JP2014084543A - Three-dimensional fiber structure - Google Patents

Three-dimensional fiber structure Download PDF

Info

Publication number
JP2014084543A
JP2014084543A JP2012234628A JP2012234628A JP2014084543A JP 2014084543 A JP2014084543 A JP 2014084543A JP 2012234628 A JP2012234628 A JP 2012234628A JP 2012234628 A JP2012234628 A JP 2012234628A JP 2014084543 A JP2014084543 A JP 2014084543A
Authority
JP
Japan
Prior art keywords
rib
base portion
fiber structure
thickness direction
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012234628A
Other languages
Japanese (ja)
Other versions
JP5983305B2 (en
Inventor
Motoki Yoshikawa
元基 吉川
Fujio Hori
藤夫 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012234628A priority Critical patent/JP5983305B2/en
Publication of JP2014084543A publication Critical patent/JP2014084543A/en
Application granted granted Critical
Publication of JP5983305B2 publication Critical patent/JP5983305B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a binding yarn for binding a flange part of a rib and a base part together to be easily inserted when manufacturing a three-dimensional fiber structure having the base part and the rib.SOLUTION: A three-dimensional fiber structure 10 includes a base part 11 and a rib 12 orthogonal to the base part 11. The base part 11 and the rib 12 are each formed such that an at least biaxially oriented laminated fiber layer 15 in which fiber layers 14 including continuous fibers are laminated is bound by thickness direction yarns z. The rib 12 has a flange part 12b. In a state in which the flange part 12b covers the whole of a rib attachment surface 11a of the base part 11, and the thickness of a part where the base part 11 and the flange part 12b are superposed is constant, the base part 11 and the flange part 12b are bound together by the thickness direction yarns z.

Description

本発明は、三次元繊維構造体に係り、詳しくは補強用のリブを有する三次元繊維構造体に関するものである。   The present invention relates to a three-dimensional fiber structure, and more particularly to a three-dimensional fiber structure having reinforcing ribs.

繊維強化複合材は軽量の構造材料として広く使用されている。複合材用の強化基材として三次元織物(三次元繊維構造体)がある。この三次元織物を強化基材として、樹脂あるいは無機物をマトリックスとした複合材はロケット、航空機、自動車、船舶及び建築物の構造材として用いられている。そして、航空機や自動車等に使用される繊維強化複合材は燃費低減のため軽量化の要求が強い。   Fiber reinforced composites are widely used as lightweight structural materials. There is a three-dimensional fabric (three-dimensional fiber structure) as a reinforcing base material for composite materials. A composite material using this three-dimensional woven fabric as a reinforcing base and a resin or inorganic matrix as a matrix is used as a structural material for rockets, aircraft, automobiles, ships, and buildings. And the fiber reinforced composite material used for an aircraft, a motor vehicle, etc. has a strong request | requirement of weight reduction for a fuel consumption reduction.

従来、軽量化を図るため、図6に示すように、基板部(ベース部)51にT字状の補強リブ52が厚さ方向糸zにより結合された三次元繊維構造体Wが提案されている(特許文献1参照)。三次元繊維構造体Wは、基板部51及び補強リブ52とも、それぞれ複数の糸層を積層して形成された面内4軸の配向となる積層糸群と、その厚さ方向に配列された厚さ方向糸zで構成されている。補強リブ52と基板部51とはその平面部が対応する位置においては、厚さ方向糸zが基板部51の厚さ方向と平行に配列されている。また、屈曲部54と対応する位置においては、厚さ方向糸zが基板部51の厚さ方向に対して交差する状態で、屈曲部54及び基板部51を貫通するように配列されている。   Conventionally, in order to reduce the weight, a three-dimensional fiber structure W in which a T-shaped reinforcing rib 52 is bonded to a substrate part (base part) 51 with a thickness direction thread z as shown in FIG. 6 has been proposed. (See Patent Document 1). In the three-dimensional fiber structure W, both the base plate portion 51 and the reinforcing rib 52 are each a laminated yarn group formed by laminating a plurality of yarn layers and having an in-plane four-axis orientation, and thicknesses arranged in the thickness direction thereof. It is composed of a vertical thread z. The thickness direction thread z is arranged in parallel with the thickness direction of the substrate portion 51 at a position where the plane portions of the reinforcing rib 52 and the substrate portion 51 correspond. Further, at a position corresponding to the bent portion 54, the thickness direction thread z is arranged so as to penetrate the bent portion 54 and the substrate portion 51 in a state where it intersects the thickness direction of the substrate portion 51.

