JP7322588B2 - Fiber structures and fiber reinforced composites - Google Patents
Fiber structures and fiber reinforced composites Download PDFInfo
- Publication number
- JP7322588B2 JP7322588B2 JP2019149794A JP2019149794A JP7322588B2 JP 7322588 B2 JP7322588 B2 JP 7322588B2 JP 2019149794 A JP2019149794 A JP 2019149794A JP 2019149794 A JP2019149794 A JP 2019149794A JP 7322588 B2 JP7322588 B2 JP 7322588B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- gap
- fibers
- filling member
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 257
- 239000003733 fiber-reinforced composite Substances 0.000 title claims description 35
- 239000000463 material Substances 0.000 claims description 103
- 239000011159 matrix material Substances 0.000 claims description 29
- 239000012783 reinforcing fiber Substances 0.000 claims description 13
- 238000003475 lamination Methods 0.000 claims description 4
- 230000004323 axial length Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 39
- 239000011347 resin Substances 0.000 description 21
- 229920005989 resin Polymers 0.000 description 21
- 239000004744 fabric Substances 0.000 description 12
- 239000012784 inorganic fiber Substances 0.000 description 12
- 230000003014 reinforcing effect Effects 0.000 description 11
- 238000009941 weaving Methods 0.000 description 9
- 239000011229 interlayer Substances 0.000 description 7
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 239000012763 reinforcing filler Substances 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 5
- 239000004745 nonwoven fabric Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 4
- ICXAPFWGVRTEKV-UHFFFAOYSA-N 2-[4-(1,3-benzoxazol-2-yl)phenyl]-1,3-benzoxazole Chemical compound C1=CC=C2OC(C3=CC=C(C=C3)C=3OC4=CC=CC=C4N=3)=NC2=C1 ICXAPFWGVRTEKV-UHFFFAOYSA-N 0.000 description 3
- 229920002972 Acrylic fiber Polymers 0.000 description 3
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 239000002241 glass-ceramic Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0003—Producing profiled members, e.g. beams
- B29D99/0005—Producing noodles, i.e. composite gap fillers, characterised by their construction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/12—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
- B29C70/14—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/40—Shaping or impregnating by compression not applied
- B29C70/42—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
- B29C70/46—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
- B29C70/48—Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D99/00—Subject matter not provided for in other groups of this subclass
- B29D99/0003—Producing profiled members, e.g. beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/28—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/38—Threads in which fibres, filaments, or yarns are wound with other yarns or filaments, e.g. wrap yarns, i.e. strands of filaments or staple fibres are wrapped by a helically wound binder yarn
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2505/00—Industrial
- D10B2505/02—Reinforcing materials; Prepregs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Woven Fabrics (AREA)
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Description
本発明は、隙間に充填される隙間充填部材を備える繊維構造体及び繊維強化複合材に関する。 TECHNICAL FIELD The present invention relates to a fiber structure and a fiber reinforced composite material provided with a gap filling member that fills a gap.
軽量、高強度の材料として繊維強化複合材が使用されている。繊維強化複合材は、強化繊維製の繊維構造体が樹脂や金属等のマトリックス材料中に複合化されることにより、マトリックス材料自体に比べて力学的特性が向上するため、構造部品として好ましい。特にマトリックス材料として樹脂を使用した場合は、構造部品の軽量化が図れるため好ましい。 Fiber-reinforced composite materials are used as lightweight and high-strength materials. A fiber-reinforced composite material is preferable as a structural component because a fiber structure made of reinforcing fibers is compounded in a matrix material such as a resin or metal, thereby improving mechanical properties compared to the matrix material itself. In particular, it is preferable to use a resin as the matrix material because the weight of the structural parts can be reduced.
この種の繊維強化複合材としては、例えば、I形状やT形状に形成されたものがある(例えば、特許文献1参照)。特許文献1に開示の補強材の強化基材は、背中合わせに配置された一対のCチャネルを備える。一対のCチャネルは、それぞれウェブ部分と、ウェブ部分の各端部に設けられ、一対のCチャネルで反対方向に延出されたフランジを備える。 As this type of fiber-reinforced composite material, for example, there are those formed in an I-shape or a T-shape (see, for example, Patent Document 1). The reinforcing substrate of the stiffener disclosed in US Pat. A pair of C-channels each include a web portion and a flange provided at each end of the web portion and extending in opposite directions on the pair of C-channels.
一対のウェブ部は連結されて補強材のウェブを形成する。強化基材において、ウェブの一端側における一対のフランジの外側にはキャップが連結され、ウェブの他端側における一対のフランジの外側にはベースが連結されている。よって、強化基材は、一対のCチャネルと、キャップと、ベースとから構成されている。 A pair of web portions are joined to form a web of reinforcement. In the reinforcing substrate, a cap is connected to the outside of the pair of flanges on one end side of the web, and a base is connected to the outside of the pair of flanges on the other end side of the web. Thus, the reinforcing matrix is composed of a pair of C-channels, a cap and a base.
強化基材において、一対のCチャネルのフランジとキャップとの間、及び一対のCチャネルのフランジとベースとの間には、それぞれ断面三角形状の隙間が画成されるが、この隙間には、隙間とほぼ同じ断面三角形状の補強用充填材が充填される。補強用充填材としては、複合テープや布部材などが採用される。また、隙間を囲むCチャネルの表面は布層で覆われている。また、隙間において、布層の内側には接着剤の層が設けられるとともに、その接着剤の層に補強用充填材が包まれている。そして、これら布層、接着剤層、及び補強用充填材により、補強材における隙間の周囲を補強している。 Between the pair of C-channel flanges and the cap, and between the pair of C-channel flanges and the base, gaps having a triangular cross-section are defined in the reinforcing base material. A reinforcing filler having a triangular cross-section that is substantially the same as the gap is filled. A composite tape, a cloth member, or the like is employed as the reinforcing filler. Also, the surface of the C-channel surrounding the gap is covered with a fabric layer. Further, in the gap, an adhesive layer is provided inside the cloth layer, and the reinforcing filler is wrapped in the adhesive layer. The cloth layer, the adhesive layer, and the reinforcing filler reinforce the periphery of the gap in the reinforcing member.
ところが、特許文献1では、補強材における隙間の周囲を補強するために、布層、接着剤層、及び補強用充填材を必要とするとともに、それら布層、接着剤層、及び補強用充填材を設けるための作業が面倒であるという問題があった。 However, in Patent Document 1, in order to reinforce the periphery of the gap in the reinforcing material, a cloth layer, an adhesive layer, and a reinforcing filler are required, and the cloth layer, the adhesive layer, and the reinforcing filler are required. There is a problem that the work for providing the is troublesome.
本発明の目的は、繊維強化複合材における隙間の周囲を補強するのに必要な作業を簡単に行うことができる繊維構造体及び繊維強化複合材を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a fiber structure and a fiber-reinforced composite material that facilitate the work necessary to reinforce the periphery of gaps in the fiber-reinforced composite material.
