WO2021033484A1 - Fiber structure and fiber-reinforced composite - Google Patents

Fiber structure and fiber-reinforced composite Download PDF

Info

Publication number
WO2021033484A1
WO2021033484A1 PCT/JP2020/028417 JP2020028417W WO2021033484A1 WO 2021033484 A1 WO2021033484 A1 WO 2021033484A1 JP 2020028417 W JP2020028417 W JP 2020028417W WO 2021033484 A1 WO2021033484 A1 WO 2021033484A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
gap
base material
filling member
gap filling
Prior art date
Application number
PCT/JP2020/028417
Other languages
French (fr)
Japanese (ja)
Inventor
神谷隆太
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2021033484A1 publication Critical patent/WO2021033484A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles

Definitions

  • the present disclosure relates to a fiber structure and a fiber reinforced composite material including a gap filling member that fills the gap.
  • Fiber reinforced composite material is used as a lightweight and high-strength material.
  • a fiber-reinforced composite material is preferable as a structural component because a fiber structure made of reinforced fibers is composited in a matrix material such as a resin or a metal to improve mechanical properties as compared with the matrix material itself.
  • a matrix material such as a resin or a metal to improve mechanical properties as compared with the matrix material itself.
  • the weight of the structural parts can be reduced, which is preferable.
  • the reinforcing base material of the reinforcing material disclosed in Patent Document 1 includes a pair of C channels arranged back to back.
  • Each pair of C-channels includes a web portion and flanges provided at each end of the web portion and extending in opposite directions with the pair of C-channels.
  • the pair of web parts are connected to form a reinforcing material web.
  • a cap is connected to the outside of the pair of flanges on one end side of the web, and a base is connected to the outside of the pair of flanges on the other end side of the web. Therefore, the reinforced base material is composed of a pair of C channels, a cap, and a base.
  • a gap having a triangular cross section is defined between the pair of C channel flanges and the cap, and between the pair of C channel flanges and the base.
  • a reinforcing filler having a triangular cross section almost the same as the gap is filled.
  • the reinforcing filler a composite tape, a cloth member, or the like is adopted. The surface of the C channel surrounding the gap is covered with a cloth layer. Further, in the gap, an adhesive layer is provided inside the cloth layer, and the reinforcing filler is wrapped in the adhesive layer. Then, the periphery of the gap in the reinforcing material is reinforced by these cloth layers, the adhesive layer, and the reinforcing filler.
  • Patent Document 1 in order to reinforce the periphery of the gap in the reinforcing material, a cloth layer, an adhesive layer, and a reinforcing filler are required, and the cloth layer, the adhesive layer, and the reinforcing filler are required. There was a problem that the work for providing the above was troublesome.
  • An object of the present disclosure is to provide a fiber structure and a fiber reinforced composite that can easily perform the work necessary for reinforcing the periphery of the gap in the fiber reinforced composite.
  • the fiber structure for solving the above problems is the fiber structure of the fiber-reinforced composite material formed by impregnating the fiber structure with a matrix material, and the main body portion in which a plurality of fiber layers of the reinforcing fibers are laminated.
  • the first fiber base material having a branch portion in which the main body portion is bifurcated along the laminating direction of the fiber layer and the first fiber base material covering the branch portion are integrated with the first fiber base material.
  • a second fiber base material is provided, and a gap filling member filled in a gap defined by the branch portion and the second fiber base material is provided, and the gap filling member is a fiber bundle of discontinuous fibers.
  • the gist is that.
  • the fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material formed by impregnating a fiber structure with a matrix material, and the fiber structure is any one of claims 1 to 4.
  • the gist is that it is the fiber structure described in paragraph 1.
  • the gap filling member is a branch portion of the first fiber base material before the first fiber base material and the second fiber base material are integrated, that is, before the branch portion is covered with the second fiber base material. Is placed in. After that, the branch portion is covered with the second fiber base material, so that the gap is defined and the gap filling member is filled.
  • the gap filling member is a string shape because it is a fiber bundle of discontinuous fibers. For this reason, for example, compared to the case where the non-woven fabric is arranged at the branch portion, it is easier to handle, and unlike the non-woven fabric, it is not necessary to shape the non-woven fabric into the shape of the branch portion, so that the work of arranging the gap filling member at the branch portion is easy. Is.
  • the periphery of the gap is reinforced by discontinuous fibers.
  • the amount of discontinuous fibers filled in the gap can be adjusted to an amount suitable for reinforcement only by adjusting the number of gap filling members filled in the gap. Therefore, for example, as compared with the case where a plurality of types of reinforcing materials are prepared to reinforce the circumference of the gap or a reinforcing member that follows the shape of the gap is manufactured, the gap in the fiber reinforced composite material The work required to reinforce the surroundings can be easily performed.
  • the second fiber base material has a plurality of fiber layers of reinforcing fibers laminated, and the direction of laminating the fiber layer in the second fiber base material and the direction of laminating the fiber layer in the main body portion.
  • the branch portion extends continuously along the depth direction, and the gap extends over the entire depth direction of the fiber structure and is the axial direction of the gap filling member.
  • the dimension to is 60% or more of the dimension of the gap in the depth direction.
  • the discontinuous fibers of the gap filling member are oriented so as to extend in the depth direction of the main body. Therefore, in the fiber-reinforced composite material produced by impregnating the fiber structure with the matrix material, the strength in the depth direction can be ensured by the gap filling member.
  • the fiber volume content indicating the amount of the discontinuous fibers per unit volume of the gap is equal to or less than the fiber volume content indicating the amount of the reinforcing fibers per unit volume in the main body. Good.
  • the ratio of the discontinuous fibers of the gap filling member in the gap does not become too high, and it is suppressed that the discontinuous fibers are densely overlapped with each other.
  • the matrix material is likely to be impregnated between the discontinuous fibers.
  • the gap filling member may include a core thread made of continuous fibers extending in the entire axial direction of the gap filling member, and a coating layer made of discontinuous fibers covering the core thread.
  • the work required to reinforce the periphery of the gap in the fiber reinforced composite material can be easily performed.
  • the fiber-reinforced composite material 10 is formed by impregnating and curing a matrix resin Ma, which is an example of a matrix material, in a fiber structure 11 having a T-shaped cross section.
  • the fiber structure 11 has a rectangular plate-shaped main body portion 11a and a flange 11b orthogonal to the main body portion 11a.
  • the fiber structure 11 is defined between the first fiber base material 12 having a T-shaped cross section, the second fiber base material 20 having a flat plate shape, and the first fiber base material 12 and the second fiber base material 20. It has a gap filling member 30 that fills the gap S.
  • the first fiber base material 12 is formed by joining two L-shaped fiber bodies 13 to form a T-shaped cross section.
  • the L-shaped fiber body 13 is composed of a warp T, a weft R, and an interlayer binding yarn (not shown).
  • the warp threads T and weft threads R are made of continuous reinforcing fibers.
  • the reinforcing fiber an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used.
  • the organic fiber examples include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like
  • examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on.
  • the warp T and the weft R are made of carbon fibers.
  • the L-shaped fiber body 13 is a multi-layer woven fabric formed by connecting a plurality of warp layers 13a as a fiber layer and a plurality of weft layers 13b as a fiber layer in a stacking direction Z with an interlayer binding yarn (not shown).
  • the warp layer 13a is formed by arranging a plurality of warp threads T in parallel with each other
  • the weft layer 13b is formed by arranging a plurality of weft threads R in parallel with each other.
  • the plurality of warp threads T and weft threads R are orthogonal to each other.
  • the L-shaped fiber body 13 may be formed by laminating a single-layer woven fabric formed by plain weave, twill weave, or satin weave, and connecting the laminated body with an interlayer binding thread. That is, the weaving structure of the L-shaped fiber body 13 may be any.
  • the L-shaped fiber body 13 is formed by bending a flat multi-layer woven fabric into an L shape.
  • the "L shape" of the L-shaped fiber body 13 means that the cross section of the L-shaped fiber body 13 along the stacking direction Z is L-shaped.
  • the L-shaped fiber body 13 has a flat plate-shaped base portion 15, a flat plate-shaped flange constituent portion 16 orthogonal to the base portion 15, and a connecting portion 17 connecting the base portion 15 and the flange constituent portion 16.
  • the yarn spindle of the weft R extends in a direction connecting the base portion 15 and the flange constituent portion 16.
  • the yarn spindle of the warp yarn T extends in a direction orthogonal to the yarn spindle of the weft yarn R.
  • the base portion 15 includes a first base portion surface 15a facing the base portion 15 of the other L-shaped fiber body 13 on one end surface in the stacking direction Z, and a second base portion on the other end surface in the stacking direction Z. It has a surface 15b.
  • the flange component 16 includes a first flange surface 16a facing the second fiber base material 20 on one end surface in the stacking direction Z, and a second flange surface 16b on the other end surface in the stacking direction Z.
  • the connecting portion 17 is a portion sandwiched between the flat plate-shaped base portion 15 and the flange constituent portion 16, and has a substantially fan-shaped cross section along the stacking direction Z.
  • the connecting portion 17 includes a first curved surface 17a located between the first base surface 15a of the base 15 and the first flange surface 16a of the flange component 16, and has a flange configuration with the second base surface 15b of the base 15.
  • a second curved surface 17b located between the second flange surface 16b of the portion 16 is provided.
  • the curvatures of the first curved surface 17a and the second curved surface 17b are the same.
  • the arc length of the first curved surface 17a is longer than the arc length of the second curved surface 17b in the cross section along the stacking direction Z.
  • the main body portion 11a is formed from the base portions 15 of the two L-shaped fiber bodies 13.
  • the plurality of warp layers 13a and the plurality of weft layers 13b are laminated in the stacking direction Z.
  • the first fiber base material 12 is sandwiched between the first curved surface 17a of one L-shaped fiber body 13 and the first curved surface 17a of the other L-shaped fiber body 13 in the stacking direction Z of the fiber layer.
  • a bifurcated branch portion 18 is provided along the bifurcated portion 18. The branch portion 18 is recessed from the first flange surface 16a of the pair of L-shaped fiber bodies 13.
  • the second fiber base material 20 has a flat plate shape.
  • the second fiber base material 20 is composed of a warp T, a weft R, and an interlayer binding yarn (not shown).
  • the warp threads T and weft threads R are made of reinforcing fibers.
  • the reinforcing fiber an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used.
  • the organic fiber examples include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like
  • examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on.
  • the warp T and the weft R are made of carbon fibers.
  • the second fiber base material 20 is a multi-layer woven fabric formed by bonding a plurality of warp layers 20a as a fiber layer and a plurality of weft layers 20b as a fiber layer in the stacking direction Z by an interlayer bonding yarn (not shown). ..
  • the warp layer 20a is formed by arranging a plurality of warp threads T in parallel with each other
  • the weft layer 20b is formed by arranging a plurality of weft threads R in parallel with each other.
  • the plurality of warp threads T and weft threads R are orthogonal to each other.
  • the second fiber base material 20 may be configured by laminating a single-layer woven fabric formed by plain weave, twill weave, or satin weave, and bonding the laminated body with an interlayer binding thread. That is, the woven structure of the second fiber base material 20 may be any.
  • the depth direction is orthogonal to the stacking direction Z of the warp layer 13a and the weft layer 13b in the main body 11a and the stacking direction Z of the warp layer 20a and the weft layer 20b in the second fiber base material 20. Let it be Y.
  • the above-mentioned branch portion 18 extends continuously along the depth direction Y and exists over the entire depth direction Y of the fiber structure 11.
