JP2015080944A - Fiber-reinforced resin - Google Patents

Fiber-reinforced resin Download PDF

Info

Publication number
JP2015080944A
JP2015080944A JP2013221616A JP2013221616A JP2015080944A JP 2015080944 A JP2015080944 A JP 2015080944A JP 2013221616 A JP2013221616 A JP 2013221616A JP 2013221616 A JP2013221616 A JP 2013221616A JP 2015080944 A JP2015080944 A JP 2015080944A
Authority
JP
Japan
Prior art keywords
fiber
yarn
resin
thickness direction
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013221616A
Other languages
Japanese (ja)
Inventor
真巳 神山
Masami Kamiyama
真巳 神山
原田 亮
Akira Harada
亮 原田
神谷 隆太
Ryuta Kamiya
隆太 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2013221616A priority Critical patent/JP2015080944A/en
Publication of JP2015080944A publication Critical patent/JP2015080944A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To restrain the occurrence of a crack on the periphery of joining yarn of a fiber-reinforced resin with a three-dimensional fiber structure as a reinforcement material, even if inorganic substance system reinforced-fiber such as carbon fiber is used for the whole of the joining yarn and in-plane yarn of the three-dimensional fiber structure.SOLUTION: A fiber-reinforced resin 10 is a fiber-reinforced resin of forming a resin as a matrix, with a three-dimensional fiber structure 11 constituted by joining a laminate fiber layer 13 by yarn (z) in the thickness direction as the joining yarn arranged in the crossing direction with respective fiber layers 12, as the reinforcement material. The respective fiber layers 12 are respectively arranged with any of in-plane yarn 12a-12d so that the laminate fiber layer 13 becomes at least biaxial orientation. In the fiber-reinforced-resin 10, metal powder 18 exists only in a matrix resin 15 around the yarn (z) in the thickness direction.

Description

本発明は、繊維強化樹脂に係り、詳しくは少なくとも2軸配向となるように面内糸が配列された積層繊維層が、各繊維層と交差する方向に配列された結合糸で結合されて構成された三次元繊維構造体を強化材とした繊維強化樹脂に関する。   The present invention relates to a fiber reinforced resin, and more specifically, a laminated fiber layer in which in-plane yarns are arranged so as to be at least biaxially oriented and bonded with bonding yarns arranged in a direction crossing each fiber layer. The present invention relates to a fiber reinforced resin using a three-dimensional fiber structure as a reinforcing material.

繊維強化樹脂は軽量の構造材料として広く使用されている。繊維強化樹脂用の強化材として三次元織物(三次元繊維構造体)がある。この三次元織物を強化材として、樹脂をマトリックスとした繊維強化樹脂は航空機、自動車、船舶あるいは一般産業機器の構造用部材として用いられている。この繊維強化樹脂は、織布や不織布等の強化繊維に樹脂を含浸硬化して形成した繊維強化樹脂と異なり、基準面内に配列された強化繊維(面内糸)と交差する方向に配列される結合糸(面外方向糸)を有する三次元織物を強化基材としている。そのため、結合糸を有さない繊維強化樹脂に比較して、高い面外方向強度を持つ反面、結合糸の周辺でクラックが発生しやすいという品質課題がある。   Fiber reinforced resins are widely used as lightweight structural materials. As a reinforcing material for fiber reinforced resin, there is a three-dimensional fabric (three-dimensional fiber structure). A fiber reinforced resin using this three-dimensional woven fabric as a reinforcing material and a resin as a matrix is used as a structural member for aircraft, automobiles, ships, or general industrial equipment. This fiber reinforced resin is arranged in a direction intersecting with the reinforcing fibers (in-plane threads) arranged in the reference plane, unlike the fiber reinforced resin formed by impregnating and curing the reinforced fibers such as woven fabric and nonwoven fabric. A three-dimensional woven fabric having a binding yarn (out-of-plane direction yarn) is used as a reinforcing base material. Therefore, compared with fiber reinforced resin which does not have a binding yarn, although it has high out-of-plane strength, there is a quality problem that cracks are likely to occur around the binding yarn.

この課題に対応するため、積層された面内糸の複数の層が有機繊維からなる縫い糸により縫い合わされた三次元織物に樹脂を含浸硬化してなる三次元繊維強化樹脂複合材が提案されている(特許文献1参照)。特許文献1の三次元繊維強化樹脂複合材は、図3に示すように、複数の経糸51と複数の緯糸52からなる面内糸53と面内糸53の基準面に対して直交する複数の結合糸(縫い糸)54と、結合糸54を固定する耳糸55とから形成された平板状三次元織布56及びマトリックス樹脂57で構成されている。結合糸54は1000デニール以下の太さのものが使用される。   In order to cope with this problem, a three-dimensional fiber reinforced resin composite material is proposed in which a resin is impregnated and cured in a three-dimensional fabric in which a plurality of layers of laminated in-plane yarns are stitched together with sewing threads made of organic fibers. (See Patent Document 1). As shown in FIG. 3, the three-dimensional fiber reinforced resin composite material of Patent Literature 1 includes a plurality of warp threads 51 and a plurality of weft yarns 52 and a plurality of plane yarns orthogonal to a reference plane of the in-plane yarns 53. It is composed of a plate-like three-dimensional woven fabric 56 and a matrix resin 57 formed from a binding thread (sewing thread) 54 and an ear thread 55 for fixing the binding thread 54. The binding yarn 54 has a thickness of 1000 denier or less.

特許文献1の3次元繊維強化樹脂複合材は、縫い糸として炭素繊維やガラス繊維等の無機物系強化繊維を用いる代わりに、有機繊維を用いることにより、縫い糸周辺に生じるクラックの発生を抑えている。   The three-dimensional fiber reinforced resin composite material of Patent Document 1 suppresses the generation of cracks around the sewing thread by using organic fibers instead of using inorganic reinforcing fibers such as carbon fibers and glass fibers as sewing threads.