上記問題点を解決するための繊維構造体は、繊維構造体にマトリックス材料を含浸させて形成される繊維強化複合材の前記繊維構造体であって、強化繊維の繊維層を複数積層した本体部を有するとともに、前記本体部を前記繊維層の積層方向に沿って二股状に分岐させた分岐部を有する第1繊維基材と、前記分岐部を覆って前記第1繊維基材に一体化される第2繊維基材を備え、前記分岐部と前記第2繊維基材とで画成される隙間に充填される隙間充填部材を備え、前記隙間充填部材は、非連続繊維の撚糸または無撚糸であり、前記非連続繊維の長手が前記隙間充填部材の軸方向に延びるように配向されており、前記非連続繊維の長さが前記隙間充填部材の軸方向長さよりも短く、前記隙間に複数本の前記隙間充填部材が充填されていることを要旨とする。 A fiber structure for solving the above problems is a fiber structure of a fiber-reinforced composite material formed by impregnating the fiber structure with a matrix material, and is a main body portion in which a plurality of fiber layers of reinforcing fibers are laminated. A first fiber base material having a branched portion obtained by bifurcating the main body portion along the stacking direction of the fiber layer, and a first fiber base material covering the branched portion and integrated with the first fiber base material and a gap-filling member filled in a gap defined by the branched portion and the second fiber base material, wherein the gap-filling member is a twisted yarn or a non-twisted yarn of discontinuous fibers. wherein the length of the discontinuous fibers is oriented so as to extend in the axial direction of the gap filling member, the length of the discontinuous fibers is shorter than the axial length of the gap filling member, and the gap is filled with The gist is that a plurality of the gap filling members are filled .
上記問題点を解決するための繊維強化複合材は、繊維構造体にマトリックス材料を含浸させて構成される繊維強化複合材であって、前記繊維構造体は請求項1~請求項4のうちいずれか一項に記載の繊維構造体であることを要旨とする。 A fiber-reinforced composite material for solving the above problems is a fiber-reinforced composite material composed of a fiber structure impregnated with a matrix material, and the fiber structure is any one of claims 1 to 4. The gist is that it is the fiber structure according to claim 1.
各構成において、隙間充填部材は、第1繊維基材と第2繊維基材を一体化する前、つまり、分岐部が第2繊維基材に覆われる前に、第1繊維基材の分岐部に配置される。その後、分岐部が第2繊維基材によって覆われることにより、隙間が画成されるとともに、隙間に隙間充填部材が充填される。 In each configuration, the gap-filling member is added to the branched portion of the first fiber base material before the first fiber base material and the second fiber base material are integrated, that is, before the branched part is covered with the second fiber base material. placed in Thereafter, by covering the branched portion with the second fiber base material, a gap is defined and the gap is filled with the gap filling member.
隙間充填部材は、非連続繊維の繊維束であるため、紐状である。このため、例えば、不織布を分岐部に配置する場合と比べると、扱いやすく、しかも、不織布のように分岐部の形状に整形する必要もないため、隙間充填部材を分岐部に配置する作業が簡単である。 Since the gap filling member is a fiber bundle of discontinuous fibers, it has a string shape. For this reason, for example, compared to the case where a nonwoven fabric is arranged at the bifurcation, it is easier to handle, and unlike the nonwoven fabric, it is not necessary to shape the bifurcation into the shape of the bifurcation. is.
そして、繊維構造体にマトリックス材料を含浸して製造される繊維強化複合材において、隙間の周囲は非連続繊維によって補強される。隙間に充填される隙間充填部材の本数を調整するだけで、隙間に充填される非連続繊維の量を、補強に適した量に調整できる。このため、例えば、隙間の周囲を補強するために、複数種類の補強用の材料を準備したり、隙間の形状に倣う補強部材を製造したりする場合と比べると、繊維強化複合材における隙間の周囲を補強するために必要な作業を簡単に行うことができる。 In a fiber-reinforced composite material produced by impregnating a fiber structure with a matrix material, the periphery of the gap is reinforced with discontinuous fibers. By simply adjusting the number of gap filling members that fill the gap, the amount of discontinuous fibers that fill the gap can be adjusted to an amount suitable for reinforcement. For this reason, for example, in order to reinforce the periphery of the gap, compared to the case where a plurality of types of reinforcing materials are prepared or a reinforcing member that follows the shape of the gap is manufactured, the gap in the fiber reinforced composite material is reduced. The work necessary to reinforce the perimeter can be easily performed.
繊維構造体について、前記第2繊維基材は、強化繊維の繊維層を複数積層して有し、前記第2繊維基材における前記繊維層の積層方向と前記本体部における前記繊維層の積層方向に直交する方向を奥行方向とすると、前記分岐部は前記奥行方向に沿って連続して延びており、前記隙間は前記繊維構造体の前記奥行方向の全体に亘り、前記隙間充填部材の軸方向への寸法は、前記奥行方向への前記隙間の寸法の60%以上であってもよい。 Regarding the fiber structure, the second fiber base material has a plurality of laminated fiber layers of reinforcing fibers, and the stacking direction of the fiber layers in the second fiber base material and the stacking direction of the fiber layers in the main body part. , the branched portion extends continuously along the depth direction, and the gap extends throughout the fiber structure in the depth direction, and extends in the axial direction of the gap filling member. may be 60% or more of the dimension of the gap in the depth direction.
これによれば、隙間充填部材の非連続繊維が本体部の奥行方向に延びるように配向される。このため、繊維構造体にマトリックス材料を含浸して製造される繊維強化複合材において、隙間充填部材によって奥行方向への強度を確保できる。 According to this, the discontinuous fibers of the gap filling member are oriented so as to extend in the depth direction of the main body. Therefore, in the fiber-reinforced composite material manufactured by impregnating the matrix material into the fiber structure, the strength in the depth direction can be ensured by the gap filling member.
繊維構造体について、前記隙間の単位体積当たりの前記非連続繊維の量を示す繊維体積含有率は、前記本体部における単位体積当たりの前記強化繊維の量を示す繊維体積含有率以下であってもよい。 Regarding the fiber structure, even if the fiber volume content ratio indicating the amount of the discontinuous fibers per unit volume of the gap is less than or equal to the fiber volume content ratio indicating the amount of the reinforcing fibers per unit volume in the main body portion good.
これによれば、隙間における隙間充填部材の非連続繊維の比率が高くなりすぎず、非連続繊維同士が密に重なり合うことが抑制される。その結果、隙間に配置された隙間充填部材において、非連続繊維同士の間にマトリックス材料を含浸させやすい。 According to this, the ratio of the discontinuous fibers of the gap filling member in the gap does not become too high, and the dense overlapping of the discontinuous fibers is suppressed. As a result, in the gap filling member arranged in the gap, it is easy to impregnate the matrix material between the discontinuous fibers.
繊維構造体について、前記非連続繊維の撚糸または無撚糸は、当該隙間充填部材の軸方向全体に延びる連続繊維からなる芯糸を備えていてもよい。 Regarding the fiber structure, the twisted or non-twisted yarn of discontinuous fibers may have a core yarn made of continuous fibers extending in the entire axial direction of the gap filling member.
これによれば、芯糸によって隙間充填部材の直進性を持たせた形状を維持しやすく、分岐部への隙間充填部材の配置が行いやすい。 According to this, it is easy to maintain the straight shape of the gap filling member by the core yarn, and it is easy to arrange the gap filling member at the bifurcation.
本発明によれば、繊維強化複合材における隙間の周囲を補強するのに必要な作業を簡単に行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, the operation|work required to reinforce the circumference|surroundings of the clearance gap in a fiber-reinforced composite material can be performed simply.
以下、繊維構造体及び繊維強化複合材を具体化した一実施形態を図1~図6にしたがって説明する。
図1に示すように、繊維強化複合材10は、断面T形状の繊維構造体11にマトリックス材料の一例であるマトリックス樹脂Maを含浸、硬化させて形成されている。繊維構造体11は、矩形板状の本体部11aと、本体部11aに対し直交するフランジ11bとを有する。繊維構造体11は、断面T形状の第1繊維基材12と、平板状の第2繊維基材20と、第1繊維基材12と第2繊維基材20との間に画成される隙間Sに充填される隙間充填部材30とを有する。
An embodiment embodying a fiber structure and a fiber-reinforced composite material will be described below with reference to FIGS. 1 to 6. FIG.