  • the yarn main shaft of the warp yarn T extends in the depth direction Y of the fiber structure 11, and the yarn main shaft of the weft yarn R is in a direction orthogonal to the depth direction Y and the lamination direction Z of the fiber structure 11. It is extending.
  • the second fiber base material 20 is superposed on the flange 11b composed of a pair of flange constituent portions 16.
  • the second fiber base material 20 includes a first surface 20c facing the pair of first flange surfaces 16a on one end surface in the stacking direction Z, and a second surface 20d on the other end surface in the stacking direction Z.
  • the main body portion 11a of the fiber structure 11 is configured such that the first base portion surfaces 15a face each other and the pair of base portions 15 are integrated.
  • the flange 11b of the fiber structure 11 is formed by integrating the first flange surface 16a of the pair of flange constituent portions 16 with the first surface 20c of the second fiber base material 20 facing each other.
  • the amount of fiber per unit volume is defined as the fiber volume content Vf.
  • the fiber volume content Vf of the fiber structure 11 is 55 to 65%, but the fiber volume content Vf may be appropriately changed according to the purpose of use of the fiber reinforced composite material 10.
  • the branch portion 18 is covered with the second fiber base material 20.
  • the fiber structure 11 has a gap S defined by covering the branch portion 18 with the second fiber base material 20, and the gap S is filled with the gap filling member 30.
  • the gap S is between the first curved surface 17a of one L-shaped fiber body 13, the first curved surface 17a of the other L-shaped fiber body 13, and the first surface 20c of the second fiber base material 20. It is defined in. Further, the gap S extends over the entire depth direction Y of the fiber structure 11.
  • the gap filling member 30 is formed of discontinuous fibers H of reinforcing fibers.
  • the reinforcing fiber an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used.
  • the organic fiber include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like
  • examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on.
  • the discontinuous fiber H is made of carbon fiber.
  • the gap filling member 30 includes a twisted yarn 31 of the discontinuous fiber H and a plurality of covering yarns 32 spirally wound around the twisted yarn 31 of the discontinuous fiber H.
  • the covering yarn 32 fibers made by hot melting are used, for example, nylon fibers.
  • the gap filling member 30 is a fiber bundle in which the lengths of the discontinuous fibers H are aligned in the axial direction of the gap filling member 30.
  • the twisted yarn 31 of the gap filling member 30 is bulkier than a fiber bundle in which a plurality of continuous fibers are aligned.
  • the length of the discontinuous fiber H is oriented so as to extend in the axial direction of the gap filling member 30.
  • the axial dimension of the gap filling member 30 preferably has a dimension of 60% or more of the total dimension of the gap S along the depth direction Y.
  • the gap filling member 30 has the depth of the gap S. It has dimensions over the entire direction Y. That is, the axial dimension of the gap filling member 30 is the same as the axial dimension of the gap S in the depth direction Y. Further, the amount of the gap filling member 30 to be filled in the gap S is adjusted so that the fiber volume content Vf in the gap S of the fiber structure 11 is equal to or less than the fiber volume content Vf in the portion other than the gap S. Will be done.
  • the fiber volume content Vf indicating the amount of discontinuous fibers H per unit volume in the gap S is equal to or less than the fiber volume content Vf indicating the amount of reinforcing fibers per unit volume in the main body 11a.
  • the fiber volume content Vf in the gap S is adjusted to 30 to 55%, but the fiber volume content Vf in the gap S is appropriately changed according to the purpose of use of the fiber reinforced composite material 10. You may.
  • the fiber-reinforced composite material 10 using the fiber structure 11 having the above configuration as a reinforcing base material a plurality of gap filling members 30 are filled in the gap S, and the gap S is discontinuous.
  • the amount of fiber H is adjusted so as to have a desired fiber volume content Vf.
  • the length of the discontinuous fiber H of the gap filling member 30 is oriented so as to extend in the depth direction Y of the fiber structure 11. Therefore, the periphery of the gap S in the fiber-reinforced composite material 10 is reinforced in the depth direction Y by the filled discontinuous fibers H.
  • the first fiber base material 12 having a T-shaped cross section and the second fiber base material 20 having a flat plate shape are manufactured.
  • a plurality of gap filling members 30 are placed on the branch portion 18 of the first fiber base material 12.
  • the number of the gap filling members 30 to be placed is adjusted so that the fiber volume content Vf of the gap S to be formed later becomes a desired value.
  • the processing to the portion of the fiber structure 11 that becomes the gap S is completed later. That is, the work required to reinforce the periphery of the gap S in the fiber-reinforced composite material 10 is completed.
  • the second fiber base material 20 is placed on the pair of first flange surfaces 16a of the first fiber base material 12, and the first flange surface 16a and the first surface of the second fiber base material 20 are placed. Face 20c. Then, the branch portion 18 is covered with the second fiber base material 20, and the gap S filled with the gap filling member 30 is defined between the first fiber base material 12 and the second fiber base material 20. ..
  • the fiber structure 11 is impregnated with the matrix resin Ma.
  • a resin transfer molding (RTM) method is adopted for this impregnation treatment.
  • the fiber structure 11 including the first fiber base material 12, the second fiber base material 20, and the gap filling member 30 is arranged in a cavity of a mold (not shown).
  • the molten matrix resin Ma is injected into the cavity of the mold, and the fiber structure 11 is impregnated with the matrix resin Ma.
  • the covering yarn 32 is melted by the temperature of the melted matrix resin Ma.
  • the matrix resin Ma is impregnated between the continuous fibers of the warp T, the weft R, and the interlayer bonding yarn of the fiber structure 11, and is also impregnated between the discontinuous fibers H of the gap filling member 30. After that, the fiber-reinforced composite material 10 is formed by curing the matrix resin Ma.
  • the gap filling member 30 filled in the gap S of the fiber structure 11 is string-shaped because it is a fiber bundle of discontinuous fibers H. Therefore, for example, as compared with the case where the non-woven fabric is arranged in the branch portion 18, it is easier to handle and it is not necessary to shape the branch portion 18 like the non-woven fabric, so that the gap filling member 30 is arranged in the branch portion 18. The work to do is easy.
  • the periphery of the gap S is reinforced by the discontinuous fiber H.
  • the amount of discontinuous fibers H filled in the gap S can be adjusted to an amount suitable for reinforcement only by adjusting the number of the gap filling members 30 filled in the gap S. Therefore, as compared with the case where, for example, a plurality of types of reinforcing materials are prepared to reinforce the periphery of the gap S, or a reinforcing member following the shape of the gap S is manufactured, the fiber reinforced composite material 10 is used. The work required to reinforce the periphery of the gap S in the above can be easily performed.
  • the gap filling member 30 is a fiber bundle of discontinuous fibers H.
  • the gaps between the discontinuous fibers H are easily opened, and the matrix resin Ma is easily impregnated. Therefore, in the fiber-reinforced composite material 10 using the fiber structure 11 as a reinforcing base material, the matrix resin Ma sufficiently permeates between the discontinuous fibers H of the gap filling member 30, and a resin-rich portion is formed. This can be suppressed, and the periphery of the gap S in the fiber-reinforced composite material 10 can be reinforced.
  • the number of gap filling members 30 is adjusted so that the fiber volume content Vf in the gap S is equal to or less than the fiber volume content Vf of the first fiber base material 12 and the second fiber base material 20. Therefore, the fiber volume content Vf in the gap S does not become too high, and it is possible to prevent the gap filling member 30 in the gap S from being easily impregnated with the matrix resin Ma during the production of the fiber reinforced composite material 10.
  • the axial dimension of the gap filling member 30 is 60% or more of the dimension of the gap S in the depth direction Y. Therefore, the discontinuous fibers H of the gap filling member 30 are oriented so as to extend in the depth direction Y, and in the fiber reinforced composite material 10, the gap filling member 30 can secure the strength in the depth direction Y in the gap S.
  • the gap filling member 30 is formed by holding a twisted yarn 31 made of discontinuous fiber H with a covering yarn 32. Therefore, when the gap filling member 30 is arranged in the branch portion 18, it is possible to prevent the discontinuous fibers H from being scattered, and the gap filling member 30 can be easily arranged in the branch portion 18.
  • the gap filling member 30 arranged at the branch portion 18 is string-shaped. Therefore, the branch portion 18 is arranged along the axial direction of the gap filling member 30 in the depth direction Y of the branch portion 18. Therefore, it is easy to arrange the gap filling member 30 even in a narrow portion such as the branch portion 18 of the first fiber base material 12.
  • the gap filling member 30 is a fiber bundle in which the lengths of the discontinuous fibers H are aligned so as to extend in the axial direction of the gap filling member 30, and is different from the non-woven fabric in which the orientation of the discontinuous fibers H is random. Therefore, during the production of the fiber-reinforced composite material 10, it is possible to prevent the gap filling member 30 in the gap S from flowing out from the gap S due to the injection pressure of the matrix resin Ma.
  • the size of the gap S of the fiber structure 11 differs depending on the size and shape of the fiber reinforced composite material 10.
  • the gap filling member 30 has a string shape, and the gap filling member 30 can be filled according to the size and shape of the gap S simply by adjusting the number of the gap filling members 30. Therefore, it is not necessary to manufacture a filling member that matches the size and shape of the gap S, and the work for reinforcing the periphery of the gap S becomes easy.
  • the gap filling member 30 is a fiber bundle of discontinuous fibers H and is bulky. Therefore, when the gap filling member 30 is arranged in the branch portion 18, even if the gap filling members 30 are stacked, the gaps between the gap filling members 30 and the discontinuous fibers H of each gap filling member 30 are opened. The state can be secured. Therefore, the gap filling member 30 can also be impregnated with the matrix resin Ma.
  • the gap filling member 40 is wound around a core yarn 41 made of continuous fibers extending in the entire axial direction of the gap filling member 40, a coating layer 42 covering the core yarn 41, and a coating layer 42.
  • the cover ring thread 43 may be provided.
  • the core yarn 41 is a twisted yarn formed by twisting continuous fibers.
  • the coating layer 42 is a twisted yarn made of discontinuous fibers H.
  • the gap filling member 40 since the gap filling member 40 includes the core thread 41 made of continuous fiber, it is easy to maintain the shape of the gap filling member 40 having straightness by the core thread 41, and the branch portion 18 is provided. It is easy to arrange the gap filling member 40.
  • the fiber structure 11 may be formed by integrally forming the first fiber base material 12 having a T-shaped cross section and the second fiber base material 20 having a T-shaped cross section.
  • the first fiber base material 12 and The second fiber base material 20 is integrated with the branch portions 18 facing each other, and the gap S has a substantially quadrangular cross section along the stacking direction Z.
  • the total length of the gap filling member 30 may be shorter than the dimension of the branch portion 18 in the depth direction Y.
  • the gap filling member 30 is connected in the thread spindle direction, and the gap filling member 30 is arranged over the entire depth direction Y of the branch portion 18.
  • the total length of the gap filling member 30 may be longer than the dimension of the branch portion 18 in the depth direction Y. In this case, the portion protruding from the branch portion 18 in the depth direction Y is cut off, and the gap filling member 30 is arranged over the entire depth direction Y of the branch portion 18.
  • the gap filling member 30 may not include the covering yarn 32 and may be configured by simply twisting the discontinuous fibers H. ⁇ The gap filling member 30 may be a non-twisted yarn of non-continuous fiber H.
  • the branch portion 18 is formed by integrating a pair of L-shaped fiber bodies 13, but a single fiber body may be branched in a bifurcated shape to form the branch portion 18.
  • a thermosetting resin was used as the matrix resin Ma, other types of resins may be used.
  • the matrix material may be ceramic other than the matrix resin Ma.
  • the second fiber base material 20 may be composed of one single-layer woven fabric formed by plain weave, twill weave, and satin weave.
  • Non-continuous fiber Ma Matrix resin as matrix material S Gap Y Depth direction Z Lamination direction Vf Fiber volume content 10
  • Fiber reinforced composite material 11
  • Fiber structure 11a Main body 12
  • First fiber base material 13a 20a Warp as fiber layer Layers 13b, 20b Weft layer as fiber layer 18
  • Second fiber base material 30, 40
  • Gap filling member 41
  • Core thread 42 Coating layer 42