特開2007−152672号公報JP 2007-152672 A

特許文献1の方法では、三次元繊維構造体を構成する結合糸(縫い糸)として有機繊維を使用することが必須となる。しかし、三次元繊維構造体を構成する面内糸及び結合糸の全てに、炭素繊維等の無機物系強化繊維を使用したいという要望もある。   In the method of Patent Document 1, it is essential to use an organic fiber as a binding thread (sewing thread) constituting the three-dimensional fiber structure. However, there is a desire to use inorganic reinforcing fibers such as carbon fibers for all of the in-plane yarns and the binding yarns constituting the three-dimensional fiber structure.

本発明は、前記の問題に鑑みてなされたものであって、その目的は、三次元繊維構造体の結合糸や面内糸の全てに炭素繊維等の無機物系強化繊維を使用しても、三次元繊維構造体を強化材とした繊維強化樹脂の結合糸の周辺でのクラックの発生を抑制することができる繊維強化樹脂を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to use inorganic reinforcing fibers such as carbon fibers for all the binding yarns and in-plane yarns of the three-dimensional fiber structure, An object of the present invention is to provide a fiber reinforced resin capable of suppressing the occurrence of cracks around the binding yarn of a fiber reinforced resin using a three-dimensional fiber structure as a reinforcing material.

上記課題を解決する繊維強化樹脂は、少なくとも2軸配向となるように面内糸が配列された積層繊維層が、各繊維層と交差する方向に配列された結合糸で結合されて構成された三次元繊維構造体を強化材とし、樹脂をマトリックスとした繊維強化樹脂であって、前記結合糸の周囲のマトリックス樹脂にのみ、金属粉が存在する。ここで、「面内糸」及び「結合糸」は、繊維に撚りを掛けられた糸に限らず、繊維が撚りを掛けられずに引き揃えられた繊維束をも意味する。   The fiber reinforced resin that solves the above problems is configured by bonding laminated fiber layers in which in-plane yarns are arranged so as to be at least biaxially oriented, with bonding yarns arranged in a direction intersecting with each fiber layer. A fiber reinforced resin using a three-dimensional fiber structure as a reinforcing material and a resin as a matrix, and metal powder is present only in the matrix resin around the binding yarn. Here, the “in-plane yarn” and the “binding yarn” mean not only a yarn in which the fibers are twisted but also a fiber bundle in which the fibers are aligned without being twisted.

この構成によれば、三次元繊維構造体に未硬化のマトリックス樹脂を含浸させた状態でマトリックス樹脂を硬化させて繊維強化樹脂を製造する際、誘導加熱を行うことにより、マトリックス樹脂が局所的に多く存在する部分となる結合糸の周囲に存在するマトリックス樹脂が、金属粉の発熱により急速加熱されて他の部分より先に硬化する。そのため、金属粉の周囲のマトリックス樹脂の硬化収縮が起きても、収縮により体積が小さくなろうとする部分にその周囲の未硬化のマトリックス樹脂が補充される。その結果、結合糸としてマトリックス樹脂に比べて体積変化の極めて小さな炭素繊維を使用した場合でも、体積変化の小さな結合糸とマトリックス樹脂との界面に加わる応力が小さくなり、結合糸の周辺でのクラックの発生が抑制される。したがって、三次元繊維構造体の結合糸や面内糸の全てに炭素繊維等の無機物系強化繊維を使用しても、三次元繊維構造体を強化材とした繊維強化樹脂の結合糸の周辺でのクラックの発生を抑制することができる。   According to this configuration, when a fiber reinforced resin is produced by curing the matrix resin in a state where the three-dimensional fiber structure is impregnated with an uncured matrix resin, the matrix resin is locally generated by performing induction heating. The matrix resin present around the binding yarn, which is a large part, is rapidly heated by the exothermic heat of the metal powder and hardens before the other part. Therefore, even if the shrinkage of the matrix resin around the metal powder occurs, the surrounding uncured matrix resin is replenished to the portion where the volume is reduced due to the shrinkage. As a result, even when carbon fibers with a very small volume change compared to the matrix resin are used as the binding yarn, the stress applied to the interface between the binding yarn with a small volume change and the matrix resin is reduced, and cracks around the binding yarn occur. Is suppressed. Accordingly, even if inorganic reinforcing fibers such as carbon fibers are used for all the binding yarns and in-plane yarns of the three-dimensional fiber structure, around the fiber-reinforced resin binding yarn using the three-dimensional fiber structure as a reinforcing material. Generation of cracks can be suppressed.

前記結合糸は、前記積層繊維層の厚さ方向の一方の面から前記積層繊維層に挿入され、かつ前記積層繊維層の他方の面の外側に配列された抜け止め糸と係合して折り返すように配列され、前記抜け止め糸は、前記結合糸の配列面と交差する方向に配列されており、前記結合糸の周囲とは、前記結合糸が前記積層繊維層の前記一方の面側で二股に配列される部分であることが好ましい。   The binding yarn is inserted into the laminated fiber layer from one surface in the thickness direction of the laminated fiber layer and is folded back by engaging with a retaining yarn arranged outside the other surface of the laminated fiber layer. The retaining yarns are arranged in a direction crossing the arrangement surface of the binding yarns, and the periphery of the binding yarns is the one side of the laminated fiber layer where the binding yarns are It is preferable that the portion is arranged in a bifurcated manner.

結合糸が積層繊維層にその一方の面側から挿入され、他方の面の外側に配列された抜け止め糸(所謂耳糸)と係合して折り返すように配列された場合、結合糸は一方の面側で二股に配列される。そして、その部分(二股部)は樹脂含浸時に樹脂溜まりとなり、しかも、結合糸は二股部が拡がる方向に応力を受けるため、マトリックス樹脂の硬化収縮時にクラックが発生し易い部分となる。しかし、二股部に金属粉が存在することにより、クラックの発生が抑制される。   When the binding yarn is inserted into the laminated fiber layer from one surface side and arranged so as to be folded back by engaging with a retaining yarn (so-called ear yarn) arranged outside the other surface, It is arranged in two forks on the surface side. Then, the portion (bifurcated portion) becomes a resin pool when impregnated with the resin, and the binding yarn is stressed in the direction in which the bifurcated portion expands, so that a crack is likely to occur when the matrix resin is cured and contracted. However, the presence of metal powder at the bifurcated portion suppresses the generation of cracks.