As shown in FIG. 1, a fiber-reinforced composite material 10 is formed by impregnating a fiber structure 11 having a T-shaped cross section with a matrix resin Ma, which is an example of a matrix material, and curing the material. The fiber structure 11 has a rectangular plate-like body portion 11a and a flange 11b orthogonal to the body portion 11a. The fiber structure 11 is defined between the first fiber base material 12 having a T-shaped cross section, the flat second fiber base material 20, and the first fiber base material 12 and the second fiber base material 20. and a gap filling member 30 that fills the gap S.
第1繊維基材12は、L形繊維体13を二つ接合して断面T形状に形成されている。L形繊維体13は、経糸T、緯糸R及び図示しない層間結合糸から構成される。なお、経糸T及び緯糸Rは、強化繊維の連続繊維で形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、経糸T及び緯糸Rは、炭素繊維で形成されている。 The first fiber base material 12 is formed by joining two L-shaped fiber bodies 13 to have a T-shaped cross section. The L-shaped fiber body 13 is composed of warp yarns T, weft yarns R, and interlayer binding yarns (not shown). The warp yarn T and the weft yarn R are formed of continuous reinforcing fibers. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers obtained by mixing organic fibers and inorganic fibers may be used. Examples of organic fibers include acrylic fibers, nylon fibers, polyester fibers, aramid fibers, poly-p-phenylenebenzobisoxazole fibers, ultra-high molecular weight polyethylene fibers, etc. Examples of inorganic fibers include carbon fibers, glass fibers, and ceramic fibers. etc. In this embodiment, the warp threads T and the weft threads R are made of carbon fiber.
L形繊維体13は、繊維層としての複数の経糸層13aと、繊維層としての複数の緯糸層13bとを図示しない層間結合糸で積層方向Zに結合して形成された多層織物である。経糸層13aは、複数本の経糸Tを互いに平行に配列して形成され、緯糸層13bは、複数の緯糸Rを互いに平行に配列して形成されている。複数の経糸T及び緯糸Rは互いに直交する。なお、L形繊維体13は、平織り、綾織り、繻子織りして形成された単層織物を積層し、その積層体を層間結合糸で結合して構成されていてもよい。すなわち、L形繊維体13の織り構成はどのようなものであってもよい。 The L-shaped fibrous body 13 is a multi-layer fabric formed by binding a plurality of warp layers 13a as fiber layers and a plurality of weft layers 13b as fiber layers in the lamination direction Z with interlayer binding yarns (not shown). The warp layer 13a is formed by arranging a plurality of warps T in parallel, and the weft layer 13b is formed by arranging a plurality of wefts R in parallel. A plurality of warp threads T and weft threads R are orthogonal to each other. Note that the L-shaped fiber body 13 may be constructed by laminating single-layer fabrics formed by plain weaving, twill weaving, or satin weaving, and binding the laminates with interlayer binding yarns. That is, the L-shaped fibrous body 13 may be woven in any configuration.
L形繊維体13は、平板状の多層織物をL形状に屈曲させて形成されている。なお、L形繊維体13の「L形状」とは、L形繊維体13における積層方向Zに沿う断面がL形状であることをいう。L形繊維体13は、平板状の基部15と、この基部15に対し直交する平板状のフランジ構成部16と、基部15とフランジ構成部16とを繋ぐ接続部17と、を有する。L形繊維体13において、緯糸Rの糸主軸は、基部15とフランジ構成部16とを繋ぐ方向に延びている。一方、経糸Tの糸主軸は、緯糸Rの糸主軸に直交する方向に延びている。 The L-shaped fiber body 13 is formed by bending a flat multi-layered fabric into an L-shape. The “L shape” of the L-shaped fibrous body 13 means that the cross section of the L-shaped fibrous body 13 along the stacking direction Z is L-shaped. The L-shaped fiber body 13 has a flat plate-like base portion 15 , a flat plate-like flange forming portion 16 orthogonal to the base portion 15 , and a connecting portion 17 connecting the base portion 15 and the flange forming portion 16 . In the L-shaped fiber body 13 , the yarn main axis of the weft R extends in a direction connecting the base portion 15 and the flange forming portion 16 . On the other hand, the yarn main axis of the warp T extends in a direction orthogonal to the yarn main axis of the weft R.
図2に示すように、基部15は、積層方向Zの一端面に、他方のL形繊維体13の基部15と向き合う第1基部面15aを備えるとともに、積層方向Zの他端面に第2基部面15bを備える。フランジ構成部16は、積層方向Zの一端面に、第2繊維基材20と向き合う第1フランジ面16aを備えるとともに、積層方向Zの他端面に第2フランジ面16bを備える。 As shown in FIG. 2, the base 15 has a first base surface 15a facing the base 15 of the other L-shaped fiber body 13 on one end surface in the stacking direction Z, and a second base surface 15a on the other end surface in the stacking direction Z. It has a surface 15b. The flange forming part 16 has a first flange surface 16a facing the second fiber base material 20 on one end surface in the stacking direction Z, and a second flange surface 16b on the other end surface in the stacking direction Z.
接続部17は、平板状の基部15とフランジ構成部16に挟まれる部分であり、積層方向Zに沿う断面がほぼ扇形状の部分である。接続部17は、基部15の第1基部面15aとフランジ構成部16の第1フランジ面16aとの間に位置する第1湾曲面17aを備えるとともに、基部15の第2基部面15bとフランジ構成部16の第2フランジ面16bとの間に位置する第2湾曲面17bを備える。第1湾曲面17aと第2湾曲面17bの曲率は同じである。第1湾曲面17aの円弧の長さは、積層方向Zに沿う断面における第2湾曲面17bの円弧の長さより長い。 The connecting portion 17 is a portion sandwiched between the flat plate-like base portion 15 and the flange forming portion 16, and has a substantially fan-shaped cross section along the stacking direction Z. As shown in FIG. The connection portion 17 includes a first curved surface 17a located between the first base surface 15a of the base portion 15 and the first flange surface 16a of the flange forming portion 16, and has a flange structure with the second base surface 15b of the base portion 15. It comprises a second curved surface 17b located between the second flange surface 16b of the portion 16. As shown in FIG. The first curved surface 17a and the second curved surface 17b have the same curvature. The arc length of the first curved surface 17a is longer than the arc length of the second curved surface 17b in the cross section along the stacking direction Z.
第1繊維基材12において、二つのL形繊維体13の基部15同士から本体部11aが形成されている。本体部11aでは、複数の経糸層13aと複数の緯糸層13bとが積層方向Zに積層されている。また、第1繊維基材12は、一方のL形繊維体13の第1湾曲面17aと、他方のL形繊維体13の第1湾曲面17aとで挟まれた分岐部18を備える。分岐部18は、一対のL形繊維体13の第1フランジ面16aから凹む。 In the first fiber base material 12 , the main body portion 11 a is formed from the base portions 15 of the two L-shaped fiber bodies 13 . A plurality of warp layers 13a and a plurality of weft layers 13b are laminated in the lamination direction Z in the main body portion 11a. In addition, the first fiber base material 12 includes a branched portion 18 sandwiched between the first curved surface 17a of one L-shaped fibrous body 13 and the first curved surface 17a of the other L-shaped fibrous body 13 . The branched portions 18 are recessed from the first flange surfaces 16a of the pair of L-shaped fiber bodies 13. As shown in FIG.