特開平11−269755号公報JP-A-11-269755

特許文献1の三次元繊維構造体Wは、基板部51上に複数のT字状の補強リブ52が、隣り合う補強リブ52同士が間隔を置いて厚さ方向糸zにより結合されている。そして、基板部51及び補強リブ52を形成する積層繊維層を結合する厚さ方向糸zの長さは、基板部51のみの箇所と、基板部51及び補強リブ52のフランジ部52aが重なる箇所とでは異なる長さになる。そのため、厚さ方向糸zを挿入する場合、基板部51のみの箇所と、基板部51及び補強リブ52のフランジ部52aが重なる箇所とで厚さ方向糸zの挿入条件の変更調整を行う必要があり、挿入の工数が大きくなる。   In the three-dimensional fiber structure W of Patent Document 1, a plurality of T-shaped reinforcing ribs 52 are coupled to each other on a substrate portion 51 by a thickness direction thread z at intervals between adjacent reinforcing ribs 52. And the length of the thickness direction thread | yarn z which couple | bonds the laminated fiber layer which forms the board | substrate part 51 and the reinforcement rib 52 is a place where only the board | substrate part 51 and the flange part 52a of the board | substrate part 51 and the reinforcement rib 52 overlap. And different lengths. Therefore, when inserting the thickness direction thread z, it is necessary to change and adjust the insertion condition of the thickness direction thread z at a position where only the substrate portion 51 and a position where the flange portion 52a of the substrate portion 51 and the reinforcing rib 52 overlap. This increases the man-hours for insertion.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、ベース部及びリブを有する三次元繊維構造体の製造時に、リブのフランジ部とベース部とを結合する結合糸を容易に挿入することができる三次元繊維構造体を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a binding yarn that joins a flange portion of a rib and a base portion when a three-dimensional fiber structure having a base portion and a rib is manufactured. An object of the present invention is to provide a three-dimensional fiber structure that can be easily inserted.

上記課題を解決する三次元繊維構造体は、ベース部及び前記ベース部と直交するリブを有し、前記ベース部及び前記リブは繊維層が積層された少なくとも2軸配向となる積層繊維層が結合糸で結合されて構成されている。そして、前記リブはフランジ部を有し、前記フランジ部が前記ベース部のリブ取り付け面を全て覆った状態で、かつ前記ベース部と前記フランジ部とが重なった部分の厚さが一定の状態で、前記結合糸により結合されている。   A three-dimensional fiber structure that solves the above problems has a base portion and a rib orthogonal to the base portion, and the base portion and the rib are bonded to a laminated fiber layer that is at least biaxially oriented in which fiber layers are laminated. It is composed of yarns. The rib has a flange portion, the flange portion covers the entire rib mounting surface of the base portion, and the thickness of the portion where the base portion and the flange portion overlap is constant. , And are connected by the binding yarn.

この構成によれば、リブのフランジ部がベース部のリブ取り付け面を全て覆った状態で、かつベース部とフランジ部とが重なった部分の厚さが一定の状態で、結合糸により結合されるため、リブのフランジ部とベース部とを結合するために、ベース部の厚さ方向と平行に挿入される結合糸の挿入長さが一定になる。したがって、ベース部及びリブを有する三次元繊維構造体の製造時に、リブのフランジ部とベース部とを結合する結合糸を容易に挿入することができる。   According to this configuration, the rib portion of the rib covers the entire rib mounting surface of the base portion, and the portion where the base portion and the flange portion overlap with each other is bonded with the binding yarn with a constant thickness. Therefore, in order to connect the flange portion of the rib and the base portion, the insertion length of the connecting yarn inserted in parallel with the thickness direction of the base portion is constant. Therefore, at the time of manufacturing the three-dimensional fiber structure having the base portion and the ribs, it is possible to easily insert the binding yarn that joins the flange portion of the rib and the base portion.

前記リブの厚さは、前記フランジ部及び前記ベース部が重なった部分と同じ厚さに形成されていることが好ましい。この構成によれば、リブの本体部、即ちフランジ部で支えられてベース部に固定される部分への結合糸の挿入を、フランジ部及びベース部の重なり部に結合糸を挿入する際と同じストロークで行うことができる。   It is preferable that the rib is formed to have the same thickness as a portion where the flange portion and the base portion overlap. According to this configuration, the insertion of the binding thread into the rib main part, that is, the part supported by the flange part and fixed to the base part, is the same as when the binding thread is inserted into the overlapping part of the flange part and the base part. Can be done with a stroke.

前記リブは、前記フランジ部の端面に段差部を有することが好ましい。この構成によれば、三次元繊維構造体を強化基材として繊維強化複合材を形成した際に、フランジ部の端面が平坦な場合に比べて、フランジ部の突き合わせ位置と対応する箇所における曲げ強度が高くなる。   It is preferable that the rib has a step portion on an end surface of the flange portion. According to this configuration, when a fiber reinforced composite material is formed using a three-dimensional fiber structure as a reinforcing base material, the bending strength at a location corresponding to the butt position of the flange portion is larger than when the end surface of the flange portion is flat. Becomes higher.

本発明によれば、ベース部及びリブを有する三次元繊維構造体の製造時に、リブのフランジ部とベース部とを結合する結合糸を容易に挿入することができる。   According to the present invention, when manufacturing a three-dimensional fiber structure having a base portion and a rib, it is possible to easily insert a binding yarn that connects the flange portion of the rib and the base portion.