Abstract

This fiber structure (11) comprises a first fiber base material (12) and a second fiber base material (20). The first fiber base material (12) has a main body portion (11a) in which a plurality of fiber layers (13a, 13b) of reinforcing fibers are laminated, and a branched portion (18) in which the main body portion (11a) branches in two along the lamination direction (Z) of the fiber layers (13a, 13b). The second fiber base material (20) covers the branched portion (18) and is integrated with the first fiber base material (12). The fiber structure (11) comprises space-filling members (30, 40) that fill spaces (S) defined by the branched portion (18) and the second fiber base material (20), the space-filling members (30, 40) being fiber bundles of discontinuous fibers (H).

Description

繊維構造体及び繊維強化複合材Fiber structure and fiber reinforced composite
 本開示は、隙間に充填される隙間充填部材を備える繊維構造体及び繊維強化複合材に関する。 The present disclosure relates to a fiber structure and a fiber reinforced composite material including a gap filling member that fills the gap.
 軽量、高強度の材料として繊維強化複合材が使用されている。繊維強化複合材は、強化繊維製の繊維構造体が樹脂や金属等のマトリックス材料中に複合化されることにより、マトリックス材料自体に比べて力学的特性が向上するため、構造部品として好ましい。特にマトリックス材料として樹脂を使用した場合は、構造部品の軽量化が図れるため好ましい。 Fiber reinforced composite material is used as a lightweight and high-strength material. A fiber-reinforced composite material is preferable as a structural component because a fiber structure made of reinforced fibers is composited in a matrix material such as a resin or a metal to improve mechanical properties as compared with the matrix material itself. In particular, when a resin is used as the matrix material, the weight of the structural parts can be reduced, which is preferable.
 この種の繊維強化複合材としては、例えば、I形状やT形状に形成されたものがある(例えば、特許文献1参照)。特許文献1に開示の補強材の強化基材は、背中合わせに配置された一対のCチャネルを備える。一対のCチャネルは、それぞれウェブ部分と、ウェブ部分の各端部に設けられ、一対のCチャネルで反対方向に延出されたフランジを備える。 As a fiber reinforced composite material of this type, for example, there is one formed in an I shape or a T shape (see, for example, Patent Document 1). The reinforcing base material of the reinforcing material disclosed in Patent Document 1 includes a pair of C channels arranged back to back. Each pair of C-channels includes a web portion and flanges provided at each end of the web portion and extending in opposite directions with the pair of C-channels.
 一対のウェブ部は連結されて補強材のウェブを形成する。強化基材において、ウェブの一端側における一対のフランジの外側にはキャップが連結され、ウェブの他端側における一対のフランジの外側にはベースが連結されている。よって、強化基材は、一対のCチャネルと、キャップと、ベースとから構成されている。 The pair of web parts are connected to form a reinforcing material web. In the reinforced base material, a cap is connected to the outside of the pair of flanges on one end side of the web, and a base is connected to the outside of the pair of flanges on the other end side of the web. Therefore, the reinforced base material is composed of a pair of C channels, a cap, and a base.
 強化基材において、一対のCチャネルのフランジとキャップとの間、及び一対のCチャネルのフランジとベースとの間には、それぞれ断面三角形状の隙間が画成されるが、この隙間には、隙間とほぼ同じ断面三角形状の補強用充填材が充填される。補強用充填材としては、複合テープや布部材などが採用される。また、隙間を囲むCチャネルの表面は布層で覆われている。また、隙間において、布層の内側には接着剤の層が設けられるとともに、その接着剤の層に補強用充填材が包まれている。そして、これら布層、接着剤層、及び補強用充填材により、補強材における隙間の周囲を補強している。 In the reinforced base material, a gap having a triangular cross section is defined between the pair of C channel flanges and the cap, and between the pair of C channel flanges and the base. A reinforcing filler having a triangular cross section almost the same as the gap is filled. As the reinforcing filler, a composite tape, a cloth member, or the like is adopted. The surface of the C channel surrounding the gap is covered with a cloth layer. Further, in the gap, an adhesive layer is provided inside the cloth layer, and the reinforcing filler is wrapped in the adhesive layer. Then, the periphery of the gap in the reinforcing material is reinforced by these cloth layers, the adhesive layer, and the reinforcing filler.
特表2011-520690号公報Japanese Patent Publication No. 2011-520690
 ところが、特許文献1では、補強材における隙間の周囲を補強するために、布層、接着剤層、及び補強用充填材を必要とするとともに、それら布層、接着剤層、及び補強用充填材を設けるための作業が面倒であるという問題があった。 However, in Patent Document 1, in order to reinforce the periphery of the gap in the reinforcing material, a cloth layer, an adhesive layer, and a reinforcing filler are required, and the cloth layer, the adhesive layer, and the reinforcing filler are required. There was a problem that the work for providing the above was troublesome.
 本開示の目的は、繊維強化複合材における隙間の周囲を補強するのに必要な作業を簡単に行うことができる繊維構造体及び繊維強化複合材を提供することにある。 An object of the present disclosure is to provide a fiber structure and a fiber reinforced composite that can easily perform the work necessary for reinforcing the periphery of the gap in the fiber reinforced composite.
 上記問題点を解決するための繊維構造体は、繊維構造体にマトリックス材料を含浸させて形成される繊維強化複合材の前記繊維構造体であって、強化繊維の繊維層を複数積層した本体部を有するとともに、前記本体部を前記繊維層の積層方向に沿って二股状に分岐させた分岐部を有する第1繊維基材と、前記分岐部を覆って前記第1繊維基材に一体化される第2繊維基材を備え、前記分岐部と前記第2繊維基材とで画成される隙間に充填される隙間充填部材を備え、前記隙間充填部材は、非連続繊維の繊維束であることを要旨とする。 The fiber structure for solving the above problems is the fiber structure of the fiber-reinforced composite material formed by impregnating the fiber structure with a matrix material, and the main body portion in which a plurality of fiber layers of the reinforcing fibers are laminated. The first fiber base material having a branch portion in which the main body portion is bifurcated along the laminating direction of the fiber layer and the first fiber base material covering the branch portion are integrated with the first fiber base material. A second fiber base material is provided, and a gap filling member filled in a gap defined by the branch portion and the second fiber base material is provided, and the gap filling member is a fiber bundle of discontinuous fibers. The gist is that.
 上記問題点を解決するための繊維強化複合材は、繊維構造体にマトリックス材料を含浸させて構成される繊維強化複合材であって、前記繊維構造体は請求項1~請求項4のうちいずれか一項に記載の繊維構造体であることを要旨とする。 The fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material formed by impregnating a fiber structure with a matrix material, and the fiber structure is any one of claims 1 to 4. The gist is that it is the fiber structure described in paragraph 1.
 各構成において、隙間充填部材は、第1繊維基材と第2繊維基材を一体化する前、つまり、分岐部が第2繊維基材に覆われる前に、第1繊維基材の分岐部に配置される。その後、分岐部が第2繊維基材によって覆われることにより、隙間が画成されるとともに、隙間に隙間充填部材が充填される。 In each configuration, the gap filling member is a branch portion of the first fiber base material before the first fiber base material and the second fiber base material are integrated, that is, before the branch portion is covered with the second fiber base material. Is placed in. After that, the branch portion is covered with the second fiber base material, so that the gap is defined and the gap filling member is filled.
 隙間充填部材は、非連続繊維の繊維束であるため、紐状である。このため、例えば、不織布を分岐部に配置する場合と比べると、扱いやすく、しかも、不織布のように分岐部の形状に整形する必要もないため、隙間充填部材を分岐部に配置する作業が簡単である。 The gap filling member is a string shape because it is a fiber bundle of discontinuous fibers. For this reason, for example, compared to the case where the non-woven fabric is arranged at the branch portion, it is easier to handle, and unlike the non-woven fabric, it is not necessary to shape the non-woven fabric into the shape of the branch portion, so that the work of arranging the gap filling member at the branch portion is easy. Is.
 そして、繊維構造体にマトリックス材料を含浸して製造される繊維強化複合材において、隙間の周囲は非連続繊維によって補強される。隙間に充填される隙間充填部材の本数を調整するだけで、隙間に充填される非連続繊維の量を、補強に適した量に調整できる。このため、例えば、隙間の周囲を補強するために、複数種類の補強用の材料を準備したり、隙間の形状に倣う補強部材を製造したりする場合と比べると、繊維強化複合材における隙間の周囲を補強するために必要な作業を簡単に行うことができる。 Then, in the fiber-reinforced composite material produced by impregnating the fiber structure with a matrix material, the periphery of the gap is reinforced by discontinuous fibers. The amount of discontinuous fibers filled in the gap can be adjusted to an amount suitable for reinforcement only by adjusting the number of gap filling members filled in the gap. Therefore, for example, as compared with the case where a plurality of types of reinforcing materials are prepared to reinforce the circumference of the gap or a reinforcing member that follows the shape of the gap is manufactured, the gap in the fiber reinforced composite material The work required to reinforce the surroundings can be easily performed.
 繊維構造体について、前記第2繊維基材は、強化繊維の繊維層を複数積層して有し、前記第2繊維基材における前記繊維層の積層方向と前記本体部における前記繊維層の積層方向に直交する方向を奥行方向とすると、前記分岐部は前記奥行方向に沿って連続して延びており、前記隙間は前記繊維構造体の前記奥行方向の全体に亘り、前記隙間充填部材の軸方向への寸法は、前記奥行方向への前記隙間の寸法の60%以上であってもよい。 Regarding the fiber structure, the second fiber base material has a plurality of fiber layers of reinforcing fibers laminated, and the direction of laminating the fiber layer in the second fiber base material and the direction of laminating the fiber layer in the main body portion. Assuming that the direction orthogonal to is the depth direction, the branch portion extends continuously along the depth direction, and the gap extends over the entire depth direction of the fiber structure and is the axial direction of the gap filling member. The dimension to is 60% or more of the dimension of the gap in the depth direction.
 これによれば、隙間充填部材の非連続繊維が本体部の奥行方向に延びるように配向される。このため、繊維構造体にマトリックス材料を含浸して製造される繊維強化複合材において、隙間充填部材によって奥行方向への強度を確保できる。 According to this, the discontinuous fibers of the gap filling member are oriented so as to extend in the depth direction of the main body. Therefore, in the fiber-reinforced composite material produced by impregnating the fiber structure with the matrix material, the strength in the depth direction can be ensured by the gap filling member.
 繊維構造体について、前記隙間の単位体積当たりの前記非連続繊維の量を示す繊維体積含有率は、前記本体部における単位体積当たりの前記強化繊維の量を示す繊維体積含有率以下であってもよい。 For the fiber structure, the fiber volume content indicating the amount of the discontinuous fibers per unit volume of the gap is equal to or less than the fiber volume content indicating the amount of the reinforcing fibers per unit volume in the main body. Good.
 これによれば、隙間における隙間充填部材の非連続繊維の比率が高くなりすぎず、非連続繊維同士が密に重なり合うことが抑制される。その結果、隙間に配置された隙間充填部材において、非連続繊維同士の間にマトリックス材料を含浸させやすい。 According to this, the ratio of the discontinuous fibers of the gap filling member in the gap does not become too high, and it is suppressed that the discontinuous fibers are densely overlapped with each other. As a result, in the gap filling member arranged in the gap, the matrix material is likely to be impregnated between the discontinuous fibers.
 繊維構造体について、前記隙間充填部材は、当該隙間充填部材の軸方向全体に延びる連続繊維からなる芯糸と、前記芯糸を覆う非連続繊維からなる被覆層とを備えていてもよい。 Regarding the fiber structure, the gap filling member may include a core thread made of continuous fibers extending in the entire axial direction of the gap filling member, and a coating layer made of discontinuous fibers covering the core thread.