図1に示すように、第2繊維基材20は、平板状である。第2繊維基材20は、経糸T、緯糸R及び図示しない層間結合糸から構成される。なお、経糸T及び緯糸Rは、強化繊維で形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、経糸T及び緯糸Rは、炭素繊維で形成されている。 As shown in FIG. 1, the second fiber base material 20 is flat. The second fiber base material 20 is composed of warp yarns T, weft yarns R, and interlayer binding yarns (not shown). Note that the warp threads T and the weft threads R are made of reinforcing fibers. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers obtained by mixing organic fibers and inorganic fibers may be used. Examples of organic fibers include acrylic fibers, nylon fibers, polyester fibers, aramid fibers, poly-p-phenylenebenzobisoxazole fibers, ultra-high molecular weight polyethylene fibers, etc. Examples of inorganic fibers include carbon fibers, glass fibers, and ceramic fibers. etc. In this embodiment, the warp threads T and the weft threads R are made of carbon fiber.
第2繊維基材20は、繊維層としての複数の経糸層20aと、繊維層としての複数の緯糸層20bとを図示しない層間結合糸によって積層方向Zに結合して形成された多層織物である。経糸層20aは、複数本の経糸Tを互いに平行に配列して形成され、緯糸層20bは、複数の緯糸Rを互いに平行に配列して形成されている。複数の経糸T及び緯糸Rは互いに直交する。なお、第2繊維基材20は、平織り、綾織り、繻子織りして形成された単層織物を積層し、その積層体を層間結合糸で結合して構成されていてもよい。すなわち、第2繊維基材20の織り構成はどのようなものであってもよい。なお、繊維構造体11において、本体部11aにおける経糸層13a及び緯糸層13bの積層方向Zと、第2繊維基材20における経糸層20a及び緯糸層20bの積層方向Zに直交する方向を奥行方向Yとする。上述した分岐部18は、奥行方向Yに沿って連続して延びており、繊維構造体11の奥行方向Yの全体に亘って存在する。 The second fiber base material 20 is a multi-layer fabric formed by binding a plurality of warp layers 20a as fiber layers and a plurality of weft layers 20b as fiber layers in the lamination direction Z with interlayer binding yarns (not shown). . The warp layer 20a is formed by arranging a plurality of warps T in parallel, and the weft layer 20b is formed by arranging a plurality of wefts R in parallel. A plurality of warp threads T and weft threads R are orthogonal to each other. The second fiber base material 20 may be formed by laminating single-layer fabrics formed by plain weaving, twill weaving, or satin weaving, and binding the laminate with interlayer binding yarns. That is, the weave configuration of the second fiber base material 20 may be of any type. In the fiber structure 11, the direction perpendicular to the stacking direction Z of the warp layer 13a and the weft layer 13b in the main body portion 11a and the stacking direction Z of the warp layer 20a and the weft layer 20b in the second fiber base material 20 is the depth direction. Let Y. The above-described branched portion 18 extends continuously along the depth direction Y, and exists over the entire depth direction Y of the fiber structure 11 .
第2繊維基材20において、経糸Tの糸主軸は、繊維構造体11の奥行方向Yに延び、緯糸Rの糸主軸は、繊維構造体11の奥行方向Y及び積層方向Zに直交する方向に延びている。 In the second fiber base material 20, the yarn main axis of the warp T extends in the depth direction Y of the fiber structure 11, and the yarn main axis of the weft R extends in the direction orthogonal to the depth direction Y and the stacking direction Z of the fiber structure 11. extended.
図2に示すように、第2繊維基材20は、一対のフランジ構成部16から構成されるフランジ11bに重ねられている。第2繊維基材20は、積層方向Zの一端面に、一対の第1フランジ面16aに向き合う第1面20cを備えるとともに、積層方向Zの他端面に第2面20dを備える。 As shown in FIG. 2 , the second fiber base material 20 is overlaid on the flange 11 b composed of the pair of flange-constituting portions 16 . The second fiber base material 20 has a first surface 20c facing the pair of first flange surfaces 16a on one end surface in the stacking direction Z, and a second surface 20d on the other end surface in the stacking direction Z.
繊維構造体11の本体部11aは、第1基部面15a同士を向き合わせて一対の基部15を一体化して構成されている。繊維構造体11のフランジ11bは、一対のフランジ構成部16の第1フランジ面16aに第2繊維基材20の第1面20cを向き合わせて一体化して構成されている。 The main body portion 11a of the fiber structure 11 is formed by integrating a pair of base portions 15 with the first base surfaces 15a facing each other. The flange 11b of the fiber structure 11 is formed by integrating the first flange surfaces 16a of the pair of flange forming portions 16 with the first surface 20c of the second fiber base material 20 facing each other.
上記構成の繊維構造体11において、単位体積当たりの繊維の量を繊維体積含有率Vfとする。繊維体積含有率Vfが高いほど、単位体積に含まれる繊維の量が多くなり、繊維間が狭くなる。一方、繊維体積含有率Vfが低いほど、単位体積に含まれる繊維の量が少なくなり、繊維間が開く。本実施形態では、繊維構造体11の繊維体積含有率Vfは55~65%であるが、繊維体積含有率Vfは、繊維強化複合材10の使用目的に合わせて適宜変更してもよい。 In the fiber structure 11 configured as described above, the amount of fiber per unit volume is defined as the fiber volume content Vf. The higher the fiber volume content Vf, the greater the amount of fibers contained in a unit volume and the narrower the spacing between fibers. On the other hand, the lower the fiber volume content rate Vf, the smaller the amount of fibers contained in the unit volume, and the more space between fibers. In the present embodiment, the fiber volume content Vf of the fiber structure 11 is 55 to 65%, but the fiber volume content Vf may be appropriately changed according to the purpose of use of the fiber reinforced composite material 10.
繊維構造体11は、第1繊維基材12に第2繊維基材20が一体化されているため、分岐部18は第2繊維基材20で覆われている。繊維構造体11は、分岐部18を第2繊維基材20で覆うことで画成された隙間Sを有するとともに、この隙間Sには隙間充填部材30が充填されている。なお、隙間Sは、一方のL形繊維体13の第1湾曲面17aと、他方のL形繊維体13の第1湾曲面17aと、第2繊維基材20の第1面20cとの間に画成されている。また、隙間Sは、繊維構造体11の奥行方向Yの全体に亘っている。 Since the fiber structure 11 has the second fiber base material 20 integrated with the first fiber base material 12 , the branched portion 18 is covered with the second fiber base material 20 . The fiber structure 11 has a gap S defined by covering the branched portion 18 with the second fiber base material 20 , and the gap S is filled with the gap filling member 30 . The gap S is between the first curved surface 17a of one L-shaped fibrous body 13, the first curved surface 17a of the other L-shaped fibrous body 13, and the first surface 20c of the second fiber base material 20. is defined as Moreover, the gap S extends over the entire depth direction Y of the fiber structure 11 .