(a)は一実施形態の三次元繊維構造体の模式斜視図、(b)はリブの模式斜視図、(c)は積層繊維層と結合糸との関係を示す拡大部分模式図、(d)はリブにおける結合糸の挿入状態を示す模式図、(e)は三次元繊維構造体における結合糸の挿入状態を示す模式図。(A) is a schematic perspective view of the three-dimensional fiber structure of one embodiment, (b) is a schematic perspective view of a rib, (c) is an enlarged partial schematic view showing the relationship between a laminated fiber layer and a binding yarn, (d) ) Is a schematic diagram showing the insertion state of the binding yarn in the rib, and (e) is a schematic diagram showing the insertion state of the binding yarn in the three-dimensional fiber structure. 別の実施形態の三次元繊維構造体の模式斜視図。The model perspective view of the three-dimensional fiber structure of another embodiment. 別の実施形態の三次元繊維構造体の模式斜視図。The model perspective view of the three-dimensional fiber structure of another embodiment. 別の実施形態の三次元繊維構造体の模式図。The schematic diagram of the three-dimensional fiber structure of another embodiment. 別の実施形態の三次元繊維構造体の模式図。The schematic diagram of the three-dimensional fiber structure of another embodiment. 従来技術の三次元繊維構造体の模式図。The schematic diagram of the three-dimensional fiber structure of a prior art.

以下、三次元繊維構造体の一実施形態を図1にしたがって説明する。
図1(a)に示すように、三次元繊維構造体10は、ベース部11及びベース部11と直交するリブ12を有する。図1(a)に示すように、ベース部11は、長手方向と直交する断面形状がコ字状に形成されている。図1(b)に示すように、リブ12は、断面形状がコ字状のリブ中間体13を2個結合して略I型状に形成され、リブ本体12aの上下両端にフランジ部12bを有し、上下対称、かつ左右対称の形状に形成されている。
Hereinafter, an embodiment of a three-dimensional fiber structure will be described with reference to FIG.
As shown in FIG. 1A, the three-dimensional fiber structure 10 has a base portion 11 and a rib 12 orthogonal to the base portion 11. As shown to Fig.1 (a), the cross-sectional shape orthogonal to a longitudinal direction is formed in the base part 11 in U shape. As shown in FIG. 1B, the rib 12 is formed in a substantially I shape by joining two rib intermediate bodies 13 having a U-shaped cross section, and flange portions 12b are provided at both upper and lower ends of the rib body 12a. It has a vertically symmetrical and left-right symmetric shape.

リブ本体12aの厚さ及びフランジ部12bとベース部11とが重なった部分の厚さは、三次元繊維構造体10を強化基材として使用する繊維強化樹脂の要求強度に適した厚さに設定される。この実施形態では、リブ本体12aの厚さ及びフランジ部12bとベース部11とが重なった部分の厚さは同じに設定されている。即ち、ベース部11の厚さt及びフランジ部12bの厚さtは、リブ本体12aの厚さ2tの1/2に設定されている。   The thickness of the rib main body 12a and the thickness of the portion where the flange portion 12b and the base portion 11 overlap are set to a thickness suitable for the required strength of the fiber reinforced resin using the three-dimensional fiber structure 10 as the reinforcing base material. Is done. In this embodiment, the thickness of the rib main body 12a and the thickness of the portion where the flange portion 12b and the base portion 11 overlap are set to be the same. That is, the thickness t of the base portion 11 and the thickness t of the flange portion 12b are set to ½ of the thickness 2t of the rib body 12a.

ベース部11及びリブ12は、図1(c)に示すように、連続繊維からなる繊維層14が積層された少なくとも2軸配向となる積層繊維層15が結合糸としての厚さ方向糸zで結合されて構成されている。この実施形態では、積層繊維層15は、配列角度が0度、90度、±45度の繊維層14が複数積層されて4軸配向に形成されている。積層繊維層15は、厚さが、例えば、5〜10mm程度に形成されている。連続繊維及び厚さ方向糸zとしては、例えば、炭素繊維が使用される。炭素繊維はフィラメント数が数百〜数万本程度であり、要求性能に適した本数の繊維束が選択される。なお、図1(a),(b)においては、厚さ方向糸zの図示を省略している。   As shown in FIG. 1 (c), the base portion 11 and the ribs 12 are made of at least a biaxially oriented laminated fiber layer 15 in which fiber layers 14 made of continuous fibers are laminated, with a thickness direction yarn z as a binding yarn. Composed and configured. In this embodiment, the laminated fiber layer 15 is formed in a four-axis orientation by laminating a plurality of fiber layers 14 having an arrangement angle of 0 degrees, 90 degrees, and ± 45 degrees. The laminated fiber layer 15 has a thickness of, for example, about 5 to 10 mm. As the continuous fiber and the thickness direction yarn z, for example, carbon fiber is used. Carbon fiber has a number of filaments of about several hundred to several tens of thousands, and the number of fiber bundles suitable for the required performance is selected. In FIGS. 1A and 1B, the illustration of the thickness direction thread z is omitted.

図1(a),(e)に示すように、リブ12は、フランジ部12bがベース部11のリブ取り付け面11aを全て覆った状態で、かつベース部11とフランジ部12bとが重なった部分の厚さが一定の状態で、図1(e)に示すように厚さ方向糸zで結合されている。   As shown in FIGS. 1A and 1E, the rib 12 is a portion in which the flange portion 12b covers the entire rib mounting surface 11a of the base portion 11 and the base portion 11 and the flange portion 12b overlap each other. In the state where the thickness of each is constant, as shown in FIG.