 これによれば、芯糸によって隙間充填部材の直進性を持たせた形状を維持しやすく、分岐部への隙間充填部材の配置が行いやすい。 According to this, it is easy to maintain the shape of the gap filling member having straightness by the core thread, and it is easy to arrange the gap filling member at the branch portion.
 本開示によれば、繊維強化複合材における隙間の周囲を補強するのに必要な作業を簡単に行うことができる。 According to the present disclosure, the work required to reinforce the periphery of the gap in the fiber reinforced composite material can be easily performed.
実施形態の繊維強化複合材を示す斜視図。The perspective view which shows the fiber reinforced composite material of embodiment. 繊維構造体を示す部分断面図。A partial cross-sectional view showing a fiber structure. 隙間を模式的に示す図。The figure which shows the gap schematically. 隙間充填部材を示す模式図。The schematic diagram which shows the gap filling member. 隙間充填部材を配置する状態を模式的に示す図。The figure which shows typically the state which arranges the gap filling member. 繊維構造体を製造する状態を示す図。The figure which shows the state of manufacturing a fiber structure. 隙間充填部材の別例を示す模式図。The schematic diagram which shows another example of the gap filling member.
 以下、繊維構造体及び繊維強化複合材を具体化した一実施形態を図1~図6にしたがって説明する。
 図1に示すように、繊維強化複合材10は、断面T形状の繊維構造体11にマトリックス材料の一例であるマトリックス樹脂Maを含浸、硬化させて形成されている。繊維構造体11は、矩形板状の本体部11aと、本体部11aに対し直交するフランジ11bとを有する。繊維構造体11は、断面T形状の第1繊維基材12と、平板状の第2繊維基材20と、第1繊維基材12と第2繊維基材20との間に画成される隙間Sに充填される隙間充填部材30とを有する。
Hereinafter, an embodiment in which the fiber structure and the fiber-reinforced composite material are embodied will be described with reference to FIGS. 1 to 6.
As shown in FIG. 1, the fiber-reinforced composite material 10 is formed by impregnating and curing a matrix resin Ma, which is an example of a matrix material, in a fiber structure 11 having a T-shaped cross section. The fiber structure 11 has a rectangular plate-shaped main body portion 11a and a flange 11b orthogonal to the main body portion 11a. The fiber structure 11 is defined between the first fiber base material 12 having a T-shaped cross section, the second fiber base material 20 having a flat plate shape, and the first fiber base material 12 and the second fiber base material 20. It has a gap filling member 30 that fills the gap S.
 第1繊維基材12は、L形繊維体13を二つ接合して断面T形状に形成されている。L形繊維体13は、経糸T、緯糸R及び図示しない層間結合糸から構成される。なお、経糸T及び緯糸Rは、強化繊維の連続繊維で形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、経糸T及び緯糸Rは、炭素繊維で形成されている。 The first fiber base material 12 is formed by joining two L-shaped fiber bodies 13 to form a T-shaped cross section. The L-shaped fiber body 13 is composed of a warp T, a weft R, and an interlayer binding yarn (not shown). The warp threads T and weft threads R are made of continuous reinforcing fibers. As the reinforcing fiber, an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used. Examples of the organic fiber include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like, and examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on. In this embodiment, the warp T and the weft R are made of carbon fibers.
 L形繊維体13は、繊維層としての複数の経糸層13aと、繊維層としての複数の緯糸層13bとを図示しない層間結合糸で積層方向Zに結合して形成された多層織物である。経糸層13aは、複数本の経糸Tを互いに平行に配列して形成され、緯糸層13bは、複数の緯糸Rを互いに平行に配列して形成されている。複数の経糸T及び緯糸Rは互いに直交する。なお、L形繊維体13は、平織り、綾織り、繻子織りして形成された単層織物を積層し、その積層体を層間結合糸で結合して構成されていてもよい。すなわち、L形繊維体13の織り構成はどのようなものであってもよい。 The L-shaped fiber body 13 is a multi-layer woven fabric formed by connecting a plurality of warp layers 13a as a fiber layer and a plurality of weft layers 13b as a fiber layer in a stacking direction Z with an interlayer binding yarn (not shown). The warp layer 13a is formed by arranging a plurality of warp threads T in parallel with each other, and the weft layer 13b is formed by arranging a plurality of weft threads R in parallel with each other. The plurality of warp threads T and weft threads R are orthogonal to each other. The L-shaped fiber body 13 may be formed by laminating a single-layer woven fabric formed by plain weave, twill weave, or satin weave, and connecting the laminated body with an interlayer binding thread. That is, the weaving structure of the L-shaped fiber body 13 may be any.
 L形繊維体13は、平板状の多層織物をL形状に屈曲させて形成されている。なお、L形繊維体13の「L形状」とは、L形繊維体13における積層方向Zに沿う断面がL形状であることをいう。L形繊維体13は、平板状の基部15と、この基部15に対し直交する平板状のフランジ構成部16と、基部15とフランジ構成部16とを繋ぐ接続部17と、を有する。L形繊維体13において、緯糸Rの糸主軸は、基部15とフランジ構成部16とを繋ぐ方向に延びている。一方、経糸Tの糸主軸は、緯糸Rの糸主軸に直交する方向に延びている。 The L-shaped fiber body 13 is formed by bending a flat multi-layer woven fabric into an L shape. The "L shape" of the L-shaped fiber body 13 means that the cross section of the L-shaped fiber body 13 along the stacking direction Z is L-shaped. The L-shaped fiber body 13 has a flat plate-shaped base portion 15, a flat plate-shaped flange constituent portion 16 orthogonal to the base portion 15, and a connecting portion 17 connecting the base portion 15 and the flange constituent portion 16. In the L-shaped fiber body 13, the yarn spindle of the weft R extends in a direction connecting the base portion 15 and the flange constituent portion 16. On the other hand, the yarn spindle of the warp yarn T extends in a direction orthogonal to the yarn spindle of the weft yarn R.
 図2に示すように、基部15は、積層方向Zの一端面に、他方のL形繊維体13の基部15と向き合う第1基部面15aを備えるとともに、積層方向Zの他端面に第2基部面15bを備える。フランジ構成部16は、積層方向Zの一端面に、第2繊維基材20と向き合う第1フランジ面16aを備えるとともに、積層方向Zの他端面に第2フランジ面16bを備える。 As shown in FIG. 2, the base portion 15 includes a first base portion surface 15a facing the base portion 15 of the other L-shaped fiber body 13 on one end surface in the stacking direction Z, and a second base portion on the other end surface in the stacking direction Z. It has a surface 15b. The flange component 16 includes a first flange surface 16a facing the second fiber base material 20 on one end surface in the stacking direction Z, and a second flange surface 16b on the other end surface in the stacking direction Z.
 接続部17は、平板状の基部15とフランジ構成部16に挟まれる部分であり、積層方向Zに沿う断面がほぼ扇形状の部分である。接続部17は、基部15の第1基部面15aとフランジ構成部16の第1フランジ面16aとの間に位置する第1湾曲面17aを備えるとともに、基部15の第2基部面15bとフランジ構成部16の第2フランジ面16bとの間に位置する第2湾曲面17bを備える。第1湾曲面17aと第2湾曲面17bの曲率は同じである。第1湾曲面17aの円弧の長さは、積層方向Zに沿う断面における第2湾曲面17bの円弧の長さより長い。 The connecting portion 17 is a portion sandwiched between the flat plate-shaped base portion 15 and the flange constituent portion 16, and has a substantially fan-shaped cross section along the stacking direction Z. The connecting portion 17 includes a first curved surface 17a located between the first base surface 15a of the base 15 and the first flange surface 16a of the flange component 16, and has a flange configuration with the second base surface 15b of the base 15. A second curved surface 17b located between the second flange surface 16b of the portion 16 is provided. The curvatures of the first curved surface 17a and the second curved surface 17b are the same. The arc length of the first curved surface 17a is longer than the arc length of the second curved surface 17b in the cross section along the stacking direction Z.
 第1繊維基材12において、二つのL形繊維体13の基部15同士から本体部11aが形成されている。本体部11aでは、複数の経糸層13aと複数の緯糸層13bとが積層方向Zに積層されている。また、第1繊維基材12は、一方のL形繊維体13の第1湾曲面17aと、他方のL形繊維体13の第1湾曲面17aとで挟まれ、繊維層の積層方向Zに沿って二股状に分岐させた分岐部18を備える。分岐部18は、一対のL形繊維体13の第1フランジ面16aから凹む。 In the first fiber base material 12, the main body portion 11a is formed from the base portions 15 of the two L-shaped fiber bodies 13. In the main body 11a, the plurality of warp layers 13a and the plurality of weft layers 13b are laminated in the stacking direction Z. Further, the first fiber base material 12 is sandwiched between the first curved surface 17a of one L-shaped fiber body 13 and the first curved surface 17a of the other L-shaped fiber body 13 in the stacking direction Z of the fiber layer. A bifurcated branch portion 18 is provided along the bifurcated portion 18. The branch portion 18 is recessed from the first flange surface 16a of the pair of L-shaped fiber bodies 13.
 図1に示すように、第2繊維基材20は、平板状である。第2繊維基材20は、経糸T、緯糸R及び図示しない層間結合糸から構成される。なお、経糸T及び緯糸Rは、強化繊維で形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、経糸T及び緯糸Rは、炭素繊維で形成されている。 As shown in FIG. 1, the second fiber base material 20 has a flat plate shape. The second fiber base material 20 is composed of a warp T, a weft R, and an interlayer binding yarn (not shown). The warp threads T and weft threads R are made of reinforcing fibers. As the reinforcing fiber, an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used. Examples of the organic fiber include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like, and examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on. In this embodiment, the warp T and the weft R are made of carbon fibers.
 第2繊維基材20は、繊維層としての複数の経糸層20aと、繊維層としての複数の緯糸層20bとを図示しない層間結合糸によって積層方向Zに結合して形成された多層織物である。経糸層20aは、複数本の経糸Tを互いに平行に配列して形成され、緯糸層20bは、複数の緯糸Rを互いに平行に配列して形成されている。複数の経糸T及び緯糸Rは互いに直交する。なお、第2繊維基材20は、平織り、綾織り、繻子織りして形成された単層織物を積層し、その積層体を層間結合糸で結合して構成されていてもよい。すなわち、第2繊維基材20の織り構成はどのようなものであってもよい。なお、繊維構造体11において、本体部11aにおける経糸層13a及び緯糸層13bの積層方向Zと、第2繊維基材20における経糸層20a及び緯糸層20bの積層方向Zに直交する方向を奥行方向Yとする。上述した分岐部18は、奥行方向Yに沿って連続して延びており、繊維構造体11の奥行方向Yの全体に亘って存在する。 The second fiber base material 20 is a multi-layer woven fabric formed by bonding a plurality of warp layers 20a as a fiber layer and a plurality of weft layers 20b as a fiber layer in the stacking direction Z by an interlayer bonding yarn (not shown). .. The warp layer 20a is formed by arranging a plurality of warp threads T in parallel with each other, and the weft layer 20b is formed by arranging a plurality of weft threads R in parallel with each other. The plurality of warp threads T and weft threads R are orthogonal to each other. The second fiber base material 20 may be configured by laminating a single-layer woven fabric formed by plain weave, twill weave, or satin weave, and bonding the laminated body with an interlayer binding thread. That is, the woven structure of the second fiber base material 20 may be any. In the fiber structure 11, the depth direction is orthogonal to the stacking direction Z of the warp layer 13a and the weft layer 13b in the main body 11a and the stacking direction Z of the warp layer 20a and the weft layer 20b in the second fiber base material 20. Let it be Y. The above-mentioned branch portion 18 extends continuously along the depth direction Y and exists over the entire depth direction Y of the fiber structure 11.
 第2繊維基材20において、経糸Tの糸主軸は、繊維構造体11の奥行方向Yに延び、緯糸Rの糸主軸は、繊維構造体11の奥行方向Y及び積層方向Zに直交する方向に延びている。 In the second fiber base material 20, the yarn main shaft of the warp yarn T extends in the depth direction Y of the fiber structure 11, and the yarn main shaft of the weft yarn R is in a direction orthogonal to the depth direction Y and the lamination direction Z of the fiber structure 11. It is extending.