前記結合糸の周囲とは、前記結合糸と隣接する前記面内糸との間であることが好ましい。積層繊維層の結合糸が挿入された箇所の結合糸と面内糸との間には、局所的にマトリックス樹脂が多くなる部分が存在する。そのため、その部分に金属粉が存在することにより、クラックの発生が抑制される。   The periphery of the binding yarn is preferably between the binding yarn and the adjacent in-plane yarn. There is a portion where the matrix resin locally increases between the binding yarn and the in-plane yarn where the binding yarn of the laminated fiber layer is inserted. Therefore, the occurrence of cracks is suppressed by the presence of the metal powder in that portion.

本発明によれば、三次元繊維構造体の結合糸や面内糸の全てに炭素繊維等の無機物系強化繊維を使用しても、三次元繊維構造体を強化材とした繊維強化樹脂の結合糸の周辺でのクラックの発生を抑制することができる。   According to the present invention, even when inorganic reinforcing fibers such as carbon fibers are used for all of the binding yarns and in-plane yarns of the three-dimensional fiber structure, the binding of the fiber reinforced resin using the three-dimensional fiber structure as a reinforcing material The occurrence of cracks around the yarn can be suppressed.

(a)は一実施形態の繊維強化樹脂の模式断面図、(b)は(a)の部分拡大断面図。(A) is a schematic cross section of the fiber reinforced resin of one Embodiment, (b) is the elements on larger scale of (a). 別の実施形態の繊維強化樹脂の模式断面図。The schematic cross section of the fiber reinforced resin of another embodiment. 従来技術の模式断面図。The schematic cross section of a prior art.

以下、本発明を具体化した一実施形態を図1にしたがって説明する。
図1(a)に示すように、繊維強化樹脂10は、三次元繊維構造体11を強化材とし、樹脂をマトリックスとした繊維強化樹脂である。三次元繊維構造体11は、面内糸12a,12b,12c,12dがそれぞれ配列された繊維層12が積層されて少なくとも2軸配向となる積層繊維層13が、各繊維層12と交差する方向に配列された結合糸としての厚さ方向糸zで結合されて構成されている。繊維層12は、例えば、炭素繊維束が一方向に引き揃えられた一方向シート(UDシート)で構成されている。厚さ方向糸zは、例えば、炭素繊維束で構成されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIG.
As shown in FIG. 1A, the fiber reinforced resin 10 is a fiber reinforced resin using a three-dimensional fiber structure 11 as a reinforcing material and a resin as a matrix. The three-dimensional fiber structure 11 is a direction in which the fiber layers 12 in which the in-plane yarns 12a, 12b, 12c, and 12d are arranged are laminated and the laminated fiber layer 13 that is at least biaxially oriented intersects each fiber layer 12. Are joined by a thickness direction yarn z as a binding yarn arranged in a row. The fiber layer 12 is composed of, for example, a unidirectional sheet (UD sheet) in which carbon fiber bundles are aligned in one direction. The thickness direction thread z is composed of, for example, a carbon fiber bundle.

積層繊維層13は、配列角度0度の面内糸12aから成る繊維層12と、配列角度90度の面内糸12bから成る繊維層12と、配列角度45度の面内糸12cから成る繊維層12と、配列角度−45度の面内糸12dから成る繊維層12とが、所定数積層されて擬似等方性に構成されている。そして、積層繊維層13の厚さ方向の両面にそれぞれ配列角度45度の面内糸12cから成る繊維層12が配列されている。各面内糸12a,12b,12c,12dは三次元繊維構造体11の厚さ方向(図1(a)の上下方向)と直交する面内に配列される。なお、各面内糸12a,12b,12c,12dは撚りが掛かった糸ではなく、繊維が撚りを掛けられずに引き揃えられた連続繊維束で構成されている。   The laminated fiber layer 13 is a fiber layer 12 composed of an in-plane thread 12a having an arrangement angle of 0 degrees, a fiber layer 12 composed of an in-plane thread 12b having an array angle of 90 degrees, and a fiber comprising an in-plane thread 12c having an array angle of 45 degrees. A predetermined number of layers 12 and fiber layers 12 made of in-plane threads 12d having an arrangement angle of −45 degrees are laminated to form a quasi-isotropic property. And the fiber layer 12 which consists of the in-plane thread | yarn 12c of 45 degrees of arrangement | sequence angles is arranged on both surfaces of the thickness direction of the lamination | stacking fiber layer 13, respectively. The in-plane threads 12a, 12b, 12c, and 12d are arranged in a plane orthogonal to the thickness direction of the three-dimensional fiber structure 11 (vertical direction in FIG. 1A). Each of the in-plane yarns 12a, 12b, 12c, and 12d is not a twisted yarn but a continuous fiber bundle in which the fibers are aligned without being twisted.

厚さ方向糸zは、積層繊維層13の厚さ方向の一方の面から積層繊維層13に挿入され、かつ積層繊維層13の他方の面の外側に配列された抜け止め糸14と係合してループ状に折り返すように配列される部分と、積層繊維層13の他方の面側に沿って配列される部分とが交互に繰り返すように配列されている。   The thickness direction thread z is inserted into the laminated fiber layer 13 from one surface in the thickness direction of the laminated fiber layer 13 and is engaged with a retaining thread 14 arranged outside the other surface of the laminated fiber layer 13. Thus, the portions arranged so as to be folded in a loop and the portions arranged along the other surface side of the laminated fiber layer 13 are alternately arranged.