図1(d)に示すように、リブ12は、リブ本体12aとフランジ部12bの部分とで厚さ方向糸zの挿入密度が異なり、フランジ部12bの部分の挿入密度が小さくなっている。これは、フランジ部12bに対しては、リブ12をベース部11と結合する際に、ベース部11及びフランジ部12bを貫通するように厚さ方向糸zが挿入されるため、その分、挿入密度が小さくなっている。   As shown in FIG. 1D, in the rib 12, the insertion density of the thickness direction thread z is different between the rib main body 12a and the flange portion 12b, and the insertion density of the flange portion 12b is small. This is because the thickness direction thread z is inserted into the flange portion 12b so as to penetrate the base portion 11 and the flange portion 12b when the rib 12 is coupled to the base portion 11. The density is getting smaller.

次に前記のように構成された三次元繊維構造体10の製造方法の一例を説明する。三次元繊維構造体10を製造する場合、ベース部11の形状に対応した枠体を使用して、ベース部11を製作し、リブ12を左右半分にした形状に対応した枠体を使用して、リブ中間体13を製作する。そして、図1(d)に示すように、2つのリブ中間体13を厚さ方向糸zで結合してリブ12を形成する。積層繊維層15に厚さ方向糸zを挿入する厚さ方向糸挿入装置として、例えば、特許文献1に記載された装置と基本的に同様の装置を使用することができる。ただし、厚さ方向糸zは、リブ本体12aの部分を除き、ハンドリングを可能にする程度の粗い間隔で予備的に挿入される。   Next, an example of a manufacturing method of the three-dimensional fiber structure 10 configured as described above will be described. When the three-dimensional fiber structure 10 is manufactured, a frame corresponding to the shape of the base part 11 is used, the base part 11 is manufactured, and a frame corresponding to the shape in which the ribs 12 are halved is used. The rib intermediate body 13 is manufactured. And as shown in FIG.1 (d), the two rib intermediate body 13 is couple | bonded by the thickness direction thread | z, and the rib 12 is formed. As the thickness direction yarn inserting device for inserting the thickness direction yarn z into the laminated fiber layer 15, for example, a device basically similar to the device described in Patent Document 1 can be used. However, the thickness direction thread z is preliminarily inserted at a rough interval that allows handling except for the rib main body 12a.

次に図1(e)に示すように、複数のリブ12を、隣り合うリブ12のフランジ部12bの先端同士を突き合わせた状態で、複数のリブ12がベース部11のリブ取り付け面11aを全て覆った状態にセットする。そして、厚さ方向糸挿入装置により、厚さ方向糸zをベース部11とフランジ部12bとが重なった部分に挿入してリブ12をベース部11に結合する。   Next, as shown in FIG. 1 (e), the plurality of ribs 12 cover all the rib attachment surfaces 11 a of the base portion 11 in a state where the tips of the flange portions 12 b of the adjacent ribs 12 are abutted with each other. Set it covered. Then, the thickness direction thread z is inserted into a portion where the base portion 11 and the flange portion 12 b overlap with each other by the thickness direction thread insertion device, and the rib 12 is coupled to the base portion 11.

ベース部11及びフランジ部12bは厚さが一定に形成されているため、厚さ方向糸zの挿入長さが一定の状態でベース部11とフランジ部12bとが結合される。そのため、従来技術のように隣り合うリブ12のフランジ部12bが離れた状態でベース部11上に配置されたリブ12を厚さ方向糸zで結合する場合と異なり、ベース部及びリブを有する三次元繊維構造体の製造時に、リブ12のフランジ部12bとベース部11とを結合する厚さ方向糸zの挿入が容易になる。なお、リブ12の屈曲部と対応する箇所には、必要に応じて厚さ方向糸zがベース部11の厚さ方向に対して傾斜する状態で挿入される。   Since the base portion 11 and the flange portion 12b are formed to have a constant thickness, the base portion 11 and the flange portion 12b are joined with the insertion length of the thickness direction thread z being constant. Therefore, unlike the case of connecting the ribs 12 arranged on the base portion 11 with the thickness direction thread z in a state where the flange portions 12b of the adjacent ribs 12 are separated as in the prior art, the tertiary having the base portion and the ribs. When the original fiber structure is manufactured, it is easy to insert the thickness direction thread z that joins the flange portion 12b of the rib 12 and the base portion 11. It should be noted that the thickness direction thread z is inserted into a portion corresponding to the bent portion of the rib 12 in a state where it is inclined with respect to the thickness direction of the base portion 11 as necessary.

従来技術では、ベース部11の必要強度はベース部11のみで確保する必要があり、フランジ部12bの部分は製品の重量増加に繋がった。しかし、前記のように構成された三次元繊維構造体10は、ベース部11の厚さとフランジ部12bの厚さの合計が製品の必要強度に対応するように設計することで、製品の軽量化を図ることができる。   In the prior art, the required strength of the base portion 11 needs to be secured only by the base portion 11, and the flange portion 12b portion has led to an increase in the weight of the product. However, the three-dimensional fiber structure 10 configured as described above is designed so that the total thickness of the base portion 11 and the flange portion 12b corresponds to the required strength of the product, thereby reducing the weight of the product. Can be achieved.