 図2に示すように、第2繊維基材20は、一対のフランジ構成部16から構成されるフランジ11bに重ねられている。第2繊維基材20は、積層方向Zの一端面に、一対の第1フランジ面16aに向き合う第1面20cを備えるとともに、積層方向Zの他端面に第2面20dを備える。 As shown in FIG. 2, the second fiber base material 20 is superposed on the flange 11b composed of a pair of flange constituent portions 16. The second fiber base material 20 includes a first surface 20c facing the pair of first flange surfaces 16a on one end surface in the stacking direction Z, and a second surface 20d on the other end surface in the stacking direction Z.
 繊維構造体11の本体部11aは、第1基部面15a同士を向き合わせて一対の基部15を一体化して構成されている。繊維構造体11のフランジ11bは、一対のフランジ構成部16の第1フランジ面16aに第2繊維基材20の第1面20cを向き合わせて一体化して構成されている。 The main body portion 11a of the fiber structure 11 is configured such that the first base portion surfaces 15a face each other and the pair of base portions 15 are integrated. The flange 11b of the fiber structure 11 is formed by integrating the first flange surface 16a of the pair of flange constituent portions 16 with the first surface 20c of the second fiber base material 20 facing each other.
 上記構成の繊維構造体11において、単位体積当たりの繊維の量を繊維体積含有率Vfとする。繊維体積含有率Vfが高いほど、単位体積に含まれる繊維の量が多くなり、繊維間が狭くなる。一方、繊維体積含有率Vfが低いほど、単位体積に含まれる繊維の量が少なくなり、繊維間が開く。本実施形態では、繊維構造体11の繊維体積含有率Vfは55~65%であるが、繊維体積含有率Vfは、繊維強化複合材10の使用目的に合わせて適宜変更してもよい。 In the fiber structure 11 having the above structure, the amount of fiber per unit volume is defined as the fiber volume content Vf. The higher the fiber volume content Vf, the larger the amount of fibers contained in the unit volume, and the narrower the fibers are. On the other hand, the lower the fiber volume content Vf, the smaller the amount of fibers contained in the unit volume, and the more the fibers are opened. In the present embodiment, the fiber volume content Vf of the fiber structure 11 is 55 to 65%, but the fiber volume content Vf may be appropriately changed according to the purpose of use of the fiber reinforced composite material 10.
 繊維構造体11は、第1繊維基材12に第2繊維基材20が一体化されているため、分岐部18は第2繊維基材20で覆われている。繊維構造体11は、分岐部18を第2繊維基材20で覆うことで画成された隙間Sを有するとともに、この隙間Sには隙間充填部材30が充填されている。なお、隙間Sは、一方のL形繊維体13の第1湾曲面17aと、他方のL形繊維体13の第1湾曲面17aと、第2繊維基材20の第1面20cとの間に画成されている。また、隙間Sは、繊維構造体11の奥行方向Yの全体に亘っている。 In the fiber structure 11, since the second fiber base material 20 is integrated with the first fiber base material 12, the branch portion 18 is covered with the second fiber base material 20. The fiber structure 11 has a gap S defined by covering the branch portion 18 with the second fiber base material 20, and the gap S is filled with the gap filling member 30. The gap S is between the first curved surface 17a of one L-shaped fiber body 13, the first curved surface 17a of the other L-shaped fiber body 13, and the first surface 20c of the second fiber base material 20. It is defined in. Further, the gap S extends over the entire depth direction Y of the fiber structure 11.
 図3又は図4に示すように、隙間充填部材30は、強化繊維の非連続繊維Hで形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、非連続繊維Hは、炭素繊維で形成されている。 As shown in FIG. 3 or 4, the gap filling member 30 is formed of discontinuous fibers H of reinforcing fibers. As the reinforcing fiber, an organic fiber or an inorganic fiber may be used, or a different kind of organic fiber, a different kind of inorganic fiber, or a mixed fiber which is a mixture of the organic fiber and the inorganic fiber may be used. Examples of the organic fiber include acrylic fiber, nylon fiber, polyester fiber, aramid fiber, poly-p-phenylene benzobisoxazole fiber, ultrahigh molecular weight polyethylene fiber and the like, and examples of the inorganic fiber include carbon fiber, glass fiber and ceramic fiber. And so on. In this embodiment, the discontinuous fiber H is made of carbon fiber.
 図4に示すように、隙間充填部材30は、非連続繊維Hの撚糸31と、非連続繊維Hの撚糸31に対し螺旋状に巻き付けられる複数本のカバーリング糸32と、を備える。なお、カバーリング糸32は、熱溶融製の繊維が用いられ、例えばナイロン繊維である。隙間充填部材30は、非連続繊維Hの長手を隙間充填部材30の軸方向に揃えた繊維束である。隙間充填部材30の撚糸31は、複数本の連続繊維を引き揃えた繊維束よりも嵩高である。また、隙間充填部材30において、非連続繊維Hの長手が隙間充填部材30の軸方向に延びるように配向されている。 As shown in FIG. 4, the gap filling member 30 includes a twisted yarn 31 of the discontinuous fiber H and a plurality of covering yarns 32 spirally wound around the twisted yarn 31 of the discontinuous fiber H. As the covering yarn 32, fibers made by hot melting are used, for example, nylon fibers. The gap filling member 30 is a fiber bundle in which the lengths of the discontinuous fibers H are aligned in the axial direction of the gap filling member 30. The twisted yarn 31 of the gap filling member 30 is bulkier than a fiber bundle in which a plurality of continuous fibers are aligned. Further, in the gap filling member 30, the length of the discontinuous fiber H is oriented so as to extend in the axial direction of the gap filling member 30.
 隙間充填部材30の軸方向への寸法は、奥行方向Yに沿う隙間Sの全体の寸法の60%以上の寸法を有するのが好ましく、本実施形態では、隙間充填部材30は、隙間Sの奥行方向Y全体に亘る寸法を有する。つまり、隙間充填部材30の軸方向への寸法は、隙間Sの奥行方向Yへの寸法と同じである。また、隙間Sへ充填される隙間充填部材30の量は、繊維構造体11の隙間Sでの繊維体積含有率Vfが、隙間S以外の部分での繊維体積含有率Vf以下となるように調整される。つまり、隙間Sでの単位体積当たりの非連続繊維Hの量を示す繊維体積含有率Vfは、本体部11aにおける単位体積当たりの強化繊維の量を示す繊維体積含有率Vf以下である。本実施形態では、隙間Sでの繊維体積含有率Vfが30~55%に調整されるが、隙間Sでの繊維体積含有率Vfは、繊維強化複合材10の使用目的に合わせて適宜変更してもよい。 The axial dimension of the gap filling member 30 preferably has a dimension of 60% or more of the total dimension of the gap S along the depth direction Y. In the present embodiment, the gap filling member 30 has the depth of the gap S. It has dimensions over the entire direction Y. That is, the axial dimension of the gap filling member 30 is the same as the axial dimension of the gap S in the depth direction Y. Further, the amount of the gap filling member 30 to be filled in the gap S is adjusted so that the fiber volume content Vf in the gap S of the fiber structure 11 is equal to or less than the fiber volume content Vf in the portion other than the gap S. Will be done. That is, the fiber volume content Vf indicating the amount of discontinuous fibers H per unit volume in the gap S is equal to or less than the fiber volume content Vf indicating the amount of reinforcing fibers per unit volume in the main body 11a. In the present embodiment, the fiber volume content Vf in the gap S is adjusted to 30 to 55%, but the fiber volume content Vf in the gap S is appropriately changed according to the purpose of use of the fiber reinforced composite material 10. You may.
 そして、図1に示すように、上記構成の繊維構造体11を強化基材とした繊維強化複合材10は、隙間Sに複数本の隙間充填部材30が充填されるとともに、隙間Sにおける非連続繊維Hの量が、所望の繊維体積含有率Vfとなるように調整されている。また、図3に示すように、隙間充填部材30の非連続繊維Hの長手が繊維構造体11の奥行方向Yに延びるように配向されている。したがって、繊維強化複合材10における隙間Sの周囲は、充填された非連続繊維Hによって、奥行方向Yに補強されている。 Then, as shown in FIG. 1, in the fiber-reinforced composite material 10 using the fiber structure 11 having the above configuration as a reinforcing base material, a plurality of gap filling members 30 are filled in the gap S, and the gap S is discontinuous. The amount of fiber H is adjusted so as to have a desired fiber volume content Vf. Further, as shown in FIG. 3, the length of the discontinuous fiber H of the gap filling member 30 is oriented so as to extend in the depth direction Y of the fiber structure 11. Therefore, the periphery of the gap S in the fiber-reinforced composite material 10 is reinforced in the depth direction Y by the filled discontinuous fibers H.
 次に、繊維構造体11を強化基材とした繊維強化複合材10の製造方法について作用とともに説明する。
 まず、断面T形状の第1繊維基材12及び平板状の第2繊維基材20を製造する。次に、図5に示すように、第1繊維基材12の分岐部18に複数本の隙間充填部材30を載置する。このとき、後に形成される隙間Sの繊維体積含有率Vfが所望する値となるように、載置する隙間充填部材30の本数を調整する。そして、分岐部18には隙間充填部材30を載せるだけで、後に、繊維構造体11の隙間Sとなる部分への処理が完了する。つまり、繊維強化複合材10における隙間Sの周囲を補強するのに必要な作業が完了する。
Next, a method for producing the fiber-reinforced composite material 10 using the fiber structure 11 as a reinforcing base material will be described together with its actions.
First, the first fiber base material 12 having a T-shaped cross section and the second fiber base material 20 having a flat plate shape are manufactured. Next, as shown in FIG. 5, a plurality of gap filling members 30 are placed on the branch portion 18 of the first fiber base material 12. At this time, the number of the gap filling members 30 to be placed is adjusted so that the fiber volume content Vf of the gap S to be formed later becomes a desired value. Then, only by placing the gap filling member 30 on the branch portion 18, the processing to the portion of the fiber structure 11 that becomes the gap S is completed later. That is, the work required to reinforce the periphery of the gap S in the fiber-reinforced composite material 10 is completed.
 次に、図6に示すように、第1繊維基材12の一対の第1フランジ面16aに第2繊維基材20を載せ、第1フランジ面16aと第2繊維基材20の第1面20cとを向き合わせる。すると、分岐部18が第2繊維基材20によって覆われるとともに、第1繊維基材12と第2繊維基材20の間には、隙間充填部材30が充填された隙間Sが画成される。 Next, as shown in FIG. 6, the second fiber base material 20 is placed on the pair of first flange surfaces 16a of the first fiber base material 12, and the first flange surface 16a and the first surface of the second fiber base material 20 are placed. Face 20c. Then, the branch portion 18 is covered with the second fiber base material 20, and the gap S filled with the gap filling member 30 is defined between the first fiber base material 12 and the second fiber base material 20. ..
 そして、繊維構造体11にマトリックス樹脂Maの含浸処理を行う。この含浸処理は、レジントランスファーモールディング(RTM)法が採用される。具体的には、第1繊維基材12と第2繊維基材20と隙間充填部材30とを含む繊維構造体11を図示しない金型のキャビティに配置する。金型のキャビティに、溶融したマトリックス樹脂Maを注入し、繊維構造体11にマトリックス樹脂Maを含浸させる。このとき、溶融したマトリックス樹脂Maの温度によりカバーリング糸32が溶融する。 Then, the fiber structure 11 is impregnated with the matrix resin Ma. A resin transfer molding (RTM) method is adopted for this impregnation treatment. Specifically, the fiber structure 11 including the first fiber base material 12, the second fiber base material 20, and the gap filling member 30 is arranged in a cavity of a mold (not shown). The molten matrix resin Ma is injected into the cavity of the mold, and the fiber structure 11 is impregnated with the matrix resin Ma. At this time, the covering yarn 32 is melted by the temperature of the melted matrix resin Ma.
 マトリックス樹脂Maは、繊維構造体11の経糸T、緯糸R、層間結合糸の連続繊維同士の間に含浸していくとともに、隙間充填部材30の非連続繊維H同士の間に含浸していく。その後、マトリックス樹脂Maが硬化することで繊維強化複合材10が形成される。 The matrix resin Ma is impregnated between the continuous fibers of the warp T, the weft R, and the interlayer bonding yarn of the fiber structure 11, and is also impregnated between the discontinuous fibers H of the gap filling member 30. After that, the fiber-reinforced composite material 10 is formed by curing the matrix resin Ma.
 上記実施形態によれば、以下のような効果を得ることができる。
 (1)繊維構造体11の隙間Sに充填された隙間充填部材30は、非連続繊維Hの繊維束であることから紐状である。このため、例えば、不織布を分岐部18に配置する場合と比べると、扱いやすく、しかも、不織布のように分岐部18の形状に整形する必要もないため、隙間充填部材30を分岐部18に配置する作業が簡単である。
According to the above embodiment, the following effects can be obtained.
(1) The gap filling member 30 filled in the gap S of the fiber structure 11 is string-shaped because it is a fiber bundle of discontinuous fibers H. Therefore, for example, as compared with the case where the non-woven fabric is arranged in the branch portion 18, it is easier to handle and it is not necessary to shape the branch portion 18 like the non-woven fabric, so that the gap filling member 30 is arranged in the branch portion 18. The work to do is easy.
 そして、繊維強化複合材10において、隙間Sの周囲は非連続繊維Hによって補強される。隙間Sに充填される隙間充填部材30の本数を調整するだけで、隙間Sに充填される非連続繊維Hの量を、補強に適した量に調整できる。このため、例えば、隙間Sの周囲を補強するために、複数種類の補強用の材料を準備したり、隙間Sの形状に倣う補強部材を製造したりする場合と比べると、繊維強化複合材10における隙間Sの周囲を補強するために必要な作業を簡単に行うことができる。 Then, in the fiber reinforced composite material 10, the periphery of the gap S is reinforced by the discontinuous fiber H. The amount of discontinuous fibers H filled in the gap S can be adjusted to an amount suitable for reinforcement only by adjusting the number of the gap filling members 30 filled in the gap S. Therefore, as compared with the case where, for example, a plurality of types of reinforcing materials are prepared to reinforce the periphery of the gap S, or a reinforcing member following the shape of the gap S is manufactured, the fiber reinforced composite material 10 is used. The work required to reinforce the periphery of the gap S in the above can be easily performed.
 (2)隙間充填部材30は、非連続繊維Hの繊維束である。例えば、連続繊維を引き揃えた繊維束と比べると非連続繊維H同士の間が開きやすく、マトリックス樹脂Maを含浸させやすくなる。このため、繊維構造体11を強化基材とした繊維強化複合材10においては、隙間充填部材30の非連続繊維H同士の間にマトリックス樹脂Maが十分に浸透し、樹脂リッチな部分が形成されることを抑制でき、繊維強化複合材10における隙間Sの周囲を補強できる。 (2) The gap filling member 30 is a fiber bundle of discontinuous fibers H. For example, as compared with a fiber bundle in which continuous fibers are aligned, the gaps between the discontinuous fibers H are easily opened, and the matrix resin Ma is easily impregnated. Therefore, in the fiber-reinforced composite material 10 using the fiber structure 11 as a reinforcing base material, the matrix resin Ma sufficiently permeates between the discontinuous fibers H of the gap filling member 30, and a resin-rich portion is formed. This can be suppressed, and the periphery of the gap S in the fiber-reinforced composite material 10 can be reinforced.
 (3)隙間充填部材30の本数は、隙間Sでの繊維体積含有率Vfが、第1繊維基材12及び第2繊維基材20の繊維体積含有率Vf以下となるように調整される。このため、隙間Sにおける繊維体積含有率Vfが高くなりすぎず、繊維強化複合材10の製造時、隙間Sの隙間充填部材30にマトリックス樹脂Maが含浸し難くなることを抑制できる。 (3) The number of gap filling members 30 is adjusted so that the fiber volume content Vf in the gap S is equal to or less than the fiber volume content Vf of the first fiber base material 12 and the second fiber base material 20. Therefore, the fiber volume content Vf in the gap S does not become too high, and it is possible to prevent the gap filling member 30 in the gap S from being easily impregnated with the matrix resin Ma during the production of the fiber reinforced composite material 10.
 (4)隙間充填部材30の軸方向への寸法は、奥行方向Yへの隙間Sの寸法の60%以上である。このため、隙間充填部材30の非連続繊維Hが奥行方向Yに延びるように配向され、繊維強化複合材10において、隙間充填部材30によって隙間Sにおける奥行方向Yへの強度を確保できる。 (4) The axial dimension of the gap filling member 30 is 60% or more of the dimension of the gap S in the depth direction Y. Therefore, the discontinuous fibers H of the gap filling member 30 are oriented so as to extend in the depth direction Y, and in the fiber reinforced composite material 10, the gap filling member 30 can secure the strength in the depth direction Y in the gap S.
 (5)隙間充填部材30は、非連続繊維H製の撚糸31をカバーリング糸32で形状保持したものである。このため、分岐部18に隙間充填部材30を配置するときに、非連続繊維Hがばらけることを抑制でき、分岐部18への隙間充填部材30の配置が容易である。 (5) The gap filling member 30 is formed by holding a twisted yarn 31 made of discontinuous fiber H with a covering yarn 32. Therefore, when the gap filling member 30 is arranged in the branch portion 18, it is possible to prevent the discontinuous fibers H from being scattered, and the gap filling member 30 can be easily arranged in the branch portion 18.
 (6)分岐部18に配置される隙間充填部材30は紐状である。このため、分岐部18には、当該分岐部18の奥行方向Yに隙間充填部材30の軸方向を沿わせて配置する。よって、第1繊維基材12の分岐部18といった狭い部分であっても隙間充填部材30を配置しやすい。 (6) The gap filling member 30 arranged at the branch portion 18 is string-shaped. Therefore, the branch portion 18 is arranged along the axial direction of the gap filling member 30 in the depth direction Y of the branch portion 18. Therefore, it is easy to arrange the gap filling member 30 even in a narrow portion such as the branch portion 18 of the first fiber base material 12.
 (7)隙間充填部材30は、非連続繊維Hの長手を隙間充填部材30の軸方向に延びるように揃えた繊維束であり、非連続繊維Hの配向がランダムな不織布とは異なる。このため、繊維強化複合材10の製造時、隙間Sの隙間充填部材30がマトリックス樹脂Maの注入圧力によって隙間Sから流出することを抑制できる。 (7) The gap filling member 30 is a fiber bundle in which the lengths of the discontinuous fibers H are aligned so as to extend in the axial direction of the gap filling member 30, and is different from the non-woven fabric in which the orientation of the discontinuous fibers H is random. Therefore, during the production of the fiber-reinforced composite material 10, it is possible to prevent the gap filling member 30 in the gap S from flowing out from the gap S due to the injection pressure of the matrix resin Ma.
 (8)繊維構造体11の隙間Sの大きさは、繊維強化複合材10の大きさ、形状によって異なる。隙間充填部材30は紐状であり、隙間充填部材30の本数を調整するだけで、隙間Sの大きさ、形状に合わせて隙間充填部材30を充填できる。よって、隙間Sの大きさ、形状に合わせた充填部材を製造する必要がなく、隙間Sの周囲を補強するための作業が容易となる。 (8) The size of the gap S of the fiber structure 11 differs depending on the size and shape of the fiber reinforced composite material 10. The gap filling member 30 has a string shape, and the gap filling member 30 can be filled according to the size and shape of the gap S simply by adjusting the number of the gap filling members 30. Therefore, it is not necessary to manufacture a filling member that matches the size and shape of the gap S, and the work for reinforcing the periphery of the gap S becomes easy.
 (9)隙間充填部材30の繊維体積含有率Vfは予め把握できるため、隙間充填部材30の本数を調整することで隙間Sにおける繊維体積含有率Vfの調整がしやすい。
 (10)隙間充填部材30は非連続繊維Hの繊維束であり、嵩高である。このため、分岐部18に隙間充填部材30を配置するとき、隙間充填部材30を積み重ねても、隙間充填部材30同士の間、ひいては各隙間充填部材30の非連続繊維H同士の間が開いた状態を確保できる。このため、隙間充填部材30においてもマトリックス樹脂Maを含浸させることができる。
(9) Since the fiber volume content Vf of the gap filling member 30 can be grasped in advance, it is easy to adjust the fiber volume content Vf in the gap S by adjusting the number of the gap filling members 30.
(10) The gap filling member 30 is a fiber bundle of discontinuous fibers H and is bulky. Therefore, when the gap filling member 30 is arranged in the branch portion 18, even if the gap filling members 30 are stacked, the gaps between the gap filling members 30 and the discontinuous fibers H of each gap filling member 30 are opened. The state can be secured. Therefore, the gap filling member 30 can also be impregnated with the matrix resin Ma.
 本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○ 図7に示すように、隙間充填部材40は、隙間充填部材40の軸方向全体に延びる連続繊維からなる芯糸41と、芯糸41を覆う被覆層42と、被覆層42に捲回されたカバーリング糸43と、を有する構成であってもよい。芯糸41は、連続繊維を撚って形成された撚糸である。被覆層42は、非連続繊維Hからなる撚糸である。
This embodiment can be modified and implemented as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
○ As shown in FIG. 7, the gap filling member 40 is wound around a core yarn 41 made of continuous fibers extending in the entire axial direction of the gap filling member 40, a coating layer 42 covering the core yarn 41, and a coating layer 42. The cover ring thread 43 may be provided. The core yarn 41 is a twisted yarn formed by twisting continuous fibers. The coating layer 42 is a twisted yarn made of discontinuous fibers H.
 このように構成した場合、隙間充填部材40は、連続繊維製の芯糸41を備えるため、芯糸41によって隙間充填部材40の直進性を持たせた形状を維持しやすく、分岐部18への隙間充填部材40の配置が行いやすい。 In this configuration, since the gap filling member 40 includes the core thread 41 made of continuous fiber, it is easy to maintain the shape of the gap filling member 40 having straightness by the core thread 41, and the branch portion 18 is provided. It is easy to arrange the gap filling member 40.
 ○ 繊維構造体11は、断面T形状の第1繊維基材12と、断面T形状の第2繊維基材20とを一体化して形成してもよく、この場合、第1繊維基材12と第2繊維基材20は分岐部18同士を向き合わせて一体化され、隙間Sは、積層方向Zに沿う断面がほぼ四角形状になる。 ○ The fiber structure 11 may be formed by integrally forming the first fiber base material 12 having a T-shaped cross section and the second fiber base material 20 having a T-shaped cross section. In this case, the first fiber base material 12 and The second fiber base material 20 is integrated with the branch portions 18 facing each other, and the gap S has a substantially quadrangular cross section along the stacking direction Z.
 ○ 隙間充填部材30の全長は、分岐部18の奥行方向Yへの寸法より短くてもよい。この場合、隙間充填部材30を糸主軸方向に繋ぎ合わせて分岐部18の奥行方向Y全体に亘って隙間充填部材30を配置する。 ○ The total length of the gap filling member 30 may be shorter than the dimension of the branch portion 18 in the depth direction Y. In this case, the gap filling member 30 is connected in the thread spindle direction, and the gap filling member 30 is arranged over the entire depth direction Y of the branch portion 18.
 ○ 隙間充填部材30の全長は、分岐部18の奥行方向Yへの寸法より長くてもよい。この場合、分岐部18から奥行方向Yに飛び出した部分を切除して、分岐部18の奥行方向Y全体に亘って隙間充填部材30を配置する。 ○ The total length of the gap filling member 30 may be longer than the dimension of the branch portion 18 in the depth direction Y. In this case, the portion protruding from the branch portion 18 in the depth direction Y is cut off, and the gap filling member 30 is arranged over the entire depth direction Y of the branch portion 18.
 ○ 隙間充填部材30は、カバーリング糸32を備えず、非連続繊維Hを撚っただけの構成としてもよい。
 ○ 隙間充填部材30は、非連続繊維Hの無撚糸であってもよい。
The gap filling member 30 may not include the covering yarn 32 and may be configured by simply twisting the discontinuous fibers H.
○ The gap filling member 30 may be a non-twisted yarn of non-continuous fiber H.
 ○ 実施形態では、分岐部18を、一対のL形繊維体13を一体化して形成したが、一枚の繊維体を二股状に分岐させて分岐部18を形成してもよい。
 ○ マトリックス樹脂Maとして熱硬化性樹脂を用いたが、その他の種類の樹脂を用いてもよい。
○ In the embodiment, the branch portion 18 is formed by integrating a pair of L-shaped fiber bodies 13, but a single fiber body may be branched in a bifurcated shape to form the branch portion 18.
○ Although a thermosetting resin was used as the matrix resin Ma, other types of resins may be used.
 ○ マトリックス材料はマトリックス樹脂Ma以外にもセラミックでもよい。
 ○ 第1繊維基材12及び第2繊維基材20において、積層する繊維層の数は任意に変更してもよい。
○ The matrix material may be ceramic other than the matrix resin Ma.
○ In the first fiber base material 12 and the second fiber base material 20, the number of fiber layers to be laminated may be arbitrarily changed.
 ○ 第2繊維基材20を、平織り、綾織り、繻子織りして形成された単層織物1枚で構成してもよい。 ○ The second fiber base material 20 may be composed of one single-layer woven fabric formed by plain weave, twill weave, and satin weave.
 H  非連続繊維
 Ma  マトリックス材料としてのマトリックス樹脂
 S  隙間
 Y  奥行方向
 Z  積層方向
 Vf  繊維体積含有率
 10  繊維強化複合材
 11  繊維構造体
 11a  本体部
 12  第1繊維基材
 13a,20a  繊維層としての経糸層
 13b,20b  繊維層としての緯糸層
 18  分岐部
 20  第2繊維基材
 30,40  隙間充填部材
 41  芯糸
 42  被覆層
H Non-continuous fiber Ma Matrix resin as matrix material S Gap Y Depth direction Z Lamination direction Vf Fiber volume content 10 Fiber reinforced composite material 11 Fiber structure 11a Main body 12 First fiber base material 13a, 20a Warp as fiber layer Layers 13b, 20b Weft layer as fiber layer 18 Branch part 20 Second fiber base material 30, 40 Gap filling member 41 Core thread 42 Coating layer