繊維強化樹脂10は、マトリックス樹脂15が、三次元繊維構造体11の内部だけでなく三次元繊維構造体11の外周面にも存在する。そのため、繊維強化樹脂10には、厚さ方向糸zのループ状の折り返し部が積層繊維層13の厚さ方向の一方の面から突出した部分の間と、厚さ方向糸zのループ状の折り返し部の内側と、厚さ方向糸zのループ状の折り返し部と反対側である根元部の二股部16の内側とに樹脂溜まり17が存在する。また、三次元繊維構造体11の内部にも外部に存在する樹脂溜まり17に比べて溜まり量は少ないが、内部における他の部分に比べて樹脂の量が多い樹脂溜まり17が存在する。三次元繊維構造体11の内部に存在する樹脂溜まり17の位置として平行に延びる厚さ方向糸zの周囲がある。   In the fiber reinforced resin 10, the matrix resin 15 exists not only inside the three-dimensional fiber structure 11 but also on the outer peripheral surface of the three-dimensional fiber structure 11. Therefore, the fiber reinforced resin 10 has a loop-shaped folded portion of the thickness direction yarn z between a portion in which the laminated fiber layer 13 protrudes from one surface in the thickness direction and a loop shape of the thickness direction yarn z. There is a resin reservoir 17 on the inner side of the folded portion and on the inner side of the bifurcated portion 16 of the root portion on the opposite side of the loop-shaped folded portion of the thickness direction thread z. In addition, there is a resin reservoir 17 in which the amount of resin is small in the interior of the three-dimensional fiber structure 11 as compared with the resin reservoir 17 existing outside, but the amount of resin is larger than that in other portions inside. There is a periphery of the thickness direction thread z extending in parallel as a position of the resin reservoir 17 existing inside the three-dimensional fiber structure 11.

図1(b)に示すように、厚さ方向糸zの表面には金属粉18が付着している。そのため、繊維強化樹脂10を構成するマトリックス樹脂15のうち、厚さ方向糸zの周囲の部分にのみ金属粉18が存在する。具体的には、厚さ方向糸zが積層繊維層13の一方の面側で二股に配列される部分である二股部16と、厚さ方向糸zの積層繊維層13内に折り返し状に挿入されて平行に延びる部分の厚さ方向糸zの間と、平行に延びる厚さ方向糸zと隣接する面内糸12a等との間に存在するマトリックス樹脂15の厚さ方向糸zの周囲に金属粉18が存在する。金属粉18として、例えば、鉄粉が使用される。なお、図1(a)では、金属粉18の図示を省略している。また、図1(a)において、図示の都合上、積層繊維層13内に折り返し状に挿入されて平行に延びる部分の厚さ方向糸zを完全に密着された状態で図示しているが、実際は、図1(b)に示すように、隙間が存在する。   As shown in FIG. 1B, metal powder 18 adheres to the surface of the thickness direction thread z. Therefore, the metal powder 18 exists only in the part around the thickness direction yarn z in the matrix resin 15 constituting the fiber reinforced resin 10. Specifically, the thickness direction thread z is inserted in a folded manner into the bifurcated portion 16 where the thickness direction thread z is bifurcated on one side of the laminated fiber layer 13 and the thickness direction thread z. Around the thickness direction yarn z of the matrix resin 15 existing between the thickness direction yarn z of the portion extending in parallel and between the thickness direction yarn z extending in parallel and the adjacent in-plane yarn 12a and the like. Metal powder 18 is present. For example, iron powder is used as the metal powder 18. In addition, illustration of the metal powder 18 is abbreviate | omitted in Fig.1 (a). Further, in FIG. 1 (a), for convenience of illustration, the thickness direction thread z of the portion that is inserted into the laminated fiber layer 13 in a folded shape and extends in parallel is shown in a state of being completely adhered, Actually, a gap exists as shown in FIG.

次に前記のように構成された繊維強化樹脂10の製造方法の一例を説明する。三次元繊維構造体11は、積層繊維層13に公知の方法、例えば特開平8−218249号公報に開示されている方法と基本的に同様の方法により厚さ方向糸zを挿入する。即ち、積層繊維層13の厚さ方向に、先端に備えた孔に厚さ方向糸zを掛止した複数本の挿入針を、各挿入針の孔が積層繊維層13を貫通するまで挿入した後、各挿入針をわずかに後退させて厚さ方向糸zがループ状になった部分に抜け止め糸14を挿入する。その状態で挿入針を引き戻し、抜け止め糸14に張力を加えた状態で、厚さ方向糸zにより抜け止め糸14を締め付けて各繊維層12を結合する。以下同様に、挿入針を所定ピッチ移動した位置で同様に挿入針の挿入動作と、抜け止め糸の挿入動作と、挿入針の後退動作を行う。   Next, an example of the manufacturing method of the fiber reinforced resin 10 comprised as mentioned above is demonstrated. In the three-dimensional fiber structure 11, the thickness direction yarn z is inserted into the laminated fiber layer 13 by a known method, for example, a method basically similar to the method disclosed in JP-A-8-218249. That is, in the thickness direction of the laminated fiber layer 13, a plurality of insertion needles in which the thickness direction thread z is hooked in the hole provided at the tip are inserted until the holes of each insertion needle penetrate the laminated fiber layer 13. Thereafter, each insertion needle is slightly retracted, and the retaining thread 14 is inserted into the portion where the thickness direction thread z is looped. In this state, the insertion needle is pulled back, and with the tension applied to the retaining thread 14, the retaining thread 14 is tightened by the thickness direction thread z to bond the fiber layers 12. Similarly, the insertion needle insertion operation, the retaining thread insertion operation, and the insertion needle retraction operation are similarly performed at the position where the insertion needle has been moved by a predetermined pitch.

厚さ方向糸zに張力を加えてループ状に折り返した部分を引き戻すとともに、抜け止め糸14により積層繊維層13に圧縮力を加える際、厚さ方向糸zには折り返し状に配列された根元部に対して、2本で平行に配列された厚さ方向糸zの間隔を拡げる方向の力が加わる。そのため、厚さ方向糸zの根元部の間隔が拡がり、積層繊維層13の内部に平行に存在する厚さ方向糸zの部分の間隔も多少拡がる。   When tension is applied to the thickness direction thread z to pull back the looped portion, and the compression force is applied to the laminated fiber layer 13 by the retaining thread 14, the thickness direction thread z has roots arranged in a folded shape. A force is applied to the portion in the direction of expanding the interval between the two thickness direction threads z arranged in parallel with each other. Therefore, the interval between the root portions of the thickness direction yarn z is increased, and the interval between the portions of the thickness direction yarn z existing in parallel in the laminated fiber layer 13 is also slightly increased.

得られた三次元繊維構造体11に、樹脂の含浸、硬化を行って繊維強化樹脂10が製造される。樹脂の含浸、硬化には、例えば、レジントランスファーモールディング(RTM)法が採用される。RTM法では、樹脂含浸用型内に三次元繊維構造体11を配置した状態で、型内に液状の熱硬化性樹脂を注入し、加熱硬化して繊維強化樹脂10を得る。熱硬化性樹脂として、例えばエポキシ樹脂が使用される。   The obtained three-dimensional fiber structure 11 is impregnated and cured with resin to produce a fiber reinforced resin 10. For resin impregnation and curing, for example, a resin transfer molding (RTM) method is employed. In the RTM method, in a state where the three-dimensional fiber structure 11 is arranged in a resin impregnation mold, a liquid thermosetting resin is injected into the mold, and is heated and cured to obtain the fiber reinforced resin 10. For example, an epoxy resin is used as the thermosetting resin.

金属粉18を樹脂溜まり17となる箇所の厚さ方向糸zの周囲に存在させる方法としては、例えば、厚さ方向糸zで積層繊維層13の各繊維層12を結合する際に、金属粉18が表面に付着された厚さ方向糸zを使用して三次元繊維構造体11を製造する。金属粉18が表面に付着された厚さ方向糸zとしては、例えば、厚さ方向糸zの表面に直接金属粉18を振りかけて付着させたものや、未硬化樹脂が含浸された厚さ方向糸zの表面に金属粉18を付着させたものや、あるいは金属粉18が分散された未硬化樹脂を含浸させた厚さ方向糸zが使用される。そして、厚さ方向糸zの二股部16には、その三次元繊維構造体11を製造した後、さらに金属粉18を付着させてもよい。   As a method for causing the metal powder 18 to exist around the thickness direction thread z at the location that becomes the resin reservoir 17, for example, when the fiber layers 12 of the laminated fiber layer 13 are bonded with the thickness direction thread z, the metal powder 18 is used. A three-dimensional fiber structure 11 is manufactured using the thickness direction thread z 18 attached to the surface. Examples of the thickness direction yarn z with the metal powder 18 adhered to the surface include, for example, those in which the metal powder 18 is directly sprinkled on the surface of the thickness direction yarn z, or the thickness direction impregnated with uncured resin. Thickness direction yarn z in which metal powder 18 is adhered to the surface of yarn z or impregnated with uncured resin in which metal powder 18 is dispersed is used. And after manufacturing the three-dimensional fiber structure 11, you may make the metal powder 18 adhere to the forked part 16 of the thickness direction thread | z.

三次元繊維構造体11に未硬化のマトリックス樹脂15を含浸させた状態でマトリックス樹脂15を硬化させて繊維強化樹脂10を製造する際、通常の加熱に加えて誘導加熱を行うことにより金属粉18が発熱し、金属粉18の周囲に存在するマトリックス樹脂15が急速加熱されて他の部分より先に硬化する。そのため、金属粉18が付着した厚さ方向糸zの周囲のマトリックス樹脂15は、周りのマトリックス樹脂15より先に硬化収縮する。しかし、その周囲の未硬化のマトリックス樹脂15は流動性を保っているため、その硬化部分に残留応力は発生しない。また、マトリックス樹脂15が加圧された状態で樹脂硬化が行われるため、金属粉18の周囲のマトリックス樹脂15の硬化収縮が他の部分より先に起きても、収縮により体積が小さくなろうとする部分にその周囲の未硬化のマトリックス樹脂15が補充される。その結果、厚さ方向糸zとしてマトリックス樹脂15に比べて体積変化の極めて小さな炭素繊維を使用した場合でも、体積変化の小さな厚さ方向糸zと、マトリックス樹脂15との界面に加わる応力が小さくなり、厚さ方向糸zとマトリックス樹脂15との界面にクラックが発生することが抑制される。   When the fiber reinforced resin 10 is produced by curing the matrix resin 15 in a state where the three-dimensional fiber structure 11 is impregnated with the uncured matrix resin 15, the metal powder 18 is obtained by performing induction heating in addition to normal heating. The matrix resin 15 existing around the metal powder 18 is rapidly heated and hardened before other portions. Therefore, the matrix resin 15 around the thickness direction thread z to which the metal powder 18 is attached is cured and contracted before the surrounding matrix resin 15. However, since the surrounding uncured matrix resin 15 maintains fluidity, no residual stress is generated in the cured portion. Further, since the resin curing is performed in a state where the matrix resin 15 is pressurized, even if the curing shrinkage of the matrix resin 15 around the metal powder 18 occurs before other portions, the volume tends to be reduced due to the shrinkage. The portion is replenished with surrounding uncured matrix resin 15. As a result, even when carbon fibers having a very small volume change compared to the matrix resin 15 are used as the thickness direction thread z, the stress applied to the interface between the thickness direction thread z having a small volume change and the matrix resin 15 is small. Thus, the occurrence of cracks at the interface between the thickness direction yarn z and the matrix resin 15 is suppressed.

樹脂溜まり17以外の部分である三次元繊維構造体11の内部である高Vfの部分、即ち樹脂密度の低い箇所でもマトリックス樹脂15の硬化収縮は起こるが、広範囲で起こるため、局所的な応力の過負荷がかかり難くなる。   Curing shrinkage of the matrix resin 15 occurs in the high Vf portion inside the three-dimensional fiber structure 11, which is a portion other than the resin reservoir 17, that is, in a portion where the resin density is low. It becomes difficult to be overloaded.

この実施形態によれば、以下に示す効果を得ることができる。
(1)繊維強化樹脂10は、少なくとも2軸配向となるように面内糸12a,12b,12c,12dが配列された積層繊維層13が、各繊維層12と交差する方向に配列された厚さ方向糸z(結合糸)で結合されて構成された三次元繊維構造体11を強化材とし、樹脂をマトリックスとした繊維強化樹脂である。そして、厚さ方向糸zの周囲のマトリックス樹脂15にのみ、金属粉18が存在する。繊維強化樹脂10を製造する際、誘導加熱を行うことにより、マトリックス樹脂15が局所的に多く存在する部分となる厚さ方向糸zの周囲に存在するマトリックス樹脂15が、金属粉18の発熱により急速加熱されて他の部分より先に硬化する。そのため、金属粉18の周囲のマトリックス樹脂15の硬化収縮が起きても、収縮により体積が小さくなろうとする部分にその周囲の未硬化樹脂が補充される。その結果、厚さ方向糸zとしてマトリックス樹脂15に比べて体積変化の極めて小さな炭素繊維を使用した場合でも、体積変化の小さな厚さ方向糸zとマトリックス樹脂15との界面に加わる応力が小さくなる。したがって、三次元繊維構造体11の厚さ方向糸zや面内糸12a,12b,12c,12dの全てに炭素繊維等の無機物系強化繊維を使用しても、三次元繊維構造体11を強化材とした繊維強化樹脂10の結合糸の周辺でのクラックの発生を抑制することができる。
According to this embodiment, the following effects can be obtained.
(1) The fiber reinforced resin 10 has a thickness in which the laminated fiber layers 13 in which the in-plane yarns 12a, 12b, 12c, and 12d are arranged so as to be at least biaxially oriented are arranged in a direction intersecting each fiber layer 12. It is a fiber reinforced resin in which a three-dimensional fiber structure 11 constituted by being bonded by a longitudinal thread z (binding yarn) is used as a reinforcing material and a resin is used as a matrix. The metal powder 18 exists only in the matrix resin 15 around the thickness direction thread z. When the fiber reinforced resin 10 is manufactured, by performing induction heating, the matrix resin 15 existing around the thickness direction yarn z, which is a portion where the matrix resin 15 is locally present, is generated due to the heat generated by the metal powder 18. Rapidly heated and hardened before other parts. Therefore, even if the curing shrinkage of the matrix resin 15 around the metal powder 18 occurs, the surrounding uncured resin is replenished to the portion whose volume is to be reduced by the shrinkage. As a result, even when a carbon fiber having a very small volume change compared to the matrix resin 15 is used as the thickness direction thread z, the stress applied to the interface between the thickness direction thread z and the matrix resin 15 having a small volume change is reduced. . Therefore, even if inorganic reinforcing fibers such as carbon fibers are used for the thickness direction yarn z and the in-plane yarns 12a, 12b, 12c, and 12d of the three-dimensional fiber structure 11, the three-dimensional fiber structure 11 is reinforced. The generation of cracks around the binding yarn of the fiber reinforced resin 10 used as a material can be suppressed.

(2)結合糸としての厚さ方向糸zは、積層繊維層13の厚さ方向の一方の面から積層繊維層13に挿入され、かつ積層繊維層13の他方の面の外側に配列された抜け止め糸14と係合して折り返すように配列され、抜け止め糸14は、厚さ方向糸zの配列面と交差する方向に配列されている。結合糸の周囲としての厚さ方向糸zの二股部16に金属粉18が存在する。二股部16の内側の部分は樹脂含浸時に樹脂溜まり17となり、しかも、厚さ方向糸zは二股部16が拡がる方向に応力を受けるため、マトリックス樹脂15の硬化収縮時にクラックが発生し易い部分となる。しかし、繊維強化樹脂10を製造する際、誘導加熱を行うことにより厚さ方向糸zの二股部16に存在する金属粉18が発熱して、厚さ方向糸zの近傍のマトリックス樹脂15が他の部分よりも先に急速硬化されることにより、二股部16におけるクラックの発生が抑制される。   (2) The thickness direction yarn z as the binding yarn is inserted into the laminated fiber layer 13 from one surface in the thickness direction of the laminated fiber layer 13 and arranged outside the other surface of the laminated fiber layer 13. The retainer yarns 14 are arranged so as to be folded back by engaging with the retainer yarns 14, and the retainer yarns 14 are arranged in a direction crossing the arrangement surface of the thickness direction yarns z. Metal powder 18 exists in the bifurcated portion 16 of the thickness direction yarn z as the periphery of the binding yarn. The inner portion of the bifurcated portion 16 becomes a resin reservoir 17 when impregnated with the resin, and the thickness direction thread z is subjected to stress in the direction in which the bifurcated portion 16 expands. Become. However, when the fiber reinforced resin 10 is manufactured, the induction heating causes the metal powder 18 present in the bifurcated portion 16 of the thickness direction yarn z to generate heat, and the matrix resin 15 in the vicinity of the thickness direction yarn z becomes other. By rapid curing prior to this portion, occurrence of cracks in the bifurcated portion 16 is suppressed.

(3)結合糸の周囲としての、厚さ方向糸zと隣接する面内糸12a,12b,12c,12dとの間に金属粉18が存在する。積層繊維層13の結合糸(厚さ方向糸z)が挿入された箇所の厚さ方向糸zと面内糸12a,12b,12c,12dとの間には、局所的にマトリックス樹脂15が多くなる部分が存在する。そのため、その部分に金属粉18が存在することにより、厚さ方向糸zと面内糸12a等との間に存在するマトリックス樹脂15でのクラックの発生が抑制される。   (3) The metal powder 18 exists between the thickness direction thread z and the adjacent in-plane threads 12a, 12b, 12c, and 12d as the periphery of the binding thread. Between the thickness direction yarn z and the in-plane yarns 12a, 12b, 12c and 12d where the binding yarn (thickness direction yarn z) of the laminated fiber layer 13 is inserted, there is a lot of matrix resin 15 locally. There is a part. Therefore, the presence of the metal powder 18 in the portion suppresses the occurrence of cracks in the matrix resin 15 existing between the thickness direction yarn z and the in-plane yarn 12a and the like.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 図2に示すように、結合糸20は、積層繊維層13の厚さ方向の一方の面から他方の面に向かって挿入され、他方の面の外側に沿って所定間隔延びた後、他方の面から一方の面に向かって挿入され、一方の面の外側に沿って所定間隔延びることを繰り返すように配置されてもよい。この場合、抜け止め糸14が不要となり、厚さ方向糸zの二股部16も無くなる。そのため、厚さ方向糸zの二股部16が存在する場合に比べて、結合糸20の周囲における樹脂溜まり17に起因するクラックの発生が生じ難くなる。
The embodiment is not limited to the above, and may be embodied as follows, for example.
As shown in FIG. 2, the binding yarn 20 is inserted from one surface in the thickness direction of the laminated fiber layer 13 toward the other surface, extends a predetermined distance along the outside of the other surface, and then the other It may be arranged so as to be repeatedly inserted from one surface toward one surface and extending a predetermined distance along the outside of the one surface. In this case, the retaining thread 14 is not necessary, and the bifurcated portion 16 of the thickness direction thread z is also eliminated. Therefore, compared to the case where the bifurcated portion 16 of the thickness direction thread z is present, the occurrence of cracks due to the resin reservoir 17 around the binding yarn 20 is less likely to occur.

○ 金属粉18は鉄粉に限らず、他の金属粉であってもよい。
○ 金属粉18を樹脂溜まり17となる箇所の厚さ方向糸zの周囲に存在させる方法として、三次元繊維構造体11を製造した後、厚さ方向糸zの部分に金属粉18を付着させてもよい。
The metal powder 18 is not limited to iron powder, but may be other metal powder.
○ As a method of causing the metal powder 18 to exist around the thickness direction thread z at the location that becomes the resin reservoir 17, after the three-dimensional fiber structure 11 is manufactured, the metal powder 18 is adhered to the portion of the thickness direction thread z. May be.

○ 積層繊維層13は、一方向シートで構成されたものに限らず、例えば、平織り物で構成してもよい。平織り物を単純に重ねれば面内2軸配向の積層繊維層13となり、隣接する平織り物の経糸のなす角度が45度となるように積層すれば面内4軸の配向の積層繊維層13となる。   The laminated fiber layer 13 is not limited to the one-way sheet, and may be a plain weave, for example. If the plain weaves are simply overlapped, the in-plane biaxially oriented laminated fiber layer 13 is obtained, and if the adjacent plain weaves are laminated so that the angle between the warp yarns is 45 degrees, the in-plane biaxially oriented laminated fiber layer 13 is obtained. It becomes.

○ 厚さ方向糸zや結合糸20は、積層繊維層13と直交する状態ではなく傾斜する状態で積層繊維層13に挿入された構成であってもよい。
○ 三次元繊維構造体11を構成する積層繊維層13は、一方向シートや平織り物を積層したものに限らない。例えば、平打ちの組紐やインターロック織物を使用したり、丸打ち(円筒状)の組紐を平らに押しつぶして使用したりしてもよい。
O The thickness direction thread | z and the binding thread | yarn 20 may be the structure inserted in the laminated fiber layer 13 in the state inclined rather than the state orthogonal to the laminated fiber layer 13.
O The laminated fiber layer 13 constituting the three-dimensional fiber structure 11 is not limited to a laminate of a unidirectional sheet or a plain weave. For example, a flat braid or interlock fabric may be used, or a round (cylindrical) braid may be flatly crushed for use.

○ 積層繊維層13を疑似等方性で面内4軸配向に構成する面内糸12a〜12dの積層順序は、外層を面内糸12c(+45度層)又は面内糸12d(−45度層)にする順に限らない。   ○ The lamination order of the in-plane yarns 12a to 12d constituting the laminated fiber layer 13 in a pseudo-isotropic and in-plane four-axis orientation is such that the outer layer is the in-plane yarn 12c (+45 degree layer) or the in-plane yarn 12d (−45 degrees). The order is not limited.

○ 疑似等方性で面内4軸配向の積層繊維層13は、図2に示すように、面内糸12cからなる繊維層12と、面内糸12dからなる繊維層12との間に面内糸12bからなる繊維層12を配置してもよい。   As shown in FIG. 2, the quasi-isotropic and in-plane four-axis oriented laminated fiber layer 13 has a surface between the fiber layer 12 made of the in-plane yarn 12c and the fiber layer 12 made of the in-plane yarn 12d. You may arrange | position the fiber layer 12 which consists of an inner thread 12b.

○ 積層繊維層13は少なくとも2軸配向であればよく、疑似等方性で面内4軸配向に限らない。例えば、配向角が0度、60度及び−60度に配列した糸で面内3軸の積層繊維層13を構成したり、面内4軸の積層繊維層13を構成する場合に配向角が0度及び90度の他の面内配列糸の配向角を±45°以外の配向角としたりしてもよい。また、積層繊維層13を配向角が0度及び90度の面内2軸配向としてもよい。   The laminated fiber layer 13 only needs to be at least biaxially oriented, and is not limited to in-plane tetraaxial orientation with pseudo-isotropic properties. For example, when the in-plane triaxial laminated fiber layer 13 is composed of yarns having an orientation angle of 0 degrees, 60 degrees, and −60 degrees, or the in-plane 4-axis laminated fiber layer 13 is formed, the orientation angle is The orientation angle of other in-plane aligned yarns of 0 degree and 90 degrees may be an orientation angle other than ± 45 °. Further, the laminated fiber layer 13 may be in-plane biaxial orientation with orientation angles of 0 degrees and 90 degrees.

○ 面内糸12a,12b,12c,12d、抜け止め糸14、厚さ方向糸z及び結合糸20は、繊維が撚りを掛けられずに引きそろえられた繊維束に限らず、繊維の種類によっては繊維に撚りを掛けられた糸であってもよい。   ○ The in-plane yarns 12a, 12b, 12c, 12d, the retaining yarn 14, the thickness direction yarn z, and the binding yarn 20 are not limited to fiber bundles that are arranged without being twisted, depending on the type of fiber. May be a yarn in which the fibers are twisted.

○ 三次元繊維構造体11を構成する繊維束は炭素繊維に限らず、例えば、ガラス繊維やセラミック繊維等の無機繊維、あるいは、アラミド繊維、ポリ−p−フェニレンベンゾビスオキサゾール繊維、ポリアリレート繊維、超高分子量ポリエチレン繊維等の高強度の有機繊維であってもよく、要求性能に応じて適宜選択される。例えば、繊維強化複合材料に対する剛性・強度の要求性能が高い場合は、炭素繊維が好ましい。   ○ The fiber bundle constituting the three-dimensional fiber structure 11 is not limited to carbon fiber, for example, inorganic fiber such as glass fiber or ceramic fiber, or aramid fiber, poly-p-phenylenebenzobisoxazole fiber, polyarylate fiber, It may be a high-strength organic fiber such as ultrahigh molecular weight polyethylene fiber, and is appropriately selected according to the required performance. For example, when the required performance of rigidity and strength for the fiber reinforced composite material is high, carbon fiber is preferable.

z…結合糸としての厚さ方向糸、10…繊維強化樹脂、11…三次元繊維構造体、12…繊維層、12a,12b,12c,12d…面内糸、13…積層繊維層、14…抜け止め糸、15…マトリックス樹脂、18…金属粉、20…結合糸。   z: Thickness direction yarn as a binding yarn, 10 ... Fiber reinforced resin, 11 ... Three-dimensional fiber structure, 12 ... Fiber layer, 12a, 12b, 12c, 12d ... In-plane yarn, 13 ... Laminated fiber layer, 14 ... Retaining thread, 15 ... matrix resin, 18 ... metal powder, 20 ... bonding thread.

Claims (3)

少なくとも2軸配向となるように面内糸が配列された積層繊維層が、各繊維層と交差する方向に配列された結合糸で結合されて構成された三次元繊維構造体を強化材とし、樹脂をマトリックスとした繊維強化樹脂であって、前記結合糸の周囲のマトリックス樹脂にのみ、金属粉が存在することを特徴とする繊維強化樹脂。   A reinforcing material is a three-dimensional fiber structure in which laminated fiber layers in which in-plane yarns are arranged so as to be at least biaxially oriented are bonded with bonding yarns arranged in a direction intersecting with each fiber layer, A fiber reinforced resin having a resin as a matrix, wherein the metal powder exists only in the matrix resin around the binding yarn. 前記結合糸は、前記積層繊維層の厚さ方向の一方の面から前記積層繊維層に挿入され、かつ前記積層繊維層の他方の面の外側に配列された抜け止め糸と係合して折り返すように配列され、前記抜け止め糸は、前記結合糸の配列面と交差する方向に配列されており、前記結合糸の周囲とは、前記結合糸が前記積層繊維層の前記一方の面側で二股に配列される部分である請求項1に記載の繊維強化樹脂。   The binding yarn is inserted into the laminated fiber layer from one surface in the thickness direction of the laminated fiber layer and is folded back by engaging with a retaining yarn arranged outside the other surface of the laminated fiber layer. The retaining yarns are arranged in a direction crossing the arrangement surface of the binding yarns, and the periphery of the binding yarns is the one side of the laminated fiber layer where the binding yarns are The fiber reinforced resin according to claim 1, wherein the fiber reinforced resin is a bifurcated portion. 前記結合糸の周囲とは、前記結合糸と隣接する前記面内糸との間である請求項1に記載の繊維強化樹脂。   The fiber-reinforced resin according to claim 1, wherein the periphery of the binding yarn is between the binding yarn and the adjacent in-plane yarn.
JP2013221616A 2013-10-24 2013-10-24 Fiber-reinforced resin Pending JP2015080944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013221616A JP2015080944A (en) 2013-10-24 2013-10-24 Fiber-reinforced resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013221616A JP2015080944A (en) 2013-10-24 2013-10-24 Fiber-reinforced resin

Publications (1)

Publication Number Publication Date
JP2015080944A true JP2015080944A (en) 2015-04-27

Family

ID=53011807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013221616A Pending JP2015080944A (en) 2013-10-24 2013-10-24 Fiber-reinforced resin

Country Status (1)

Country Link
JP (1) JP2015080944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020945A1 (en) * 2016-07-29 2018-02-01 株式会社 豊田自動織機 Multilayer textile for sandwich structure, and sandwich structure fiber-reinforced composite
CN107923082A (en) * 2015-08-28 2018-04-17 株式会社丰田自动织机 Fiber construct and fibre reinforced composites
WO2019012983A1 (en) * 2017-07-13 2019-01-17 株式会社 豊田自動織機 Fiber structure and fiber-reinforced composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107923082A (en) * 2015-08-28 2018-04-17 株式会社丰田自动织机 Fiber construct and fibre reinforced composites
WO2018020945A1 (en) * 2016-07-29 2018-02-01 株式会社 豊田自動織機 Multilayer textile for sandwich structure, and sandwich structure fiber-reinforced composite
CN109642360A (en) * 2016-07-29 2019-04-16 株式会社丰田自动织机 The multilayer fabric and sandwich structure fiber reinforced composite material of sandwich structure
WO2019012983A1 (en) * 2017-07-13 2019-01-17 株式会社 豊田自動織機 Fiber structure and fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
JP5920471B2 (en) Three-dimensional fiber reinforced composite material and method for producing three-dimensional fiber reinforced composite material
JP6138045B2 (en) Method for producing high-weight carbon fiber sheet for RTM method and RTM method
WO2014083975A1 (en) Tubular fiber structure and fiber reinforced composite material
US20160101591A1 (en) Composite article
KR20120115263A (en) Reinforcement for darted pi preforms, pi preforms comprising this reinforcement and method of reinforcing the pi preforms
JP5880671B1 (en) Shock absorber and method for producing shock absorber
JP2014511948A (en) Corner-compatible preform and method for forming the same
JP5900624B2 (en) 3D fiber reinforced composite
JP2015080944A (en) Fiber-reinforced resin
US10023141B2 (en) Energy-absorbing member
KR20150137238A (en) Bicycle frame using composite materials and its manufacturing method
WO2021033484A1 (en) Fiber structure and fiber-reinforced composite
US10697094B2 (en) Fiber structure and fiber reinforced composite material
JP2021025164A (en) Fiber structure and fiber-reinforce composite material
JP7287162B2 (en) Fiber structures and fiber reinforced composites
JP5907042B2 (en) Three-dimensional fiber structure
JP6163955B2 (en) 3D fiber reinforced composite
JP2014213521A (en) Three-dimensional fiber-reinforced composite material
JP2017105093A (en) Sandwich panel, method for producing unidirectional prepreg, and method for producing sandwich panel
JP2015100930A (en) Preform
JP2015033819A (en) Three-dimensional fiber-reinforced composite material
JP2014004735A (en) Fiber-reinforced composite material and method of producing fiber-reinforced composite material