JP2014087190A - Synchronous motor control method and device - Google Patents

Synchronous motor control method and device Download PDF

Info

Publication number
JP2014087190A
JP2014087190A JP2012235246A JP2012235246A JP2014087190A JP 2014087190 A JP2014087190 A JP 2014087190A JP 2012235246 A JP2012235246 A JP 2012235246A JP 2012235246 A JP2012235246 A JP 2012235246A JP 2014087190 A JP2014087190 A JP 2014087190A
Authority
JP
Japan
Prior art keywords
value
command value
phase error
phase
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012235246A
Other languages
Japanese (ja)
Other versions
JP5645902B2 (en
Inventor
Daisuke Toyoda
大輔 豊田
Seishi Ochi
清史 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2012235246A priority Critical patent/JP5645902B2/en
Publication of JP2014087190A publication Critical patent/JP2014087190A/en
Application granted granted Critical
Publication of JP5645902B2 publication Critical patent/JP5645902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable estimation of a rotor magnetic pole position in rotation stop of a synchronous motor without requiring a rotary encoder and the like, and to enable estimation of the rotor magnetic pole position with high accuracy and in a short time.SOLUTION: The minimum value and the maximum value of a peak-to-peak value of a d-axis current measurement value at the time when a high-frequency current command value is given to a synchronous motor in rotation stop, and a phase error θ that is a phase of a rotor magnetic pole to a stator U-phase position is made constant, and a phase error command value θ* for instructing of a phase of a dc-axis to the stator U-phase position is changed, are preliminarily stored. The peak-to-peak value of the d-axis current measurement value at the time when the high-frequency current command value is given to the synchronous motor before activation, and a predetermined value is given as the phase error command value θ*, is measured. The phase error θ is calculated from the measured value and the minimum and maximum values.

Description

本発明は、同期電動機制御方法および装置に関し、更に詳しくは、回転停止中の同期電動機のロータ磁極位置を精度高く且つ短時間で推定できる同期電動機制御方法および装置に関する。   The present invention relates to a synchronous motor control method and apparatus, and more particularly, to a synchronous motor control method and apparatus that can estimate the rotor magnetic pole position of a synchronous motor that has stopped rotating with high accuracy and in a short time.

従来、dc軸,dq軸に微小電圧変化量vhd,vhqを与えてdc軸,dq軸での電流変化率ΔIdc,ΔIqcを計測し、与えた微小電圧変化量vhd,vhqと計測した電流変化率ΔIdc,ΔIqcとに基づいて推定磁極位置と実際の磁極位置の位相誤差Δθを算出したり、dc軸に微小電圧変化量vhdを与えてdq軸での電流変化率ΔIqcを計測し、与えた微小電圧変化量vhdと計測した電流変化率ΔIqcとに基づいて推定磁極位置と実際の磁極位置の位相誤差Δθを算出する交流電動機の駆動システムが知られている(例えば、特許文献1,2参照。なお、dc軸〜電流変化率Δθの名称・記号は、特許文献1,2で用いられている名称・記号であり、本願明細書の名称・記号とは必ずしも一致していない。)。
他方、d軸に正弦波の電流指令値id1*を与えて、q’軸での電流値Iq’を計測することを、磁極位置推定値θ’を変えて繰り返し、電流値Iq’=0となるときの磁極位置推定値θ’を実際の磁極位置として得る同期電動機の磁極位置推定方法および電動機制御装置および電気車が知られている(例えば、特許文献3参照。なお、d軸〜磁極位置推定値θ’の名称・記号は、特許文献3で用いられている名称・記号であり、本願明細書の名称・記号とは必ずしも一致していない。)。
Conventionally, the minute voltage changes vhd and vhq are given to the dc and dq axes to measure the current change rates ΔIdc and ΔIqc on the dc and dq axes, and the measured minute voltage changes vhd and vhq are measured. Based on ΔIdc and ΔIqc, the phase error Δθ between the estimated magnetic pole position and the actual magnetic pole position is calculated, or the minute voltage change amount vhd is given to the dc axis to measure the current change rate ΔIqc on the dq axis. There is known an AC motor drive system that calculates a phase error Δθ between an estimated magnetic pole position and an actual magnetic pole position based on a voltage change amount vhd and a measured current change rate ΔIqc (see, for example, Patent Documents 1 and 2). Note that the names / symbols of the dc axis to current change rate Δθ are the names / symbols used in Patent Documents 1 and 2, and do not necessarily match the names / symbols in the present specification.
On the other hand, applying a sinusoidal current command value id1 * to the d-axis and measuring the current value Iq ′ on the q′-axis is repeated while changing the magnetic pole position estimated value θ ′, and the current value Iq ′ = 0. A synchronous motor magnetic pole position estimation method, an electric motor control device, and an electric vehicle that obtain an estimated magnetic pole position estimated value θ ′ as an actual magnetic pole position are known (see, for example, Patent Document 3. Note that d-axis to magnetic pole position. The name / symbol of the estimated value θ ′ is the name / symbol used in Patent Document 3, and does not necessarily match the name / symbol in the present specification.

特開2002−78391号公報JP 2002-78391 A 特開2002−78392号公報JP 2002-78392 A 特開2003−143894号公報JP 2003-143894 A

上記特許文献1,2では、電流変化率を計測している。しかし、電流変化率にはPWM(パルス幅変調)回路のスイッチングによるノイズに起因する誤差が発生するため、磁極位置推定精度が低くなる問題点がある。
他方、特許文献3では、q’軸での電流値Iq’=0に収束するまで、磁極位置推定値θ’を変えて電流値Iq’を計測することを繰り返している。このため、収束までに要する平均的時間が長くなる問題点がある。
そこで、本発明の目的は、回転停止中の同期電動機のロータ磁極位置を精度高く且つ短時間で推定できる同期電動機制御方法および装置を提供することにある。
In the above Patent Documents 1 and 2, the current change rate is measured. However, the current change rate has an error due to noise caused by switching of a PWM (Pulse Width Modulation) circuit, so that the magnetic pole position estimation accuracy is lowered.
On the other hand, in Patent Document 3, the current value Iq ′ is repeatedly measured by changing the magnetic pole position estimated value θ ′ until the current value Iq ′ = 0 on the q ′ axis converges. For this reason, there is a problem that the average time required for convergence becomes long.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a synchronous motor control method and apparatus capable of estimating the rotor magnetic pole position of a synchronous motor whose rotation is stopped with high accuracy and in a short time.

第1の観点では、本発明は、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つステータU相位置(dc0)に対するロータ磁極(P)の位相である位相誤差θを一定とし且つステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*を変化させた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値の最小値および最大値を予め記憶しておき、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として所定値を与えた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値を計測し、その計測値と前記最小値および最大値とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、次いで回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として前記所定値を微小変化させた値を与えた時のd軸電流計測値あるいはd軸電圧計測値の変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御方法を提供する。
上記第1の観点による同期電動機制御方法では、電流変化率を計測する従来技術に比べてPWM回路のスイッチングノイズの影響が小さいため、高い推定精度が得られる。また、同期電動機の起動直線時には、d軸電流計測値のピーク対ピーク値を2回だけ計測すれば位相誤差θを推定できるので、迅速に同期電動機を起動できるようになる。
そして、ロータの角度を変えることなく最小値および最大値を得るので、実施が容易である。
In a first aspect, the present invention provides a high-frequency current command value or a high-frequency voltage command value to a synchronous motor that has stopped rotating, and a phase error θ that is the phase of the rotor magnetic pole (P) with respect to the stator U-phase position (dc0). The minimum value of the peak-to-peak value of the d-axis current measurement value or the d-axis voltage measurement value when the phase error command value θ * for commanding the phase of the dc axis with respect to the stator U phase position (dc0) is changed. The maximum value is stored in advance, the d-axis current measurement value or the d-axis when the high-frequency current command value or the high-frequency voltage command value is given to the synchronous motor whose rotation is stopped and the predetermined value is given as the phase error command value θ * The peak-to-peak value of the voltage measurement value is measured, two phase error candidate values (θa, θb) of the phase error θ are calculated from the measurement value, the minimum value, and the maximum value, and then the synchronous power while the rotation is stopped From the change of the d-axis current measurement value or the d-axis voltage measurement value when a high frequency current command value or a high frequency voltage command value is given to the machine and a value obtained by slightly changing the predetermined value as the phase error command value θ * is given. A synchronous motor control method is provided in which one of two candidate values (θa, θb) is selected as a phase error θ.
In the synchronous motor control method according to the first aspect, since the influence of the switching noise of the PWM circuit is small as compared with the conventional technique for measuring the current change rate, high estimation accuracy can be obtained. In addition, when the synchronous motor starts straight, the phase error θ can be estimated by measuring the peak-to-peak value of the d-axis current measurement value only twice, so that the synchronous motor can be started quickly.
Since the minimum value and the maximum value are obtained without changing the rotor angle, the implementation is easy.