前記のように構成された三次元繊維構造体10は、繊維強化複合材、例えば、繊維強化樹脂の強化基材として使用される。繊維強化樹脂のマトリックス樹脂としては、熱硬化性樹脂、例えば、エポキシ樹脂が使用される。三次元繊維構造体10は、リブ12のフランジ部12bがベース部11のリブ取り付け面11aを全て覆った状態で、かつベース部11とフランジ部12bとが重なった部分の厚さが一定の状態で、厚さ方向糸zにより結合されているため、従来技術と異なり、段差部がない。そのため、得られた繊維強化樹脂は、応力集中が起こり難い。   The three-dimensional fiber structure 10 configured as described above is used as a reinforced base material of a fiber reinforced composite material, for example, a fiber reinforced resin. As the matrix resin of the fiber reinforced resin, a thermosetting resin, for example, an epoxy resin is used. The three-dimensional fiber structure 10 is in a state where the flange portion 12b of the rib 12 covers the entire rib attachment surface 11a of the base portion 11, and the thickness of the portion where the base portion 11 and the flange portion 12b overlap is constant. Thus, since they are joined by the thickness direction thread z, there is no step portion unlike the conventional technique. Therefore, stress concentration does not easily occur in the obtained fiber reinforced resin.

この実施形態によれば、以下に示す効果を得ることができる。
(1)三次元繊維構造体10は、ベース部11及びベース部11と直交するリブ12を有し、ベース部11及びリブ12は繊維層14が積層された少なくとも2軸配向となる積層繊維層15が結合糸(厚さ方向糸z)で結合されて構成されている。そして、リブ12はフランジ部12bを有し、フランジ部12bがベース部11のリブ取り付け面11aを全て覆った状態で、かつベース部11とフランジ部12bとが重なった部分の厚さが一定の状態で、厚さ方向糸zにより結合されている。そのため、リブ12のフランジ部12bとベース部11とを結合するために、ベース部11の厚さ方向と平行に挿入される厚さ方向糸zの挿入長さが一定になる。したがって、ベース部11及びリブ12を有する三次元繊維構造体10の製造時に、リブ12のフランジ部12bとベース部11とを結合する厚さ方向糸zを容易に挿入することができる。また、ベース部11の厚さとフランジ部12bの厚さの合計が製品の必要強度に対応するように設計することで、製品の軽量化を図ることができる。
According to this embodiment, the following effects can be obtained.
(1) The three-dimensional fiber structure 10 includes a base portion 11 and a rib 12 that is orthogonal to the base portion 11, and the base portion 11 and the rib 12 are laminated fiber layers that are at least biaxially oriented in which fiber layers 14 are laminated. 15 is constituted by being joined by a joining yarn (thickness direction yarn z). And the rib 12 has the flange part 12b, the thickness of the part which the base part 11 and the flange part 12b overlapped with the flange part 12b covering all the rib attachment surfaces 11a of the base part 11 is constant. In the state, they are joined by the thickness direction thread z. Therefore, in order to couple the flange portion 12b of the rib 12 and the base portion 11, the insertion length of the thickness direction thread z inserted in parallel with the thickness direction of the base portion 11 is constant. Accordingly, when the three-dimensional fiber structure 10 having the base portion 11 and the rib 12 is manufactured, the thickness direction thread z that connects the flange portion 12b of the rib 12 and the base portion 11 can be easily inserted. Moreover, the weight of the product can be reduced by designing the total of the thickness of the base portion 11 and the thickness of the flange portion 12b to correspond to the required strength of the product.

(2)リブ12の厚さは、フランジ部12b及びベース部11が重なった部分と同じ厚さに形成されているため、リブ12のリブ本体12a、即ちフランジ部12bで支えられてベース部11に固定される部分への結合糸(厚さ方向糸z)の挿入を、フランジ部12b及びベース部11の重なり部に結合糸を挿入する際と同じストロークで行うことができる。そのため、結合糸の挿入がより容易になる。   (2) Since the thickness of the rib 12 is the same as that of the portion where the flange portion 12b and the base portion 11 overlap, the base portion 11 is supported by the rib body 12a of the rib 12, that is, the flange portion 12b. The joining yarn (thickness direction yarn z) can be inserted into the portion fixed to the base member with the same stroke as when the joining yarn is inserted into the overlapping portion of the flange portion 12b and the base portion 11. Therefore, it becomes easier to insert the connecting yarn.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ ベース部11の形状は長手方向と直交する断面形状がコ字状に限らず、例えば、図2に示すように、長手方向と直交する断面形状がL字状であってもよい。この場合、リブ12も略I字状の形状ではなく、断面逆T字状の形状に形成される。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The cross-sectional shape orthogonal to the longitudinal direction is not limited to the U shape, but the cross-sectional shape orthogonal to the longitudinal direction may be L-shaped, for example, as shown in FIG. In this case, the rib 12 is also formed in an inverted T-shaped cross section instead of a substantially I-shaped shape.

○ ベース部11の形状は立体的な形状に限らず、平面状であってもよい。例えば、図3に示すように、平板状のベース部11上に、断面逆T字状に形成されたリブ12がフランジ部12bにおいて結合された構成としてもよい。   The shape of the base portion 11 is not limited to a three-dimensional shape, and may be a planar shape. For example, as shown in FIG. 3, it is good also as a structure by which the rib 12 formed in the cross-sectional inverted T shape on the flat base part 11 was couple | bonded in the flange part 12b.

○ リブ12は、フランジ部12bの端面が平坦に限らず、例えば、図4に示すように、フランジ部12bが段差部16を有する状態に形成されていてもよい。フランジ部12bの端面が平坦な場合、隣り合うリブ12のフランジ部12bの突き合わせ面がベース部11に垂直な一平面上に位置する状態になり、リブ12を構成する繊維でその平面を跨ぐように配列されたものがない。一方、フランジ部12bが段差部16を有する状態に形成された場合は、隣り合うリブ12のフランジ部12bの突き合わせ面がずれた状態となり、任意の位置においてベース部11に垂直な一平面を跨ぐように配列された繊維が必ず存在する状態となる。そのため、三次元繊維構造体10を強化基材として繊維強化複合材を形成した際に、フランジ部12bの端面が平坦な場合に比べて、フランジ部12bの突き合わせ位置と対応する箇所における曲げ強度が高くなる。   The rib 12 is not limited to a flat end surface of the flange portion 12b. For example, the rib 12b may be formed in a state in which the flange portion 12b has a stepped portion 16, as shown in FIG. When the end surface of the flange portion 12b is flat, the abutting surface of the flange portion 12b of the adjacent rib 12 is positioned on a single plane perpendicular to the base portion 11 so that the fibers constituting the rib 12 straddle the plane. There is nothing arranged in. On the other hand, when the flange portion 12b is formed in a state having the stepped portion 16, the abutting surface of the flange portion 12b of the adjacent rib 12 is shifted, and straddles one plane perpendicular to the base portion 11 at an arbitrary position. Thus, there is always a state in which fibers arranged as described above exist. Therefore, when a fiber reinforced composite material is formed using the three-dimensional fiber structure 10 as a reinforced base material, the bending strength at a location corresponding to the butt position of the flange portion 12b is higher than when the end surface of the flange portion 12b is flat. Get higher.

○ リブ12の形状は、リブ本体12aの端部両側にフランジ部12bを有する略I字状や逆T字状に限らない。例えば、図5に示すように、略U字状、即ち一対のリブ本体12aの端部が1つのフランジ部12bで連結された形状であってもよい。このリブ12を使用する場合は、ハンドリングが容易な数の隣り合うリブ12のリブ本体12a同士を予め厚さ方向糸z結合した物をベース部11上に配置して、ベース部11とフランジ部12bとを厚さ方向糸zで結合してもよい。しかし、リブ12をフランジ部12bにおいてベース部11に厚さ方向糸zで結合した後、リブ本体12a同士を厚さ方向糸zで結合してもよい。   The shape of the rib 12 is not limited to a substantially I shape or an inverted T shape having the flange portions 12b on both ends of the rib body 12a. For example, as shown in FIG. 5, it may be substantially U-shaped, that is, a shape in which the ends of the pair of rib main bodies 12a are connected by one flange portion 12b. When this rib 12 is used, a structure in which the rib bodies 12a of a number of adjacent ribs 12 that are easy to handle are joined in advance in the thickness direction thread z is arranged on the base portion 11, and the base portion 11 and the flange portion are arranged. 12b may be coupled with a thickness direction thread z. However, after the rib 12 is joined to the base portion 11 in the flange portion 12b with the thickness direction thread z, the rib bodies 12a may be joined with the thickness direction yarn z.

○ リブ12の形状はベース部11から垂直に突出する部分(リブ本体12a)が単純な平板に限らず、先端側が屈曲した形状であってもよい。
○ リブ12の厚さは、フランジ部12b及びベース部11が重なった部分と同じ厚さに限らない。リブ12及びベース部11に要求される強度によって、リブ12の厚さをフランジ部12b及びベース部11が重なった部分の厚さに比べて厚くしたり、薄くしたりしてもよい。
The shape of the rib 12 is not limited to a simple flat plate with a portion (rib main body 12a) protruding vertically from the base portion 11, but may be a shape in which the tip side is bent.
The thickness of the rib 12 is not limited to the same thickness as the portion where the flange portion 12b and the base portion 11 overlap. Depending on the strength required for the rib 12 and the base portion 11, the thickness of the rib 12 may be made thicker or thinner than the thickness of the portion where the flange portion 12b and the base portion 11 overlap.

○ 三次元繊維構造体10を構成するベース部11及びリブ12を構成する積層繊維層15は繊維の配列角度が0度、90度、±45度の4軸配向に限らず、少なくとも2軸配向であればよい。例えば、配列角度が0度、60度及び−60度に配列した連続繊維で面内3軸配向としたり、配列角度が0度と90度の2軸配向としたりしてもよい。しかし、4軸配向の方が擬似等方性となるため好ましい。   ○ The base portion 11 constituting the three-dimensional fiber structure 10 and the laminated fiber layer 15 constituting the rib 12 are not limited to the four-axis orientation of the fiber arrangement angle of 0 degrees, 90 degrees, ± 45 degrees, but at least biaxial orientation If it is. For example, in-plane triaxial orientation may be used with continuous fibers arranged at 0, 60, and -60 degrees, or biaxial orientation at an arrangement angle of 0 degrees and 90 degrees. However, the 4-axis orientation is preferable because it becomes pseudo-isotropic.

