希土類−鉄系ボンド磁石の内部に存在する空隙に取り込まれた水分や酸素が、磁石内部の希土類−鉄系磁石薄片の酸化、腐食などの組織変化を促進することが知られている。加えて、希土類−鉄系磁石薄片の体積分率が80vol%を超えるような希土類−鉄系ボンド磁石において、圧縮成形による磁石の緻密化過渡で起こる希土類−鉄系磁石薄片の脆性破壊は、酸化、腐食を起こし易い希土類−鉄系磁石薄片新生面の生成を意味する。このように、磁石内部の残留空隙をできる限り減少させることは、希土類−鉄系ボンド磁石の永久減磁を抑制するために効果的な手段とみなせる。   On the other hand, it is known that rare earth-iron-based bonded magnets have a magnetic flux loss that does not recover even if they are exposed to a high temperature for a long period of time and then re-magnetized after returning to room temperature. This is generally called permanent demagnetization. Rare earth-iron-based bonded magnets have a primary correlation between the volume fraction of residual voids in the magnet and permanent demagnetization regardless of the production method such as injection molding or compression molding. It is known that the demagnetization factor also decreases. Furthermore, as a major factor of permanent demagnetization, moisture and oxygen taken into the air gaps inside the rare earth-iron bond magnets promote structural changes such as oxidation and corrosion of the rare earth-iron magnet flakes inside the magnet. It is known to do. In addition, in rare earth-iron based bonded magnets in which the volume fraction of rare earth-iron based magnetic flakes exceeds 80 vol%, brittle fracture of rare earth-iron based magnetic flakes that occurs during magnet densification transients due to compression molding is caused by oxidation. It means the production of a new surface of rare earth-iron magnet flakes that are prone to corrosion. Thus, reducing the residual void inside the magnet as much as possible can be regarded as an effective means for suppressing permanent demagnetization of the rare earth-iron-based bonded magnet.

希土類−鉄系ボンド磁石内部の残留空隙の低減という課題に対し、本発明者らは、非特許文献1に開示されているように、圧縮成形法により得られる希土類−鉄系ボンド磁石において、常温で固体の不飽和ポリエステルアルキドとアリル系共重合性単量体と有機過酸化物とからなる熱硬化性樹脂組成物を使用し、希土類−鉄系磁石薄片を該樹脂組成物で溶融混練したグラニュール状複合磁石材料とし、さらに該グラニュールの圧縮成形をおよそ常温にて実施することにより、成形圧力1GPa以下で磁石材料の体積分率を概ね80vol%以上に維持し且つ残留空隙のみを体積分率でおよそ1vol%未満に減少させることが実現できることを見出した。また、前記不飽和ポリエステルアルキドとアリル系共重合性単量体と有機過酸化物からなる熱硬化性樹脂を使用した希土類−鉄系ボンド磁石は、エポキシ樹脂からなる熱硬化性樹脂を用いた希土類−鉄系ボンド磁石と比較すると、圧縮成形後に成形金型から取り出したときのスプリングバックが抑制され、寸法精度に優れることを見出した。   In response to the problem of reducing residual voids inside the rare earth-iron bond magnet, the present inventors, as disclosed in Non-Patent Document 1, in the rare earth-iron bond magnet obtained by compression molding, And a thermosetting resin composition comprising a solid unsaturated polyester alkyd, an allyl copolymerizable monomer and an organic peroxide, and a rare earth-iron magnet flake melt-kneaded with the resin composition. In addition, the volume fraction of the magnet material is maintained at approximately 80 vol% or more at a molding pressure of 1 GPa or less by performing compression molding of the granules at approximately room temperature, and only the residual voids are volume integrated. It has been found that a reduction in rate of less than approximately 1 vol% can be realized. The rare earth-iron bond magnet using the thermosetting resin made of the unsaturated polyester alkyd, the allyl copolymerizable monomer and the organic peroxide is a rare earth using the thermosetting resin made of an epoxy resin. -As compared with iron-based bonded magnets, it has been found that the spring back when taken out from the molding die after compression molding is suppressed, and the dimensional accuracy is excellent.

F.Yamashita, T.Suzuki, H.Komura, M.Nakano, and H.Fukunaga, “Improvement of long-term flux stability in Nd-Fe-B bonded magnet fabricated from fully-dense powder compaction technique”, Proceedings of 22nd International Workshop on Rare-Earth Permanent Magnets and their Applications, Nagasaki, 2012, p.467-470F. Yamashita, T. Suzuki, H. Komura, M. Nakano, and H. Fukunaga, “Improvement of long-term flux stability in Nd-Fe-B bonded magnet fabricated from fully-dense powder compaction technique”, Proceedings of 22nd International Workshop on Rare-Earth Permanent Magnets and their Applications, Nagasaki, 2012, p.467-470

非特許文献1に開示された技術によれば、希土類−鉄系ボンド磁石の高密度化およびスプリングバックの抑制による寸法精度向上に有効である。しかし、圧縮成形後の成形体を加熱し、成形体に含まれる熱硬化性樹脂を熱硬化させて希土類−鉄系ボンド磁石としたとき、成形体が膨張してわずかではあるが密度が低下してしまい、磁束密度の低下を免れ得ない。   According to the technique disclosed in Non-Patent Document 1, it is effective for improving the dimensional accuracy by increasing the density of the rare earth-iron bond magnet and suppressing the spring back. However, when the compact after compression molding is heated and the thermosetting resin contained in the compact is thermoset to form a rare earth-iron bond magnet, the compact expands and the density decreases slightly. Therefore, the decrease in magnetic flux density cannot be avoided.

本発明は上記事情に鑑みなされたものであって、その解決しようとする課題は、加熱硬化前の成形体と比べ高密度であり、磁束密度に優れた希土類ボンド磁石を提供することである。   This invention is made | formed in view of the said situation, Comprising: The problem which it is going to solve is providing a rare earth bond magnet which is high density compared with the molded object before heat-curing, and was excellent in magnetic flux density.

本発明者らは、上記目的を達するために鋭意検討を重ねた結果、完成品である希土類ボンド磁石の密度を、その加熱硬化前の形態である圧縮成形体と比べて高密度とすることにより、優れた磁束密度の実現に寄与できることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have made the density of the rare-earth bonded magnet that is the finished product higher than that of the compression-molded body that is the form before the heat-curing. The present invention has been completed by finding that it can contribute to the realization of an excellent magnetic flux density.

すなわち本発明は、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを含む希土類−鉄系磁石コンパウンドを作成し、該コンパウンドを圧縮成形して圧縮成形体とし、該圧縮成形体を加熱硬化してなる希土類−鉄系ボンド磁石であって、該圧縮成形体の加熱硬化により、その密度が加熱硬化前の圧縮成形体と比べより高密度となっていることを特徴とする、希土類−鉄系ボンド磁石に関する。   That is, the present invention creates a rare earth-iron-based magnet compound containing a rare earth-iron-based magnet flake and a thermosetting resin composition, compression-molds the compound to form a compression-molded body, and heat-cures the compression-molded body A rare earth-iron-based bonded magnet, wherein the density of the compression-molded body is higher than that of the compression-molded body before heat-curing by heat-curing the compression-molded body. The present invention relates to a bonded magnet.

本発明の希土類−鉄系ボンド磁石において、前記熱硬化性樹脂組成物が、前記希土類−鉄系磁石薄片に対して3wt%乃至4wt%の量で含まれてなることが好ましい。
また前記熱硬化性樹脂組成物は、不飽和ポリエステルアルキドとアリル系共重合性単量体と有機過酸化物とを含むことが好ましく、このとき、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)とを、質量比で30wt%≧B/(A+B)≧20wt%含むことが好ましい。また、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)とを、質量比で30wt%≧B/(A+B)≧25wt%含むことがより好ましい。
そして前記不飽和ポリエステルアルキドは、テレフタル酸系不飽和ポリエステル樹脂またはイソフタル酸系不飽和ポリエステル樹脂のいずれか一方であり、また前記アリル系共重合性単量体は、トリアリルイソシアヌレートまたはトリメタリルイソシアヌレートのいずれか一方であることが好ましい。
さらに前記圧縮成形体は、そこに含まれる残留空隙の体積分率が6vol%以上12vol%であることがより好ましい。
In the rare earth-iron based bonded magnet of the present invention, it is preferable that the thermosetting resin composition is contained in an amount of 3 wt% to 4 wt% with respect to the rare earth-iron based magnet flake.
The thermosetting resin composition preferably contains an unsaturated polyester alkyd, an allylic copolymerizable monomer, and an organic peroxide. At this time, the unsaturated polyester alkyd (A) and the allylic It is preferable that the copolymerizable monomer (B) is contained in a mass ratio of 30 wt% ≧ B / (A + B) ≧ 20 wt%. More preferably, the unsaturated polyester alkyd (A) and the allylic copolymerizable monomer (B) are contained in a mass ratio of 30 wt% ≧ B / (A + B) ≧ 25 wt%.
The unsaturated polyester alkyd is one of a terephthalic acid unsaturated polyester resin or an isophthalic acid unsaturated polyester resin, and the allyl copolymerizable monomer is triallyl isocyanurate or trimethallyl isocyanate. It is preferable that either one of nurate is used.
Further, the compression molded body preferably has a volume fraction of residual voids contained therein of 6 vol% or more and 12 vol%.

本発明の希土類−鉄系ボンド磁石は、その加熱硬化前の形態である圧縮成形体に比べ、体積が収縮しているために高密度の形態にある。すなわち、熱硬化後のボンド磁石において密度が高められ、優れた磁束密度を有する磁石を得ることができる。   The rare earth-iron-based bonded magnet of the present invention is in a high-density form because the volume is contracted as compared with a compression molded body that is a form before heat curing. That is, the density of the bonded magnet after thermosetting is increased, and a magnet having an excellent magnetic flux density can be obtained.

図1は、実施例1(試料1〜試料4)及び比較例1の圧縮成形体の熱硬化前の密度に対する熱硬化前後の密度変化を示す図である。FIG. 1 is a diagram showing a density change before and after thermosetting with respect to density before compression of the compression molded bodies of Example 1 (Sample 1 to Sample 4) and Comparative Example 1. 図2は、実施例2(試料5〜試料7)及び比較例1の圧縮成形体の熱硬化前の密度に対する熱硬化前後の密度変化を示す図である。FIG. 2 is a diagram showing a density change before and after thermosetting with respect to the density before thermosetting of the compression molded bodies of Example 2 (Sample 5 to Sample 7) and Comparative Example 1. 図3は、実施例3(試料8〜試料11)及び比較例1の圧縮成形体の熱硬化前の密度に対する熱硬化前後の密度変化を示す図である。FIG. 3 is a diagram showing density changes before and after thermosetting of the compression molded bodies of Example 3 (Sample 8 to Sample 11) and Comparative Example 1 before thermosetting. 図4は、実施例4(試料3、試料4、試料6、試料7)の圧縮成形体の熱硬化前の残留空隙の体積分率に対する熱硬化前後の密度変化を示す図である。FIG. 4 is a graph showing density changes before and after thermosetting with respect to the volume fraction of residual voids before thermosetting of the compression molded body of Example 4 (Sample 3, Sample 4, Sample 6, and Sample 7).

本発明の希土類−鉄系ボンド磁石は、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを含みて構成される。   The rare earth-iron based bonded magnet of the present invention comprises a rare earth-iron based magnet flake and a thermosetting resin composition.

前述したように従来の希土類−鉄系ボンド磁石は、製造時の加熱工程を経る際に体積膨張(密度低下)が起こると考えられる。こうした寸法変化の要因の一つとして、ボンド磁石を構成するエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂自体は熱硬化の過程で収縮傾向にあるものの、成形体に僅かに含まれる残留空隙(ボイド)が加熱過程において膨張するため、結果として圧縮成形体に比べ熱硬化後のボンド磁石の寸法はわずかながら大きくなるとみられている。寸法変化の要因はこの他にも例えば圧縮成形時の応力など、様々な要因が考えられる。
以下、本発明の希土類−鉄系ボンド磁石を構成する各成分について詳述する。
As described above, it is considered that the conventional rare earth-iron-based bonded magnet undergoes volume expansion (density reduction) when undergoing a heating process during manufacturing. One of the causes of such dimensional changes is that the thermosetting resin itself, such as the epoxy resin and unsaturated polyester resin that constitutes the bonded magnet, tends to shrink during the thermosetting process, but the residual voids slightly contained in the molded product. Since (void) expands in the heating process, the dimension of the bonded magnet after thermosetting is expected to be slightly larger than the compression molded body. In addition to this, various factors such as stress at the time of compression molding can be considered as factors of the dimensional change.
Hereinafter, each component which comprises the rare earth-iron type bonded magnet of this invention is explained in full detail.

〔希土類−鉄系磁石薄片〕
本発明にかかる希土類−鉄系磁石薄片は、例えばR−Fe−B系磁石(但しRはYを含むCe、Pr、Nd、Gd、Tb、Dy、Ho等の希土類元素)又は前記磁石においてFeの一部をCoで置換したR−Fe(Co)−B系磁石(但しRは前述の意味を表す)、Si、Al、Nb、Zr、Hf、Mo、Ga、P、Cの1種または2種以上の組み合わせを用いたR−Fe−B−M系磁石又はR−Fe(Co)−B−M系磁石(但しRは前述の意味を表し、MはSi、Al、Nb、Zr、Hf、Mo、Ga、P、Cの1種または2種以上の組み合わせを表す)、不可避不純物からなる合金組成を有するRFe14B、RFe(Co)14Bナノ結晶組織(nanocrystalline)、またはαFeとRFe14
B、RFe(Co)14Bとのナノ複合組織(nanocomposite)(前記Rは前述の意味
を表す)を含む、磁気的に等方性の希土類−鉄系急冷凝固薄片を用いることができる。
また希土類−鉄系磁石薄片として、Sm−Fe−N系磁石、Hf、Zr、Si、Nb、Ti、Ga、Al、TaおよびCの1種または2種以上の組合せを用いたSm−Fe−M
’−N系磁石(但しM’はHf、Zr、Si、Nb、Ti、Ga、Al、TaおよびCの
1種または2種以上を表す)、不可避不純物からなる合金組成を有するSmFe17Nx(x≒3)ナノ結晶組織(nanocrystalline)、またはαFeとSmFe17Nx(
x≒3)とのナノ複合組織(nanocomposite)を含む、磁気的に等方性の希土類−鉄系急
冷凝固薄片を使用しても差し支えない。
[Rare earth-iron magnet flakes]
The rare earth-iron-based magnet flake according to the present invention is, for example, an R-Fe-B-based magnet (where R is a rare-earth element such as Ce, Pr, Nd, Gd, Tb, Dy, and Ho, including Y) or Fe R—Fe (Co) —B based magnet in which a part of is replaced with Co (where R represents the above-mentioned meaning), one of Si, Al, Nb, Zr, Hf, Mo, Ga, P, C or R-Fe-BM type magnet or R-Fe (Co) -BM type magnet using a combination of two or more (where R represents the aforementioned meaning, M is Si, Al, Nb, Zr, Hf, Mo, Ga, P, C represents one or a combination of two or more), R 2 Fe 14 B, R 2 Fe (Co) 14 B nanocrystalline structure having an alloy composition consisting of inevitable impurities (nanocrystalline) Or αFe and R 2 Fe 14
B, magnetically isotropic rare earth-iron rapidly solidified flakes including a nanocomposite with R 2 Fe (Co) 14 B (wherein R represents the aforementioned meaning) can be used. .
In addition, as the rare earth-iron-based magnet flakes, Sm-Fe-N using Sm-Fe-N-based magnet, Hf, Zr, Si, Nb, Ti, Ga, Al, Ta and C, or a combination of two or more thereof. M
Sm 2 Fe 17 having an alloy composition of '-N magnet (where M' represents one or more of Hf, Zr, Si, Nb, Ti, Ga, Al, Ta and C) and inevitable impurities Nx (x≈3) nanocrystalline structure, or αFe and Sm 2 Fe 17 Nx (
Magnetically isotropic rare earth-iron rapidly solidified flakes including nanocomposites with x≈3) can be used.

〔熱硬化性樹脂組成物〕
本発明に係る熱硬化性樹脂組成物は、不飽和ポリエステルアルキド(A)と、アリル系共重合性単量体(B)と、有機過酸化物とを含みて構成される。
[Thermosetting resin composition]
The thermosetting resin composition according to the present invention includes an unsaturated polyester alkyd (A), an allylic copolymerizable monomer (B), and an organic peroxide.

前記不飽和ポリエステルアルキド(A)は、ジカルボン酸成分とグリコール(ジオール)成分からなる。
なお本発明にかかる不飽和ポリエステルアルキド(A)の融点は80〜120℃が好ましい。
The unsaturated polyester alkyd (A) comprises a dicarboxylic acid component and a glycol (diol) component.
The unsaturated polyester alkyd (A) according to the present invention preferably has a melting point of 80 to 120 ° C.

前記ジカルボン酸成分は、フタル酸とフマル酸とからなることが好ましく、フタル酸ま
たはその誘導体と、フマル酸を原料として用いる。なお、以降の本明細書において、「フタル酸」なる記載には「フタル酸又はその誘導体」の意味が含まれ、すなわちフタル酸、テレフタル酸、イソフタル酸、並びにこれらの誘導体が含まれる。
フタル酸/フマル酸の使用割合は5/5〜1/9、とくに4/6〜2/8(モル比)が好ましい。
The dicarboxylic acid component is preferably composed of phthalic acid and fumaric acid, and phthalic acid or a derivative thereof and fumaric acid are used as raw materials. In the following description of the present specification, the term “phthalic acid” includes the meaning of “phthalic acid or a derivative thereof”, that is, includes phthalic acid, terephthalic acid, isophthalic acid, and derivatives thereof.
The use ratio of phthalic acid / fumaric acid is preferably 5/5 to 1/9, particularly 4/6 to 2/8 (molar ratio).

前記グリコール成分は、1,4−ブタンジオール単独、もしくは1,4−ブタンジオールと他のグリコールとを併用することが好ましい。このとき、1,4−ブタンジオール/他のグリコールの割合は7/3〜10/0、とくに8/2〜9.5/0.5(モル比)であることが好ましい。
1,4−ブタンジオールと併用される他のグリコール成分としては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、2,2,4−トリメチル−1,3−ペンタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2,2−ジメチル−3−ヒドロキシプロピオネート、水素化ビスフェノールA、ビスフェノールAのエチレンオキサイドまたはプロピレンオキサイド付加物を挙げることができる。ここで、他のグリコール成分として好ましくは、プロピレングリコール、ネオペンチルグリコール、ジプロピレングリコールを用いることができる。
The glycol component is preferably 1,4-butanediol alone, or 1,4-butanediol and other glycols in combination. At this time, the ratio of 1,4-butanediol / other glycol is preferably 7/3 to 10/0, more preferably 8/2 to 9.5 / 0.5 (molar ratio).
Other glycol components used in combination with 1,4-butanediol include ethylene glycol, propylene glycol, neopentyl glycol, diethylene glycol, dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, 1, Addition of 5-pentanediol, 1,6-hexanediol, 2,2-dimethyl-3-hydroxypropyl-2,2-dimethyl-3-hydroxypropionate, hydrogenated bisphenol A, ethylene oxide or propylene oxide of bisphenol A You can list things. Here, propylene glycol, neopentyl glycol, or dipropylene glycol can be preferably used as the other glycol component.

本発明にかかるアリル系共重合性単量体(B)としては、例えばジアリルイソフタレート、ジアリルテレフタレート、ジアリルオルソフタレートなどの2官能性単量体、あるいはトリアジン環化合物であるトリアリルイソシアヌレート、トリメタリルイソシアヌレートなどの3官能性単量体などが挙げられる。これらは1種単独で使用され得、また2種以上を併用し得る。   Examples of the allyl copolymerizable monomer (B) according to the present invention include bifunctional monomers such as diallyl isophthalate, diallyl terephthalate, and diallyl orthophthalate, or triallyl isocyanurate and trimerene which are triazine ring compounds. And trifunctional monomers such as taryl isocyanurate. These may be used alone or in combination of two or more.

なお一般に、共重合性単量体は、ビニル基(CH=CH−)を有する単量体と、アリル基(CH=CH−CH−又はCH=C(CH)−CH−)を有する単量体に区分される。後者の単量体においてアリル基は、重合開始剤である過酸化物のラジカルにより活性化されても、共鳴構造によって安定化されて共鳴構造をとり(退化性連鎖移動反応(アリル基の場合):〜R・+CH=CH−CH−X→ 〜RH+CH=CH−・CH−X⇔・CH−CH=CH−X)、重合反応の連鎖反応が阻害される。この共鳴作用により、アリル基を有する単量体は常温域で重合不活性であり、後に調製する圧縮成形体(硬化前のボンド磁石材料)の常温での保存安定性において有利となる。また、アリル系共重合性単量体は、何れも蒸気圧が高く、揮発し難い。こうした点からも、アリル系共重合性単量体(B)を使用することにより、常温で優れた保存安定性がある希土類−鉄系ボンド磁石用コンパウンドが得られる。 In general, the copolymerizable monomer includes a monomer having a vinyl group (CH 2 ═CH—) and an allyl group (CH 2 ═CH—CH 2 — or CH 2 ═C (CH 3 ) —CH 2. It is classified into a monomer having-). In the latter monomer, the allyl group is stabilized by the resonance structure even when activated by the peroxide radical that is a polymerization initiator (degenerate chain transfer reaction (in the case of an allyl group)). : ~R · + CH 2 = CH -CH 2 -X → ~RH + CH 2 = CH- · CH-X⇔ · CH 2 -CH = CH-X), a chain reaction of the polymerization reaction is inhibited. Due to this resonance action, the monomer having an allyl group is inactive in the normal temperature region, which is advantageous in terms of storage stability at normal temperature of a compression molded body (bonded magnet material before curing) prepared later. In addition, all of the allyl copolymerizable monomer has a high vapor pressure and hardly volatilizes. From these points as well, by using the allyl copolymerizable monomer (B), a rare earth-iron bond magnet compound having excellent storage stability at room temperature can be obtained.

前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)の割合(濃度)は、質量比で、好ましくはB/(A+B)=20wt%〜30wt%であり、より好ましくはB/(A+B)が25wt%以上30wt%以下である。   The ratio (concentration) of the unsaturated polyester alkyd (A) and the allylic copolymerizable monomer (B) is a mass ratio, preferably B / (A + B) = 20 wt% to 30 wt%, more preferably. B / (A + B) is 25 wt% or more and 30 wt% or less.

本発明にかかる重合開始剤としては有機過酸化物を例示できる。有機過酸化物としてはメチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、t−ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、p−メンタンハイドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンゾエートなどを挙げることができる。   An organic peroxide can be illustrated as a polymerization initiator concerning this invention. Examples of the organic peroxide include methyl ethyl ketone peroxide, cyclohexanone peroxide, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, p- Menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxylaurate , T-butyl peroxybenzoate and the like.

さらに、本発明において、重合禁止剤としてp−ベンゾキノン、ナフトキノン、p−トルキノン、2,5−ジフェニル−p−ベンゾキノン、2,5−アセトキシ−p−ベンゾキノン、ハイドロキノン、p−t−ブチルカテコール、2,5−ジ−t−ブチルハイドロキノン、ジ−t−ブチル−p−クレゾール、ハイドロキノンモノメチルエーテルなどを挙げることができる。これらの重合禁止剤は2種以上を混合して使用することもできる。なお、重合禁止剤の使用量は、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)の合計質量100質量部に対して0.5質量部以下である。   Furthermore, in the present invention, p-benzoquinone, naphthoquinone, p-toluquinone, 2,5-diphenyl-p-benzoquinone, 2,5-acetoxy-p-benzoquinone, hydroquinone, pt-butylcatechol, 2 , 5-di-t-butylhydroquinone, di-t-butyl-p-cresol, hydroquinone monomethyl ether, and the like. These polymerization inhibitors can be used in combination of two or more. In addition, the usage-amount of a polymerization inhibitor is 0.5 mass part or less with respect to 100 mass parts of total mass of the said unsaturated polyester alkyd (A) and the said allylic copolymerizable monomer (B).

なお本明細書において、上記不飽和ポリエステル樹脂(不飽和ポリエステルアルキドとアリル系共重合性単量体からなる樹脂)、重合開始剤(有機過酸化物)を含む熱硬化性樹脂組成物には、本発明の効果を損なわない限りにおいて、必要に応じて重合禁止剤、あるいはカップリング剤、酸化防止剤、滑剤などを添加することができる。   In the present specification, the unsaturated polyester resin (resin composed of unsaturated polyester alkyd and allyl copolymerizable monomer), a thermosetting resin composition containing a polymerization initiator (organic peroxide), As long as the effects of the present invention are not impaired, a polymerization inhibitor, a coupling agent, an antioxidant, a lubricant and the like can be added as necessary.

本発明の希土類−鉄系ボンド磁石において、前記熱硬化性樹脂組成物は、前記希土類−鉄系磁石薄片に対して3wt%乃至4wt%の量で含まれることが好ましい。   In the rare earth-iron based bonded magnet of the present invention, it is preferable that the thermosetting resin composition is contained in an amount of 3 wt% to 4 wt% with respect to the rare earth-iron based magnet flake.

〔希土類−鉄系ボンド磁石の製造〕
本発明の希土類−鉄系ボンド磁石は、前述の非特許文献1に開示される方法にて好適に製造可能であり、具体的な手順を以下に述べる。
まず不飽和ポリエステルアルキド(A)とアリル系共重合性単量体(B)を溶融混練して不飽和ポリエステル樹脂を得、これに重合開始剤(液状または粉末状)並びにその他添加剤を加えて溶融混練して熱硬化性樹脂組成物を得る。次に該熱硬化性樹脂組成物を、例えば、ミキシングロールを用いて溶融状態として、ここに所定量の前記希土類−鉄系磁石薄片を加えて混練し、溶融混練物とし、常温で固体の混練物を得る。
あるいは、不飽和ポリエステルアルキド(A)、アリル系共重合性単量体(B)、重合開始剤(液状または粉末状)と前記希土類−鉄系磁石薄片とその他添加剤とを予め一括して混合し、例えば、ミキシングロールを用いて不飽和ポリエステルアルキドの融点付近の温度で該不飽和ポリエステルアルキドの共重合性単量体溶液である溶融不飽和ポリエステル樹脂の作製と同時に、該溶融樹脂と該希土類−鉄系磁石薄片との混練を行なっても差し支えない。
ここで、熱硬化性樹脂組成物の溶融状態下で該希土類−鉄系磁石薄片を混練することにより、溶融混練物、さらには後述する希土類−鉄系ボンド磁石用コンパウンド中の空隙を減少させることができ、こうした観点から本工程を無溶剤で行う、所謂、無溶剤型で実施することが望ましい。
溶融混練はミキシングロール、ロールミル、コニーダー、2軸押出機など、通常の熱硬化性樹脂成形材料で使用可能な混練機を用いた定法で行う。
[Production of rare earth-iron bond magnets]
The rare earth-iron-based bonded magnet of the present invention can be suitably manufactured by the method disclosed in Non-Patent Document 1 described above, and a specific procedure is described below.
First, unsaturated polyester alkyd (A) and allylic copolymerizable monomer (B) are melt-kneaded to obtain unsaturated polyester resin, and polymerization initiator (liquid or powder) and other additives are added thereto. A thermosetting resin composition is obtained by melt-kneading. Next, the thermosetting resin composition is melted using, for example, a mixing roll, and a predetermined amount of the rare earth-iron-based magnet flakes are added thereto and kneaded to obtain a melt-kneaded product, which is kneaded at room temperature. Get things.
Alternatively, unsaturated polyester alkyd (A), allyl copolymerizable monomer (B), polymerization initiator (liquid or powder), the rare earth-iron magnet flakes and other additives are mixed together in advance. For example, simultaneously with the production of a molten unsaturated polyester resin that is a copolymerizable monomer solution of the unsaturated polyester alkyd at a temperature near the melting point of the unsaturated polyester alkyd using a mixing roll, the molten resin and the rare earth -Kneading with iron-based magnet flakes is allowed.
Here, by kneading the rare earth-iron-based magnet flakes in the molten state of the thermosetting resin composition, the voids in the melt-kneaded material and further the rare-earth-iron-based bonded magnet compound described later are reduced. From this point of view, it is desirable to carry out this process in a so-called solvent-free type in which the process is carried out without a solvent.
The melt-kneading is performed by a conventional method using a kneading machine that can be used with a normal thermosetting resin molding material, such as a mixing roll, a roll mill, a kneader, or a twin-screw extruder.

次に、得られた溶融混練物を常温まで冷却し、解砕し、分級することにより、グラニュール状となった希土類−鉄系ボンド磁石用コンパウンドを得る。なお、本発明にかかる溶融混練物は粘弾性的要素があるため、脆性を利用した衝撃力による解砕よりも剪断圧縮による解砕が望ましい。一般的に衝撃力による解砕と比較し、剪断力による解砕は粒径も比較的小さく分布幅も狭くなる場合が多い。具体的には原理的に剪断圧縮作用をもつ電動石臼のような解砕法を使用することが望ましい。その際、駆動盤と固定盤との間隙を調整することでグラニュール状の希土類−鉄系ボンド磁石用コンパウンドの粒径を制御することができる。
本発明にかかる希土類−鉄系ボンド磁石用コンパウンドの粒径範囲は、続く工程における金型等の成形型キャビティへの充填性を考慮すると、例えば53〜500μm程度とすることが望ましい。
また、分級した希土類−鉄系ボンド磁石用コンパウンドの成形型キャビティへの充填性にかかる粉末流動性の向上、あるいは分級した希土類−鉄系ボンド磁石用コンパウンドの
圧縮の際の成形型キャビティ壁面との摩擦低減などを目的とし、当該希土類−鉄系ボンド磁石用コンパウンドに高級脂肪酸金属石鹸など、一般的な外部滑剤を乾式混合しても差し支えない。なお、外部滑剤を添加する場合、その添加量は、希土類−鉄系ボンド磁石用コンパウンド100質量部に対して0.5質量部以下が好ましい。
Next, the obtained melt-kneaded product is cooled to room temperature, crushed, and classified to obtain a compound for a rare earth-iron bond magnet that is in the form of granules. In addition, since the melt-kneaded material concerning this invention has a viscoelastic element, the crushing by shear compression is more desirable than the crushing by the impact force using brittleness. Generally, in comparison with crushing by impact force, crushing by shearing force often has a relatively small particle size and a narrow distribution width. Specifically, it is desirable to use a crushing method such as an electric stone mill having a shear compression action in principle. At that time, the particle size of the granular rare earth-iron-based bonded magnet compound can be controlled by adjusting the gap between the driving plate and the fixed platen.
The particle size range of the rare earth-iron based bonded magnet compound according to the present invention is preferably about 53 to 500 μm, for example, in consideration of the filling property into a mold cavity such as a mold in a subsequent process.
In addition, improvement of powder fluidity related to filling of the classified rare earth-iron bond magnet compound into the mold cavity, or compression of the classified rare earth-iron bond magnet compound with the mold cavity wall surface For the purpose of reducing friction, a general external lubricant such as a higher fatty acid metal soap may be dry-mixed with the rare earth-iron bond magnet compound. In addition, when adding an external lubricant, the addition amount is preferably 0.5 parts by mass or less with respect to 100 parts by mass of the rare earth-iron-based bonded magnet compound.

つぎに、前述の粒度調整した希土類−鉄系ボンド磁石用コンパウンドを、希土類−鉄系ボンド磁石用コンパウンドを成形型キャビティに充填し、該グラニュールの融点以下の温度(例えば常温:20℃±15℃(5〜35℃))にて、該グラニュールに前記熱硬化性樹脂組成物の降伏応力以上の圧力、例えば0.6GPa〜1.5GPa程度、例えば0.8〜1.0GPa程度の一軸の圧力を加えて、特定形状の圧縮成形体とする。その後、圧力を開放し、成形型キャビティから圧縮成形体を離型する。
このとき、得られる圧縮成形体において、該圧縮成形体に占める残留空隙の体積分率は6vol%以上12vol%以下であることが好ましい。
Next, the rare earth-iron-based bonded magnet compound having the above-mentioned particle size adjusted is filled in the mold cavity with the rare-earth-iron-based bonded magnet compound, and the temperature below the melting point of the granule (for example, room temperature: 20 ° C. ± 15 ℃ (5-35 ℃)), the pressure above the yield stress of the thermosetting resin composition, for example, about 0.6 GPa to 1.5 GPa, for example, about uniaxial about 0.8 to 1.0 GPa To give a compression-molded body having a specific shape. Thereafter, the pressure is released, and the compression molded body is released from the mold cavity.
At this time, in the compression molded body to be obtained, the volume fraction of residual voids in the compression molded body is preferably 6 vol% or more and 12 vol% or less.

最後に、離型した圧縮成形体において、該成形体を構成する熱硬化性樹脂組成物(すなわち不飽和ポリエステル樹脂)を加熱硬化し、希土類−鉄系ボンド磁石とする。熱硬化処理は大気中で行っても差し支えない。
なお、例えば圧縮成形体を支持体で拘束しながら、当該圧縮成形体を構成する熱硬化性樹脂組成物を加熱硬化させることにより、支持体と一体化された希土類−鉄系ボンド磁石を製造することもできる。
本発明にかかる希土類−鉄系ボンド磁石、並びに該ボンド磁石の硬化前の圧縮成形体は、上述の工程を経て有利にそして好適に製造されるが、その製造方法はこれらの工程のみに限定されるものではない。
Finally, in the released compression molded body, the thermosetting resin composition (that is, unsaturated polyester resin) constituting the molded body is heat-cured to obtain a rare earth-iron bond magnet. The thermosetting treatment can be performed in the air.
For example, while the compression molded body is constrained by the support, the thermosetting resin composition constituting the compression molded body is heated and cured to produce a rare earth-iron bond magnet integrated with the support. You can also
The rare earth-iron-based bonded magnet according to the present invention and the compression-molded body before curing of the bonded magnet are advantageously and suitably manufactured through the above-described steps, but the manufacturing method is limited to these steps. It is not something.

以下、本発明を実施例により、さらに詳しく説明する。ただし、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this.

実施例において使用した希土類−鉄系磁石薄片及び不飽和ポリエステルアルキドは以下のとおりである。
[希土類−鉄系磁石薄片]
NdFe14B化学量論組成に近い合金組成を有するNd12Fe77Co(原子%)溶融合金を急冷凝固した粒子径150μm以下(乾式篩法(JIS Z 8815)による測定)の希土類−鉄系磁石薄片を用いた。
The rare earth-iron-based magnet flakes and unsaturated polyester alkyd used in the examples are as follows.
[Rare earth-iron magnet flakes]
Nd 12 Fe 77 Co 5 B 6 (atomic%) having an alloy composition close to the Nd 2 Fe 14 B stoichiometric composition, a particle diameter of 150 μm or less (measured by a dry sieving method (JIS Z 8815)) obtained by rapidly solidifying a molten alloy Rare earth-iron magnet flakes were used.

[不飽和ポリエステルアルキド]
撹拌機、留出管、窒素ガス導入管および温度計を付した反応器に1,4−ブタンジオール100mol%、テレフタル酸ジメチル40mol%を仕込んだ。触媒として、全酸成分(テレフタル酸ジメチル及び後述のフマル酸)に対してチタン酸テトラ−n−ブトキシドを0.02mol%、三酸化アンチモン0.03mol%を仕込んだ。140℃まで内温を上げ、さらに、200℃まで1.5時間かけて昇温し、メタノールを留出させることによりエステル交換を行った。次いで160℃まで内温を下げ、フマル酸60mol%およびハイドロキノン150ppm(対フマル酸の仕込み量[質量]比)を仕込み、窒素ガスを300mL/分で流しながら155℃まで内温を上げ、2.0時間かけて内温を160℃に昇温し、さらに2.5時間かけて210℃まで昇温し、同温度で5.5時間反応を続行した。なお反応時間中、後半4.0時間は窒素流量を680mL/分に増加した。反応終了後、反応生成物を吐出し、冷却結晶化後ヘンシェルミキサーを用いて粉砕し、粒子状の不飽和ポリエステルアルキドを得た。
得られた不飽和ポリエステルアルキドにおいて、酸成分及びグリコール成分の使用量は以下のとおりである。酸成分:フタル酸/フマル酸=4/6(モル比)、グリコール成分
:1,4−ブタンジオール/他のグリコール=10/0(モル比)。
また、ヘンシェルミキサーでの破砕性は良好であり、かつ破砕物の粘着性やブロッキングはなかった。
[Unsaturated polyester alkyd]
A reactor equipped with a stirrer, a distillation pipe, a nitrogen gas introduction pipe and a thermometer was charged with 100 mol% of 1,4-butanediol and 40 mol% of dimethyl terephthalate. As a catalyst, 0.02 mol% of titanic acid tetra-n-butoxide and 0.03 mol% of antimony trioxide were charged with respect to all acid components (dimethyl terephthalate and fumaric acid described later). Transesterification was performed by raising the internal temperature to 140 ° C. and further raising the temperature to 200 ° C. over 1.5 hours to distill methanol. Next, the internal temperature was lowered to 160 ° C., 60 mol% of fumaric acid and 150 ppm of hydroquinone (based on the amount [mass] of fumaric acid charged) were charged, and the internal temperature was increased to 155 ° C. while flowing nitrogen gas at 300 mL / min. The internal temperature was raised to 160 ° C. over 0 hours, further raised to 210 ° C. over 2.5 hours, and the reaction was continued at the same temperature for 5.5 hours. During the reaction time, the nitrogen flow rate was increased to 680 mL / min during the latter 4.0 hours. After completion of the reaction, the reaction product was discharged, cooled and crystallized, and then pulverized using a Henschel mixer to obtain particulate unsaturated polyester alkyd.
In the obtained unsaturated polyester alkyd, the usage-amounts of an acid component and a glycol component are as follows. Acid component: phthalic acid / fumaric acid = 4/6 (molar ratio), glycol component: 1,4-butanediol / other glycol = 10/0 (molar ratio).
Moreover, the crushability in a Henschel mixer was good, and there was no stickiness and blocking of the crushed material.

<コンパウンドの作成手順>
〔実施例1〕
上記不飽和ポリエステルアルキド(A)と、アリル系共重合性単量体(B)としてトリアリルイソシアヌレート(B1)とを、配合比:B1/(A+B1)が10wt%、20wt%、25wt%又は30wt%となるように配合し、90〜100℃にて溶融混練し、不飽和ポリエステル樹脂とした。得られた不飽和ポリエステル樹脂100質量部に対し、重合開始剤としてジクミルパーオキサイド1質量部を加えて90〜100℃にて溶融混練し、熱硬化性樹脂組成物を調製した。
次に、上記希土類−鉄系磁石薄片と、前述の如く製造した熱硬化性樹脂組成物とを、無溶剤下で、表面温度を100℃に設定した8インチ・ミキシングロールを用いて溶融混練し、溶融混練物とした。ここで熱硬化性樹脂組成物の割合が、前記希土類−鉄系磁石薄片に対して3.0wt%となるように、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを配合した。続いて、前記溶融混練物を、表面温度80℃の等速ロールミルを用いて厚さ1mm以下とし、ヘンシェルミキサーで粗粉砕した。その後電動石臼による解砕と篩により粒子径53〜500μmに分級し、実施例1に用いる希土類−鉄系ボンド磁石用コンパウンドとした。
試料1:B1/(A+B1)=10wt%、熱硬化性樹脂組成物の割合:3.0wt%
試料2:B1/(A+B1)=20wt%、熱硬化性樹脂組成物の割合:3.0wt%
試料3:B1/(A+B1)=25wt%、熱硬化性樹脂組成物の割合:3.0wt%
試料4:B1/(A+B1)=30wt%、熱硬化性樹脂組成物の割合:3.0wt%
<Compound creation procedure>
[Example 1]
The unsaturated polyester alkyd (A) and triallyl isocyanurate (B1) as the allylic copolymerizable monomer (B) are mixed at a blending ratio of B1 / (A + B1) of 10 wt%, 20 wt%, 25 wt% or It mix | blended so that it might become 30 wt%, it melt-kneaded at 90-100 degreeC, and was set as the unsaturated polyester resin. As a polymerization initiator, 1 part by mass of dicumyl peroxide was added to 100 parts by mass of the obtained unsaturated polyester resin, and the mixture was melt-kneaded at 90 to 100 ° C. to prepare a thermosetting resin composition.
Next, the rare earth-iron-based magnet flakes and the thermosetting resin composition produced as described above are melt-kneaded using an 8-inch mixing roll having a surface temperature set to 100 ° C. without solvent. A melt-kneaded product was obtained. Here, the rare earth-iron-based magnet flakes and the thermosetting resin composition were blended so that the ratio of the thermosetting resin composition was 3.0 wt% with respect to the rare-earth-iron-based magnet flakes. Subsequently, the melt-kneaded product was adjusted to a thickness of 1 mm or less using a constant speed roll mill having a surface temperature of 80 ° C., and coarsely pulverized with a Henschel mixer. Thereafter, the particles were classified into particles having a particle size of 53 to 500 μm by crushing with an electric mortar and sieving to obtain a rare earth-iron bond magnet compound used in Example 1.
Sample 1: B1 / (A + B1) = 10 wt%, ratio of thermosetting resin composition: 3.0 wt%
Sample 2: B1 / (A + B1) = 20 wt%, ratio of thermosetting resin composition: 3.0 wt%
Sample 3: B1 / (A + B1) = 25 wt%, ratio of thermosetting resin composition: 3.0 wt%
Sample 4: B1 / (A + B1) = 30 wt%, ratio of thermosetting resin composition: 3.0 wt%

〔実施例2〕
上記不飽和ポリエステルアルキド(A)と、アリル系共重合性単量体(B)としてトリメタリルイソシアヌレート(B2)とを、配合比:B2/(A+B2)が10wt%、20wt%又は30wt%となるように配合し、90〜100℃にて溶融混練し、不飽和ポリエステル樹脂とした。得られた不飽和ポリエステル樹脂100質量部に対し、重合開始剤としてジクミルパーオキサイド1質量部を加えて90〜100℃にて溶融混練し、熱硬化性樹脂組成物を調製した。
次に、上記希土類−鉄系磁石薄片と、前述の如く製造した熱硬化性樹脂組成物とを、無溶剤下で、表面温度を100℃に設定した8インチ・ミキシングロールを用いて溶融混練し、溶融混練物とした。ここで熱硬化性樹脂組成物の割合が、前記希土類−鉄系磁石薄片に対して3.0wt%となるように、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを配合した。続いて、前記溶融混練物を、表面温度80℃の等速ロールミルを用いて厚さ1mm以下とし、ヘンシェルミキサーで粗粉砕した。その後電動石臼による解砕と篩により粒子径53〜500μmに分級し、実施例2に用いる希土類−鉄系ボンド磁石用コンパウンドとした。
試料5:B2/(A+B2)=10wt%、熱硬化性樹脂組成物の割合:3.0wt%
試料6:B2/(A+B2)=20wt%、熱硬化性樹脂組成物の割合:3.0wt%
試料7:B2/(A+B2)=30wt%、熱硬化性樹脂組成物の割合:3.0wt%
[Example 2]
The unsaturated polyester alkyd (A) and the trimethallyl isocyanurate (B2) as the allylic copolymerizable monomer (B), the blending ratio: B2 / (A + B2) is 10 wt%, 20 wt% or 30 wt% It mix | blended so that it might become, and was melt-kneaded at 90-100 degreeC, and was set as the unsaturated polyester resin. As a polymerization initiator, 1 part by mass of dicumyl peroxide was added to 100 parts by mass of the obtained unsaturated polyester resin, and the mixture was melt-kneaded at 90 to 100 ° C. to prepare a thermosetting resin composition.
Next, the rare earth-iron-based magnet flakes and the thermosetting resin composition produced as described above are melt-kneaded using an 8-inch mixing roll having a surface temperature set to 100 ° C. without solvent. A melt-kneaded product was obtained. Here, the rare earth-iron-based magnet flakes and the thermosetting resin composition were blended so that the ratio of the thermosetting resin composition was 3.0 wt% with respect to the rare-earth-iron-based magnet flakes. Subsequently, the melt-kneaded product was adjusted to a thickness of 1 mm or less using a constant speed roll mill having a surface temperature of 80 ° C., and coarsely pulverized with a Henschel mixer. Thereafter, the particles were classified to 53 to 500 μm by crushing with an electric stone mill and sieving to obtain a rare earth-iron-based bond magnet compound used in Example 2.
Sample 5: B2 / (A + B2) = 10 wt%, ratio of thermosetting resin composition: 3.0 wt%
Sample 6: B2 / (A + B2) = 20 wt%, ratio of thermosetting resin composition: 3.0 wt%
Sample 7: B2 / (A + B2) = 30 wt%, ratio of thermosetting resin composition: 3.0 wt%

〔実施例3〕
上記不飽和ポリエステルアルキド(A)と、アリル系共重合性単量体(B)としてトリアリルイソシアヌレート(B1)とを、配合比:B1/(A+B1)が25wt%となるように配合して90〜100℃にて溶融混練し、不飽和ポリエステル樹脂とした。得られた不飽和ポリエステル樹脂100質量部に対し、重合開始剤としてジクミルパーオキサイド1質量部を加えて90〜100℃にて溶融混練し、熱硬化性樹脂組成物を調製した。
次に、上記希土類−鉄系磁石薄片と、前述の如く製造した熱硬化性樹脂組成物とを、無溶剤下で、表面温度を100℃に設定した8インチ・ミキシングロールを用いて溶融混練し、溶融混練物とした。ここで熱硬化性樹脂組成物の割合が、前記希土類−鉄系磁石薄片に対して2.5wt%、3.0wt%、3.5wt%、又は4.0wt%となるように、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを配合した。続いて、前記溶融混練物を、表面温度80℃の等速ロールミルを用いて厚さ1mm以下とし、ヘンシェルミキサーで粗粉砕した。その後電動石臼による解砕と篩により粒子径53〜500μmに分級し、実施例3に用いる希土類−鉄系ボンド磁石用コンパウンドとした。
試料8:熱硬化性樹脂組成物の割合:2.5wt%、B1/(A+B1)=25wt%
試料9:熱硬化性樹脂組成物の割合:3.0wt%、B1/(A+B1)=25wt%
試料10:熱硬化性樹脂組成物の割合:3.5wt%、B1/(A+B1)=25wt%(前出の試料3と同一配合)
試料11:熱硬化性樹脂組成物の割合:4.0wt%、B1/(A+B1)=25wt%
Example 3
The unsaturated polyester alkyd (A) and triallyl isocyanurate (B1) as the allylic copolymerizable monomer (B) are blended so that the blending ratio B1 / (A + B1) is 25 wt%. It melt-kneaded at 90-100 degreeC, and was set as the unsaturated polyester resin. As a polymerization initiator, 1 part by mass of dicumyl peroxide was added to 100 parts by mass of the obtained unsaturated polyester resin, and the mixture was melt-kneaded at 90 to 100 ° C. to prepare a thermosetting resin composition.
Next, the rare earth-iron-based magnet flakes and the thermosetting resin composition produced as described above are melt-kneaded using an 8-inch mixing roll having a surface temperature set to 100 ° C. without solvent. A melt-kneaded product was obtained. Here, the ratio of the thermosetting resin composition is 2.5 wt%, 3.0 wt%, 3.5 wt%, or 4.0 wt% with respect to the rare earth-iron magnet flakes. A system magnet flake and a thermosetting resin composition were blended. Subsequently, the melt-kneaded product was adjusted to a thickness of 1 mm or less using a constant speed roll mill having a surface temperature of 80 ° C., and coarsely pulverized with a Henschel mixer. Thereafter, the particles were classified into particles having a particle size of 53 to 500 μm by crushing with an electric stone mill and sieving to obtain a rare earth-iron-based bonded magnet compound used in Example 3.
Sample 8: Ratio of thermosetting resin composition: 2.5 wt%, B1 / (A + B1) = 25 wt%
Sample 9: Ratio of thermosetting resin composition: 3.0 wt%, B1 / (A + B1) = 25 wt%
Sample 10: Ratio of thermosetting resin composition: 3.5 wt%, B1 / (A + B1) = 25 wt% (same composition as Sample 3 above)
Sample 11: Ratio of thermosetting resin composition: 4.0 wt%, B1 / (A + B1) = 25 wt%

〔比較例1〕
比較例に用いる熱硬化性樹脂組成物は、ビスフェノールAノボラック型エポキシ樹脂とビスフェノールA型フェノール硬化剤とを用いた。固形のビスフェノールAノボラック型エポキシ樹脂とビスフェノールA型フェノール硬化剤とをメチルエチルケトンに溶解させて溶解物とし、前述の希土類鉄系−磁石薄片と該溶解物とをヘンシェルミキサーで湿式混合した後に、メチルエチルケトンを揮発させ、混合物を得た。該混合物を電動石臼で解砕した後に篩で355μm以下に分級することで比較例1に用いる希土類−鉄系ボンド磁石用コンパウンドとした。
ここで熱硬化性樹脂組成物の割合が、前記希土類−鉄系磁石薄片に対して2.5wt%となるように、希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを配合した。
[Comparative Example 1]
As the thermosetting resin composition used in the comparative example, a bisphenol A novolac type epoxy resin and a bisphenol A type phenol curing agent were used. A solid bisphenol A novolak type epoxy resin and a bisphenol A type phenol curing agent are dissolved in methyl ethyl ketone to form a dissolved product. Volatilization gave a mixture. The mixture was pulverized with an electric stone mill and then classified to 355 μm or less with a sieve to obtain a rare earth-iron-based bonded magnet compound used in Comparative Example 1.
Here, the rare earth-iron-based magnet flakes and the thermosetting resin composition were blended so that the ratio of the thermosetting resin composition was 2.5 wt% with respect to the rare-earth-iron-based magnet flakes.

[圧縮成形体の作成]
実施例1(試料1〜4)、実施例2(試料5〜7)、実施例3(試料8〜11)及び比較例1の各希土類−鉄系磁石用コンパウンドを、内径φ10mmの金型へ3.3g充填し、成形圧力0.6MPa、0.8MPa、1.0MPa又は1.2MPaで長さ寸法およそ7mmに圧縮成形し、実施例1、実施例2、実施例3および比較例1の圧縮成形体(円柱形状)を得た。得られた各圧縮成形体の外径寸法と長さ寸法とをマイクロメータで測定し、質量を電子天秤で測定し、密度(Mg/m)を算出した。
[Create compression molding]
Each rare earth-iron-based magnet compound of Example 1 (Samples 1 to 4), Example 2 (Samples 5 to 7), Example 3 (Samples 8 to 11) and Comparative Example 1 was formed into a mold having an inner diameter of φ10 mm. 3.3 g was filled and compression molded to a length of about 7 mm at a molding pressure of 0.6 MPa, 0.8 MPa, 1.0 MPa, or 1.2 MPa, and Example 1, Example 2, Example 3 and Comparative Example 1 A compression molded body (columnar shape) was obtained. The outer diameter dimension and length dimension of each compression molding obtained were measured with a micrometer, the mass was measured with an electronic balance, and the density (Mg / m 3 ) was calculated.

[希土類−鉄系ボンド磁石の作成(熱硬化性樹脂の熱硬化)]
得られた前記圧縮成形体を金型から取出し、200℃雰囲気で15分間加熱することで熱硬化性樹脂を硬化させ、実施例1、実施例2、実施例3および比較例1の希土類−鉄系ボンド磁石を得た。得られた各希土類−鉄系ボンド磁石の外径寸法と長さ寸法とをマイクロメータで測定し、質量を電子天秤で測定し、密度(Mg/m)を算出した。
[Preparation of rare earth-iron bond magnet (thermosetting of thermosetting resin)]
The obtained compression molded body was taken out of the mold and heated in a 200 ° C. atmosphere for 15 minutes to cure the thermosetting resin, and the rare earth-irons of Example 1, Example 2, Example 3 and Comparative Example 1 were used. A bonded magnet was obtained. The outer diameter dimension and length dimension of each obtained rare earth-iron-based bonded magnet were measured with a micrometer, the mass was measured with an electronic balance, and the density (Mg / m 3 ) was calculated.

[密度変化]
各実施例又は比較例、並びに成形圧力ごとに、熱硬化前(圧縮成形体)の密度と、熱硬化後(希土類−鉄系ボンド磁石)の密度を用いて、密度増減率(%)を以下の式を用いて算出した。
密度増減率(%)=[(熱硬化後の密度−熱硬化前の密度)/熱硬化前の密度]×100
得られた結果に基づき、熱硬化前の圧縮成形体の密度に対する、熱硬化前後の密度変化を示す図を図1〜図3に示す。
[Density change]
For each example or comparative example and molding pressure, the density increase / decrease rate (%) is as follows using the density before thermosetting (compression molding) and the density after thermosetting (rare earth-iron bond magnet). This was calculated using the following formula.
Density increase / decrease rate (%) = [(density after thermosetting−density before thermosetting) / density before thermosetting] × 100
Based on the obtained results, FIGS. 1 to 3 are diagrams showing density changes before and after thermosetting with respect to the density of the compression molded body before thermosetting.

図1に示すように、熱硬化性樹脂組成物の割合を希土類−鉄系磁石薄片に対して3.0wt%となるように配合した場合、不飽和ポリエステルアルキド(A)とトリアリルイソ
シアネート(B1)の総質量に対するトリアリルイソシアヌレート(B1)の配合を25wt%(試料3)又は30wt%(試料4)としたとき、熱硬化前後の密度増減率(%)は、今回実施した何れの成形圧力においてもプラスとなり、熱硬化により密度が増加するとする結果を得た。
As shown in FIG. 1, when the ratio of the thermosetting resin composition is 3.0 wt% with respect to the rare earth-iron magnet flakes, unsaturated polyester alkyd (A) and triallyl isocyanate (B1) ) When the blend of triallyl isocyanurate (B1) with respect to the total mass of 25) is 25 wt% (sample 3) or 30 wt% (sample 4), the density increase / decrease rate (%) before and after thermosetting is any molding performed this time. The pressure was also positive, and the result was that the density increased by thermosetting.

また図2に示すように、アリル系共重合性単量体(B)としてトリメタリルイソシアネート(B2)を用いた場合、トリアリルイソシアヌレート(B2)の配合:30wt%(試料7)において熱硬化前後の密度増減率(%)は、今回実施した何れの成形圧力においてもプラスとなり、熱硬化により密度が増加するとする結果を得た。
なお、トリメタリルイソシアヌレート(B1)の配合を20%(試料6)としたとき、圧縮成形体の密度がおよそ5.85Mg/m以上で熱硬化により密度が増加に転じるとみられる結果となった。
As shown in FIG. 2, when trimethallyl isocyanate (B2) is used as the allylic copolymerizable monomer (B), the composition of triallyl isocyanurate (B2): thermosetting at 30 wt% (sample 7) The density increase / decrease rate (%) before and after became positive at any of the molding pressures carried out this time, and the result was that the density increased by thermosetting.
When the content of trimethallyl isocyanurate (B1) is 20% (sample 6), the density of the compression molded body is approximately 5.85 Mg / m 3 or more, and the result is that the density starts to increase due to thermal curing. It was.

さらに図3に示すように、熱硬化性樹脂組成物の割合を希土類−鉄系磁石薄片に対して3.0wt%(試料9)、3.5wt%(試料10)、4.0wt%(試料11)となるように配合した場合、今回実施した何れの圧力においても熱硬化により密度が増加するとする結果を得た。   Further, as shown in FIG. 3, the ratio of the thermosetting resin composition is 3.0 wt% (sample 9), 3.5 wt% (sample 10), 4.0 wt% (sample) with respect to the rare earth-iron-based magnet flakes. 11) When it mix | blends so that it may become, in any pressure implemented this time, the result that a density increases by thermosetting was obtained.

[実施例4]
次に、熱硬化により密度が増加する結果が得られた試料3、試料4、試料6、試料7について、各試料の残留空隙の体積分率(空隙率とも称する)を算出した。圧縮成形体の空隙率(%)に対する、熱硬化後の密度変化を図4に示す。
なお残留空隙の体積分率は、以下の式より算出した。
残留空隙の体積分率=100−磁石粉末の体積分率−熱硬化性樹脂の体積分率
ここで、磁石粉末の体積分率及び熱硬化性樹脂の体積分率は、各試料の質量に対する希土類鉄系−磁石薄片と熱硬化性樹脂組成物それぞれの配合比率と、希土類−鉄系磁石薄片の真密度値(7.59Mg/m)、熱硬化性樹脂組成物のアルキメデス法による真密度値(1.25Mg/m:試料3、試料4)(1.26Mg/m:試料6、試料7)とを用いて算出した。
[Example 4]
Next, the volume fraction of residual voids (also referred to as void ratio) of each sample was calculated for Sample 3, Sample 4, Sample 6, and Sample 7 that resulted in an increase in density due to thermosetting. The density change after thermosetting with respect to the porosity (%) of the compression molded product is shown in FIG.
The volume fraction of residual voids was calculated from the following formula.
Volume fraction of residual void = 100−volume fraction of magnet powder−volume fraction of thermosetting resin Here, the volume fraction of magnet powder and the volume fraction of thermosetting resin are rare earths relative to the mass of each sample. The mixing ratio of each of the iron-based magnet flakes and the thermosetting resin composition, the true density value of the rare earth-iron-based magnet flakes (7.59 Mg / m 3 ), and the true density value of the thermosetting resin composition by the Archimedes method (1.25 Mg / m 3 : Sample 3, Sample 4) (1.26 Mg / m 3 : Sample 6, Sample 7)

図4に示すように、空隙率が6vol%〜12vol%の範囲で熱硬化により密度が増加する結果が得られた。   As shown in FIG. 4, the result of increasing the density by thermosetting when the porosity is in the range of 6 vol% to 12 vol% was obtained.

Claims (8)

希土類−鉄系磁石薄片と熱硬化性樹脂組成物とを含む希土類−鉄系磁石コンパウンドを作成し、該コンパウンドを圧縮成形して圧縮成形体とし、該圧縮成形体を加熱硬化してなる希土類−鉄系ボンド磁石であって、
該圧縮成形体の加熱硬化により、その密度が加熱硬化前の圧縮成形体と比べより高密度となっていることを特徴とする、
希土類−鉄系ボンド磁石。
A rare earth-iron-based magnet compound containing a rare earth-iron-based magnet flake and a thermosetting resin composition is prepared, the compound is compression-molded to form a compression-molded body, and the compression-molded body is heat-cured to form a rare earth- An iron-based bond magnet,
By the heat curing of the compression molded body, the density is higher than that of the compression molded body before the heat curing,
Rare earth-iron bond magnet.
前記熱硬化性樹脂組成物が、前記希土類−鉄系磁石薄片に対して3wt%乃至4wt%の量で含まれてなることを特徴とする、請求項1に記載の希土類−鉄系ボンド磁石。 The rare earth-iron bond magnet according to claim 1, wherein the thermosetting resin composition is included in an amount of 3 wt% to 4 wt% with respect to the rare earth-iron magnet flakes. 前記熱硬化性樹脂組成物は、不飽和ポリエステルアルキドとアリル系共重合性単量体と有機過酸化物とを含むことを特徴とする、請求項1または請求項2に記載の希土類−鉄系ボンド磁石。 The rare earth-iron system according to claim 1 or 2, wherein the thermosetting resin composition includes an unsaturated polyester alkyd, an allylic copolymerizable monomer, and an organic peroxide. Bond magnet. 前記熱硬化性樹脂組成物は、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)とを、質量比で30wt%≧B/(A+B)≧20wt%含むことを特徴とする、請求項3に記載の希土類−鉄系ボンド磁石。 The thermosetting resin composition contains the unsaturated polyester alkyd (A) and the allylic copolymerizable monomer (B) in a mass ratio of 30 wt% ≧ B / (A + B) ≧ 20 wt%. The rare earth-iron-based bonded magnet according to claim 3, characterized in that it is characterized in that 前記熱硬化性樹脂組成物は、前記不飽和ポリエステルアルキド(A)と前記アリル系共重合性単量体(B)とを、質量比で30wt%≧B/(A+B)≧25wt%で含むことを特徴とする、請求項3に記載の希土類−鉄系ボンド磁石。 The thermosetting resin composition contains the unsaturated polyester alkyd (A) and the allylic copolymerizable monomer (B) in a mass ratio of 30 wt% ≧ B / (A + B) ≧ 25 wt%. The rare earth-iron bond magnet according to claim 3, wherein 前記不飽和ポリエステルアルキドは、テレフタル酸系不飽和ポリエステル樹脂またはイソフタル酸系不飽和ポリエステル樹脂のいずれか一方であることを特徴とする、請求項3乃至請求項5のうちいずれか一項に記載の希土類−鉄系ボンド磁石。 The unsaturated polyester alkyd is any one of a terephthalic acid unsaturated polyester resin and an isophthalic acid unsaturated polyester resin, according to any one of claims 3 to 5. Rare earth-iron bond magnet. 前記アリル系共重合性単量体は、トリアリルイソシアヌレートまたはトリメタリルイソシアヌレートのいずれか一方であることを特徴とする、請求項3乃至請求項5のうちいずれか一項に記載の希土類−鉄系ボンド磁石。 The rare earth element according to any one of claims 3 to 5, wherein the allylic copolymerizable monomer is either one of triallyl isocyanurate or trimethallyl isocyanurate. Iron-based bond magnet. 前記圧縮成形体は、6vol%以上12vol%以下の体積分率にて残留空隙を含むことを特徴とする請求項1乃至請求項7のうちいずれか一項に記載の希土類−鉄系ボンド磁石。 The rare earth-iron bond magnet according to any one of claims 1 to 7, wherein the compression molded body includes residual voids at a volume fraction of 6 vol% or more and 12 vol% or less.
JP2013166450A 2013-08-09 2013-08-09 Rare-earth-ferrous bond magnet Pending JP2015035538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013166450A JP2015035538A (en) 2013-08-09 2013-08-09 Rare-earth-ferrous bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013166450A JP2015035538A (en) 2013-08-09 2013-08-09 Rare-earth-ferrous bond magnet

Publications (1)

Publication Number Publication Date
JP2015035538A true JP2015035538A (en) 2015-02-19

Family

ID=52543860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013166450A Pending JP2015035538A (en) 2013-08-09 2013-08-09 Rare-earth-ferrous bond magnet

Country Status (1)

Country Link
JP (1) JP2015035538A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118738A (en) * 1999-10-21 2001-04-27 Showa Highpolymer Co Ltd Magnetic anisotropic rare earth based bond magnet and manufacturing method thereof
JP2007088354A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118738A (en) * 1999-10-21 2001-04-27 Showa Highpolymer Co Ltd Magnetic anisotropic rare earth based bond magnet and manufacturing method thereof
JP2007088354A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET

Similar Documents

Publication Publication Date Title
JP5752094B2 (en) Method for producing full-dense rare earth-iron bond magnet
WO2000034963A1 (en) Resin-bonded magnet
JP2015029016A (en) Bond magnet
JP6158499B2 (en) Spherical magnet compound and rare earth-iron bond magnet
JP2007329294A (en) Resin-bonded magnet, and method for manufacturing resin-bonded magnet
JP6029205B2 (en) Iron yoke integral fitting outer rotor and method for producing the magnet
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JP2015035538A (en) Rare-earth-ferrous bond magnet
JP2008283142A (en) Method of manufacturing rare earth bond magnet
JP2004296874A (en) Hybrid rare earth bonded magnet, compression molding equipment in magnetic field, and motor
JP6393737B2 (en) Rare earth bonded magnet
JP2016162853A (en) Resin composite magnet material and rare earth-iron bonded magnet using the same
JP2003092209A (en) Composition for resin-bonded magnet, and resin-bonded magnet using the composition
JP2007142032A (en) Composite for resin bonded magnet, resin bonded magnet using same, and method of manufacturing same
JP6463326B2 (en) Rare earth bonded magnet
JP6709766B2 (en) Rare earth bonded magnet, method of manufacturing rare earth bonded magnet, and motor having rare earth bonded magnet
JP4096596B2 (en) Resin-bonded magnet composition and resin-bonded magnet using the same
JP6471724B2 (en) Method for producing magnet alloy powder for bonded magnet
JP2004266149A (en) Composition for resin bonded magnet, and resin bonded magnet using the same
JP3629992B2 (en) Resin-bonded magnet composition and magnet using the same
JP4706412B2 (en) Anisotropic composite magnet
JP4096563B2 (en) Resin-bonded magnet composition and resin-bonded magnet using the same
JP2004095791A (en) Composition for resin-coupled magnet, method of manufacturing the same, resin-coupled magnet utilizing the same composition
JPH11135314A (en) Composition for resin-bonded magnet and manufacture of resin-bonded magnet
JP2008288383A (en) Composition for resin bond type magnet and resin bond type magnet employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170628