第2の観点では、本発明は、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*=一定値を与え且つステータU相位置(dc0)に対するロータ磁極(P)の位相である位相誤差θを変化させた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値の最小値および最大値を予め記憶しておき、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として所定値を与えた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値を計測し、その計測値と前記最小値および最大値とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、次いで回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として前記所定値を微小変化させた値を与えた時のd軸電流計測値あるいはd軸電圧計測値の変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御方法を提供する。
上記第2の観点による同期電動機制御方法では、電流変化率を計測する従来技術に比べてPWM回路のスイッチングノイズの影響が小さいため、高い推定精度が得られる。また、同期電動機の起動直線時には、d軸電流計測値のピーク対ピーク値を2回だけ計測すれば位相誤差θを推定できるので、迅速に同期電動機を起動できるようになる。
In a second aspect, the present invention provides a phase error command value θ * that gives a high-frequency current command value or a high-frequency voltage command value to a synchronous motor that has stopped rotating and commands the phase of the dc axis with respect to the stator U-phase position (dc0). = Minimum of peak-to-peak value of d-axis current measurement value or d-axis voltage measurement value when a constant value is given and the phase error θ which is the phase of the rotor magnetic pole (P) with respect to the stator U-phase position (dc0) is changed Value and maximum value are stored in advance, a measured value of the d-axis current when a high-frequency current command value or a high-frequency voltage command value is given to the synchronous motor whose rotation is stopped and a predetermined value is given as the phase error command value θ *, or The peak-to-peak value of the d-axis voltage measurement value is measured, and two phase error candidate values (θa, θb) of the phase error θ are calculated from the measurement value and the minimum value and the maximum value, and then the rotation is stopped. same From the change in the d-axis current measurement value or the d-axis voltage measurement value when a high frequency current command value or a high frequency voltage command value is given to the motor and a value obtained by slightly changing the predetermined value as the phase error command value θ * is given. A synchronous motor control method is provided in which one of two candidate values (θa, θb) is selected as a phase error θ.
In the synchronous motor control method according to the second aspect, since the influence of the switching noise of the PWM circuit is small as compared with the conventional technique for measuring the current change rate, high estimation accuracy can be obtained. In addition, when the synchronous motor starts straight, the phase error θ can be estimated by measuring the peak-to-peak value of the d-axis current measurement value only twice, so that the synchronous motor can be started quickly.

第3の観点では、本発明は、回転停止中の同期電動機(M)に高周波電流指令値(ih*)あるいは高周波電圧指令値を与える高周波指令値発生手段(2)と、前記高周波電流指令値(ih*)あるいは高周波電圧指令に基づいてd軸電圧指令値(vd*)およびq軸電圧指令値(vq*)を出力する電流制御手段(6)と、前記d軸電圧指令値(vd*)およびq軸電圧指令値(vq*)に基づいて三相電圧指令値(vU*,vV*,vW*)を出力するdq/UVW変換手段(7)と、前記三相電圧指令値(vU*,vV*,vW*)を基に三相電力を同期電動機(M)に給電する三相給電手段(8)と、三相電動機電流(iU’,iV’)を検出するための電流検出手段(9,10)と、前記三相電動機電流(iU’,iV’)を基にd軸電流計測値(id’)を出力するUVW/dq変換手段(11)と、前記d軸電流計測値(id’)を基に回転停止中の同期電動機(M)のステータU相位置(dc0)に対するロータ磁極の位相である位相誤差θを求める位相誤差推定手段(12)と、前記位相誤差θの変化に対するd軸電流計測値(id’)のピーク対ピーク値(idh)の最小値(idhmin)および最大値(idhmax)を記憶しているメモリ(13)とを具備し、回転停止中に、前記高周波指令値発生手段(2)は高周波電流指令値(ih*)あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記dq/UVW変換手段(7)に対して同期電動機(M)のステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*として所定値を与え、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値のピーク対ピーク値(idh)を計測し且つその計測値と前記メモリ(13)に記憶している最小値(idhmin)および最大値(idhmax)とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、次いで前記高周波指令値発生手段(2)は回転停止中の同期電動機(M)に高周波電流指令値あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記dq/UVW変換手段(7)に対して位相誤差指令値θ*として前記所定値を微小変化させた値を与え、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値を計測しその変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御装置(100)を提供する。
上記第3の観点による同期電動機制御装置では、電流変化率を計測する従来技術に比べてPWM回路のスイッチングノイズの影響が小さいため、高い推定精度が得られる。また、同期電動機の起動直線時には、d軸電流計測値のピーク対ピーク値を2回だけ計測すれば位相誤差θを推定できるので、迅速に同期電動機を起動できるようになる。
In a third aspect, the present invention relates to a high-frequency command value generating means (2) for giving a high-frequency current command value (ih *) or a high-frequency voltage command value to the synchronous motor (M) whose rotation is stopped, and the high-frequency current command value. (Ih *) or current control means (6) for outputting a d-axis voltage command value (vd *) and a q-axis voltage command value (vq *) based on the high-frequency voltage command, and the d-axis voltage command value (vd *) ) And the q-axis voltage command value (vq *), dq / UVW conversion means (7) for outputting a three-phase voltage command value (vU *, vV *, vW *), and the three-phase voltage command value (vU) *, VV *, vW *) based on three-phase power supply means (8) for supplying three-phase power to the synchronous motor (M), and current detection for detecting the three-phase motor current (iU ', iV') Based on the means (9, 10) and the three-phase motor current (iU ′, iV ′) UVW / dq conversion means (11) for outputting a flow measurement value (id '), and a stator U phase position (dc0) of a synchronous motor (M) whose rotation is stopped based on the d-axis current measurement value (id') A phase error estimating means (12) for obtaining a phase error θ which is a phase of the rotor magnetic pole with respect to a minimum value (idhmin) of a peak-to-peak value (idh) of a d-axis current measurement value (id ′) with respect to a change in the phase error θ ) And a memory (13) storing a maximum value (idhmax), and during the rotation stop, the high frequency command value generating means (2) outputs a high frequency current command value (ih *) or a high frequency voltage command value. The phase error estimation means (12) outputs a phase error command value θ for instructing the dq / UVW conversion means (7) the phase of the dc axis with respect to the stator U phase position (dc0) of the synchronous motor (M). * As The dq / UVW conversion means (7) determines three values based on the d-axis voltage command value (vd *), the q-axis voltage command value (vq *), and the phase error command value (θ *). The phase voltage command value (vU *, vV *, vW *) is output, and the phase error estimating means (12) outputs the d-axis current measurement value (idc ′) or the peak-to-peak value (idh) of the d-axis voltage measurement value. And two phase error candidate values (θa, θb) of the phase error θ are calculated from the measured value and the minimum value (idhmin) and the maximum value (idhmax) stored in the memory (13), Next, the high frequency command value generating means (2) outputs a high frequency current command value or a high frequency voltage command value to the synchronous motor (M) whose rotation is stopped, and the phase error estimating means (12) is the dq / UVW conversion means ( 7) As a phase error command value θ * A value obtained by slightly changing the predetermined value is given, and the dq / UVW conversion means (7) is configured to output the d-axis voltage command value (vd *), the q-axis voltage command value (vq *), and the phase error command value ( The three-phase voltage command value (vU *, vV *, vW *) is output based on θ *), and the phase error estimating means (12) is a d-axis current measurement value (idc ′) or a d-axis voltage measurement value. A synchronous motor control device (100) is provided in which one of the two candidate values (θa, θb) is selected as a phase error θ from the change.
In the synchronous motor control device according to the third aspect, since the influence of the switching noise of the PWM circuit is small as compared with the conventional technique for measuring the current change rate, high estimation accuracy can be obtained. In addition, when the synchronous motor starts straight, the phase error θ can be estimated by measuring the peak-to-peak value of the d-axis current measurement value only twice, so that the synchronous motor can be started quickly.

第4の観点では、本発明は、前記第3の観点による同期電動機制御装置(100)において、回転停止中に、前記高周波指令値発生手段(2)は高周波電流指令値(ih*)あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記位相誤差指令値θ*を変化させ、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値のピーク対ピーク値(idh)を計測し且つ前記位相誤差指令値θ*の変化に対する前記ピーク対ピーク値(idh)の変化から前記最小値(idhmin)および最大値(idhmax)を取得し、前記メモリ(13)は前記最小値(idhmin)および最大値(idhmax)を記憶することを特徴とする同期電動機制御装置(100)を提供する。
上記第4の観点による同期電動機制御装置では、ロータの角度を変えることなく最小値および最大値を得るので、実施が容易である。
In a fourth aspect, the present invention relates to the synchronous motor control device (100) according to the third aspect, wherein the high-frequency command value generating means (2) is a high-frequency current command value (ih *) or a high-frequency signal while rotation is stopped. A voltage command value is output, the phase error estimating means (12) changes the phase error command value θ *, and the dq / UVW conversion means (7) is configured to output the d-axis voltage command value (vd *) and the q A three-phase voltage command value (vU *, vV *, vW *) is output based on the shaft voltage command value (vq *) and the phase error command value (θ *), and the phase error estimation means (12) The peak-to-peak value (idh) of the d-axis current measurement value (idc ′) or the d-axis voltage measurement value is measured, and the minimum from the change in the peak-to-peak value (idh) with respect to the change in the phase error command value θ * Value (idhmin) and maximum value (idh) max), and the memory (13) stores the minimum value (idhmin) and the maximum value (idhmax), thereby providing a synchronous motor control device (100).
The synchronous motor control device according to the fourth aspect is easy to implement because the minimum value and the maximum value are obtained without changing the rotor angle.

本発明の同期電動機制御方法および装置によれば、回転停止中の同期電動機のロータ磁極位置を精度高く且つ短時間で推定できる。   According to the synchronous motor control method and apparatus of the present invention, the rotor magnetic pole position of the synchronous motor whose rotation is stopped can be accurately estimated in a short time.

実施例1に係る同期電動機制御装置を示す構成説明図である。1 is an explanatory diagram illustrating a configuration of a synchronous motor control device according to a first embodiment. 位相誤差θの説明図である。It is explanatory drawing of phase error (theta). 回転停止中のリラクタンス電動機にd軸電流指令値idc*を与えてd軸電流計測値idc’を観測した波形の例示図である。It is an illustration figure of the waveform which gave d-axis current command value idc * to the reluctance motor in rotation stop, and observed d-axis current measurement value idc '. 位相誤差θの変化に対するd軸電流計測値idc’のピーク対ピーク値idhの変化をプロットした特性曲線図である。FIG. 6 is a characteristic curve diagram in which a change in peak-to-peak value idh of a d-axis current measurement value idc ′ with respect to a change in phase error θ is plotted. 回転停止中の永久磁石電動機にd軸電流指令値idc*を与えてd軸電流計測値idc’を観測した波形の例示図である。It is an illustration figure of the waveform which gave d-axis current command value idc * to the permanent-magnet motor in which rotation was stopped, and observed d-axis current measurement value idc '. 実施例1に係るピーク対ピーク最大値最小値計測処理を示すフロー図である。It is a flowchart which shows the peak-to-peak maximum value minimum value measurement process which concerns on Example 1. FIG. 図4の特性曲線に対応するdc軸(破線矢印)と位相誤差指令値θ*に対応するdc軸(実線矢印)の関係を示す概念図である。FIG. 5 is a conceptual diagram showing a relationship between a dc axis (broken arrow) corresponding to the characteristic curve of FIG. 4 and a dc axis (solid arrow) corresponding to the phase error command value θ *. 位相誤差指令値θ*の変化に対するd軸電流計測値idc’のピーク対ピーク値idhの変化をプロットした特性曲線図である。FIG. 6 is a characteristic curve diagram in which a change in peak-to-peak value idh of a d-axis current measurement value idc ′ with respect to a change in phase error command value θ * is plotted. 図4の特性曲線に対応するdc軸(破線矢印)と位相誤差指令値θ*=θ*min+90°に対応するdc軸(実線矢印)の関係を示す概念図である。FIG. 5 is a conceptual diagram showing a relationship between a dc axis (broken arrow) corresponding to the characteristic curve of FIG. 4 and a dc axis (solid arrow) corresponding to the phase error command value θ * = θ * min + 90 °. 実施例1に係るロータ磁極位置推定処理を示すフロー図である。It is a flowchart which shows the rotor magnetic pole position estimation process which concerns on Example 1. FIG. d軸電流計測値idc’のピーク対ピーク値idhの計測値idh1から得られる2つの磁極誤差候補値θa,θbを示す説明図である。It is explanatory drawing which shows two magnetic pole error candidate values (theta) a and (theta) b obtained from the measured value idh1 of the peak-to-peak value idh of d-axis current measured value idc '. 位相誤差指令値θ*をψだけ変化させたときに得られるd軸電流計測値idc’のピーク対ピーク値idhの計測値idh2を示す説明図である。It is explanatory drawing which shows the measured value idh2 of the peak-to-peak value idh of the d-axis current measured value idc 'obtained when the phase error command value θ * is changed by ψ.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

−実施例1−
図1は、同期電動機制御装置100を示す構成説明図である。
この同期電動機制御装置100は、突極性をもつ同期電動機Mの速度制御およびトルク制御を行うためのd軸電流制御値id0*およびq軸電流指令値iq*を出力するベクトル制御器1と、回転停止中の同期電動機Mのロータの磁極位置を検出するための高周波電流指令値ih*を出力する高周波電流指令値発生器2と、d軸電流制御値id0*に高周波電流指令値ih*を加算してd軸電流指令値id*を出力する加算器3と、d軸電流指令値id*とd軸電流計測値id’の差分であるd軸電流差分値を出力する差分器4と、q軸電流指令値iq*とq軸電流計測値iq’の差分であるq軸電流差分値を出力する差分器5と、d軸電流差分値およびq軸電流差分値を基にd軸電圧指令値vd*およびq軸電圧指令値vq*を出力する電流制御器6と、d軸電圧指令値vd*とq軸電圧指令値vq*と位相誤差指令値θ*を基に三相電圧指令値vU*,vV*,vW*を出力するdq/UVW変換器7と、三相電圧指令値vU*,vV*,vW*を基に三相電力を同期電動機Mに給電するPWMインバータ8と、U相電動機電流iU’を検出するための電流検出器9と、V相電動機電流iV’を検出するための電流検出器10と、U相電動機電流iU’およびV相電動機電流iV’を基にd軸電流計測値id’およびq軸電流計測値iq’を出力するUVW/dq変換器11と、d軸電流計測値id’を基に回転停止中の同期電動機MのステータU相位置とロータの磁極位置の位相誤差θを求める位相誤差推定器12と、位相誤差θの変化に対するd軸電流計測値id’のピーク対ピーク値idhの最大値idhmaxおよび最小値idhminを記憶しているメモリ13と、同期電動機Mのロータが永久磁石型である場合に回転停止中の同期電動機MのステータU相位置に最も近い磁極の極性を判別する極性判別器14とを具備している。
Example 1
FIG. 1 is a configuration explanatory view showing a synchronous motor control device 100.
The synchronous motor control device 100 includes a vector controller 1 that outputs a d-axis current control value id0 * and a q-axis current command value iq * for performing speed control and torque control of the synchronous motor M having saliency, The high-frequency current command value generator 2 that outputs a high-frequency current command value ih * for detecting the magnetic pole position of the rotor of the synchronous motor M that is stopped, and the high-frequency current command value ih * is added to the d-axis current control value id0 * An adder 3 that outputs a d-axis current command value id *, a differencer 4 that outputs a d-axis current difference value that is a difference between the d-axis current command value id * and the d-axis current measurement value id ′, q A differencer 5 that outputs a q-axis current difference value that is a difference between the axis current command value iq * and the q-axis current measurement value iq ′, and a d-axis voltage command value based on the d-axis current difference value and the q-axis current difference value. Current that outputs vd * and q-axis voltage command value vq * Controller 6 and dq / UVW conversion that outputs three-phase voltage command values vU *, vV *, and vW * based on d-axis voltage command value vd *, q-axis voltage command value vq *, and phase error command value θ * 7, a PWM inverter 8 that supplies three-phase power to the synchronous motor M based on the three-phase voltage command values vU *, vV *, vW *, and a current detector 9 for detecting the U-phase motor current iU ′. A current detector 10 for detecting the V-phase motor current iV ′, a d-axis current measurement value id ′ and a q-axis current measurement value iq ′ based on the U-phase motor current iU ′ and the V-phase motor current iV ′. And a phase error estimator 12 for obtaining a phase error θ between the stator U phase position of the synchronous motor M and the magnetic pole position of the rotor that are stopped from rotation based on the measured d-axis current value id ′. , Peak-to-peak value id of d-axis current measurement value id ′ with respect to change in phase error θ When the rotor 13 of the synchronous motor M is of a permanent magnet type, the polarity of the magnetic pole closest to the stator U phase position of the synchronous motor M that has stopped rotating is discriminated from the memory 13 that stores the maximum value idhmax and the minimum value idhmin. The polarity discriminator 14 is provided.

図2は、位相誤差θの説明図である。なお、(a)〜(c)は4極リラクタンス電動機を示し、(A)〜(D)は4極永久磁石電動機を示す。
図2の(a)に示すように、回転停止中の4極リラクタンス電動機のステータU相位置dc0とロータの磁極Pの位置が合致している状態を位相誤差θ=0°とする。
図2の(b)に示すように、回転停止中の4極リラクタンス電動機のステータU相位置dc0とロータの磁極Pの位置が機械的に22.5°ずれている状態を位相誤差θ=45°とする。
図2の(c)に示すように、回転停止中の4極リラクタンス電動機のステータU相位置dc0とロータの磁極Pの位置が機械的に45°ずれている状態を位相誤差θ=90°とする。
FIG. 2 is an explanatory diagram of the phase error θ. In addition, (a)-(c) shows a 4-pole reluctance motor, (A)-(D) shows a 4-pole permanent magnet motor.
As shown in FIG. 2A, a state where the stator U-phase position dc0 of the four-pole reluctance motor that is stopped in rotation and the position of the magnetic pole P of the rotor coincide is defined as a phase error θ = 0 °.
As shown in FIG. 2 (b), the phase error θ = 45 is a state in which the stator U phase position dc0 of the four-pole reluctance motor being stopped and the position of the magnetic pole P of the rotor are mechanically shifted by 22.5 °. °.
As shown in FIG. 2 (c), the phase error θ = 90 ° is a state where the stator U phase position dc0 of the four-pole reluctance motor being stopped rotating and the position of the magnetic pole P of the rotor are mechanically shifted by 45 °. To do.

図2の(A)に示すように、回転停止中の4極永久磁石電動機のステータU相位置dc0とロータのN極Nの位置が合致している状態を位相誤差θ=0°とする。
図2の(B)に示すように、回転停止中の4極永久磁石電動機のステータU相位置dc0とロータのN極Nの位置が機械的に22.5°ずれている状態を位相誤差θ=45°とする。
図2の(C)に示すように、回転停止中の4極永久磁石電動機のステータU相位置dc0とロータのN極Nの位置が機械的に45°ずれている状態を位相誤差θ=90°とする。
図2の(D)に示すように、回転停止中の4極永久磁石電動機のステータU相位置dc0とロータのS極Sの位置が合致している状態を位相誤差θ=180°とする。
As shown in FIG. 2A, a state in which the stator U-phase position dc0 of the four-pole permanent magnet electric motor whose rotation is stopped coincides with the position of the N-pole N of the rotor is defined as a phase error θ = 0 °.
As shown in FIG. 2B, the phase error θ is a state in which the stator U-phase position dc0 of the four-pole permanent magnet electric motor whose rotation is stopped and the position of the rotor N-pole N are mechanically shifted by 22.5 °. = 45 °.
As shown in FIG. 2C, a phase error θ = 90 is a state in which the stator U-phase position dc0 of the four-pole permanent magnet motor that is stopped from rotating and the position of the rotor N-pole N are mechanically shifted by 45 °. °.
As shown in FIG. 2D, a state in which the stator U-phase position dc0 of the four-pole permanent magnet motor whose rotation is stopped and the position of the S-pole S of the rotor coincide with each other is defined as a phase error θ = 180 °.

図2に示す実線矢印は、ロータ磁極位置の推定座標系のdc軸の位相を表している。
位相誤差推定器12から位相誤差指令値θ*=0°を与えると、dq/UVW変換器7は、dc軸をステータU相位置dc0に合致させる。
The solid line arrow shown in FIG. 2 represents the phase of the dc axis of the estimated coordinate system of the rotor magnetic pole position.
When the phase error command value θ * = 0 ° is given from the phase error estimator 12, the dq / UVW converter 7 matches the dc axis with the stator U phase position dc0.

図2の(a)に示すように、位相誤差θ=0°の状態のときに、位相誤差指令値θ*=0°を与え、d軸電流制御値id0*=0とし、q軸電流指令値iq*=0とし、高周波電流指令値ih*として例えば周期3ms,ピーク対ピーク値10Aの正弦波を与えると、図3の(a)に示す如きd軸電流計測値idc’が観測される。なお、回転停止中のd軸電流計測値id’であることを表すため、記号をidc’としている。
図2の(b)に示すように、位相誤差θ=45°の状態のときに、同様の条件を与えると、図3の(b)に示す如きd軸電流計測値idc’が観測される。
図2の(c)に示すように、位相誤差θ=90°の状態のときに、同様の条件を与えると、図3の(c)に示す如きd軸電流計測値idc’が観測される。
As shown in FIG. 2A, when the phase error θ = 0 °, the phase error command value θ * = 0 ° is given, the d-axis current control value id0 * = 0, and the q-axis current command When a value iq * = 0 and a sine wave having a period of 3 ms and a peak-to-peak value of 10 A is given as the high-frequency current command value ih *, a d-axis current measurement value idc ′ as shown in FIG. 3A is observed. . In addition, in order to show that it is d axis | shaft current measured value id 'in a rotation stop, the symbol is set to idc'.
As shown in FIG. 2B, when the same condition is given when the phase error θ = 45 °, a d-axis current measurement value idc ′ as shown in FIG. 3B is observed. .
As shown in FIG. 2C, when the same condition is given when the phase error θ = 90 °, a d-axis current measurement value idc ′ as shown in FIG. 3C is observed. .

図4は、位相誤差θの変化に対するd軸電流計測値idc’のピーク対ピーク値idhの変化をプロットした特性曲線図である。
この特性曲線は、図4から判るように次式で表される。
idh=(idhmax+idhmin)/2−{(idhmax−idhmin)/2}cos(2・θ)
最大値idhmaxおよび最小値idhminは、高周波電流指令値ih*や同期電動機Mの巻線抵抗やインダクタンスなどにより異なる値になる。
FIG. 4 is a characteristic curve diagram in which the change of the peak-to-peak value idh of the d-axis current measurement value idc ′ with respect to the change of the phase error θ is plotted.
This characteristic curve is expressed by the following equation as can be seen from FIG.
idh = (idhmax + idhmin) / 2 − {(idhmax−idhmin) / 2} cos (2 · θ)
The maximum value idhmax and the minimum value idhmin are different values depending on the high-frequency current command value ih *, the winding resistance and inductance of the synchronous motor M, and the like.

図4の特性曲線は、図2の(A)〜(D)に示す4極永久磁石電動機の場合でも同じである。
但し、回転停止中の4極永久磁石電動機のステータU相位置dc0とロータのN極Nの位置が合致している状態を位相誤差θ=0°とし、ステータU相位置dc0とロータのS極Sの位置が合致している状態を位相誤差θ=180°とするので、0°≦θ<360°の範囲となる。
他方、4極リラクタンス電動機の場合は、極性の区別が無いので、0°≦θ<180°の範囲となる。
The characteristic curves in FIG. 4 are the same even in the case of the four-pole permanent magnet motor shown in FIGS.
However, a state in which the stator U-phase position dc0 of the four-pole permanent magnet motor being stopped and the position of the N-pole N of the rotor coincide with each other is defined as a phase error θ = 0 °, and the stator U-phase position dc0 and the S-pole of the rotor Since the phase error θ = 180 ° is the state in which the positions of S match, the range is 0 ° ≦ θ <360 °.
On the other hand, in the case of a 4-pole reluctance motor, since there is no distinction of polarity, the range is 0 ° ≦ θ <180 °.

また、図5に示すように、d軸電流計測値idc’の波形は位相誤差θに応じて正負非対称になる。
すなわち、図5の(a)に示すように、0°≦θ<180°では、d軸電流計測値idc’が正値になる正期間Tpよりもd軸電流計測値idc’が負値になる負期間Tnの方が長くなる。
他方、図5の(b)に示すように、180°≦θ<360°では、正期間Tpの方が負期間Tnよりも長くなる。
Further, as shown in FIG. 5, the waveform of the d-axis current measurement value idc ′ becomes asymmetric between positive and negative according to the phase error θ.
That is, as shown in FIG. 5A, when 0 ° ≦ θ <180 °, the d-axis current measurement value idc ′ becomes a negative value during the positive period Tp in which the d-axis current measurement value idc ′ is a positive value. The negative period Tn becomes longer.
On the other hand, as shown in FIG. 5B, when 180 ° ≦ θ <360 °, the positive period Tp is longer than the negative period Tn.

図6は、ピーク対ピーク最大値最小値計測処理を示すフロー図である。d軸電流制御値id0*=0、q軸電流指令値iq*=0として、この処理を開始する。
ステップH1では、高周波電流指令値発生器2から一定の高周波電流指令値ih*を出力しておき、位相誤差推定器12から位相誤差指令値θ*=0°を出力し、d軸電流計測値idc’のピーク対ピーク値idhを計測する。
FIG. 6 is a flowchart showing a peak-to-peak maximum value minimum value measurement process. This process is started with the d-axis current control value id0 * = 0 and the q-axis current command value iq * = 0.
In step H1, a constant high-frequency current command value ih * is output from the high-frequency current command value generator 2, a phase error command value θ * = 0 ° is output from the phase error estimator 12, and a d-axis current measurement value is output. The peak-to-peak value idh of idc ′ is measured.

図7の(a)に示すように、図4の特性曲線に対応するdc軸(図7の破線矢印であり、d軸と合致している。)と位相誤差指令値θ*=0°に対応するdc軸(実線矢印)の位相差θ’は、例えば実際の位相誤差θ=62°ならば、θ’=θ*−θ=0°−62°=−62°になる。従って、計測されるピーク対ピーク値idhは、図4におけるθ=−62°=118°でのピーク対ピーク値になる。これは、図8の(a)に示すa点に相当する。   As shown in FIG. 7A, the dc axis corresponding to the characteristic curve in FIG. 4 (the broken line arrow in FIG. 7 coincides with the d axis) and the phase error command value θ * = 0 °. The phase difference θ ′ of the corresponding dc axis (solid arrow) becomes, for example, θ ′ = θ * −θ = 0 ° −62 ° = −62 ° if the actual phase error θ = 62 °. Therefore, the measured peak-to-peak value idh is the peak-to-peak value at θ = −62 ° = 118 ° in FIG. This corresponds to the point a shown in FIG.

続いて、位相誤差推定器12から位相誤差指令値θ*をδ1(例えば15°)ずつ増加させてd軸電流計測値idc’のピーク対ピーク値idhを計測することを、ピーク対ピーク値idhの最小値idhminが見つかるまで繰り返し、最小値idhminが得られるときの位相誤差指令値θ*minを求める。   Subsequently, the peak-to-peak value idh is measured by increasing the phase-error command value θ * from the phase-error estimator 12 by δ1 (for example, 15 °) and measuring the peak-to-peak value idh of the d-axis current measurement value idc ′. Until the minimum value idhmin is found, the phase error command value θ * min when the minimum value idhmin is obtained is obtained.

図7の(b)に示すように、図4に示す特性曲線におけるdc軸(図7の破線矢印であり、d軸と合致している。)と位相誤差指令値θ*=45°のときのdc軸(実線矢印)の位相差θ’は、例えば位相誤差θ=62°ならば、θ’=θ*−θ=45°−62°=−17°になる。従って、計測されるピーク対ピーク値idhは、図4におけるθ=−17°=163°でのピーク対ピーク値になる。これは、図8の(a)に示すb点に相当する。   As shown in FIG. 7B, when the dc axis in the characteristic curve shown in FIG. 4 (the broken line arrow in FIG. 7 coincides with the d axis) and the phase error command value θ * = 45 °. For example, if the phase error θ = 62 °, the phase difference θ ′ of the dc axis (solid arrow) is θ ′ = θ * −θ = 45 ° −62 ° = −17 °. Therefore, the measured peak-to-peak value idh is the peak-to-peak value at θ = −17 ° = 163 ° in FIG. This corresponds to the point b shown in FIG.

図7の(c)に示すように、図4に示す特性曲線におけるdc軸(図7の破線矢印であり、d軸と合致している。)と位相誤差指令値θ*=90°のときのdc軸(実線矢印)の位相差θ’は、例えば位相誤差θ=62°ならば、θ’=θ*−θ=90°−62°=28°になる。従って、計測されるピーク対ピーク値idhは、図4におけるθ=28°でのピーク対ピーク値になる。これは、図8の(a)に示すc点に相当する。   As shown in FIG. 7C, when the dc axis in the characteristic curve shown in FIG. 4 (the broken line arrow in FIG. 7 coincides with the d axis) and the phase error command value θ * = 90 °. For example, if the phase error θ = 62 °, the phase difference θ ′ of the dc axis (solid arrow) becomes θ ′ = θ * −θ = 90 ° −62 ° = 28 °. Therefore, the measured peak-to-peak value idh is the peak-to-peak value at θ = 28 ° in FIG. This corresponds to the point c shown in FIG.

図8の(a)に示す如き曲線のようにピーク対ピーク値idhの計測値が変化したならば、位相誤差指令値θ*=0°から90°くらいまで計測を繰り返せば、位相誤差指令値θ*min=60°が見つかる。ステップH1で計測を繰り返す回数は、例えばδ1=15°でθ*=0°から90°くらいまで繰り返すならば、7回くらいになる。また、ステップH1で見つかる位相誤差指令値θ*minの分解能はδ1になる。   If the measured value of the peak-to-peak value idh changes as shown by the curve shown in FIG. 8A, the phase error command value can be obtained by repeating the measurement from the phase error command value θ * = 0 ° to about 90 °. θ * min = 60 ° is found. For example, if δ1 = 15 ° and θ * = 0 ° to about 90 ° is repeated, the number of times the measurement is repeated in step H1 is about 7 times. Further, the resolution of the phase error command value θ * min found in step H1 is δ1.

図6に戻り、ステップH2では、一定の高周波電流指令値ih*を出力しておき、位相誤差指令値θ*=θ*minを中心とする所定範囲R1で、位相誤差指令値θ*をδ2(例えば3°)ずつ変化させてd軸電流計測値idc’のピーク対ピーク値idhを計測することを、ピーク対ピーク値idhの最小値idhminが見つかるまで繰り返し、最小値idhminが得られるときの位相誤差指令値θ*minを求める。なお、δ2はδ1より小さな値とし、R1はδ2の整数倍とする。   Returning to FIG. 6, in step H2, a constant high-frequency current command value ih * is output, and the phase error command value θ * is set to δ2 within a predetermined range R1 centered on the phase error command value θ * = θ * min. When the peak-to-peak value idh of the d-axis current measurement value idc ′ is measured by changing (for example, 3 °) each time until the minimum value idhmin of the peak-to-peak value idh is found, the minimum value idhmin is obtained. A phase error command value θ * min is obtained. Note that δ2 is a value smaller than δ1, and R1 is an integral multiple of δ2.

図8の(b)に示すように、例えばステップH1で見つけた位相誤差指令値θ*min=60°、R1=24°、δ2=3°とするなら、ステップH2で計測を繰り返す回数は9回になる。この繰り返しで位相誤差指令値θ*min=63°が見つかる。ステップH2で見つかる位相誤差指令値θ*minの分解能はδ2になる。   As shown in FIG. 8B, for example, if the phase error command value found in step H1 is θ * min = 60 °, R1 = 24 °, δ2 = 3 °, the number of times the measurement is repeated in step H2 is 9 Times. By repeating this, the phase error command value θ * min = 63 ° is found. The resolution of the phase error command value θ * min found in step H2 is δ2.

図6に戻り、ステップH3では、一定の高周波電流指令値ih*を出力しておき、位相誤差指令値θ*=θ*minを中心とする所定範囲R2で、位相誤差指令値θ*をδ3ずつ変化させてd軸電流計測値idc’のピーク対ピーク値idhを計測することを、ピーク対ピーク値idhの最小値idhminが見つかるまで繰り返し、最小値idhminおよび位相誤差指令値θ*minを求める。なお、δ3はδ2より小さな値とし、R2はδ3の整数倍とする。   Returning to FIG. 6, in step H3, a constant high-frequency current command value ih * is output, and the phase error command value θ * is set to δ3 within a predetermined range R2 centered on the phase error command value θ * = θ * min. Measurement of the peak-to-peak value idh of the measured d-axis current value idc ′ is repeated until the minimum value idhmin of the peak-to-peak value idh is found to obtain the minimum value idhmin and the phase error command value θ * min. . Note that δ3 is a value smaller than δ2, and R2 is an integral multiple of δ3.

図8の(c)に示すように、例えばステップH2で見つけた位相誤差指令値θ*min=63°、R2=10°、δ3=1°とするなら、ステップH3で計測を繰り返す回数は11回になる。この繰り返しで位相誤差指令値θ*min=62°が見つかる。この位相誤差指令値θ*min=62°が位相誤差θである。ステップH3で得られる位相誤差指令値θ*minの分解能はδ3になる。   As shown in FIG. 8C, for example, if the phase error command value found in step H2 is θ * min = 63 °, R2 = 10 °, and δ3 = 1 °, the number of times the measurement is repeated in step H3 is 11. Times. By repeating this, the phase error command value θ * min = 62 ° is found. This phase error command value θ * min = 62 ° is the phase error θ. The resolution of the phase error command value θ * min obtained in step H3 is δ3.

図6に戻り、ステップH4では、一定の高周波電流指令値ih*を出力しておき、位相誤差指令値θ*=θ*min+90°を出力し、d軸電流計測値idc’のピーク対ピーク値idhを計測し、計測値をピーク対ピーク値idhの最大値idhmaxとする。   Returning to FIG. 6, in step H4, a constant high-frequency current command value ih * is output, a phase error command value θ * = θ * min + 90 ° is output, and the peak-to-peak value of the d-axis current measurement value idc ′ is output. idh is measured, and the measured value is set as the maximum value idhmax of the peak-to-peak value idh.

図9に示すように、ステップH3で得られる位相誤差指令値θ*minが位相誤差θであるから、これに90°を加えた位相にあるdc軸(実線矢印)は、図4に示す特性曲線における位相誤差θ=90°に相当する。従って、ここで計測されるピーク対ピーク値idhが最大値idhmaxである。   As shown in FIG. 9, since the phase error command value θ * min obtained in step H3 is the phase error θ, the dc axis (solid arrow) in the phase obtained by adding 90 ° to the phase error θ is the characteristic shown in FIG. This corresponds to a phase error θ = 90 ° in the curve. Therefore, the peak-to-peak value idh measured here is the maximum value idhmax.

ステップH5では、位相誤差推定器12は、最小値idhminおよび最大値idhmaxをメモリ13に記憶する。
なお、メモリ13には、同期電動機Mがリラクタンス電動機か永久磁石電動機かも予め記憶されている。
In step H5, the phase error estimator 12 stores the minimum value idhmin and the maximum value idhmax in the memory 13.
The memory 13 stores in advance whether the synchronous motor M is a reluctance motor or a permanent magnet motor.

図10は、ロータ磁極位置推定処理を示すフロー図である。d軸電流制御値id0*=0、q軸電流指令値iq*=0として、この処理を開始する。
ステップH11では、高周波電流指令値発生器2から一定の高周波電流指令値ih*を出力しておき、位相誤差推定器12から位相誤差指令値θ*=0°を出力し、d軸電流計測値idc’のピーク対ピーク値idhおよび正値期間Tpおよび負値期間Tnを計測する。ステップH11で計測されたピーク対ピーク値idh=idh1とする。
FIG. 10 is a flowchart showing the rotor magnetic pole position estimation processing. This process is started with the d-axis current control value id0 * = 0 and the q-axis current command value iq * = 0.
In step H11, a constant high-frequency current command value ih * is output from the high-frequency current command value generator 2, a phase error command value θ * = 0 ° is output from the phase error estimator 12, and a d-axis current measurement value is output. The peak-to-peak value idh, positive value period Tp, and negative value period Tn of idc ′ are measured. The peak-to-peak value idh measured in step H11 is set to idh1.

ステップH12では、次式により位相誤差候補値θa(<90°)とθb(≧90°)を求める。

Figure 2014087190
In Step H12, the phase error candidate values θa (<90 °) and θb (≧ 90 °) are obtained by the following equations.
Figure 2014087190

図11から判るように、計測された1つのピーク対ピーク値idhに対して2つの位相誤差候補値θa(<90°)とθb(≧90°)が算出される。例えば、θa=62°,θb=118°である。   As can be seen from FIG. 11, two phase error candidate values θa (<90 °) and θb (≧ 90 °) are calculated for one measured peak-to-peak value idh. For example, θa = 62 ° and θb = 118 °.

図10に戻り、ステップH13では、高周波電流指令値発生器2から一定の高周波電流指令値ih*を出力しておき、位相誤差推定器12から位相誤差指令値θ*=−ψを出力し、d軸電流計測値idc’のピーク対ピーク値idhを計測する。ステップH13で計測されたピーク対ピーク値idh=idh2とする。
なお、ψは、例えば最小値idhminおよび最大値idhmaxを求めた時の最高分解能δ3とする。
Returning to FIG. 10, in step H13, a constant high-frequency current command value ih * is output from the high-frequency current command value generator 2, and a phase error command value θ * = − ψ is output from the phase error estimator 12. The peak-to-peak value idh of the d-axis current measurement value idc ′ is measured. It is assumed that the peak-to-peak value idh = idh2 measured in step H13.
Note that ψ is, for example, the maximum resolution δ3 when the minimum value idhmin and the maximum value idhmax are obtained.

ステップH14では、idh2>idh1か否かを判定し、idh2>idh1ならステップH15へ進み、idh2≦idh1ならステップH16へ進む。
図12に示すように、ステップH13で位相誤差指令値θ*=−ψとしたことは見かけ上の位相誤差θがψだけ大きくなったことになるから、真の位相誤差θがθaならidh2>idh1となり、真の位相誤差θがθbならidh2≦idh1となる。
In step H14, it is determined whether or not idh2> idh1, and if idh2> idh1, the process proceeds to step H15, and if idh2 ≦ idh1, the process proceeds to step H16.
As shown in FIG. 12, setting the phase error command value θ * = − ψ in step H13 means that the apparent phase error θ is increased by ψ, so if the true phase error θ is θa, idh2> If idh1 and the true phase error θ is θb, then idh2 ≦ idh1.

ステップH15では、位相誤差θ=θaとする。そして、ステップH17へ進む。   In step H15, the phase error θ is set to θa. Then, the process proceeds to Step H17.

ステップH16では、位相誤差θ=θbとする。そして、ステップH17へ進む。   In step H16, the phase error θ = θb. Then, the process proceeds to Step H17.

ステップH17では、同期電動機Mがリラクタンス電動機か永久磁石電動機かを判定する。そして、リラクタンス電動機なら処理を終了し、永久磁石電動機ならステップH18へ進む。   In step H17, it is determined whether the synchronous motor M is a reluctance motor or a permanent magnet motor. If it is a reluctance motor, the process is terminated, and if it is a permanent magnet motor, the process proceeds to step H18.

ステップH18では、d軸電流計測値idc’の正値期間Tpおよび負値期間Tnを比較し、Tn>Tpなら図5の(a)の場合であるので処理を終了し、Tn≦Tpなら図5の(b)の場合であるのでステップH19へ進む。   In step H18, the positive value period Tp and the negative value period Tn of the d-axis current measurement value idc ′ are compared. If Tn> Tp, the process is ended because FIG. Since it is the case of (b) of 5, it progresses to step H19.

ステップH19では、位相誤差θ=θ+180°とし、処理を終了する。   In step H19, the phase error θ = θ + 180 ° is set, and the process is terminated.

実施例1に係る同期電動機制御装置100によれば次の効果が得られる。
(1)電流変化率を計測する従来技術に比べてPWMインバータ8のスイッチングノイズの影響が小さいため、高い推定精度が得られる。
(2)同期電動機Mの起動直前時にはd軸電流計測値idc’のピーク対ピーク値idhを2回だけ計測すれば位相誤差θを推定できるので、迅速に同期電動機Mを起動できるようになる。
(3)長時間の使用などにより同期電動機Mの特性が変化した場合でも、ピーク対ピーク最大値最小値計測処理を再度行うことで、推定精度を保つことが可能となる。
(4)d軸電流計測値idc’のピーク対ピーク値idhの最小値idhminおよび最大値idhmaxのみを予め求めて記憶しておけばよいので、メモリ13の使用量を少なく出来る。
(5)d軸電流計測値idc’を計測してベクトル制御を行っている既存の同期電動機制御装置においては、ハードウエアを追加する必要がないため、容易に実施できる。
According to the synchronous motor control apparatus 100 according to the first embodiment, the following effects can be obtained.
(1) Since the influence of the switching noise of the PWM inverter 8 is small as compared with the conventional technique for measuring the current change rate, high estimation accuracy can be obtained.
(2) Immediately before starting the synchronous motor M, the phase error θ can be estimated by measuring the peak-to-peak value idh of the d-axis current measured value idc ′ only twice, so that the synchronous motor M can be started quickly.
(3) Even when the characteristics of the synchronous motor M change due to long-term use or the like, the estimation accuracy can be maintained by performing the peak-to-peak maximum value / minimum value measurement process again.
(4) Since only the minimum value idhmin and the maximum value idhmax of the peak-to-peak value idh of the d-axis current measurement value idc ′ need only be obtained and stored in advance, the amount of use of the memory 13 can be reduced.
(5) In an existing synchronous motor control device that performs vector control by measuring the d-axis current measurement value idc ′, it is not necessary to add hardware, and therefore it can be easily implemented.

次に、数学モデルにより本発明を論証する。
同期電動機の電圧方程式は次式で表される。
次式で、vdはd軸電圧、vqはq軸電圧、idはd軸電流、iqはq軸電流、Rは電機子巻線抵抗、pは微分演算子、Ldはd軸インダクタンス、Lqはq軸インダクタンス、ωは同期電動機の電気角回転数、φは界磁鎖交磁束である。

Figure 2014087190
Next, the present invention is demonstrated by a mathematical model.
The voltage equation of the synchronous motor is expressed by the following equation.
In the following equation, vd is a d-axis voltage, vq is a q-axis voltage, id is a d-axis current, iq is a q-axis current, R is an armature winding resistance, p is a differential operator, Ld is a d-axis inductance, and Lq is The q-axis inductance, ω is the electrical angular rotational speed of the synchronous motor, and φ is the field linkage magnetic flux.
Figure 2014087190

回転停止中の同期電動機の電圧方程式は、ω=0であるので、次式のようになる。

Figure 2014087190
Since the voltage equation of the synchronous motor that is not rotating is ω = 0, the following equation is obtained.
Figure 2014087190

同期電動機の回転座標系dq軸(=実際にロータの磁極がある位置をd軸とした座標系)と推定座標系dcqc軸(=ステータU相位置dc0にロータのd軸の位置が合致していると推定した座標系)とに位相誤差θがある場合、dq軸とdcqc軸の関係は次式となる。

Figure 2014087190
The rotational coordinate system dq axis of the synchronous motor (= the coordinate system in which the position where the rotor magnetic pole is actually located is the d axis) and the estimated coordinate system dcqc axis (= the stator d-axis position coincides with the stator U phase position dc0). When there is a phase error θ in the estimated coordinate system), the relationship between the dq axis and the dcqc axis is as follows.
Figure 2014087190

従って、dq軸での電圧vd,vqとdcqc軸での電圧vdc,vqcの関係は次式となる。

Figure 2014087190
Therefore, the relationship between the voltages vd, vq on the dq axis and the voltages vdc, vqc on the dcqc axis is as follows.
Figure 2014087190

また、dq軸での電流id,iqとdcqc軸での電流idc,iqcの関係も次式となる。

Figure 2014087190
The relationship between the currents id and iq on the dq axis and the currents idc and iqc on the dcqc axis is also expressed by the following equation.
Figure 2014087190

これらを(数2)式に代入すると次式が得られる。

Figure 2014087190
Substituting these into equation (2) gives the following equation.
Figure 2014087190

ここで、次式の関係がある。

Figure 2014087190
Here, there is a relationship of the following equation.
Figure 2014087190

(数7)式の右辺を(数6)式の右辺に掛け、(数7)式の左辺を(数6)式の左辺に掛けると次式が得られる。
次式で、La=(Ld+Lq)/2、Lb=(Ld−Lq)/2とすると次式が得られる。

Figure 2014087190
When the right side of Equation (7) is multiplied by the right side of Equation (6) and the left side of Equation (7) is multiplied by the left side of Equation (6), the following equation is obtained.
When La = (Ld + Lq) / 2 and Lb = (Ld−Lq) / 2 in the following equation, the following equation is obtained.
Figure 2014087190

Figure 2014087190
Figure 2014087190

さらに、電圧vdcを電圧指令値vdc*に、電圧vqcを電圧指令値vqc*に、電流idcを電流指令値idc*に、電流idcを電流指令値idc*に置換すると次式が得られる。

Figure 2014087190
Further, when the voltage vdc is replaced with the voltage command value vdc *, the voltage vqc is replaced with the voltage command value vqc *, the current idc is replaced with the current command value idc *, and the current idc is replaced with the current command value idc *, the following equation is obtained.
Figure 2014087190

単純に指令値と検出値の差の比例制御のみと考えると次式が成立する。
次式で、Kdはd軸電流比例ゲイン、Kqはq軸電流比例ゲインである。

Figure 2014087190
When simply considering proportional control of the difference between the command value and the detected value, the following equation is established.
In the following equation, Kd is a d-axis current proportional gain, and Kq is a q-axis current proportional gain.
Figure 2014087190

(数11)式を(数10)式に代入すると次式になる。

Figure 2014087190
Substituting Equation (11) into Equation (10) gives the following equation.
Figure 2014087190

ここで、次式が成立する。

Figure 2014087190
Here, the following equation holds.
Figure 2014087190

Δ=La2−Lb2 とすると次式になる。突極性のある同期電動機を想定すればΔ≠0である。

Figure 2014087190
If Δ = La 2 −Lb 2 , the following equation is obtained. Assuming a synchronous motor with saliency, Δ ≠ 0.
Figure 2014087190

さらに、qc軸電流指令値iqc*=0とすると、dc軸電流指令値idc*に対するdc軸電流計測値idc’,qc軸電流計測値iqc’の関係は次式となる。

Figure 2014087190
Furthermore, when the qc-axis current command value iqc * = 0, the relationship between the dc-axis current measurement value idc ′ and the qc-axis current measurement value iqc ′ with respect to the dc-axis current command value idc * is as follows.
Figure 2014087190

(数15)式から判るように、dc軸電流計測値idc’およびqc軸電流計測値iqc’は磁束位置に依存するインダクタンスLd,Lqと位相誤差θによって変化するため、dc軸電流指令値idc*によって発生するdc軸電流計測値idc’を計測することで位相誤差θを推定できる。   As can be seen from the equation (15), the dc-axis current measurement value idc ′ and the qc-axis current measurement value iqc ′ vary depending on the inductances Ld and Lq depending on the magnetic flux position and the phase error θ. The phase error θ can be estimated by measuring the dc axis current measurement value idc ′ generated by *.

−実施例2−
(数10)式からd軸電圧指令値vdc*とdc軸電流計測値idc’の関係は次式のようになる。

Figure 2014087190
-Example 2-
From the equation (10), the relationship between the d-axis voltage command value vdc * and the dc-axis current measurement value idc ′ is expressed by the following equation.
Figure 2014087190

さらに、qc軸電圧指令値vqc*=0とすると、dc軸電圧指令値vdc*に対するdc軸電流計測値idc’,qc軸電流計測値iqc’の関係は次式となる。

Figure 2014087190
Further, assuming that the qc-axis voltage command value vqc * = 0, the relationship between the dc-axis current measurement value idc ′ and the qc-axis current measurement value iqc ′ with respect to the dc-axis voltage command value vdc * is as follows.
Figure 2014087190

(数17)式から判るように、dc軸電圧指令値vdc*によって発生するdc軸電流計測値idc’を計測することで位相誤差θを推定できる。   As can be seen from the equation (17), the phase error θ can be estimated by measuring the dc axis current measurement value idc ′ generated by the dc axis voltage command value vdc *.

−実施例3−
実施例2と同様に、dc軸電圧指令値vdc*によって発生するdc軸電圧計測値vdc’を計測することでも位相誤差θを推定できる。
-Example 3-
Similarly to the second embodiment, the phase error θ can also be estimated by measuring the dc axis voltage measurement value vdc ′ generated by the dc axis voltage command value vdc *.

−実施例4−
高周波電流指令値ih*は矩形波でもよい。
Example 4
The high-frequency current command value ih * may be a rectangular wave.

−実施例5−
回転停止中の同期電動機Mに高周波電流指令値ih*あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*=0°を与え且つロータの角度を変えて位相誤差θを変化させた時のd軸電流計測値idc’あるいはd軸電圧計測値のピーク対ピーク値の最小値idhminおよび最大値idhmaxを求めて、メモリ13に予め記憶しておいてもよい。
-Example 5
When the high-frequency current command value ih * or the high-frequency voltage command value is given to the synchronous motor M that is stopped from rotation, the phase error command value θ * = 0 ° is given, and the phase error θ is changed by changing the rotor angle. The minimum value idhmin and the maximum value idhmax of the peak-to-peak value of the axis current measurement value idc ′ or the d-axis voltage measurement value may be obtained and stored in the memory 13 in advance.

本発明の同期電動機制御方法および装置は、例えば射出成形装置に利用できる。   The synchronous motor control method and apparatus of the present invention can be used in, for example, an injection molding apparatus.

1 ベクトル制御器
2 高周波電流指令値発生器
3 加算器
4,5 差分器
6 電流制御器
7 dq/UVW変換器
8 PWMインバータ
9,10 電流検出器
11 UVW/dq変換器
12 位相誤差推定器
13 メモリ
14 極性判別器
100 同期電動機制御装置
M 同期電動機
DESCRIPTION OF SYMBOLS 1 Vector controller 2 High frequency electric current command value generator 3 Adder 4,5 Difference 6 Current controller 7 dq / UVW converter 8 PWM inverter 9,10 Current detector 11 UVW / dq converter 12 Phase error estimator 13 Memory 14 Polarity discriminator 100 Synchronous motor controller M Synchronous motor

Claims (4)

回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つステータU相位置(dc0)に対するロータ磁極(P)の位相である位相誤差θを一定とし且つステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*を変化させた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値の最小値および最大値を予め記憶しておき、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として所定値を与えた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値を計測し、その計測値と前記最小値および最大値とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、次いで回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として前記所定値を微小変化させた値を与えた時のd軸電流計測値あるいはd軸電圧計測値の変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御方法。   A high frequency current command value or a high frequency voltage command value is given to the synchronous motor whose rotation is stopped, the phase error θ which is the phase of the rotor magnetic pole (P) with respect to the stator U phase position (dc0) is made constant, and the stator U phase position (dc0) The minimum and maximum values of the peak-to-peak value of the d-axis current measurement value or d-axis voltage measurement value when the phase error command value θ * that commands the phase of the dc axis with respect to is changed are stored in advance. Measure the peak-to-peak value of the d-axis current measurement value or d-axis voltage measurement value when a high-frequency current command value or high-frequency voltage command value is given to the stopped synchronous motor and a predetermined value is given as the phase error command value θ * Then, two phase error candidate values (θa, θb) of the phase error θ are calculated from the measured value and the minimum value and the maximum value, and then there is a high-frequency current command value in the synchronous motor that has stopped rotating. Indicates the two candidate values (θa) based on the change in the d-axis current measurement value or the d-axis voltage measurement value when a high frequency voltage command value is given and a value obtained by slightly changing the predetermined value as the phase error command value θ * is given. , Θb) is selected as the phase error θ, and the synchronous motor control method is characterized. 回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*=一定値を与え且つステータU相位置(dc0)に対するロータ磁極(P)の位相である位相誤差θを変化させた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値の最小値および最大値を予め記憶しておき、回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として所定値を与えた時のd軸電流計測値あるいはd軸電圧計測値のピーク対ピーク値を計測し、その計測値と前記最小値および最大値とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、次いで回転停止中の同期電動機に高周波電流指令値あるいは高周波電圧指令値を与え且つ位相誤差指令値θ*として前記所定値を微小変化させた値を与えた時のd軸電流計測値あるいはd軸電圧計測値の変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御方法。   A high-frequency current command value or a high-frequency voltage command value is given to the synchronous motor whose rotation is stopped, and a phase error command value θ * = constant value is given to command the phase of the dc axis with respect to the stator U-phase position (dc0), and the stator U-phase position The minimum and maximum values of the peak-to-peak value of the d-axis current measurement value or d-axis voltage measurement value when the phase error θ, which is the phase of the rotor magnetic pole (P) with respect to (dc0), is stored in advance. The peak-to-peak value of the d-axis current measurement value or the d-axis voltage measurement value when the high-frequency current command value or the high-frequency voltage command value is given to the synchronous motor that has stopped rotating and the predetermined value is given as the phase error command value θ * And two phase error candidate values (θa, θb) of the phase error θ are calculated from the measured value and the minimum value and the maximum value, and then the high frequency current command value is supplied to the synchronous motor whose rotation is stopped. Alternatively, the two candidate values (from the change in the d-axis current measurement value or the d-axis voltage measurement value when a high-frequency voltage command value is given and a value obtained by slightly changing the predetermined value as the phase error command value θ * is given. A method of controlling a synchronous motor, wherein one of θa and θb) is selected to be a phase error θ. 回転停止中の同期電動機(M)に高周波電流指令値(ih*)あるいは高周波電圧指令値を与える高周波指令値発生手段(2)と、前記高周波電流指令値(ih*)あるいは高周波電圧指令に基づいてd軸電圧指令値(vd*)およびq軸電圧指令値(vq*)を出力する電流制御手段(6)と、前記d軸電圧指令値(vd*)およびq軸電圧指令値(vq*)に基づいて三相電圧指令値(vU*,vV*,vW*)を出力するdq/UVW変換手段(7)と、前記三相電圧指令値(vU*,vV*,vW*)を基に三相電力を同期電動機(M)に給電する三相給電手段(8)と、三相電動機電流(iU’,iV’)を検出するための電流検出手段(9,10)と、前記三相電動機電流(iU’,iV’)を基にd軸電流計測値(id’)を出力するUVW/dq変換手段(11)と、前記d軸電流計測値(id’)を基に回転停止中の同期電動機(M)のステータU相位置(dc0)に対するロータ磁極の位相である位相誤差θを求める位相誤差推定手段(12)と、前記位相誤差θの変化に対するd軸電流計測値(id’)のピーク対ピーク値(idh)の最小値(idhmin)および最大値(idhmax)を記憶しているメモリ(13)とを具備し、
回転停止中に、前記高周波指令値発生手段(2)は高周波電流指令値(ih*)あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記dq/UVW変換手段(7)に対して同期電動機(M)のステータU相位置(dc0)に対するdc軸の位相を指令する位相誤差指令値θ*として所定値を与え、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値のピーク対ピーク値(idh)を計測し且つその計測値と前記メモリ(13)に記憶している最小値(idhmin)および最大値(idhmax)とから位相誤差θの2つの位相誤差候補値(θa,θb)を算出し、
次いで、前記高周波指令値発生手段(2)は回転停止中の同期電動機(M)に高周波電流指令値あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記dq/UVW変換手段(7)に対して位相誤差指令値θ*として前記所定値を微小変化させた値を与え、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値を計測しその変化から前記2つの候補値(θa,θb)の1つを選んで位相誤差θとすることを特徴とする同期電動機制御装置(100)。
Based on the high frequency command value generating means (2) for giving the high frequency current command value (ih *) or the high frequency voltage command value to the synchronous motor (M) whose rotation is stopped, and the high frequency current command value (ih *) or the high frequency voltage command. Current control means (6) for outputting the d-axis voltage command value (vd *) and the q-axis voltage command value (vq *), the d-axis voltage command value (vd *) and the q-axis voltage command value (vq *) ) Based on the three-phase voltage command values (vU *, vV *, vW *) and the dq / UVW conversion means (7) that outputs the three-phase voltage command values (vU *, vV *, vW *). Three-phase power supply means (8) for supplying three-phase power to the synchronous motor (M), current detection means (9, 10) for detecting the three-phase motor current (iU ′, iV ′), Outputs d-axis current measurement value (id ') based on phase motor current (iU', iV ') The phase error θ which is the phase of the rotor magnetic pole with respect to the stator U phase position (dc0) of the synchronous motor (M) whose rotation is stopped based on the UVW / dq conversion means (11) and the d-axis current measurement value (id ′) And a phase error estimating means (12) for obtaining a minimum value (idhmin) and a maximum value (idhmax) of a peak-to-peak value (idh) of a d-axis current measurement value (id ′) with respect to a change in the phase error θ. A memory (13) having
While the rotation is stopped, the high frequency command value generating means (2) outputs a high frequency current command value (ih *) or a high frequency voltage command value, and the phase error estimating means (12) is the dq / UVW conversion means (7). Is given a predetermined value as a phase error command value θ * for commanding the phase of the dc axis with respect to the stator U phase position (dc0) of the synchronous motor (M), and the dq / UVW conversion means (7) Based on the command value (vd *), the q-axis voltage command value (vq *), and the phase error command value (θ *), a three-phase voltage command value (vU *, vV *, vW *) is output. The phase error estimating means (12) measures the d-axis current measurement value (idc ′) or the peak-to-peak value (idh) of the d-axis voltage measurement value and stores the measurement value and the memory (13). Minimum value (idhmin) and maximum value (idhm) Since the x) 2 single phase error candidate value of the phase error θ is calculated (θa, θb),
Next, the high-frequency command value generating means (2) outputs a high-frequency current command value or a high-frequency voltage command value to the synchronous motor (M) whose rotation is stopped, and the phase error estimating means (12) is the dq / UVW conversion means. A value obtained by slightly changing the predetermined value as a phase error command value θ * is given to (7), and the dq / UVW conversion means (7) is configured to output the d-axis voltage command value (vd *) and the q-axis voltage. A three-phase voltage command value (vU *, vV *, vW *) is output based on the command value (vq *) and the phase error command value (θ *), and the phase error estimating means (12) A synchronous motor control device characterized by measuring a current measurement value (idc ′) or a d-axis voltage measurement value and selecting one of the two candidate values (θa, θb) from the change as a phase error θ ( 100).
請求項3に記載の同期電動機制御装置(100)において、
回転停止中に、前記高周波指令値発生手段(2)は高周波電流指令値(ih*)あるいは高周波電圧指令値を出力し、前記位相誤差推定手段(12)は前記位相誤差指令値θ*を変化させ、前記dq/UVW変換手段(7)は前記d軸電圧指令値(vd*)と前記q軸電圧指令値(vq*)と前記位相誤差指令値(θ*)とを基に三相電圧指令値(vU*,vV*,vW*)を出力し、前記位相誤差推定手段(12)はd軸電流計測値(idc’)あるいはd軸電圧計測値のピーク対ピーク値(idh)を計測し且つ前記位相誤差指令値θ*の変化に対する前記ピーク対ピーク値(idh)の変化から前記最小値(idhmin)および最大値(idhmax)を取得し、
前記メモリ(13)は前記最小値(idhmin)および最大値(idhmax)を記憶することを特徴とする同期電動機制御装置(100)。
In the synchronous motor control device (100) according to claim 3,
While the rotation is stopped, the high frequency command value generation means (2) outputs a high frequency current command value (ih *) or a high frequency voltage command value, and the phase error estimation means (12) changes the phase error command value θ *. The dq / UVW conversion means (7) is configured to generate a three-phase voltage based on the d-axis voltage command value (vd *), the q-axis voltage command value (vq *), and the phase error command value (θ *). The command value (vU *, vV *, vW *) is output, and the phase error estimating means (12) measures the d-axis current measurement value (idc ′) or the peak-to-peak value (idh) of the d-axis voltage measurement value. And obtaining the minimum value (idhmin) and the maximum value (idhmax) from the change of the peak-to-peak value (idh) with respect to the change of the phase error command value θ *,
The synchronous motor control device (100), wherein the memory (13) stores the minimum value (idhmin) and the maximum value (idhmax).
JP2012235246A 2012-10-25 2012-10-25 Synchronous motor control method and apparatus Active JP5645902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012235246A JP5645902B2 (en) 2012-10-25 2012-10-25 Synchronous motor control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012235246A JP5645902B2 (en) 2012-10-25 2012-10-25 Synchronous motor control method and apparatus

Publications (2)

Publication Number Publication Date
JP2014087190A true JP2014087190A (en) 2014-05-12
JP5645902B2 JP5645902B2 (en) 2014-12-24

Family

ID=50789775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012235246A Active JP5645902B2 (en) 2012-10-25 2012-10-25 Synchronous motor control method and apparatus

Country Status (1)

Country Link
JP (1) JP5645902B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (en) * 1997-02-14 1998-08-25 Hitachi Ltd Method of estimating position for magnetic pole of synchronous motor, and motor controller, and electric rolling stock
JP2001008486A (en) * 1999-06-18 2001-01-12 Hitachi Ltd Controller for permanent magnet synchronous motor
JP2004297966A (en) * 2003-03-28 2004-10-21 Hitachi Ltd Ac motor controlling device
JP2012151967A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229699A (en) * 1997-02-14 1998-08-25 Hitachi Ltd Method of estimating position for magnetic pole of synchronous motor, and motor controller, and electric rolling stock
JP2001008486A (en) * 1999-06-18 2001-01-12 Hitachi Ltd Controller for permanent magnet synchronous motor
JP2004297966A (en) * 2003-03-28 2004-10-21 Hitachi Ltd Ac motor controlling device
JP2012151967A (en) * 2011-01-18 2012-08-09 Daikin Ind Ltd Power conversion device

Also Published As

Publication number Publication date
JP5645902B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP3401155B2 (en) Synchronous motor control device and electric vehicle
EP2770630B1 (en) Motor control device and motor control method
JP5425173B2 (en) Control device
US8723462B2 (en) Methods, systems and apparatus for estimating angular position and/or angular velocity of a rotor of an electric machine
US20150333682A1 (en) Motor control device
US10637381B2 (en) Inverter control device and drive system
JP5753474B2 (en) Synchronous motor controller
JP4402600B2 (en) Synchronous motor drive system and synchronous motor drive method
JP5667153B2 (en) Magnetic pole position detector for synchronous motor
JP2000156993A (en) Apparatus and method for control of permanent magnet synchronous machine
JP2015012770A (en) Motor controller and power generation controller
JP3625291B2 (en) Magnetic pole position estimation method for synchronous motor, motor control device, and electric vehicle
JPWO2013114688A1 (en) AC rotating machine control device
JP2008206330A (en) Device and method for estimating magnetic pole position of synchronous electric motor
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP5645902B2 (en) Synchronous motor control method and apparatus
US8829827B2 (en) Methods, systems and apparatus for controlling operation of an electric machine in an overmodulation region
Ketchedjian et al. An Open-Loop Control for the Determination of the MTPV-Trajectory of a SynRM
JP5798513B2 (en) Method and apparatus for detecting initial magnetic pole position of permanent magnet synchronous motor, and control apparatus for permanent magnet synchronous motor
JP6104021B2 (en) AC rotating machine control device
JP2018125955A (en) Motor controller
JP6422796B2 (en) Synchronous machine control device and drive system
Zhao et al. Measurement and discussion of inductance distortion caused by magnetic saturation for sensorless control of IPMSM
Wu et al. Position-sensorless control method for permanent magnet synchronous motor using speed observer and induced voltage caused by magnetic saturation
JP2018098884A (en) Motor controller

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141104

R150 Certificate of patent or registration of utility model

Ref document number: 5645902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250