○ 結合糸としての厚さ方向糸zは、抜け止め糸と共同で各繊維層14を締め付けるように配列されたものに限らない。例えば、特開平6−184906号公報に開示された繊維構造体のように、チェーンステッチ方式で厚さ方向糸z自身が抜け止め機能を果たすように各糸層を貫通して締め付ける構成としてもよい。また、針を用いて1本の結合糸(厚さ方向糸z)が積層繊維層15に一方の面から挿通され、他方の面で貫通位置を変えて折り返すように挿通されることを繰り返すステッチ糸であってもよい。   The thickness direction yarn z as the binding yarn is not limited to one arranged so as to tighten the fiber layers 14 together with the retaining yarn. For example, as in a fiber structure disclosed in Japanese Patent Laid-Open No. 6-184906, a structure may be used in which each thread layer is tightened through a chain stitch method so that the thickness direction thread z itself has a retaining function. . In addition, a stitch in which one binding thread (thickness direction thread z) is inserted into the laminated fiber layer 15 from one surface using a needle, and is repeatedly inserted through the other surface so as to be folded and changed. It may be a thread.

○ 結合糸(厚さ方向糸z)の挿入間隔(密度)は、目的とする複合材に要求される強度に対応して設定される。
○ 積層繊維層15は、配列角度が同じ連続繊維がそれぞれ一平面上に位置するように配列されて構成された繊維層14が積層された構成に限らず、繊維層14として織物が積層された構成であってもよい。織物としては、例えば、平織りの織物に限らず、二重織り等の多層織りで形成された織物を積層してもよい。この場合、連続繊維を配列した繊維層を積層して積層繊維層15を構成するより、積層繊維層15の形成を短時間で行うことができる。
The insertion interval (density) of the binding yarn (thickness direction yarn z) is set according to the strength required for the target composite material.
The laminated fiber layer 15 is not limited to a configuration in which the fiber layers 14 are arranged so that continuous fibers having the same arrangement angle are positioned on a single plane, and a woven fabric is laminated as the fiber layer 14. It may be a configuration. For example, the woven fabric is not limited to a plain woven fabric, and a woven fabric formed of a multi-layered weave such as a double weave may be laminated. In this case, the laminated fiber layer 15 can be formed in a shorter time than the laminated fiber layer 15 is formed by laminating fiber layers in which continuous fibers are arranged.

○ 繊維強化樹脂のマトリックス樹脂は熱硬化性樹脂に限らず、熱可塑性樹脂、例えば、ナイロンを使用しても良い。
以下の技術的思想(発明)は前記実施形態から把握できる。
The matrix resin of the fiber reinforced resin is not limited to a thermosetting resin, and a thermoplastic resin such as nylon may be used.
The following technical idea (invention) can be understood from the embodiment.

(1)請求項1〜請求項3のいずれか一項に記載の発明の三次元繊維構造体を強化基材とした繊維強化複合材。   (1) A fiber reinforced composite material using the three-dimensional fiber structure of the invention according to any one of claims 1 to 3 as a reinforced base material.

10…三次元繊維構造体、11…ベース部、11a…リブ取り付け面、12…リブ、12b…フランジ部、14…繊維層、15…積層繊維層、16…段差部。   DESCRIPTION OF SYMBOLS 10 ... Three-dimensional fiber structure, 11 ... Base part, 11a ... Rib attachment surface, 12 ... Rib, 12b ... Flange part, 14 ... Fiber layer, 15 ... Laminated fiber layer, 16 ... Step part.

Claims (3)

ベース部及び前記ベース部と直交するリブを有し、前記ベース部及び前記リブは繊維層が積層された少なくとも2軸配向となる積層繊維層が結合糸で結合されて構成された三次元繊維構造体であって、
前記リブはフランジ部を有し、前記フランジ部が前記ベース部のリブ取り付け面を全て覆った状態で、かつ前記ベース部と前記フランジ部とが重なった部分の厚さが一定の状態で、前記結合糸により結合されていることを特徴とする三次元繊維構造体。
A three-dimensional fiber structure comprising a base portion and a rib perpendicular to the base portion, wherein the base portion and the rib are formed by joining at least biaxially oriented laminated fiber layers laminated with fiber layers. Body,
The rib has a flange portion, the flange portion covers the entire rib mounting surface of the base portion, and the thickness of the portion where the base portion and the flange portion overlap is constant, A three-dimensional fiber structure characterized by being bound by a binding yarn.
前記リブの厚さは、前記フランジ部及び前記ベース部が重なった部分と同じ厚さに形成されている請求項1に記載の三次元繊維構造体。   2. The three-dimensional fiber structure according to claim 1, wherein the rib is formed to have the same thickness as a portion where the flange portion and the base portion overlap each other. 前記リブは、前記フランジ部の端面に段差部を有する請求項1又は請求項2に記載の三次元繊維構造体。   The three-dimensional fiber structure according to claim 1 or 2, wherein the rib has a stepped portion on an end surface of the flange portion.
JP2012234628A 2012-10-24 2012-10-24 Three-dimensional fiber structure Expired - Fee Related JP5983305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234628A JP5983305B2 (en) 2012-10-24 2012-10-24 Three-dimensional fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234628A JP5983305B2 (en) 2012-10-24 2012-10-24 Three-dimensional fiber structure

Publications (2)

Publication Number Publication Date
JP2014084543A true JP2014084543A (en) 2014-05-12
JP5983305B2 JP5983305B2 (en) 2016-08-31

Family

ID=50787896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234628A Expired - Fee Related JP5983305B2 (en) 2012-10-24 2012-10-24 Three-dimensional fiber structure

Country Status (1)

Country Link
JP (1) JP5983305B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117160A (en) * 1981-12-28 1983-07-12 東レ株式会社 Beam material
JPS63120153A (en) * 1986-08-01 1988-05-24 ブロシェ−ル・ソシエテ・アノニム Reinforcing laminated material for multidimensional fabric structure, and its produuction and loom
US4966802A (en) * 1985-05-10 1990-10-30 The Boeing Company Composites made of fiber reinforced resin elements joined by adhesive
JPH03119138A (en) * 1989-09-29 1991-05-21 Shikishima Kanbasu Kk Fiber reinforced composite material
JPH04289243A (en) * 1991-03-15 1992-10-14 Toyota Autom Loom Works Ltd Three-dimensional woven fabric and production thereof
US20040183227A1 (en) * 2003-03-20 2004-09-23 Alexander Velicki Molding process and apparatus for producing unified composite structures
JP2006163377A (en) * 2004-11-11 2006-06-22 Nitto Denko Corp Combination optical film, laminated combination optical film and image display device
JP2007253347A (en) * 2006-03-20 2007-10-04 Ricoh Co Ltd Joining member manufacturing method, endless joining belt, fixing unit, intermediate transfer unit, image forming device, and sheet joining apparatus
JP2010110985A (en) * 2008-11-06 2010-05-20 Toyota Motor Corp Method for welding resin, and tank manufacturing method using the method
US20110315307A1 (en) * 2010-06-18 2011-12-29 Perez Pastor Augusto Method of manufacturing "t" shaped stringers for an aircraft and curing tool used thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58117160A (en) * 1981-12-28 1983-07-12 東レ株式会社 Beam material
US4966802A (en) * 1985-05-10 1990-10-30 The Boeing Company Composites made of fiber reinforced resin elements joined by adhesive
JPS63120153A (en) * 1986-08-01 1988-05-24 ブロシェ−ル・ソシエテ・アノニム Reinforcing laminated material for multidimensional fabric structure, and its produuction and loom
JPH03119138A (en) * 1989-09-29 1991-05-21 Shikishima Kanbasu Kk Fiber reinforced composite material
JPH04289243A (en) * 1991-03-15 1992-10-14 Toyota Autom Loom Works Ltd Three-dimensional woven fabric and production thereof
US20040183227A1 (en) * 2003-03-20 2004-09-23 Alexander Velicki Molding process and apparatus for producing unified composite structures
JP2006163377A (en) * 2004-11-11 2006-06-22 Nitto Denko Corp Combination optical film, laminated combination optical film and image display device
JP2007253347A (en) * 2006-03-20 2007-10-04 Ricoh Co Ltd Joining member manufacturing method, endless joining belt, fixing unit, intermediate transfer unit, image forming device, and sheet joining apparatus
JP2010110985A (en) * 2008-11-06 2010-05-20 Toyota Motor Corp Method for welding resin, and tank manufacturing method using the method
US20110315307A1 (en) * 2010-06-18 2011-12-29 Perez Pastor Augusto Method of manufacturing "t" shaped stringers for an aircraft and curing tool used thereof

Also Published As

Publication number Publication date
JP5983305B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP4944790B2 (en) Reinforced panel woven in three dimensions
KR101219878B1 (en) Manufacturing method of sandwich panels with truss type cores
ES2636446T3 (en) Composite multiaxial laminate structures
CA2746636C (en) A composite laminate structure
AU746077B2 (en) New and useful improvements in fiber-reinforced composite materials structures and methods of making same
US20120276320A1 (en) Bonded and stitched composite structure
WO2014030632A1 (en) Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
EP3533599A1 (en) Composite panel with reinforcing pins
WO2014030631A1 (en) Three-dimensional fiber-reinforced composite material
US9840062B2 (en) Fiber-reinforced composite material
JP5983305B2 (en) Three-dimensional fiber structure
WO2016084575A1 (en) Fibrous structure and fiber-reinforced composite material
JP5765959B2 (en) FRP structure
US20210180221A1 (en) Fiber construct, fiber-reinforced composite material, and method for manufacturing these
WO2021187390A1 (en) Connection member for vehicle structure
JPH03119138A (en) Fiber reinforced composite material
JP2015080944A (en) Fiber-reinforced resin
JP7287162B2 (en) Fiber structures and fiber reinforced composites
WO2013038900A1 (en) Composite material structural body and method for producing same
JP5644755B2 (en) Textile substrate and fiber reinforced composite material
JP2014213521A (en) Three-dimensional fiber-reinforced composite material
JP5907042B2 (en) Three-dimensional fiber structure
JP4063175B2 (en) Three-dimensional fiber conjugates and composites
JP2014004735A (en) Fiber-reinforced composite material and method of producing fiber-reinforced composite material
WO2017082066A1 (en) Fiber structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5983305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees