JP2014084785A - Exhaust emission control system for internal combustion engine - Google Patents

Exhaust emission control system for internal combustion engine Download PDF

Info

Publication number
JP2014084785A
JP2014084785A JP2012234090A JP2012234090A JP2014084785A JP 2014084785 A JP2014084785 A JP 2014084785A JP 2012234090 A JP2012234090 A JP 2012234090A JP 2012234090 A JP2012234090 A JP 2012234090A JP 2014084785 A JP2014084785 A JP 2014084785A
Authority
JP
Japan
Prior art keywords
catalyst
nox
filter
exhaust
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234090A
Other languages
Japanese (ja)
Inventor
Takuya Mito
卓也 水戸
Hiroyuki Kojima
弘幸 小島
Keita Ishizaki
啓太 石崎
Naoki Oya
直樹 大矢
Naotoshi Furukawa
尚稔 古川
Michael Fischer
フィッシャー ミハエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012234090A priority Critical patent/JP2014084785A/en
Priority to DE102013221505.3A priority patent/DE102013221505B4/en
Publication of JP2014084785A publication Critical patent/JP2014084785A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep the NOx eliminating rate of a whole system high during both regeneration and non-regeneration of an exhaust emission control filter.SOLUTION: An exhaust emission control system includes the exhaust emission control filter provided in an exhaust passage for trapping PMs from exhaust gas, a downstream catalyst converter provided downstream of the filter, a first SCR catalyst supported by the exhaust emission control filter, and storing NHfor eliminating NOx from the exhaust gas under the existence of the NH, a second SCR catalyst supported by a base material for the downstream catalyst converter, and storing NHfor eliminating NOx from the exhaust gas under the existence of the NH, and temperature increasing means for increasing the temperature of the exhaust emission control filter to burn and remove the PMs trapped by the filter. The first SCR catalyst has higher NOx eliminating performance when in a low temperature region than when in a high temperature region, and the second SCR catalyst has higher NOx eliminating performance when in a high temperature region than when in a low temperature region.

Description

本発明は、内燃機関の排気浄化システムに関する。より詳しくは、還元剤を貯蔵しかつ還元剤を利用して排気中のNOxを浄化する触媒を、排気通路に複数設けた内燃機関の排気浄化システムに関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine. More specifically, the present invention relates to an exhaust gas purification system for an internal combustion engine in which a plurality of catalysts that store a reducing agent and purify NOx in exhaust gas using the reducing agent are provided in an exhaust passage.

従来、排気中のNOxを浄化する排気浄化システムの1つとして、NHにより排気中のNOxを選択的に還元する選択還元触媒を排気通路に設けたものが提案されている。例えば、尿素添加式の排気浄化システムでは、選択還元触媒の上流側からNHの前駆体である尿素水を供給し、この尿素水から排気の熱で熱分解又は加水分解することでNHを生成し、このNHにより排気中のNOxを選択的に還元する。このような尿素添加式のシステムの他、例えば、アンモニアカーバイトのようなNHの化合物を加熱することでNHを生成し、このNHを直接添加するシステムも提案されている。以下では、尿素添加式のシステムについて説明する。 Conventionally, as an exhaust gas purification system for purifying NOx in exhaust gas, a system in which a selective reduction catalyst for selectively reducing NOx in exhaust gas with NH 3 is provided in an exhaust passage has been proposed. For example, in the exhaust purification system of urea addition type, the NH 3 by supplying urea water which is a precursor of NH 3 from the upstream side of the selective reduction catalyst, thermal decomposition or hydrolysis in the exhaust heat from the urea water The NOx in the exhaust gas is selectively reduced by this NH 3 . In addition to such a urea addition type system, for example, a system in which NH 3 is generated by heating a NH 3 compound such as ammonia carbide and this NH 3 is directly added has also been proposed. Hereinafter, a urea addition type system will be described.

このような選択還元触媒には、排気中のNOxの還元に消費されなかったNHを貯蔵する能力がある。すなわち、選択還元触媒に流入するNOx量に対し尿素水の供給量が多い場合、NOxの還元に消費されずに余剰となったNHは選択還元触媒に貯蔵される。逆に選択還元触媒に流入するNOx量に対し尿素水の供給量が少ない場合、選択還元触媒に貯蔵されていたNHはNOxの還元に消費される。 Such a selective reduction catalyst has the ability to store NH 3 that has not been consumed in the reduction of NOx in the exhaust. That is, when the amount of urea water supplied is larger than the amount of NOx flowing into the selective reduction catalyst, the surplus NH 3 that is not consumed for the reduction of NOx is stored in the selective reduction catalyst. Conversely, when the supply amount of urea water is smaller than the NOx amount flowing into the selective reduction catalyst, NH 3 stored in the selective reduction catalyst is consumed for the reduction of NOx.

以上のような、還元剤の貯蔵機能とNOx浄化機能との両方を備えた選択還元触媒について、それぞれ温度特性が異なる複数種類の選択還元触媒を排気通路に設ける技術が提案されている。例えば特許文献1に示された排気浄化システムは、第1の選択還元触媒が設けられたフィルタと、このフィルタの下流に設けられ第2の選択還元触媒が設けられた触媒コンバータとを備える。この排気浄化システムでは、比較的高温に晒されるフィルタの選択還元触媒には、高温度域で高いNOx浄化性能を発揮するものを用い、比較的低温に晒される下流側の第2の選択還元触媒には、低温度域で高いNOx浄化性能を発揮するものを用いる。   As for the selective reduction catalyst having both the reducing agent storage function and the NOx purification function as described above, there has been proposed a technique in which a plurality of types of selective reduction catalysts having different temperature characteristics are provided in the exhaust passage. For example, an exhaust gas purification system disclosed in Patent Document 1 includes a filter provided with a first selective reduction catalyst and a catalytic converter provided downstream of the filter and provided with a second selective reduction catalyst. In this exhaust purification system, a filter that exhibits high NOx purification performance in a high temperature range is used as a selective reduction catalyst for a filter that is exposed to a relatively high temperature, and a downstream second selective reduction catalyst that is exposed to a relatively low temperature. For this, a material that exhibits high NOx purification performance in a low temperature range is used.

特表2012−514157号公報Special table 2012-514157 gazette

しかしながら、特許文献1のシステムでは、フィルタを再生しているときにおけるシステム全体のNOx浄化性能については十分に検討されていない。例えば、フィルタの再生を開始するとフィルタ及びフィルタに設けられた第1の選択還元触媒の温度は600℃程度まで急激に上昇するが、このとき第1の選択還元触媒からは、それまでに第1の選択還元触媒に貯蔵されていたNHが短時間でその下流側へ排出(NHスリップ)してしまう。これは、一般的な選択還元触媒のNH貯蔵能力は、温度が上昇するほど低下するためである。 However, in the system of Patent Document 1, the NOx purification performance of the entire system when the filter is regenerated is not fully studied. For example, when the regeneration of the filter is started, the temperature of the filter and the first selective reduction catalyst provided in the filter rapidly rises to about 600 ° C. At this time, from the first selective reduction catalyst, NH 3 stored in the selective reduction catalyst is discharged downstream (NH 3 slip) in a short time. This is because the NH 3 storage capacity of a general selective reduction catalyst decreases as the temperature increases.

一方、フィルタの再生時は、第1の選択還元触媒の下流側に設けられた第2の選択還元触媒の温度も第1の選択還元触媒と同程度まで上昇する。また、フィルタの再生を開始すると、上述のように第1の選択還元触媒から多量のNHがスリップし第2の選択還元触媒に流入する。しかしながら、第2の選択還元触媒は高温度域では十分なNOx浄化性能を発揮できないため、スリップしたNHを利用して排気中のNOxを十分に浄化できない。このため、第2の選択還元触媒からは、浄化しきれなかったNOxとともに、還元に消費されなかったNHもスリップしてしまう。したがって、特許文献1のシステムでは、フィルタの再生中は、第1、第2の選択還元触媒を合せたシステム全体のNOx浄化率が著しく低下し、またシステム外への過大なNHスリップも発生すると考えられる。 On the other hand, when the filter is regenerated, the temperature of the second selective reduction catalyst provided on the downstream side of the first selective reduction catalyst also rises to the same level as that of the first selective reduction catalyst. When the regeneration of the filter is started, a large amount of NH 3 slips from the first selective reduction catalyst and flows into the second selective reduction catalyst as described above. However, since the second selective reduction catalyst cannot exhibit sufficient NOx purification performance in a high temperature range, it cannot sufficiently purify NOx in the exhaust gas using the slipped NH 3 . For this reason, from the second selective reduction catalyst, NH 3 that has not been consumed in the reduction slips together with NOx that could not be purified. Therefore, in the system of Patent Document 1, during the regeneration of the filter, the NOx purification rate of the entire system including the first and second selective reduction catalysts is remarkably lowered, and excessive NH 3 slip is also generated outside the system. It is thought that.

本発明は、以上の課題に鑑みてなされたものであり、フィルタの再生中及び非再生中ともにシステム全体でのNOx浄化率を高く維持できる排気浄化システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust purification system capable of maintaining a high NOx purification rate in the entire system both during regeneration and non-regeneration of a filter.

(1)本発明の内燃機関(例えば、後述のエンジン1)の排気浄化システム(例えば、後述の排気浄化システム2)は、内燃機関の排気通路(例えば、後述のケーシング35)に設けられ、排気中の粒子状物質を捕集するフィルタ(例えば、後述の排気浄化フィルタ33)と、前記フィルタの下流に設けられた触媒コンバータ(例えば、後述の下流触媒コンバータ34)と、前記フィルタに担持され、還元剤を貯蔵しかつ還元剤の存在下で排気中のNOxを浄化する第1触媒(例えば、後述の第1SCR触媒)と、前記触媒コンバータの基材に担持され、還元剤を貯蔵しかつ還元剤の存在下で排気中のNOxを浄化する第2触媒(例えば、後述の第2SCR触媒)と、前記フィルタを昇温することにより、当該フィルタに捕集された粒子状物質を燃焼除去する昇温手段(例えば、後述のエンジン1及びECU4)と、を備える。前記第1触媒は、所定の第1温度域にあるときには、当該第1温度域より高い第2温度域にあるときよりもNOx浄化性能が高く、前記第2触媒は、前記第2温度域にあるときには、前記第1温度域にあるときよりもNOx浄化性能が高い。   (1) An exhaust purification system (for example, an exhaust purification system 2 to be described later) of an internal combustion engine (for example, an engine 1 to be described later) of the present invention is provided in an exhaust passage (for example, a casing 35 to be described later) of the internal combustion engine. A filter (for example, an exhaust purification filter 33 described later) that collects particulate matter therein, a catalytic converter (for example, a downstream catalytic converter 34 described later) provided downstream of the filter, and supported by the filter, A first catalyst that stores the reducing agent and purifies NOx in the exhaust gas in the presence of the reducing agent (for example, a first SCR catalyst described later), and is supported on the base of the catalytic converter, stores the reducing agent, and reduces it. A second catalyst that purifies NOx in the exhaust in the presence of the agent (for example, a second SCR catalyst described later), and particulate matter collected by the filter by raising the temperature of the filter The comprises a heating device for removing combustion (e.g., the engine 1 and ECU4 below), the. When the first catalyst is in a predetermined first temperature range, the NOx purification performance is higher than when the first catalyst is in a second temperature range higher than the first temperature range, and the second catalyst is in the second temperature range. In some cases, the NOx purification performance is higher than in the first temperature range.

(2)この場合、前記第1触媒はCuゼオライトを含み、前記第2触媒はFeゼオライトを含むことが好ましい。   (2) In this case, it is preferable that the first catalyst contains Cu zeolite and the second catalyst contains Fe zeolite.

(3)この場合、前記排気通路のうち前記フィルタの上流側にNH又はその前駆体を供給する還元剤供給装置(例えば、後述の還元剤供給装置32)をさらに備え、前記第1及び第2触媒は、NHを還元剤としてNOxを還元しかつNHを所定量貯蔵できる選択還元触媒であることが好ましい。 (3) In this case, the exhaust passage further includes a reducing agent supply device (for example, a reducing agent supply device 32 described later) for supplying NH 3 or a precursor thereof upstream of the filter. The two catalyst is preferably a selective reduction catalyst capable of reducing NOx using NH 3 as a reducing agent and storing a predetermined amount of NH 3 .

(1)本発明では、フィルタの下流に触媒コンバータを設け、フィルタには第1触媒を担持させ、触媒コンバータには第2触媒を担持させた。そして、第1触媒には、そのNOx浄化性能が比較的低温度域である第1温度域で高くなるものを用い、第2触媒には、そのNOx浄化性能が比較的高温度域である第2温度域で高くなるものを用いた。これにより、フィルタ及び触媒コンバータが低温度域にある場合には、フィルタの第1触媒を主体として排気中のNOxを浄化できる。
また、昇温手段によってフィルタの再生を開始すると、フィルタとその下流側の触媒コンバータの温度が高温度域まで上昇する。このとき、上流側のフィルタに設けられた第1触媒のNOx浄化性能が低下するため、第1触媒から下流側の触媒コンバータに設けられた第2触媒へ、第1触媒で浄化しきれなかったNOxが、第1触媒で貯蔵されていた還元剤とともにスリップする。しかし、第2触媒は第1触媒と相対的に高温度域でNOx浄化性能が高いため、第1触媒からスリップしてきたNOxを、第1触媒からスリップしてきた還元剤及びそれまでに第2触媒で貯蔵されていた還元剤を利用して浄化できる。これにより、フィルタの再生中及び非再生中ともに第1触媒と第2触媒を合せたシステム全体でのNOx浄化性能を高く維持できる。
(1) In the present invention, a catalytic converter is provided downstream of the filter, the first catalyst is supported on the filter, and the second catalyst is supported on the catalytic converter. The first catalyst has a NOx purification performance that increases in the first temperature range, which is a relatively low temperature range, and the second catalyst has a NOx purification performance that has a relatively high temperature range. What became high in 2 temperature range was used. Thereby, when the filter and the catalytic converter are in a low temperature range, NOx in the exhaust gas can be purified mainly by the first catalyst of the filter.
Further, when the regeneration of the filter is started by the temperature raising means, the temperature of the filter and the downstream catalytic converter rises to a high temperature range. At this time, since the NOx purification performance of the first catalyst provided in the upstream filter is reduced, the first catalyst could not completely purify from the first catalyst to the second catalyst provided in the downstream catalytic converter. NOx slips with the reducing agent stored in the first catalyst. However, since the second catalyst has a high NOx purification performance at a relatively high temperature range with respect to the first catalyst, the NOx slipped from the first catalyst is converted into the reducing agent slipped from the first catalyst and the second catalyst until then. It can be purified using the reducing agent stored in Thereby, it is possible to maintain high NOx purification performance in the entire system including the first catalyst and the second catalyst both during regeneration and non-regeneration of the filter.

(2)Cuゼオライトを含んだ第1触媒は、250〜350℃程度の低温度域において特に優れたNOx浄化性能を発揮するが、これより高温になるとNOx浄化性能は低下する。一方、Feゼオライトを含んだ第2触媒は、550〜600℃程度の高温度域において特に優れたNOx浄化性能を発揮するが、これより低温になるとNOx浄化性能は低下する。したがって、フィルタの非再生中であってフィルタ及び触媒コンバータが低温度域にある間は、排気中のNOxは、フィルタに設けられた第1触媒を主体として浄化される。また、フィルタの再生中であってフィルタ及び触媒コンバータが高温度域にある間は、排気中のNOxは、フィルタの下流側に設けられた第2触媒を主体として浄化される。   (2) The first catalyst containing Cu zeolite exhibits particularly excellent NOx purification performance in a low temperature range of about 250 to 350 ° C., but the NOx purification performance decreases at higher temperatures. On the other hand, the second catalyst containing Fe zeolite exhibits particularly excellent NOx purification performance in a high temperature range of about 550 to 600 ° C., but the NOx purification performance decreases at lower temperatures. Therefore, while the filter is not being regenerated and the filter and the catalytic converter are in the low temperature range, NOx in the exhaust gas is purified mainly by the first catalyst provided in the filter. Further, while the filter is being regenerated and the filter and the catalytic converter are in the high temperature range, the NOx in the exhaust gas is purified mainly by the second catalyst provided on the downstream side of the filter.

(3)選択還元触媒は、特に還元剤であるNHを貯蔵する能力に優れているが、その貯蔵能力は温度が高くなるほど低下する特性がある。このため、選択還元触媒は、急激にその温度が上昇すると、それまでに貯蔵されていた大量のNHが下流側へスリップする。本発明では、第1及び第2触媒としてこのような選択還元触媒を用いた上で、上述のように第2触媒には、そのNOx浄化性能が比較的高温域で高くなるものを用いる。これにより、フィルタの再生時に、急激に温度が上昇した第1触媒から大量のNHがスリップしてきた場合であっても、スリップしたNHを還元剤として第2触媒でNOxを還元できる。 (3) Although the selective reduction catalyst is particularly excellent in the ability to store NH 3 as a reducing agent, the storage ability has a characteristic of decreasing as the temperature increases. For this reason, when the temperature of the selective reduction catalyst rapidly increases, a large amount of NH 3 stored so far slips downstream. In the present invention, such a selective reduction catalyst is used as the first and second catalysts, and as described above, the second catalyst is used whose NOx purification performance is relatively high in a high temperature range. Thus, even when a large amount of NH 3 slips from the first catalyst whose temperature has suddenly increased during regeneration of the filter, NOx can be reduced by the second catalyst using the slipped NH 3 as a reducing agent.

本発明の一実施形態に係るエンジン及びその排気浄化システムの構成を示す模式図である。It is a mimetic diagram showing composition of an engine and its exhaust gas purification system concerning one embodiment of the present invention. 第1及び第2SCR触媒のNOx浄化率の温度特性を示す図である。It is a figure which shows the temperature characteristic of the NOx purification rate of a 1st and 2nd SCR catalyst. 第1及び第2SCR触媒の最大NHストレージ量の温度特定を示す図である。Is a diagram showing the temperature specified maximum NH 3 storage amount of the first and second 2SCR catalyst.

以下、本発明の一実施形態を、図面を参照して説明する。
図1は、本発明の一実施形態に係る内燃機関(以下、「エンジン」という)1及びその排気浄化システム2の構成を示す模式図である。エンジン1は、リーンバーン運転方式のガソリンエンジン又はディーゼルエンジンであり、図示しない車両に搭載されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of an internal combustion engine (hereinafter referred to as “engine”) 1 and an exhaust purification system 2 thereof according to an embodiment of the present invention. The engine 1 is a lean burn operation type gasoline engine or diesel engine, and is mounted on a vehicle (not shown).

排気浄化システム2は、エンジン1の排気を浄化するための複数の触媒を内蔵する触媒浄化ユニット3と、エンジン1の図示しない燃料インジェクタからの燃料噴射量及び燃料噴射時期を制御する電子制御ユニット(以下、「ECU」という)4と、を含んで構成される。   The exhaust purification system 2 includes a catalyst purification unit 3 containing a plurality of catalysts for purifying exhaust from the engine 1, and an electronic control unit (controlling fuel injection amount and fuel injection timing from a fuel injector (not shown) of the engine 1). (Hereinafter referred to as “ECU”) 4.

触媒浄化ユニット3は、上流触媒コンバータ31と、還元剤供給装置32と、排気浄化フィルタ33と、下流触媒コンバータ34とを、一の円筒状のケーシング35内にこの順で直列に配置して構成される。ケーシング35の上流触媒コンバータ31側は、エンジン1の図示しない排気ポートから延びる排気マニホルド11に接続される。これによりケーシング35内はエンジン1の排気通路の一部となる。触媒浄化ユニット3は、エンジン1の直下、より具体的にはエンジン1と隣接するように設けられる。   The catalytic purification unit 3 includes an upstream catalytic converter 31, a reducing agent supply device 32, an exhaust purification filter 33, and a downstream catalytic converter 34 arranged in series in this order in a cylindrical casing 35. Is done. The upstream catalytic converter 31 side of the casing 35 is connected to an exhaust manifold 11 extending from an exhaust port (not shown) of the engine 1. As a result, the inside of the casing 35 becomes a part of the exhaust passage of the engine 1. The catalyst purification unit 3 is provided immediately below the engine 1, more specifically, adjacent to the engine 1.

上流触媒コンバータ31は、フロースルー型のハニカム構造体を基材として、この基材に酸化触媒を担持して構成される。エンジン1から排出された排気に含まれるHCやCOは、この上流触媒コンバータ31を通過する過程で酸化触媒の作用によって酸化される。また、排気に含まれるNOも、上流触媒コンバータ31を通過する過程でNOに酸化される。エンジン1直下の排気に含まれるNOxのうちほぼ全てはNOでありNOは殆ど含まれていないところ(NO/NOx比がほぼ0)、上流触媒コンバータ31でNOを酸化しNOを生成することにより、排気浄化フィルタ33に流入する排気のNO/NOx比を、後述のSCR触媒におけるNOx浄化性能が最適化される約0.5まで上昇させることができる。 The upstream catalytic converter 31 is configured by using a flow-through honeycomb structure as a base material and supporting an oxidation catalyst on the base material. HC and CO contained in the exhaust discharged from the engine 1 are oxidized by the action of the oxidation catalyst in the process of passing through the upstream catalytic converter 31. Further, NO contained in the exhaust is also oxidized to NO 2 in the process of passing through the upstream catalytic converter 31. Generate almost all places not included and NO 2 is almost a NO (NO 2 / NOx ratio are substantially 0), and oxidizes NO in the upstream catalytic converter 31 NO 2 among NOx contained in the exhaust immediately after the engine 1 As a result, the NO 2 / NOx ratio of the exhaust gas flowing into the exhaust gas purification filter 33 can be increased to about 0.5 where the NOx purification performance of the SCR catalyst described later is optimized.

排気浄化フィルタ33は、多孔質壁で区画形成された複数のセルを有するハニカム構造体と、各セルに対し上流側と下流側とで互い違いに設けられた目封じと、を備える。エンジン1から排出された排気に含まれる炭素を主成分とした粒子状物質(以下、「PM」という)は、排気浄化フィルタ33の多孔質壁の細孔を通過する過程で捕集される。   The exhaust purification filter 33 includes a honeycomb structure having a plurality of cells partitioned by a porous wall, and plugs provided alternately on the upstream side and the downstream side with respect to each cell. Particulate matter containing carbon as a main component (hereinafter referred to as “PM”) contained in the exhaust discharged from the engine 1 is collected in the process of passing through the pores of the porous wall of the exhaust purification filter 33.

排気浄化フィルタ33にPMが堆積すると、圧損が増加し、燃費が悪化するおそれがある。そこで、排気浄化フィルタ33のPM堆積量が所定量を超えると、排気浄化フィルタ33を昇温することにより、フィルタ33に捕集されたPMを燃焼除去するフィルタ再生処理が実行される。より具体的には、ECU4は、PM堆積量が所定量を超えると、エンジン1の燃料インジェクタによってポスト噴射(排気工程における燃料噴射)を実行することにより、未燃燃料を上流触媒コンバータ31で燃焼し、フィルタ33を予め定められた強制再生温度(約600℃)まで昇温し、フィルタ33に捕集されたPMを燃焼除去する。   If PM accumulates on the exhaust purification filter 33, the pressure loss increases and the fuel consumption may deteriorate. Therefore, when the amount of PM deposited on the exhaust purification filter 33 exceeds a predetermined amount, the exhaust gas purification filter 33 is heated to perform a filter regeneration process for burning and removing the PM collected by the filter 33. More specifically, when the PM accumulation amount exceeds a predetermined amount, the ECU 4 performs post injection (fuel injection in the exhaust process) by the fuel injector of the engine 1 to burn unburned fuel in the upstream catalytic converter 31. Then, the temperature of the filter 33 is raised to a predetermined forced regeneration temperature (about 600 ° C.), and the PM collected by the filter 33 is burned and removed.

この排気浄化フィルタ33のハニカム構造体には、第1選択還元触媒(以下、「第1SCR触媒」という)が担持される。この第1SCR触媒は、NHを還元剤とし、このNHの存在する雰囲気下で、排気中のNOxを選択的に還元する。具体的には、後述の還元剤供給装置32からNH供給されると、このNHによって、下記3種類の反応式に従って、排気中のNOxを選択的に還元する。
NO+NO+2NH→2N+3H
4NO+4NH+O→4N+6H
6NO+8NH→7N+12H
The honeycomb structure of the exhaust purification filter 33 carries a first selective reduction catalyst (hereinafter referred to as “first SCR catalyst”). This first SCR catalyst uses NH 3 as a reducing agent and selectively reduces NOx in the exhaust in an atmosphere in which NH 3 exists. Specifically, when NH 3 is supplied from a reducing agent supply device 32 described later, this NH 3 selectively reduces NOx in the exhaust according to the following three reaction formulas.
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O

また、この第1SCR触媒は、NHで排気中のNOxを還元する機能を有するとともに、NHを所定の量だけ貯蔵する機能も有する。以下では、SCR触媒に貯蔵されたNHの量をNHストレージ量といい、このNHストレージ量の限界を最大NHストレージ量という。SCR触媒のNHストレージ量が最大NHストレージ量を超えると、その下流へNHがスリップする。このようにして第1SCR触媒に貯蔵されたNHは、還元剤供給装置32から供給されたNHと合わせて排気中のNOxの還元に適宜消費される。なお、第1SCR触媒に多くのNHが存在すると、流入するNOxとの反応性が向上する。したがって、第1SCR触媒のNOx浄化率は、そのNHストレージ量が多くなるほど高くなる。 Further, the first 1SCR catalyst has a function of reducing NOx in the exhaust in NH 3, has a function of storing NH 3 by a predetermined amount. Hereinafter, the amount of NH 3 stored in the SCR catalyst called NH 3 storage amount, the limitations of this NH 3 storage amount of up to NH 3 storage amount. When the NH 3 storage amount of the SCR catalyst exceeds the maximum NH 3 storage amount, NH 3 slips downstream. The NH 3 stored in the first SCR catalyst in this manner is appropriately consumed for the reduction of NOx in the exhaust gas together with the NH 3 supplied from the reducing agent supply device 32. Note that when a large amount of NH 3 is present in the first SCR catalyst, the reactivity with the inflowing NOx is improved. Therefore, the NOx purification rate of the first SCR catalyst becomes higher as the amount of NH 3 storage increases.

また、排気浄化システム2全体でのNOx浄化性能について、排気浄化フィルタ33には主に低温度域側でのNOx浄化の役割を担わせるため、第1SCR触媒はCuゼオライトを含むことが好ましい。   Further, regarding the NOx purification performance of the entire exhaust purification system 2, the first SCR catalyst preferably contains Cu zeolite because the exhaust purification filter 33 mainly plays a role of NOx purification on the low temperature region side.

下流触媒コンバータ34は、フロースルー型のハニカム構造体を基材として、この基材に第2選択還元触媒(以下、「第2SCR触媒」という)を担持して構成される。この第2SCR触媒は、上記第1SCR触媒と同様の、NH貯蔵機能及びNOx還元機能を備える。したがって、その作用についての詳細な説明は省略する。 The downstream catalytic converter 34 has a flow-through type honeycomb structure as a base material and a second selective reduction catalyst (hereinafter referred to as “second SCR catalyst”) supported on the base material. The second SCR catalyst has the same NH 3 storage function and NOx reduction function as the first SCR catalyst. Therefore, the detailed description about the effect | action is abbreviate | omitted.

また、排気浄化システム2全体でのNOx浄化性能について、下流触媒コンバータ34には上記排気浄化フィルタ33と異なり主に高温度域側でのNOx浄化の役割を担わせるため、第2SCR触媒はFeゼオライトを含むことが好ましい。   Further, regarding the NOx purification performance of the exhaust gas purification system 2 as a whole, unlike the exhaust gas purification filter 33, the downstream catalytic converter 34 mainly plays a role of NOx purification on the high temperature region side. Therefore, the second SCR catalyst is Fe zeolite. It is preferable to contain.

還元剤供給装置32は、ケーシング35内のうち排気浄化フィルタ33と上流触媒コンバータ31との間に設けられ、排気浄化フィルタ33の上流側に、第1及び第2SCR触媒の還元剤となるNHを直接供給するか、又はNHの前駆体である尿素水溶液を供給する。尿素水は、排気の熱及び排気浄化フィルタ33の熱によって熱分解又は加水分解されて、NHとなる。 The reducing agent supply device 32 is provided between the exhaust purification filter 33 and the upstream catalytic converter 31 in the casing 35, and NH 3 serving as a reducing agent for the first and second SCR catalysts is disposed upstream of the exhaust purification filter 33. Or a urea aqueous solution that is a precursor of NH 3 is supplied. The urea water is thermally decomposed or hydrolyzed by the heat of the exhaust and the heat of the exhaust purification filter 33 to become NH 3 .

次に、排気浄化フィルタ33に担持された第1SCR触媒と、その下流に設けられた第2SCR触媒の温度特性の相違について比較する。
図2は、第1及び第2SCR触媒のNOx浄化率の温度特性を示す図である。
Next, the difference in temperature characteristics between the first SCR catalyst carried on the exhaust purification filter 33 and the second SCR catalyst provided downstream thereof will be compared.
FIG. 2 is a graph showing the temperature characteristics of the NOx purification rates of the first and second SCR catalysts.

図2に示すように、Cuゼオライトを含んだ第1SCR触媒のNOx浄化率は、その温度に対し約250〜300℃の低温度域において最大となるように上に凸の特性を示す。これに対し、Feゼオライトを含んだ第2SCR触媒のNOx浄化率は、その温度が高くなるほど高くなり、約550〜600℃の高温度域において最大となる。すなわち、第1SCR触媒は、低温度域にあるときには、第2SCR触媒のNOx浄化率が最大化する高温度域にあるときよりもNOx浄化率が高い。また、第2SCR触媒は、高温度域にあるときには、第1SCR触媒のNOx浄化率が最大化する低温度域にあるときよりもNOx浄化率が高い。   As shown in FIG. 2, the NOx purification rate of the first SCR catalyst containing Cu zeolite exhibits an upwardly convex characteristic so as to be maximum in a low temperature range of about 250 to 300 ° C. with respect to the temperature. On the other hand, the NOx purification rate of the second SCR catalyst containing Fe zeolite increases as the temperature increases, and becomes maximum in a high temperature range of about 550 to 600 ° C. That is, when the first SCR catalyst is in the low temperature range, the NOx purification rate is higher than when it is in the high temperature range where the NOx purification rate of the second SCR catalyst is maximized. Further, when the second SCR catalyst is in the high temperature range, the NOx purification rate is higher than when it is in the low temperature range where the NOx purification rate of the first SCR catalyst is maximized.

ここで、第1SCR触媒のNOx浄化率が最大化される約250〜300℃近傍は、フィルタの非再生時でありかつ低負荷運転時に実現し得る温度域である。これに対し、第2SCR触媒のNOx浄化率が最大化される約550〜600℃近傍は、フィルタの再生時又は高負荷運転時に実現し得る温度域である。   Here, the vicinity of about 250 to 300 ° C. at which the NOx purification rate of the first SCR catalyst is maximized is a temperature range that can be realized when the filter is not regenerated and during low load operation. On the other hand, the vicinity of about 550 to 600 ° C. at which the NOx purification rate of the second SCR catalyst is maximized is a temperature range that can be realized during regeneration of the filter or during high load operation.

図3は、第1及び第2SCR触媒の最大NHストレージ量の温度特性を示す図である。
図3に示すように、第1及び第2SCR触媒は、ともに温度が高くなるに従い、その最大NHストレージ量は低下する。したがって、第1及び第2SCR触媒は、ともに温度が高くなるほどNH貯蔵能力が低下しNHスリップが発生しやすくなる。
FIG. 3 is a graph showing temperature characteristics of the maximum NH 3 storage amount of the first and second SCR catalysts.
As shown in FIG. 3, the maximum NH 3 storage amount of both the first and second SCR catalysts decreases as the temperature increases. Therefore, both the first and second SCR catalysts have a lower NH 3 storage capacity as the temperature is higher, and NH 3 slip is likely to occur.

次に、以上のように構成された排気浄化システム2の低温時と高温時の排気浄化フィルタ33及び下流触媒コンバータ34の機能について説明する。   Next, functions of the exhaust purification filter 33 and the downstream catalytic converter 34 at the low temperature and the high temperature of the exhaust purification system 2 configured as described above will be described.

先ず、低温時について説明する。
排気浄化フィルタ33の非再生中でありかつ低負荷で走行している場合、排気浄化フィルタ33及び下流触媒コンバータ34は、ともに約250〜300℃程度の低温度域にある。これらが低温度域にある場合、図2を参照して説明したように、下流触媒コンバータ34の第2SCR触媒のNOx浄化率は低下するが、排気浄化フィルタ33の第1SCR触媒のNOx浄化率が最大化される。したがって、低温時における排気中のNOxは、排気浄化フィルタ33の第1SCR触媒を主体として還元される。
First, the case of low temperature will be described.
When the exhaust purification filter 33 is not being regenerated and running at a low load, both the exhaust purification filter 33 and the downstream catalytic converter 34 are in a low temperature range of about 250 to 300 ° C. When these are in the low temperature range, as described with reference to FIG. 2, the NOx purification rate of the second SCR catalyst of the downstream catalytic converter 34 is reduced, but the NOx purification rate of the first SCR catalyst of the exhaust purification filter 33 is Maximized. Therefore, NOx in the exhaust at a low temperature is reduced mainly by the first SCR catalyst of the exhaust purification filter 33.

また、低温時は、図3を参照して説明したように、第1及び第2SCR触媒の最大NHストレージ量はともに高い。したがって、低温時における第2SCR触媒は第1SCR触媒と比較すれば十分なNOx浄化機能を発揮できないものの、第1SCR触媒からスリップしたNHを貯蔵し、NOxの還元に消費することで、NHが排気浄化システム2の外に排出されるのを防止できる。すなわち、低温時には、第2SCR触媒は専らNHの排気浄化システム2の外へのスリップを抑制するスリップ抑制触媒として機能させることができる。また、第2SCR触媒をこのようにスリップ抑制触媒として機能させることにより、第1SCR触媒には、その下流側へNHがスリップする程度に豊富な量のNHを貯蔵させ、そのNOx浄化率をさらに高くすることができる。 Further, at the time of low temperature, as described with reference to FIG. 3, the maximum NH 3 storage amount of the first and second SCR catalysts is high. Therefore, although the second SCR catalyst at low temperature cannot exhibit a sufficient NOx purification function as compared with the first SCR catalyst, NH 3 slipped from the first SCR catalyst is stored and consumed for reduction of NOx, so that NH 3 is reduced. Exhaust from the exhaust purification system 2 can be prevented. That is, at a low temperature, the second SCR catalyst can function exclusively as a slip suppression catalyst that suppresses the slip of NH 3 to the outside of the exhaust purification system 2. In addition, by making the second SCR catalyst function as a slip suppression catalyst in this way, the first SCR catalyst can store a large amount of NH 3 to the extent that NH 3 slips downstream, and its NOx purification rate can be increased. It can be even higher.

次に、高温時について説明する。
排気浄化フィルタ33を再生中又は高負荷で走行している場合、排気浄化フィルタ33及び下流触媒コンバータ34は、ともに約550〜600℃程度の高温度域にある。これらが高温度域にある場合、図2を参照して説明したように、排気浄化フィルタ33の第1SCR触媒のNOx浄化率は低下するが、下流触媒コンバータ34の第2SCR触媒のNOx浄化率は最大化される。したがって、高温時における排気中のNOxは、下流触媒コンバータ34の第2SCR触媒を主体として還元される。
Next, the case of high temperature will be described.
When the exhaust purification filter 33 is being regenerated or running at a high load, both the exhaust purification filter 33 and the downstream catalytic converter 34 are in a high temperature range of about 550 to 600 ° C. When these are in the high temperature range, as described with reference to FIG. 2, the NOx purification rate of the first SCR catalyst of the exhaust purification filter 33 decreases, but the NOx purification rate of the second SCR catalyst of the downstream catalytic converter 34 is Maximized. Therefore, NOx in the exhaust at high temperature is reduced mainly by the second SCR catalyst of the downstream catalytic converter 34.

また、排気浄化フィルタ33の再生開始直後、又は高負荷運転状態への移行直後は、これらフィルタ33及び下流触媒コンバータ34の温度はともに急激に上昇するため、図3を参照して説明したように、それぞれの最大NHストレージ量が急激に低下する。
したがって、排気浄化フィルタ33の第1SCR触媒にそれまでに貯蔵されていたNHが、下流触媒コンバータ34の第2SCR触媒へスリップすることとなるが、第2SCR触媒は高温になるとNOx浄化率が高くなるため、上流側からスリップしてきたNHとそれまでに第2SCR触媒に貯蔵されていたNHとを利用してNOxが還元されることから、排気浄化システム2の外へ多量のNHがスリップすることもない。また、第2SCR触媒もその温度が急激に上昇すると最大NHストレージ量が急激に低下するが、上述のように低温度域にある間は、第2SCR触媒は専らNHスリップ抑制触媒として機能させることから、第1SCR触媒と異なり多量のNHを貯蔵させておく必要がない。このため、高温度域への移行時に、第2SCR触媒から排気浄化システム2の外へ多量のNHがスリップすることもない。
Further, immediately after the start of regeneration of the exhaust purification filter 33 or immediately after shifting to the high load operation state, the temperature of both the filter 33 and the downstream catalytic converter 34 rises rapidly, and as described with reference to FIG. The maximum NH 3 storage amount of each decreases rapidly.
Therefore, NH 3 stored in the first SCR catalyst of the exhaust purification filter 33 will slip to the second SCR catalyst of the downstream catalytic converter 34, but the NOx purification rate becomes high when the second SCR catalyst becomes high temperature. consisting Therefore, since the NOx is reduced by using the NH 3 which has slipped from the upstream side and the NH 3 which has been stored in the 2SCR catalyst so far, a large amount of NH 3 to the outside of the exhaust purification system 2 There is no slip. In addition, when the temperature of the second SCR catalyst also rises rapidly, the maximum amount of NH 3 storage decreases sharply. As described above, the second SCR catalyst functions exclusively as an NH 3 slip suppression catalyst while in the low temperature range. Therefore, unlike the first SCR catalyst, it is not necessary to store a large amount of NH 3 . For this reason, a large amount of NH 3 does not slip out of the exhaust purification system 2 from the second SCR catalyst during the transition to the high temperature range.

以上、本発明の一実施形態について説明したが、本発明はこれに限るものではない。
上記実施形態では、第1触媒及び第2触媒としてSCR触媒を適用した例について説明したが、本発明は、還元剤を貯蔵しておく機能と、還元剤によってNOxを浄化する機能との両方を備えた触媒であればSCR触媒以外にも適用できる。このような触媒としては、例えば本願出願人による特開2008−030003号公報に記載されたNOx吸蔵還元型触媒が挙げられる。
Although one embodiment of the present invention has been described above, the present invention is not limited to this.
In the above embodiment, an example in which the SCR catalyst is applied as the first catalyst and the second catalyst has been described. However, the present invention has both a function of storing the reducing agent and a function of purifying NOx by the reducing agent. Any catalyst other than the SCR catalyst can be used as long as the catalyst is provided. As such a catalyst, for example, a NOx occlusion reduction type catalyst described in Japanese Patent Application Laid-Open No. 2008-030003 by the applicant of the present application can be cited.

このNOx吸蔵還元型触媒は、リーン空燃比の排気下では排気中のNOxを仮貯蔵しておき、排気の空燃比をリッチに切り換えたときに仮貯蔵しておいたNOxを水性ガスシフト反応によって生成する水素でNHに変換させるとともにこのNHを再貯蔵する。そして再び排気の空燃比をリーンに切り換えたときに、再貯蔵しておいたNHを還元剤として排気中のNOxを還元する。このようなNOx吸蔵還元触媒も、Cuゼオライトを含めた場合には、そのNOx浄化率は比較的低温度域で最大化され、Feゼオライトを含めた場合には、そのNOx浄化率は比較的高温度域で最大化される。このため、第1触媒としてCuゼオライトを含むNOx吸蔵還元型触媒を用い、第2触媒としてFeゼオライトを含むNOx吸蔵還元型触媒を用いても、上記実施形態とほぼ同様の効果を奏する。また、第1触媒としてSCR触媒を用い第2触媒としてNOx吸蔵還元型触媒を用いたり、或いは第1触媒としてNOx吸蔵還元型触媒を用い第2触媒としてSCR触媒を用いたりしてもよい。 This NOx occlusion reduction type catalyst temporarily stores NOx in exhaust under a lean air-fuel ratio exhaust, and generates NOx temporarily stored when the exhaust air-fuel ratio is switched to rich by a water gas shift reaction in hydrogen causes converted to NH 3 re store the NH 3. When the air-fuel ratio of the exhaust gas is switched to lean again, NOx in the exhaust gas is reduced using the re-stored NH 3 as a reducing agent. When such NOx storage reduction catalyst also includes Cu zeolite, its NOx purification rate is maximized in a relatively low temperature range, and when it contains Fe zeolite, its NOx purification rate is relatively high. Maximized in the temperature range. For this reason, even if the NOx occlusion reduction type catalyst containing Cu zeolite is used as the first catalyst and the NOx occlusion reduction type catalyst containing Fe zeolite is used as the second catalyst, the same effects as those of the above embodiment can be obtained. Alternatively, an SCR catalyst may be used as the first catalyst and a NOx occlusion reduction type catalyst may be used as the second catalyst, or an NOx occlusion reduction type catalyst may be used as the first catalyst and an SCR catalyst may be used as the second catalyst.

1…エンジン(内燃機関、昇温手段)
2…排気浄化システム
3…触媒浄化ユニット
32…還元剤供給装置
33…排気浄化フィルタ(フィルタ、第1触媒)
34…下流触媒コンバータ(触媒コンバータ、第2触媒)
4…ECU(昇温手段)
1 ... Engine (internal combustion engine, temperature raising means)
2 ... Exhaust purification system 3 ... Catalyst purification unit 32 ... Reducing agent supply device 33 ... Exhaust purification filter (filter, first catalyst)
34 ... Downstream catalytic converter (catalytic converter, second catalyst)
4 ... ECU (temperature raising means)

Claims (3)

内燃機関の排気通路に設けられ、排気中の粒子状物質を捕集するフィルタと、
前記フィルタの下流に設けられた触媒コンバータと、
前記フィルタに担持され、還元剤を貯蔵しかつ還元剤の存在下で排気中のNOxを浄化する第1触媒と、
前記触媒コンバータの基材に担持され、還元剤を貯蔵しかつ還元剤の存在下で排気中のNOxを浄化する第2触媒と、
前記フィルタを昇温することにより、当該フィルタに捕集された粒子状物質を燃焼除去する昇温手段と、を備えた内燃機関の排気浄化システムであって、
前記第1触媒は、所定の第1温度域にあるときには、当該第1温度域より高い第2温度域にあるときよりもNOx浄化性能が高く、
前記第2触媒は、前記第2温度域にあるときには、前記第1温度域にあるときよりもNOx浄化性能が高いことを特徴とする内燃機関の排気浄化システム。
A filter provided in an exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust;
A catalytic converter provided downstream of the filter;
A first catalyst carried on the filter for storing the reducing agent and purifying NOx in the exhaust in the presence of the reducing agent;
A second catalyst carried on the base material of the catalytic converter, storing the reducing agent and purifying NOx in the exhaust in the presence of the reducing agent;
An exhaust gas purification system for an internal combustion engine, comprising: a temperature raising means for burning and removing particulate matter collected by the filter by raising the temperature of the filter;
When the first catalyst is in a predetermined first temperature range, the NOx purification performance is higher than when it is in a second temperature range higher than the first temperature range,
The exhaust gas purification system for an internal combustion engine, wherein the second catalyst has higher NOx purification performance when in the second temperature range than when in the first temperature range.
前記第1触媒はCuゼオライトを含み、
前記第2触媒はFeゼオライトを含むことを特徴とする請求項1に記載の内燃機関の排気浄化システム。
The first catalyst comprises Cu zeolite;
The exhaust purification system for an internal combustion engine according to claim 1, wherein the second catalyst contains Fe zeolite.
前記排気通路のうち前記フィルタの上流側にNH又はその前駆体を供給する還元剤供給装置をさらに備え、
前記第1及び第2触媒は、NHを還元剤としてNOxを還元しかつNHを所定量貯蔵できる選択還元触媒であることを特徴とする請求項1又は2に記載の内燃機関の排気浄化システム。
A reducing agent supply device for supplying NH 3 or a precursor thereof upstream of the filter in the exhaust passage;
Said first and second catalyst, an internal combustion engine exhaust gas purification according to claim 1 or 2, characterized in that the reducing life-and-death NH 3 to NOx and NH 3 as the reducing agent is a selective reduction catalyst capable predetermined storage amount system.
JP2012234090A 2012-10-23 2012-10-23 Exhaust emission control system for internal combustion engine Pending JP2014084785A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012234090A JP2014084785A (en) 2012-10-23 2012-10-23 Exhaust emission control system for internal combustion engine
DE102013221505.3A DE102013221505B4 (en) 2012-10-23 2013-10-23 Emission control system for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234090A JP2014084785A (en) 2012-10-23 2012-10-23 Exhaust emission control system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014084785A true JP2014084785A (en) 2014-05-12

Family

ID=50437255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234090A Pending JP2014084785A (en) 2012-10-23 2012-10-23 Exhaust emission control system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2014084785A (en)
DE (1) DE102013221505B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386388A (en) * 2017-11-23 2020-07-07 戴姆勒股份公司 Method for operating an exhaust system, in particular of a motor vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300298A1 (en) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
DE102006014073A1 (en) * 2006-03-28 2007-10-04 Purem Abgassysteme Gmbh & Co. Kg Exhaust gas after-treatment device for internal-combustion engine, has selective catalytic reduction catalytic converter unit for selective catalytic reduction of nitrogen oxides with exhaust gas inlet and exhaust gas outlet
DE102006031724B3 (en) * 2006-07-08 2008-04-30 Umicore Ag & Co. Kg Structured selective catalytic reduction-catalyst, useful for removing nitrogen oxide in exhaust gas, comprises catalytically active material zones of iron-exchanged zeolite and transition metal-exchanged zeolite
JP4294041B2 (en) * 2006-07-31 2009-07-08 本田技研工業株式会社 NOx purification catalyst
US8945495B2 (en) * 2008-10-21 2015-02-03 GM Global Technology Operations LLC Method and architecture for reducing NOX and particulate matter emissions in exhaust gas from hydrocarbon fuel source with a fuel lean combustion mixture
PL2382031T5 (en) * 2008-12-24 2023-04-11 Basf Corporation Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst
US8516798B2 (en) * 2009-07-30 2013-08-27 Ford Global Technologies, Llc Methods and systems for control of an emission system with more than one SCR region
US20110064632A1 (en) * 2009-09-14 2011-03-17 Ford Global Technologies, Llc Staged Catalyst System and Method of Using the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386388A (en) * 2017-11-23 2020-07-07 戴姆勒股份公司 Method for operating an exhaust system, in particular of a motor vehicle

Also Published As

Publication number Publication date
DE102013221505B4 (en) 2017-08-24
DE102013221505A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5431966B2 (en) Exhaust gas aftertreatment system (EATS)
JP4274270B2 (en) NOx purification system and control method of NOx purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP6264261B2 (en) Exhaust gas purification system
JP3885813B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
RU2618156C2 (en) Method of implementation in conjunction with installation of exhaust gas aftertreatment
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
JP2009540189A (en) Improved hybrid NOX prevention system
JP2004060494A (en) Exhaust emission control device of internal combustion engine
JP2013234639A (en) System and method of cleaning exhaust gas
JP4638892B2 (en) Exhaust gas purification device for internal combustion engine
JP2010180861A (en) Exhaust emission control device
JP2007239752A (en) Exhaust emission control device for internal combustion engine
JP2006183507A (en) Exhaust emission control device for internal combustion engine
EP2623738B1 (en) NOx purification method of an exhaust purification system of an internal combustion engine
JP2007002697A (en) Exhaust emission control device
JP3885814B2 (en) Method for raising temperature of exhaust gas purification device and exhaust gas purification system
JP2007132202A (en) Exhaust gas temperature rise device
RU2625416C1 (en) Exhaust control system for internal combustion engine
JP5725214B2 (en) Exhaust gas purification device for internal combustion engine
WO2014112311A1 (en) Exhaust purification device for internal combustion engine
JP2014206079A (en) Exhaust emission control device for internal combustion engine, and process for manufacturing the device
JP2014084785A (en) Exhaust emission control system for internal combustion engine
JP6915424B2 (en) Exhaust gas purification system and regeneration control method
JP6565997B2 (en) Exhaust gas purification method