Claims (5)

  1.  繊維構造体にマトリックス材料を含浸させて形成される繊維強化複合材の前記繊維構造体であって、
     強化繊維の繊維層を複数積層した本体部を有するとともに、前記本体部を前記繊維層の積層方向に沿って二股状に分岐させた分岐部を有する第1繊維基材と、
     前記分岐部を覆って前記第1繊維基材に一体化される第2繊維基材を備え、
     前記分岐部と前記第2繊維基材とで画成される隙間に充填される隙間充填部材を備え、
     前記隙間充填部材は、非連続繊維の繊維束であることを特徴とする繊維構造体。
    The fiber structure of a fiber-reinforced composite material formed by impregnating a fiber structure with a matrix material.
    A first fiber base material having a main body portion in which a plurality of fiber layers of reinforcing fibers are laminated and a branch portion in which the main body portion is bifurcated along the laminating direction of the fiber layers.
    A second fiber base material that covers the branch portion and is integrated with the first fiber base material is provided.
    A gap filling member for filling the gap defined by the branch portion and the second fiber base material is provided.
    The gap filling member is a fiber structure characterized by being a fiber bundle of discontinuous fibers.
  2.  前記第2繊維基材は、強化繊維の繊維層を複数積層して有し、前記第2繊維基材における前記繊維層の積層方向と前記本体部における前記繊維層の積層方向に直交する方向を奥行方向とすると、前記分岐部は前記奥行方向に沿って連続して延びており、前記隙間は前記繊維構造体の前記奥行方向の全体に亘り、前記隙間充填部材の軸方向への寸法は、前記奥行方向への前記隙間の寸法の60%以上である請求項1に記載の繊維構造体。 The second fiber base material has a plurality of laminated fiber layers of reinforcing fibers, and has a direction orthogonal to the laminating direction of the fiber layers in the second fiber base material and the laminating direction of the fiber layers in the main body portion. In the depth direction, the branch portion extends continuously along the depth direction, the gap extends over the entire depth direction of the fiber structure, and the axial dimension of the gap filling member is The fiber structure according to claim 1, which is 60% or more of the size of the gap in the depth direction.
  3.  前記隙間の単位体積当たりの前記非連続繊維の量を示す繊維体積含有率は、前記本体部における単位体積当たりの前記強化繊維の量を示す繊維体積含有率以下である請求項1又は請求項2に記載の繊維構造体。 Claim 1 or claim 2 that the fiber volume content indicating the amount of the discontinuous fibers per unit volume of the gap is equal to or less than the fiber volume content indicating the amount of the reinforcing fibers per unit volume in the main body. The fibrous structure described in.
  4.  前記隙間充填部材は、当該隙間充填部材の軸方向全体に延びる連続繊維からなる芯糸と、前記芯糸を覆う非連続繊維からなる被覆層とを備える請求項1~請求項3のうちいずれか一項に記載の繊維構造体。 Any one of claims 1 to 3, wherein the gap filling member includes a core yarn made of continuous fibers extending in the entire axial direction of the gap filling member and a coating layer made of discontinuous fibers covering the core yarn. The fiber structure according to one item.
  5.  繊維構造体にマトリックス材料を含浸させて構成される繊維強化複合材であって、前記繊維構造体は請求項1~請求項4のうちいずれか一項に記載の繊維構造体である繊維強化複合材。 A fiber-reinforced composite material formed by impregnating a fiber structure with a matrix material, wherein the fiber structure is the fiber structure according to any one of claims 1 to 4. Material.
PCT/JP2020/028417 2019-08-19 2020-07-22 Fiber structure and fiber-reinforced composite WO2021033484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149794A JP7322588B2 (en) 2019-08-19 2019-08-19 Fiber structures and fiber reinforced composites
JP2019-149794 2019-08-19

Publications (1)

Publication Number Publication Date
WO2021033484A1 true WO2021033484A1 (en) 2021-02-25

Family

ID=74660818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028417 WO2021033484A1 (en) 2019-08-19 2020-07-22 Fiber structure and fiber-reinforced composite

Country Status (2)

Country Link
JP (1) JP7322588B2 (en)
WO (1) WO2021033484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117416063A (en) * 2023-12-19 2024-01-19 浙江航引新材料科技有限公司 Composite material reinforcing rib preform and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022131504A (en) 2021-02-26 2022-09-07 Nttセキュリティ・ジャパン株式会社 Information processing system, information processing method, and program

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274922A (en) * 1985-05-31 1986-12-05 Toyoda Spinning & Weaving Co Ltd Method for bonding fiber reinforced resin structure
JPH07118979A (en) * 1993-10-25 1995-05-09 Toray Ind Inc Conjugate spun yarn and its production
JPH08165363A (en) * 1994-12-16 1996-06-25 Mitsubishi Heavy Ind Ltd Gap-filling fibrous structure
JP2002225048A (en) * 2001-02-06 2002-08-14 Toray Ind Inc Molded object made of frp and method for manufacturing the same
WO2011046137A1 (en) * 2009-10-16 2011-04-21 東レ株式会社 Method and device for manufacturing beam member
JP2015063207A (en) * 2013-09-25 2015-04-09 本田技研工業株式会社 Body structure of automobile
WO2017110496A1 (en) * 2015-12-22 2017-06-29 株式会社 豊田自動織機 Fabric for fiber reinforced composite material and fiber reinforced composite material
JP2019069610A (en) * 2013-03-08 2019-05-09 ザ・ボーイング・カンパニーThe Boeing Company Formation of composite features using steered discontinuous fiber prepreg

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8540833B2 (en) * 2008-05-16 2013-09-24 The Boeing Company Reinforced stiffeners and method for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61274922A (en) * 1985-05-31 1986-12-05 Toyoda Spinning & Weaving Co Ltd Method for bonding fiber reinforced resin structure
JPH07118979A (en) * 1993-10-25 1995-05-09 Toray Ind Inc Conjugate spun yarn and its production
JPH08165363A (en) * 1994-12-16 1996-06-25 Mitsubishi Heavy Ind Ltd Gap-filling fibrous structure
JP2002225048A (en) * 2001-02-06 2002-08-14 Toray Ind Inc Molded object made of frp and method for manufacturing the same
WO2011046137A1 (en) * 2009-10-16 2011-04-21 東レ株式会社 Method and device for manufacturing beam member
JP2019069610A (en) * 2013-03-08 2019-05-09 ザ・ボーイング・カンパニーThe Boeing Company Formation of composite features using steered discontinuous fiber prepreg
JP2015063207A (en) * 2013-09-25 2015-04-09 本田技研工業株式会社 Body structure of automobile
WO2017110496A1 (en) * 2015-12-22 2017-06-29 株式会社 豊田自動織機 Fabric for fiber reinforced composite material and fiber reinforced composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117416063A (en) * 2023-12-19 2024-01-19 浙江航引新材料科技有限公司 Composite material reinforcing rib preform and preparation method thereof
CN117416063B (en) * 2023-12-19 2024-03-05 浙江航引新材料科技有限公司 Composite material reinforcing rib preform and preparation method thereof

Also Published As

Publication number Publication date
JP7322588B2 (en) 2023-08-08
JP2021030478A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
CN107850259A (en) Strengthen the pressure vessel of end socket
WO2021033484A1 (en) Fiber structure and fiber-reinforced composite
WO2014030632A1 (en) Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite
KR20120112431A (en) Fiber preform, fiber reinforced composite, and method of maing thereof
RU2604444C2 (en) Corner fitting preforms and method for production thereof
JP5900624B2 (en) 3D fiber reinforced composite
US10023141B2 (en) Energy-absorbing member
US10947647B2 (en) Fabric for fiber reinforced composite material and fiber reinforced composite material
JP6493094B2 (en) Fiber structure and fiber reinforced composite
JP2021025164A (en) Fiber structure and fiber-reinforce composite material
US20190376212A1 (en) Double fabric for fiber reinforced composites
WO2014030633A1 (en) Three-dimensional fiber-reinforced composite
JP2015080944A (en) Fiber-reinforced resin
JP6196658B2 (en) Sandwich panel, unidirectional prepreg manufacturing method, and sandwich panel manufacturing method
JP7287162B2 (en) Fiber structures and fiber reinforced composites
JP6652000B2 (en) Preform for fiber reinforced composite material and fiber reinforced composite material
JP6620771B2 (en) Fiber structure and fiber reinforced composite
JP2017025216A (en) Fiber-reinforced composite material
KR101594655B1 (en) Method for preparing still wire and continuous fiber reinforced composite
JP2011073402A (en) Preform of fiber-reinforced composite material and method for manufacturing the same
WO2020100797A1 (en) Spun yarn
US20210069995A1 (en) Fiber reinforced materials with improved fatigue performance
JP2019094579A (en) Reinforced fiber yarn for fiber reinforced composite material
WO2013191232A1 (en) Reinforcing fiber composite material and method for producing reinforcing fiber composite material
JP2014077213A (en) Fiber base material for joint and fiber-reinforced composite material for joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853949

Country of ref document: EP

Kind code of ref document: A1