図3又は図4に示すように、隙間充填部材30は、強化繊維の非連続繊維Hで形成されている。強化繊維としては、有機繊維又は無機繊維を使用してもよいし、異なる種類の有機繊維、異なる種類の無機繊維、又は有機繊維と無機繊維を混繊した混繊繊維を使用してもよい。有機繊維としては、アクリル繊維、ナイロン繊維、ポリエステル繊維、アラミド繊維、ポリ-p-フェニレンベンゾビスオキサゾール繊維、超高分子量ポリエチレン繊維等が挙げられ、無機繊維としては、炭素繊維、ガラス繊維、セラミック繊維等が挙げられる。本実施形態では、非連続繊維Hは、炭素繊維で形成されている。 As shown in FIG. 3 or 4, the gap filling member 30 is formed of discontinuous reinforcing fibers H. As shown in FIG. As the reinforcing fibers, organic fibers or inorganic fibers may be used, or different types of organic fibers, different types of inorganic fibers, or mixed fibers obtained by mixing organic fibers and inorganic fibers may be used. Examples of organic fibers include acrylic fibers, nylon fibers, polyester fibers, aramid fibers, poly-p-phenylenebenzobisoxazole fibers, ultra-high molecular weight polyethylene fibers, etc. Examples of inorganic fibers include carbon fibers, glass fibers, and ceramic fibers. etc. In this embodiment, the discontinuous fibers H are made of carbon fibers.
図4に示すように、隙間充填部材30は、非連続繊維Hの撚糸31と、非連続繊維Hの撚糸31に対し螺旋状に巻き付けられる複数本のカバーリング糸32と、を備える。なお、カバーリング糸32は、熱溶融製の繊維が用いられ、例えばナイロン繊維である。隙間充填部材30は、非連続繊維Hの長手を隙間充填部材30の軸方向に揃えた繊維束である。隙間充填部材30の撚糸31は、複数本の連続繊維を引き揃えた繊維束よりも嵩高である。また、隙間充填部材30において、非連続繊維Hの長手が隙間充填部材30の軸方向に延びるように配向されている。 As shown in FIG. 4, the gap filling member 30 includes a twisted yarn 31 of discontinuous fibers H and a plurality of covering yarns 32 spirally wound around the twisted yarn 31 of discontinuous fibers H. As shown in FIG. The covering thread 32 is made of hot-melt fiber, such as nylon fiber. The gap filling member 30 is a fiber bundle in which the lengths of discontinuous fibers H are aligned in the axial direction of the gap filling member 30 . The twisted yarn 31 of the gap filling member 30 is bulkier than a fiber bundle formed by arranging a plurality of continuous fibers. Further, in the gap filling member 30 , the discontinuous fibers H are oriented so that the longitudinal direction extends in the axial direction of the gap filling member 30 .
隙間充填部材30の軸方向への寸法は、奥行方向Yに沿う隙間Sの全体の寸法の60%以上の寸法を有するのが好ましく、本実施形態では、隙間充填部材30は、隙間Sの奥行方向Y全体に亘る寸法を有する。つまり、隙間充填部材30の軸方向への寸法は、隙間Sの奥行方向Yへの寸法と同じである。また、隙間Sへ充填される隙間充填部材30の量は、繊維構造体11の隙間Sでの繊維体積含有率Vfが、隙間S以外の部分での繊維体積含有率Vf以下となるように調整される。本実施形態では、隙間Sでの繊維体積含有率Vfが30~55%に調整されるが、隙間Sでの繊維体積含有率Vfは、繊維強化複合材10の使用目的に合わせて適宜変更してもよい。 The axial dimension of the gap filling member 30 is preferably 60% or more of the overall dimension of the gap S along the depth direction Y. It has dimensions that span the Y direction. That is, the dimension of the gap filling member 30 in the axial direction is the same as the dimension of the gap S in the depth direction Y. As shown in FIG. Further, the amount of the gap filling member 30 to be filled in the gap S is adjusted so that the fiber volume content Vf in the gap S of the fiber structure 11 is equal to or less than the fiber volume content Vf in the portion other than the gap S. be done. In the present embodiment, the fiber volume content Vf in the gap S is adjusted to 30 to 55%, but the fiber volume content Vf in the gap S can be changed as appropriate according to the purpose of use of the fiber-reinforced composite material 10. may
そして、図1に示すように、上記構成の繊維構造体11を強化基材とした繊維強化複合材10は、隙間Sに複数本の隙間充填部材30が充填されるとともに、隙間Sにおける非連続繊維Hの量が、所望の繊維体積含有率Vfとなるように調整されている。また、図3に示すように、隙間充填部材30の非連続繊維Hの長手が繊維構造体11の奥行方向Yに延びるように配向されている。したがって、繊維強化複合材10における隙間Sの周囲は、充填された非連続繊維Hによって、奥行方向Yに補強されている。 As shown in FIG. 1, in the fiber-reinforced composite material 10 using the fiber structure 11 having the above configuration as the reinforcing base material, the gap S is filled with a plurality of gap filling members 30, and the gap S is discontinuous. The amount of fibers H is adjusted so as to achieve the desired fiber volume fraction Vf. Further, as shown in FIG. 3 , the longitudinal direction of the discontinuous fibers H of the gap filling member 30 is oriented so as to extend in the depth direction Y of the fiber structure 11 . Therefore, the periphery of the gap S in the fiber-reinforced composite material 10 is reinforced in the depth direction Y by the discontinuous fibers H that are filled.
次に、繊維構造体11を強化基材とした繊維強化複合材10の製造方法について作用とともに説明する。
まず、断面T形状の第1繊維基材12及び平板状の第2繊維基材20を製造する。次に、図5に示すように、第1繊維基材12の分岐部18に複数本の隙間充填部材30を載置する。このとき、後に形成される隙間Sの繊維体積含有率Vfが所望する値となるように、載置する隙間充填部材30の本数を調整する。そして、分岐部18には隙間充填部材30を載せるだけで、後に、繊維構造体11の隙間Sとなる部分への処理が完了する。つまり、繊維強化複合材10における隙間Sの周囲を補強するのに必要な作業が完了する。
Next, a method for manufacturing the fiber-reinforced composite material 10 using the fiber structure 11 as a reinforcing base material will be described together with its operation.
First, the first fiber base material 12 having a T-shaped cross section and the flat second fiber base material 20 are manufactured. Next, as shown in FIG. 5 , a plurality of gap filling members 30 are placed on the branched portion 18 of the first fiber base material 12 . At this time, the number of gap filling members 30 to be placed is adjusted so that the fiber volume content Vf of the gap S to be formed later becomes a desired value. Then, only by placing the gap filling member 30 on the branched portion 18, the treatment of the portion that will later become the gap S of the fiber structure 11 is completed. That is, the work required to reinforce the periphery of the gap S in the fiber-reinforced composite material 10 is completed.
次に、図6に示すように、第1繊維基材12の一対の第1フランジ面16aに第2繊維基材20を載せ、第1フランジ面16aと第2繊維基材20の第1面20cとを向き合わせる。すると、分岐部18が第2繊維基材20によって覆われるとともに、第1繊維基材12と第2繊維基材20の間には、隙間充填部材30が充填された隙間Sが画成される。 Next, as shown in FIG. 6, the second fiber base material 20 is placed on the pair of first flange surfaces 16a of the first fiber base material 12, and the first flange surface 16a and the first surface of the second fiber base material 20 are separated. 20c to face each other. As a result, the branched portion 18 is covered with the second fiber base material 20, and a gap S filled with the gap filling member 30 is defined between the first fiber base material 12 and the second fiber base material 20. .
そして、繊維構造体11にマトリックス樹脂Maの含浸処理を行う。この含浸処理は、レジントランスファーモールディング(RTM)法が採用される。具体的には、第1繊維基材12と第2繊維基材20と隙間充填部材30とを含む繊維構造体11を図示しない金型のキャビティに配置する。金型のキャビティに、溶融したマトリックス樹脂Maを注入し、繊維構造体11にマトリックス樹脂Maを含浸させる。このとき、溶融したマトリックス樹脂Maの温度によりカバーリング糸32が溶融する。 Then, the fiber structure 11 is impregnated with the matrix resin Ma. This impregnation treatment employs a resin transfer molding (RTM) method. Specifically, the fiber structure 11 including the first fiber base material 12, the second fiber base material 20, and the gap filling member 30 is arranged in a mold cavity (not shown). A molten matrix resin Ma is injected into the mold cavity to impregnate the fiber structure 11 with the matrix resin Ma. At this time, the covering yarn 32 melts due to the temperature of the melted matrix resin Ma.
マトリックス樹脂Maは、繊維構造体11の経糸T、緯糸R、層間結合糸の連続繊維同士の間に含浸していくとともに、隙間充填部材30の非連続繊維H同士の間に含浸していく。その後、マトリックス樹脂Maが硬化することで繊維強化複合材10が形成される。 The matrix resin Ma impregnates between the continuous fibers of the warp T, weft R, and interlayer binding yarn of the fiber structure 11 and impregnates between the non-continuous fibers H of the gap filling member 30 . After that, the fiber-reinforced composite material 10 is formed by curing the matrix resin Ma.
上記実施形態によれば、以下のような効果を得ることができる。
(1)繊維構造体11の隙間Sに充填された隙間充填部材30は、非連続繊維Hの繊維束であることから紐状である。このため、例えば、不織布を分岐部18に配置する場合と比べると、扱いやすく、しかも、不織布のように分岐部18の形状に整形する必要もないため、隙間充填部材30を分岐部18に配置する作業が簡単である。
According to the above embodiment, the following effects can be obtained.
(1) The gap filling member 30 filled in the gap S of the fiber structure 11 is a fiber bundle of discontinuous fibers H, and thus has a string shape. For this reason, it is easier to handle than, for example, the case where a non-woven fabric is arranged in the branched portion 18, and there is no need to shape the shape of the branched portion 18 unlike the non-woven fabric, so the gap filling member 30 is arranged in the branched portion 18. work is easy.
そして、繊維強化複合材10において、隙間Sの周囲は非連続繊維Hによって補強される。隙間Sに充填される隙間充填部材30の本数を調整するだけで、隙間Sに充填される非連続繊維Hの量を、補強に適した量に調整できる。このため、例えば、隙間Sの周囲を補強するために、複数種類の補強用の材料を準備したり、隙間Sの形状に倣う補強部材を製造したりする場合と比べると、繊維強化複合材10における隙間Sの周囲を補強するために必要な作業を簡単に行うことができる。 In the fiber-reinforced composite material 10, the discontinuous fibers H are reinforced around the gap S. By simply adjusting the number of gap filling members 30 that fill the gap S, the amount of discontinuous fibers H that fill the gap S can be adjusted to an amount suitable for reinforcement. For this reason, for example, in order to reinforce the periphery of the gap S, compared to preparing a plurality of types of reinforcing materials or manufacturing a reinforcing member that follows the shape of the gap S, the fiber reinforced composite material 10 The work required to reinforce the periphery of the gap S in can be easily performed.
(2)隙間充填部材30は、非連続繊維Hの繊維束である。例えば、連続繊維を引き揃えた繊維束と比べると非連続繊維H同士の間が開きやすく、マトリックス樹脂Maを含浸させやすくなる。このため、繊維構造体11を強化基材とした繊維強化複合材10においては、隙間充填部材30の非連続繊維H同士の間にマトリックス樹脂Maが十分に浸透し、樹脂リッチな部分が形成されることを抑制でき、繊維強化複合材10における隙間Sの周囲を補強できる。 (2) The gap filling member 30 is a fiber bundle of discontinuous fibers H. As shown in FIG. For example, compared to a fiber bundle in which continuous fibers are aligned, the gaps between the discontinuous fibers H are more likely to open, making it easier to impregnate the matrix resin Ma. Therefore, in the fiber-reinforced composite material 10 using the fiber structure 11 as the reinforcing base material, the matrix resin Ma sufficiently permeates between the discontinuous fibers H of the gap filling member 30 to form a resin-rich portion. can be suppressed, and the periphery of the gap S in the fiber-reinforced composite material 10 can be reinforced.
(4)隙間充填部材30の本数は、隙間Sでの繊維体積含有率Vfが、第1繊維基材12及び第2繊維基材20の繊維体積含有率Vf以下となるように調整される。このため、隙間Sにおける繊維体積含有率Vfが高くなりすぎず、繊維強化複合材10の製造時、隙間Sの隙間充填部材30にマトリックス樹脂Maが含浸し難くなることを抑制できる。 (4) The number of gap filling members 30 is adjusted so that the fiber volume content Vf in the gap S is equal to or less than the fiber volume content Vf of the first fiber base material 12 and the second fiber base material 20 . Therefore, the fiber volume content Vf in the gap S does not become too high, and it is possible to prevent impregnation of the matrix resin Ma into the gap filling member 30 in the gap S when the fiber-reinforced composite material 10 is manufactured.
(5)隙間充填部材30の軸方向への寸法は、奥行方向Yへの隙間Sの寸法の60%以上である。このため、隙間充填部材30の非連続繊維Hが奥行方向Yに延びるように配向され、繊維強化複合材10において、隙間充填部材30によって隙間Sにおける奥行方向Yへの強度を確保できる。 (5) The axial dimension of the gap filling member 30 is 60% or more of the dimension of the gap S in the depth direction Y. Therefore, the discontinuous fibers H of the gap filling member 30 are oriented so as to extend in the depth direction Y, and in the fiber-reinforced composite material 10, the strength in the depth direction Y in the gap S can be ensured by the gap filling member 30.
(6)隙間充填部材30は、非連続繊維H製の撚糸31をカバーリング糸32で形状保持したものである。このため、分岐部18に隙間充填部材30を配置するときに、非連続繊維Hがばらけることを抑制でき、分岐部18への隙間充填部材30の配置が容易である。 (6) The gap filling member 30 is obtained by shape-retaining the twisted yarn 31 made of the discontinuous fibers H with the covering yarn 32 . Therefore, when the gap filling member 30 is arranged at the branched portion 18 , the discontinuous fibers H can be prevented from coming apart, and the gap filling member 30 can be easily arranged at the branched portion 18 .
(7)分岐部18に配置される隙間充填部材30は紐状である。このため、分岐部18には、当該分岐部18の奥行方向Yに隙間充填部材30の軸方向を沿わせて配置する。よって、第1繊維基材12の分岐部18といった狭い部分であっても隙間充填部材30を配置しやすい。 (7) The gap filling member 30 arranged at the branch portion 18 is string-like. Therefore, the axial direction of the gap filling member 30 is arranged along the depth direction Y of the branch portion 18 at the branch portion 18 . Therefore, it is easy to dispose the gap filling member 30 even in a narrow portion such as the branch portion 18 of the first fiber base material 12 .
(8)隙間充填部材30は、非連続繊維Hの長手を隙間充填部材30の軸方向に延びるように揃えた繊維束であり、非連続繊維Hの配向がランダムな不織布とは異なる。このため、繊維強化複合材10の製造時、隙間Sの隙間充填部材30がマトリックス樹脂Maの注入圧力によって隙間Sから流出することを抑制できる。 (8) The gap filling member 30 is a fiber bundle in which the discontinuous fibers H are arranged so that their lengths extend in the axial direction of the gap filling member 30, and is different from the nonwoven fabric in which the discontinuous fibers H are randomly oriented. Therefore, when the fiber-reinforced composite material 10 is manufactured, the gap filling member 30 in the gap S can be prevented from flowing out of the gap S due to the injection pressure of the matrix resin Ma.
(9)繊維構造体11の隙間Sの大きさは、繊維強化複合材10の大きさ、形状によって異なる。隙間充填部材30は紐状であり、隙間充填部材30の本数を調整するだけで、隙間Sの大きさ、形状に合わせて隙間充填部材30を充填できる。よって、隙間Sの大きさ、形状に合わせた充填部材を製造する必要がなく、隙間Sの周囲を補強するための作業が容易となる。 (9) The size of the gap S between the fiber structures 11 varies depending on the size and shape of the fiber-reinforced composite material 10 . The gap filling members 30 are string-like, and the gap filling members 30 can be filled according to the size and shape of the gap S only by adjusting the number of the gap filling members 30 . Therefore, there is no need to manufacture a filling member that matches the size and shape of the gap S, and the work for reinforcing the periphery of the gap S is facilitated.
(10)隙間充填部材30の繊維体積含有率Vfは予め把握できるため、隙間充填部材30の本数を調整することで隙間Sにおける繊維体積含有率Vfの調整がしやすい。
(11)隙間充填部材30は非連続繊維Hの繊維束であり、嵩高である。このため、分岐部18に隙間充填部材30を配置するとき、隙間充填部材30を積み重ねても、隙間充填部材30同士の間、ひいては各隙間充填部材30の非連続繊維H同士の間が開いた状態を確保できる。このため、隙間充填部材30においてもマトリックス樹脂Maを含浸させることができる。
(10) Since the fiber volume content Vf of the gap filling members 30 can be grasped in advance, it is easy to adjust the fiber volume content Vf in the gap S by adjusting the number of the gap filling members 30 .
(11) The gap filling member 30 is a fiber bundle of discontinuous fibers H and is bulky. Therefore, when the gap-filling members 30 are arranged in the branched portion 18, even if the gap-filling members 30 are stacked, the gap-filling members 30 and the discontinuous fibers H of the gap-filling members 30 are opened. status can be secured. Therefore, the gap filling member 30 can also be impregnated with the matrix resin Ma.
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
○ 図7に示すように、隙間充填部材40は、芯糸41と、芯糸41を覆う被覆層42と、被覆層42に捲回されたカバーリング糸43と、を有する構成であってもよい。芯糸41は、連続繊維を撚って形成された撚糸である。被覆層42は、非連続繊維Hからなる撚糸である。
This embodiment can be implemented with the following modifications. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
○ As shown in FIG. 7, the gap filling member 40 may have a configuration including a core yarn 41, a covering layer 42 covering the core yarn 41, and a covering yarn 43 wound around the covering layer 42. good. The core yarn 41 is a twisted yarn formed by twisting continuous fibers. The covering layer 42 is a twisted yarn made of discontinuous fibers H. As shown in FIG.
このように構成した場合、隙間充填部材40は、連続繊維製の芯糸41を備えるため、芯糸41によって隙間充填部材40の直進性を持たせた形状を維持しやすく、分岐部18への隙間充填部材40の配置が行いやすい。 When configured in this manner, the gap filling member 40 includes the core yarn 41 made of continuous fibers, so that the shape of the gap filling member 40 that is given straightness by the core yarn 41 can be easily maintained, and the branching portion 18 can be easily moved. It is easy to arrange the gap filling member 40 .
○ 繊維構造体11は、断面T形状の第1繊維基材12と、断面T形状の第2繊維基材20とを一体化して形成してもよく、この場合、第1繊維基材12と第2繊維基材20は分岐部18同士を向き合わせて一体化され、隙間Sは、積層方向Zに沿う断面がほぼ四角形状になる。 ○ The fiber structure 11 may be formed by integrating the first fiber base material 12 having a T-shaped cross section and the second fiber base material 20 having a T-shaped cross section. The second fiber base material 20 is integrated with the branched portions 18 facing each other, and the gap S has a substantially rectangular cross section along the stacking direction Z. As shown in FIG.
○ 隙間充填部材30の全長は、分岐部18の奥行方向Yへの寸法より短くてもよい。この場合、隙間充填部材30を糸主軸方向に繋ぎ合わせて分岐部18の奥行方向Y全体に亘って隙間充填部材30を配置する。 O The total length of the gap filling member 30 may be shorter than the dimension in the depth direction Y of the branch portion 18 . In this case, the gap filling member 30 is arranged over the entire depth direction Y of the branch portion 18 by connecting the gap filling members 30 in the yarn main axis direction.
○ 隙間充填部材30の全長は、分岐部18の奥行方向Yへの寸法より長くてもよい。この場合、分岐部18から奥行方向Yに飛び出した部分を切除して、分岐部18の奥行方向Y全体に亘って隙間充填部材30を配置する。 O The total length of the gap filling member 30 may be longer than the dimension in the depth direction Y of the branch portion 18 . In this case, the portion protruding in the depth direction Y from the branching portion 18 is cut off, and the gap filling member 30 is arranged over the entire depth direction Y of the branching portion 18 .
○ 隙間充填部材30は、カバーリング糸32を備えず、非連続繊維Hを撚っただけの構成としてもよい。
○ 隙間充填部材30は、非連続繊維Hの無撚糸であってもよい。
○ The gap filling member 30 may have a configuration in which the discontinuous fibers H are only twisted without the covering yarn 32 .
O The gap filling member 30 may be a non-twisted yarn of discontinuous fibers H.
○ 実施形態では、分岐部18を、一対のL形繊維体13を一体化して形成したが、一枚の繊維体を二股状に分岐させて分岐部18を形成してもよい。
○ マトリックス樹脂Maとして熱硬化性樹脂を用いたが、その他の種類の樹脂を用いてもよい。
O In the embodiment, the branched portion 18 is formed by integrating the pair of L-shaped fibrous bodies 13, but the branched portion 18 may be formed by bifurcating one sheet of fibrous body.
(circle) although the thermosetting resin was used as matrix resin Ma, you may use other types of resin.
○ マトリックス材料はマトリックス樹脂Ma以外にもセラミックでもよい。
○ 第1繊維基材12及び第2繊維基材20において、積層する繊維層の数は任意に変更してもよい。
(circle) the matrix material may be a ceramic other than the matrix resin Ma.
(circle) in the 1st fiber base material 12 and the 2nd fiber base material 20, the number of the fiber layers laminated|stacked may be changed arbitrarily.
○ 第2繊維基材20を、平織り、綾織り、繻子織りして形成された単層織物1枚で構成してもよい。 (circle) the 2nd fiber base material 20 may be comprised with one single-layer textile fabric formed by plain weaving, twill weaving, or satin weaving.
H…非連続繊維、Ma…マトリックス材料としてのマトリックス樹脂、S…隙間、Y…奥行方向、Z…積層方向、Vf…繊維体積含有率、10…繊維強化複合材、11…繊維構造体、11a…本体部、12…第1繊維基材、13a,20a…繊維層としての経糸層、13b,20b…繊維層としての緯糸層、18…分岐部、20…第2繊維基材、30,40…隙間充填部材、41…芯糸、42…被覆層。 H... Non-continuous fiber, Ma... Matrix resin as matrix material, S... Gap, Y... Depth direction, Z... Stacking direction, Vf... Fiber volume content, 10... Fiber reinforced composite material, 11... Fiber structure, 11a Main body 12 First fiber base material 13a, 20a Warp layers as fiber layers 13b, 20b Weft layers as fiber layers 18 Branching part 20 Second fiber base material 30, 40 ... gap-filling member, 41 ... core thread, 42 ... covering layer.
Claims (5)
強化繊維の繊維層を複数積層した本体部を有するとともに、前記本体部を前記繊維層の積層方向に沿って二股状に分岐させた分岐部を有する第1繊維基材と、
前記分岐部を覆って前記第1繊維基材に一体化される第2繊維基材を備え、
前記分岐部と前記第2繊維基材とで画成される隙間に充填される隙間充填部材を備え、
前記隙間充填部材は、非連続繊維の撚糸または無撚糸であり、前記非連続繊維の長手が前記隙間充填部材の軸方向に延びるように配向されており、前記非連続繊維の長さが前記隙間充填部材の軸方向長さよりも短く、
前記隙間に複数本の前記隙間充填部材が充填されていることを特徴とする繊維構造体。 The fiber structure of a fiber-reinforced composite material formed by impregnating the fiber structure with a matrix material,
a first fiber base material having a body portion in which a plurality of fiber layers of reinforcing fibers are laminated, and having a branch portion in which the body portion is bifurcated along the lamination direction of the fiber layers;
A second fiber base material that covers the branch and is integrated with the first fiber base material,
A gap filling member that fills a gap defined by the branched portion and the second fiber base material,
The gap filling member is twisted yarn or non -twisted yarn of discontinuous fibers, the length of the discontinuous fibers is oriented so as to extend in the axial direction of the gap filling member, and the length of the discontinuous fibers is the shorter than the axial length of the gap-filling member;
A fiber structure , wherein the gap is filled with a plurality of gap filling members .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019149794A JP7322588B2 (en) | 2019-08-19 | 2019-08-19 | Fiber structures and fiber reinforced composites |
PCT/JP2020/028417 WO2021033484A1 (en) | 2019-08-19 | 2020-07-22 | Fiber structure and fiber-reinforced composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019149794A JP7322588B2 (en) | 2019-08-19 | 2019-08-19 | Fiber structures and fiber reinforced composites |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021030478A JP2021030478A (en) | 2021-03-01 |
JP7322588B2 true JP7322588B2 (en) | 2023-08-08 |
Family
ID=74660818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019149794A Active JP7322588B2 (en) | 2019-08-19 | 2019-08-19 | Fiber structures and fiber reinforced composites |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7322588B2 (en) |
WO (1) | WO2021033484A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022131504A (en) | 2021-02-26 | 2022-09-07 | Nttセキュリティ・ジャパン株式会社 | Information processing system, information processing method, and program |
JP2024134334A (en) * | 2023-03-20 | 2024-10-03 | 株式会社豊田自動織機 | Fiber structures and fiber-reinforced composite materials |
CN117416063B (en) * | 2023-12-19 | 2024-03-05 | 浙江航引新材料科技有限公司 | Composite material reinforcing rib preform and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002225048A (en) | 2001-02-06 | 2002-08-14 | Toray Ind Inc | Molded object made of frp and method for manufacturing the same |
WO2011046137A1 (en) | 2009-10-16 | 2011-04-21 | 東レ株式会社 | Method and device for manufacturing beam member |
JP2011520690A (en) | 2008-05-16 | 2011-07-21 | ザ・ボーイング・カンパニー | REINFORCED REINFORCEMENT AND METHOD FOR PRODUCING REINFORCED REINFORCEMENT |
JP2015063207A (en) | 2013-09-25 | 2015-04-09 | 本田技研工業株式会社 | Body structure of automobile |
WO2017110496A1 (en) | 2015-12-22 | 2017-06-29 | 株式会社 豊田自動織機 | Fabric for fiber reinforced composite material and fiber reinforced composite material |
JP2019069610A (en) | 2013-03-08 | 2019-05-09 | ザ・ボーイング・カンパニーThe Boeing Company | Formation of composite features using steered discontinuous fiber prepreg |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61274922A (en) * | 1985-05-31 | 1986-12-05 | Toyoda Spinning & Weaving Co Ltd | Method for bonding fiber reinforced resin structure |
JPH07118979A (en) * | 1993-10-25 | 1995-05-09 | Toray Ind Inc | Conjugate spun yarn and its production |
JP3549271B2 (en) * | 1994-12-16 | 2004-08-04 | 三菱重工業株式会社 | Fiber structure for filling voids |
-
2019
- 2019-08-19 JP JP2019149794A patent/JP7322588B2/en active Active
-
2020
- 2020-07-22 WO PCT/JP2020/028417 patent/WO2021033484A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002225048A (en) | 2001-02-06 | 2002-08-14 | Toray Ind Inc | Molded object made of frp and method for manufacturing the same |
JP2011520690A (en) | 2008-05-16 | 2011-07-21 | ザ・ボーイング・カンパニー | REINFORCED REINFORCEMENT AND METHOD FOR PRODUCING REINFORCED REINFORCEMENT |
WO2011046137A1 (en) | 2009-10-16 | 2011-04-21 | 東レ株式会社 | Method and device for manufacturing beam member |
JP2019069610A (en) | 2013-03-08 | 2019-05-09 | ザ・ボーイング・カンパニーThe Boeing Company | Formation of composite features using steered discontinuous fiber prepreg |
JP2015063207A (en) | 2013-09-25 | 2015-04-09 | 本田技研工業株式会社 | Body structure of automobile |
WO2017110496A1 (en) | 2015-12-22 | 2017-06-29 | 株式会社 豊田自動織機 | Fabric for fiber reinforced composite material and fiber reinforced composite material |
Also Published As
Publication number | Publication date |
---|---|
JP2021030478A (en) | 2021-03-01 |
WO2021033484A1 (en) | 2021-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7322588B2 (en) | Fiber structures and fiber reinforced composites | |
WO2014030632A1 (en) | Three-dimensional fiber-reinforced composite and method for producing three-dimensional fiber-reinforced composite | |
RU2604444C2 (en) | Corner fitting preforms and method for production thereof | |
CA3009634C (en) | Preform with integrated gap fillers | |
JP2022182789A (en) | Fiber structure, and fiber-reinforced composite material | |
US10023141B2 (en) | Energy-absorbing member | |
JP6700615B2 (en) | Fiber structure and fiber reinforced composite material | |
EP2889325B1 (en) | Three-dimensional fiber-reinforced composite material | |
JP6493094B2 (en) | Fiber structure and fiber reinforced composite | |
JP2021025164A (en) | Fiber structure and fiber-reinforce composite material | |
WO2014030633A1 (en) | Three-dimensional fiber-reinforced composite | |
JP7287162B2 (en) | Fiber structures and fiber reinforced composites | |
WO2021006081A1 (en) | Fiber structure and method for manufacturing fiber structure | |
JP2018001475A (en) | Preform for fiber-reinforced composite material, and fiber-reinforced composite material | |
JP6620771B2 (en) | Fiber structure and fiber reinforced composite | |
JP2011073402A (en) | Preform of fiber-reinforced composite material and method for manufacturing the same | |
JP5644755B2 (en) | Textile substrate and fiber reinforced composite material | |
EP4435162A1 (en) | Fiber structure and fiber-reinforced composite material | |
JP2018066086A (en) | Fiber preform for rtm molding, and fiber-reinforced composite material | |
WO2013191232A1 (en) | Reinforcing fiber composite material and method for producing reinforcing fiber composite material | |
JP2018016036A (en) | Multilayer woven fabric for sandwich structure and sandwich structure fiber-reinforced composite material | |
JP2014077213A (en) | Fiber base material for joint and fiber-reinforced composite material for joint | |
JPH06201072A (en) | Fiber-reinforced synthetic resin pipe | |
WO2017082066A1 (en) | Fiber structure | |
JP2019094579A (en) | Reinforced fiber yarn for fiber reinforced composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230710 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7322588 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |