WO2021006081A1 - Fiber structure and method for manufacturing fiber structure - Google Patents

Fiber structure and method for manufacturing fiber structure Download PDF

Info

Publication number
WO2021006081A1
WO2021006081A1 PCT/JP2020/025424 JP2020025424W WO2021006081A1 WO 2021006081 A1 WO2021006081 A1 WO 2021006081A1 JP 2020025424 W JP2020025424 W JP 2020025424W WO 2021006081 A1 WO2021006081 A1 WO 2021006081A1
Authority
WO
WIPO (PCT)
Prior art keywords
yarn
warp
fiber structure
auxiliary
thread
Prior art date
Application number
PCT/JP2020/025424
Other languages
French (fr)
Japanese (ja)
Inventor
河原真梨
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2021006081A1 publication Critical patent/WO2021006081A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D11/00Double or multi-ply fabrics not otherwise provided for

Definitions

  • the present disclosure relates to a fiber structure and a method for manufacturing the fiber structure.
  • a fiber-reinforced composite material with a resin matrix in the fiber structure is used as a structural material for aircraft, automobiles, buildings, etc.
  • the fiber structure there is a fiber structure of a multilayer woven fabric in which a plurality of fiber layers are laminated.
  • the shape of the fiber structure may be a shape having a bent portion such as an L shape or a U shape. In this case, the fibrous structure formed in a flat plate shape is shaped to have a bent portion.
  • a thread made of reinforcing fibers may be used for the fiber structure.
  • Reinforcing fibers generally have very low elongation. Therefore, when a fiber structure in which a thread made of reinforcing fibers is used is shaped to have a bent portion, the threads arranged on the outside of the bent portion are difficult to stretch, and wrinkles are formed on the inside of the bent portion. May occur. Wrinkles on the inside of the bent portion are not preferable because the resin does not easily penetrate into the bent portion when the fiber structure is impregnated with the resin.
  • the flat surface portion on one side of the bent portion has a bent portion.
  • the path of the thread connected to the inside and the path of the thread connected to the inside of the bent portion at the flat surface portion on the other side of the bent portion intersect at the bent portion in the thickness direction of the fiber structure.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a fiber structure capable of suppressing the occurrence of wrinkles on the inside of bending and a method for producing the fiber structure.
  • the fiber structure that solves the above problems is a flat plate-like fiber structure that is a multilayer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in directions orthogonal to each other, and the yarn main shaft of the first yarn.
  • the direction in which the yarn extends is the first direction and the direction in which the yarn main shaft of the second yarn extends is the second direction
  • the one side in the laminating direction of the multilayer woven fabric is bent as the outer side and becomes the outer side.
  • the fiber structure for shaping that is bent along the first direction and the first yarn arranged on the outer surface is the outer yarn
  • the multilayer woven fabric is more than the outer yarn in the laminating direction.
  • the auxiliary yarn is provided so as to overlap the outer yarn in the stacking direction, and the auxiliary yarn has a property that the amount of decrease in thickness is larger than that of the first yarn and the second yarn. It is characterized by having.
  • the method for producing a fiber structure that solves the above problems is a method for producing a flat plate-shaped fiber structure that is a multilayer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in directions orthogonal to each other.
  • the direction in which the yarn main shaft of the first yarn extends is the first direction and the direction in which the yarn main shaft of the second yarn extends is the second direction
  • one surface in the stacking direction of the multilayer woven fabric is bent as the outer surface.
  • It is a method of manufacturing a fiber structure for shaping that is bent along the first direction so as to be such that the first yarn is arranged on the outer surface as an outer yarn and auxiliary yarns are arranged in the stacking direction.
  • the path of the outer thread after shaping becomes shorter than that before shaping by the amount that the thickness of the auxiliary thread is reduced. Therefore, a surplus that does not contribute to the path is generated in the outer yarn.
  • the dimension in the first direction can be extended by the excess of the outer thread as compared with the fiber structure before shaping.
  • the dimensions of the first yarns arranged inside the bend in the first direction are less likely to be excessive, so that the occurrence of wrinkles inside the bend can be suppressed.
  • the auxiliary yarn is preferably a weft.
  • the warp opening operation by the heddle frame and the insertion of the weft thread into the warp opening formed by the opening operation are repeated. Since the opening operation of the warp is performed by moving the entire warp up and down, the man-hours related to the opening operation of the warp may increase as the number of warp used for weaving increases.
  • the fiber structure can be woven by adding an auxiliary yarn as a weft. Therefore, the increase in man-hours related to the addition of the auxiliary yarn can be reduced as compared with the case where the auxiliary yarn is added to the fiber structure as a warp.
  • the auxiliary yarn preferably has a lower melting point than the first yarn and the second yarn. According to the above configuration, if the fiber structure is heat-treated at a temperature lower than the melting points of the first yarn and the second yarn and at a temperature equal to or higher than the melting point of the auxiliary yarn, the auxiliary yarn melts and the thickness of the auxiliary yarn is increased. Becomes smaller. Then, the path of the outer thread can be shortened by the amount that the thickness of the auxiliary thread is reduced. Therefore, by generating a surplus that does not contribute to the path in the outer yarn, it is possible to suppress the occurrence of wrinkles inside the bending.
  • the auxiliary yarn preferably has a lower fiber density than the first yarn and the second yarn.
  • the amount of decrease in the thickness of the auxiliary yarn when pressed from the surroundings is the amount of decrease in the thickness of the first yarn and the second yarn. Will be larger than.
  • the auxiliary thread in the fiber structure after shaping is pressed by the surrounding threads during shaping, so that the thickness of the auxiliary thread in the fiber structure before shaping becomes smaller than that in the auxiliary thread in the fiber structure before shaping. Therefore, by generating a surplus that does not contribute to the path in the outer yarn, it is possible to suppress the occurrence of wrinkles inside the bending.
  • the auxiliary yarn which is in the inner layer of the outer yarn in the laminating direction and is arranged so as to overlap the outer yarn in the laminating direction is used as the first auxiliary yarn, and the outer yarn is used in the laminating direction.
  • the multilayer fabric is in the inner layer of the inner layer yarn in the stacking direction and is arranged so as to overlap the inner layer yarn in the stacking direction.
  • the second auxiliary thread, which is the auxiliary thread is further provided, and the thickness of the second auxiliary thread is smaller than that of the first auxiliary thread.
  • the thickness of the auxiliary thread in the fiber structure before shaping becomes smaller as the inner layer in the stacking direction.
  • a surplus that does not contribute to the path is generated in both the outer thread and the inner layer thread by the amount that the thickness of the auxiliary thread is reduced.
  • the surplus increases as the amount of decrease in the thickness of the auxiliary yarn increases. Therefore, the surplus increases in the outer yarn as in the inner yarn. Therefore, since the amount of elongation of the outer yarn on the bending outer side can be made larger than that of the inner layer yarn, the above-mentioned elongation amount can be set according to the shape of the fiber structure after shaping.
  • the occurrence of wrinkles inside the bend can be suppressed.
  • the perspective view which shows the fiber-reinforced composite material in the 1st Embodiment The cross-sectional view which shows typically the fiber structure in 1st Embodiment.
  • the fiber structure 11 is impregnated with the matrix resin 12 to form the fiber reinforced composite material 10.
  • the matrix resin 12 for example, an epoxy resin which is a thermosetting resin is used.
  • the fiber structure 11 is made of a multilayer woven fabric 10a.
  • the three-dimensional fiber structure 11 is formed by shaping the flat fiber structure 11 into an L shape.
  • the fiber structure 11 has a three-dimensional plate shape in which the first flat surface portion 16, the second flat surface portion 17, and the bent portion 18 located between the first flat surface portion 16 and the second flat surface portion 17 are continuous. ..
  • the laminating direction of the multilayer woven fabric 10a is referred to as the laminating direction Y.
  • the fiber structure 11 of the present embodiment has a plurality of weft layers formed by arranging a plurality of wefts 14 in the first direction X1.
  • the plurality of weft layers are laminated in the stacking direction Y.
  • the yarn spindles of the plurality of weft yarns 14 extend in the second direction X2.
  • the first direction X1 and the second direction X2 are both directions orthogonal to the stacking direction Y and orthogonal to each other.
  • the first weft layer 41, the second weft layer 42, the third weft layer 43, the fourth weft layer 44, the fifth weft layer 45, and the sixth weft The weft layers are laminated in the order of the layer 46 and the seventh weft layer 47.
  • the weft layer other than the first weft layer 41 is composed of a second yarn 14a composed of a bundle of reinforcing fibers in which a plurality of reinforcing fibers are bundled.
  • the first weft layer 41 is composed of an auxiliary yarn 15.
  • the reinforcing fiber constituting the second yarn 14a of the present embodiment is a carbon fiber.
  • the fiber constituting the auxiliary thread 15 of the present embodiment is a nylon fiber.
  • the fiber structure 11 has a plurality of warp threads 13 arranged in the stacking direction Y.
  • the yarn spindles of the plurality of warp yarns 13 extend in the first direction X1.
  • the fiber structure 11 includes, as the warp 13, the first warp 21 and the second warp 22 arranged on both sides of the first weft layer 41, the second weft layer 42, and the third weft layer 43 in the stacking direction Y.
  • a third warp 23 and a fourth warp 24 arranged on both sides of the third weft layer 43 and the fourth weft layer 44 in the stacking direction Y.
  • the fiber structure 11 has, as the warp 13, the fifth warp 25 and the sixth warp 26 arranged on both sides of the fourth weft layer 44 and the fifth weft layer 45 in the stacking direction Y, the fifth weft layer 45, and the fifth weft layer 45. It has a seventh warp 27 and an eighth warp 28 arranged on both sides of the sixth weft layer 46 in the stacking direction Y.
  • the fiber structure 11 has the 9th warp 29 and the 10th warp 30 and the 7th weft layer 47 arranged on both sides of the 6th weft layer 46 and the 7th weft layer 47 in the stacking direction Y as the warp 13.
  • the eleventh warp 31 and the twelfth warp 32 are arranged on both sides in the stacking direction Y. All of these warp threads 13 are composed of a first thread 13a composed of a reinforcing fiber bundle in which a plurality of reinforcing fibers are bundled.
  • the reinforcing fiber constituting the first yarn 13a of the present embodiment is a carbon fiber.
  • a plurality of the warp threads 13 are arranged in the second direction X2.
  • the warp threads 13 arranged in the second direction X2 have a similar arrangement mode in the stacking direction Y.
  • the first warp 21 and the second warp 22 are alternately positioned in the first direction X1 on the outer surface 11a as one surface of the fiber structure 11 in the stacking direction Y.
  • auxiliary threads 15 constituting the first weft layer 41 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the first warp 21.
  • auxiliary threads 15 constituting the first weft layer 41 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the second warp 22.
  • first warp thread 21 and the second warp thread 22 are engaged with the auxiliary thread 15 forming the first weft thread layer 41 and the second thread 14a forming the third weft thread layer 43.
  • the auxiliary yarns 15 adjacent to each other in the first direction X1 are engaged with the first warp yarns 21 and the second warp yarns 22 adjacent to each other in the second direction X2.
  • the first warp 21 is engaged with one and the second warp 22 is engaged with the other.
  • the first warp 21 and the second warp 22 are not engaged with the second thread 14a forming the second weft layer 42.
  • the auxiliary yarn 15 forming the first weft layer 41, the second yarn 14a forming the second weft layer 42, and the second yarn 14a forming the third weft layer 43 are formed by the first warp 21 and the second warp 22. It is bonded in the stacking direction Y.
  • the first warp 21 and the second warp 22 correspond to the outer yarn.
  • the tenth warp 30 and the twelfth warp 32 and the ninth warp 29 and the eleventh warp 31 are in the first direction X1. Alternately located.
  • the fiber structure 11 will be described in an L-shaped shape.
  • the intermediate portion between the first plane portion 16 and the second plane portion 17 in the first direction X1 is bent along the first direction X1.
  • the bent portion 18 is formed.
  • the first flat surface portion 16, the bent portion 18, and the second flat surface portion 17 are continuous along the first direction X1 by the warp threads 13.
  • the outer surface 11a is the bent outer side and the inner side surface 11b is the bent inner side.
  • each of the first plane portion 16 and the second plane portion 17 a plurality of weft threads 14 are arranged in the first direction X1, and a plurality of warp threads 13 are arranged in the second direction X2. They are lined up in.
  • Each weft 14 arranged in the first plane portion 16 and the second plane portion 17 extends in the second direction X2 in a wavy state in the stacking direction Y.
  • Each of the warp threads 13 arranged in the first plane portion 16 and the second plane portion 17 extends in the first direction X1 in a wavy state in the stacking direction Y.
  • a plurality of warp threads 13 and a plurality of weft threads 14 are arranged along the arc of the bent portion 18 in a wavy state in the stacking direction Y.
  • the extending directions of the arranged warp threads 13 are different between the first plane portion 16 and the second plane portion 17. That is, the first direction X1 which is the yarn main axis direction of the warp thread 13 is different between the first plane portion 16 and the second plane portion 17.
  • the thickness of the auxiliary thread 15 constituting the first weft layer 41 is smaller than that before shaping of the fiber structure 11. ..
  • the dimension L2 passing outside the bent portion 18 is larger than the dimension L1 passing inside the bent portion 18. Is also big.
  • the method for manufacturing the fiber structure 11 includes a weaving step of weaving a flat plate-shaped fiber structure 11, a heating step of heating the fiber structure 11, a shaping step of shaping the fiber structure 11, and a fiber structure. 11 is provided with an impregnation step of impregnating the resin.
  • the flat fiber structure 11 is woven using a multi-layer loom.
  • the multi-layer loom of the present embodiment includes a warp beam for supplying a plurality of warp threads 13 and a heddle frame for opening the plurality of warp threads 13 by moving them up and down.
  • the second yarn 14a and the auxiliary yarn 15 is inserted as the weft yarn 14 by the weft insertion mechanism into the opening of the warp yarn 13.
  • each of the first threads 13a constituting each warp thread 13 is opened.
  • openings are sequentially formed.
  • each weft 14 is wefted into the opening between the first warp 21 and the second warp 22.
  • each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the auxiliary yarn 15 of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn 14a of the third weft layer 43. It is wefted so that it is arranged in the order of. As a result, the first warp 21 and the second warp 22 engage with the auxiliary thread 15 of the first weft layer 41 and the second thread 14a of the third weft layer 43.
  • the auxiliary yarn 15 of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn 14a of the third weft layer 43 are coupled in the stacking direction Y by the first warp 21 and the second warp 22. Will be done. Further, in the first direction X1 of the fiber structure 11, in the portion where the first warp 21 is located on the outer surface 11a, the auxiliary thread 15 becomes the first warp 21 in the inner layer in the stacking direction Y than the first warp 21. They are arranged so as to overlap in the stacking direction Y.
  • the auxiliary thread 15 is in the stacking direction with the second warp 22 in the inner layer in the stacking direction Y than the second warp 22. They are arranged overlapping with Y.
  • the fiber structure 11 after the weaving step has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 2 over the entire first direction X1.
  • the flat fiber structure 11 is formed by repeating the formation of the opening of the warp thread 13 by the heddle frame and the insertion of the weft thread 14 into the opening.
  • the first warp 21 and the second warp 22 are arranged on the outer surface 11a, and all the warp 13 including the first warp 21 engage with the second warp 14a, respectively.
  • a heating process is performed.
  • the fiber structure 11 is placed in a heating furnace and heated to a predetermined temperature.
  • This predetermined temperature is lower than the melting point of the carbon fibers constituting the first yarn 13a and the second yarn 14a, and is higher than the melting point of the nylon fibers constituting the auxiliary yarn 15.
  • the auxiliary thread 15 in the fiber structure 11 is melted. Therefore, in the fiber structure 11 after the heating step, the thickness of the auxiliary thread 15 becomes smaller as shown by the alternate long and short dash line in FIG.
  • the first yarn 13a and the second yarn 14a do not melt in the heating step, the thicknesses of the first yarn 13a and the second yarn 14a do not change before and after the heating step. Therefore, it can be said that the auxiliary yarn 15 has a property that the amount of decrease in thickness is larger than that of the first yarn 13a and the second yarn 14a with the heating step.
  • the heating step corresponds to the reduction step.
  • the paths of the first warp threads 21 and the second warp threads 22 that engage with the auxiliary threads 15 are reduced by the amount that the thickness of the auxiliary threads 15 constituting the first weft layer 41 is reduced. Is shorter than before the heating process. Therefore, in the fiber structure 11, the first warp 21 and the second warp 22 become loose. A surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22.
  • the flat fiber structure 11 after the heating step is fitted into the mold to shape the fiber structure 11 into an L shape shown in FIG.
  • the surplus of the first warp 21 and the second warp 22 generated after the heating step grows along the first direction X1.
  • the dimensions in the first direction X1 can be extended by the surplus of the first warp 21 and the second warp 22 as compared with the fiber structure 11 before shaping.
  • the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18.
  • an impregnation step is performed.
  • the fiber-reinforced composite material 10 is formed by impregnating the fiber structure 11 after shaping with the matrix resin 12. According to the above embodiment, the following effects can be obtained.
  • the auxiliary thread 15 has a smaller thickness of the auxiliary thread 15 after shaping the fiber structure 11 by making the thickness of the auxiliary thread 15 smaller than that before shaping the fiber structure 11.
  • the path of the first warp 21 and the second warp 22 after shaping becomes shorter than that before shaping. Therefore, a surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22.
  • the dimensions in the first direction X1 can be extended by the surplus of the first warp 21 and the second warp 22 as compared with the fiber structure 11 before shaping.
  • the dimensions of the first yarn 13a arranged inside the bend in the first direction X1 are less likely to be excessive, so that the occurrence of wrinkles inside the bend of the fiber structure 11 can be suppressed.
  • the opening operation of the warp thread 13 by the heddle frame and the insertion of the weft thread 14 into the opening of the warp thread 13 formed by the opening operation are repeated. .. Since the opening operation of the warp thread 13 is performed by moving the entire warp thread 13 up and down, as the number of warp threads 13 used for weaving increases, the man-hours related to the opening operation of the warp thread 13 may increase.
  • the auxiliary yarn 15 is added as the weft yarn 14 to weave the fiber structure 11. Therefore, as compared with the case where the auxiliary thread 15 is added to the fiber structure 11 as the warp thread 13, the increase in man-hours related to the addition of the auxiliary thread 15 can be reduced.
  • the auxiliary thread 15 has a lower melting point than the first thread 13a and the second thread 14a. Therefore, if the fiber structure 11 is heat-treated at a temperature lower than the melting points of the first yarn 13a and the second yarn 14a and at a temperature equal to or higher than the melting point of the auxiliary yarn 15 in the heating step, the auxiliary yarn 15 is heated in the heating step. Melts and the thickness of the auxiliary thread 15 becomes smaller. Then, the paths of the first warp thread 21 and the second warp thread 22 can be shortened by the amount that the thickness of the auxiliary thread 15 is reduced. Therefore, by generating a surplus that does not contribute to the path in the first warp 21 and the second warp 22, it is possible to suppress the occurrence of wrinkles inside the bending of the fiber structure 11.
  • FIGS. 1 and 3 a second embodiment embodying the fiber structure and the method for manufacturing the fiber structure will be described with reference to FIGS. 1 and 3. In the following, the differences from the first embodiment will be mainly described.
  • the first weft layer 41, the second weft layer 42, the third weft layer 43, and the third weft layer 43 are arranged from one side to the other in the stacking direction Y.
  • the weft layers are laminated in the order of the 4 weft layer 44, the 5th weft layer 45, the 6th weft layer 46, the 7th weft layer 47, and the 8th weft layer 48.
  • the weft layers other than the first weft layer 41 and the third weft layer 43 are composed of the second yarn 14a.
  • the first weft layer 41 and the third weft layer 43 are composed of auxiliary threads 15.
  • the auxiliary thread 15 constituting the first weft layer 41 is referred to as a first auxiliary thread 15a
  • the auxiliary thread 15 constituting the third weft layer 43 is referred to as a second auxiliary thread 15b.
  • the second auxiliary thread 15b is smaller in thickness than the first auxiliary thread 15a.
  • the fiber structure 111 is a warp 13, and the first warp 21 and the first warp 21 and the first warp layer 41 arranged on both sides of the first weft layer 41, the second weft layer 42, the third weft layer 43, and the fourth weft layer 44 in the stacking direction Y. It has two warp threads 22, a third warp thread 23 and a fourth warp thread 24 arranged on both sides of the third weft thread layer 43, the fourth weft layer 44, and the fifth weft layer 45 in the stacking direction Y.
  • the fiber structure 111 includes the fifth warp threads 25 and the sixth warp threads 26 arranged on both sides of the fifth weft thread layer 45 and the sixth weft layer 46 in the stacking direction Y, the sixth weft thread layer 46, and the warp threads 13. It has a seventh warp 27 and an eighth warp 28 arranged on both sides of the seventh weft layer 47 in the stacking direction Y.
  • the fiber structure 111 includes the 9th warp 29 and the 10th warp 30 and the 8th weft layer 48 arranged on both sides of the 7th weft layer 47 and the 8th weft layer 48 in the stacking direction Y as the warp 13.
  • the eleventh warp 31 and the twelfth warp 32 are arranged on both sides in the stacking direction Y. All of these warp threads 13 are composed of the first thread 13a.
  • the first auxiliary yarn 15a constituting the first weft yarn layer 41 is laminated on the inner layer in the stacking direction Y from the first warp yarn 21. It overlaps in the direction Y.
  • the first auxiliary yarn 15a constituting the first weft layer 41 is formed in the inner layer in the stacking direction Y from the second warp 22 in the stacking direction Y. It overlaps with.
  • the first warp 21 and the second warp 22 are engaged with the first auxiliary thread 15a constituting the first weft layer 41 and the second thread 14a forming the fourth weft layer 44.
  • the first auxiliary yarn 15a adjacent to each other in the first direction X1 is engaged with the first warp yarn 21 and the second warp yarn 22 adjacent to each other in the second direction X2.
  • the first warp thread 21 is engaged with one and the second warp thread 22 is engaged with the other.
  • the first warp 21 and the second warp 22 are not engaged with the second yarn 14a constituting the second weft layer 42 and the second auxiliary yarn 15b forming the third weft layer 43.
  • the first auxiliary yarn 15a constituting the first weft layer 41, the second yarn 14a forming the second weft layer 42, the second auxiliary yarn 15b forming the third weft layer 43, and the fourth weft layer 44 are formed.
  • the second yarn 14a is connected in the stacking direction Y by the first warp 21 and the second warp 22.
  • the first warp 21 and the second warp 22 correspond to the outer yarn.
  • the third warp 23 and the fourth warp 24 are alternately positioned in the first direction X1. That is, the third warp thread 23 located on the outer surface 11a side of the third weft thread layer 43 has a second auxiliary thread forming the third weft thread layer 43 in the inner layer in the stacking direction Y from the third warp thread 23. 15b overlaps in the stacking direction Y.
  • the fourth warp yarn 24 located on the outer surface 11a side of the third weft yarn layer 43 has a second auxiliary yarn 15b constituting the third weft yarn layer 43 in the inner layer in the stacking direction Y from the fourth warp yarn 24.
  • the third warp thread 23 and the fourth warp thread 24 are engaged with the second auxiliary thread 15b forming the third weft thread layer 43 and the second thread 14a forming the fifth weft thread layer 45.
  • the second auxiliary yarn 15b adjacent to each other in the first direction X1 is engaged with the third warp yarn 23 and the fourth warp yarn 24 adjacent to each other in the second direction X2.
  • the third warp thread 23 is engaged with one and the fourth warp thread 24 is engaged with the other.
  • the third warp 23 and the fourth warp 24 are not engaged with the second thread 14a constituting the fourth weft layer 44.
  • the second auxiliary yarn 15b constituting the third weft layer 43, the second yarn 14a constituting the fourth weft layer 44, and the second yarn 14a constituting the fifth weft layer 45 are the third warp 23 and the fourth warp. It is connected in the stacking direction Y by 24.
  • the third warp 23 and the fourth warp 24 correspond to the inner layer yarn.
  • the fiber structure 111 after shaping in the present embodiment has an L-shaped three-dimensional shape as in the first embodiment. Then, in the fiber structure 111 after shaping, the first auxiliary thread 15a and the second auxiliary thread 15b are missing from the fiber structure 111. As a result, as shown in FIG. 1, among the dimensions along the first direction X1 of the fiber structure 111 after shaping, the dimension L2 passing through the outside of the bent portion 18 passes through the inside of the bent portion 18. It is larger than L1.
  • the method for producing the fiber structure 11 includes a weaving step, a shaping step, and an impregnation step, and also includes a sampling step of extracting the auxiliary thread 15.
  • the manufacturing method in the first embodiment is different from the manufacturing method in that a sampling step is performed instead of the heating step.
  • the flat fiber structure 111 is woven using a multi-layer loom. Then, in the multilayer loom, any one of the second yarn 14a, the first auxiliary yarn 15a, and the second auxiliary yarn 15b is inserted as the weft yarn 14 by the weft insertion mechanism into the opening of the warp yarn 13.
  • each weft 14 is wefted into the openings between the first warp 21 and the second warp 22. ..
  • each weft 14 is a second auxiliary thread 15a of the first weft layer 41, a second thread 14a of the second weft layer 42, and a second auxiliary thread of the third weft layer 43 from the outer surface 11a side in the stacking direction Y.
  • the yarn 15b and the second yarn 14a of the fourth weft layer 44 are wefted so as to be arranged in this order.
  • the first warp yarn 21 and the second warp yarn 22 engage with the first auxiliary yarn 15a of the first weft yarn layer 41 and the second yarn 14a of the fourth weft yarn layer 44.
  • the first auxiliary thread 15a of the first weft layer 41, the second thread 14a of the second weft layer 42, the second auxiliary thread 15b of the third weft layer 43, and the fourth The second yarn 14a of the weft layer 44 is joined in the stacking direction Y.
  • the first auxiliary thread 15a is the first warp in the inner layer in the stacking direction Y than the first warp 21. It is arranged so as to overlap with 21 in the stacking direction Y.
  • the first auxiliary thread 15a and the second warp 22 are formed in the inner layer in the stacking direction Y than the second warp 22. They are arranged so as to overlap in the stacking direction Y.
  • each weft 14 is wefted into the openings between the third warp 23 and the fourth warp 24.
  • each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the second auxiliary yarn 15b of the third weft layer 43, the second yarn 14a of the fourth weft layer 44, and the second yarn layer 45 of the fifth weft layer 45. Wefting is performed so that the threads 14a are arranged in this order.
  • the third warp thread 23 and the fourth warp thread 24 are engaged with the second auxiliary thread 15b of the third weft thread layer 43 and the second thread 14a of the fifth weft thread layer 45.
  • the second auxiliary yarn 15b of the third weft layer 43, the second yarn 14a of the fourth weft layer 44, and the second yarn 14a of the fifth weft layer 45 are laminated in the stacking direction Y. Will be combined with.
  • the second auxiliary thread 15b is the third in the inner layer in the stacking direction Y than the third warp 23.
  • the warp threads 23 and the warp threads 23 are arranged so as to overlap each other in the stacking direction Y.
  • the second auxiliary thread 15b is the fourth warp 24 in the inner layer in the stacking direction Y than the fourth warp 24. And are arranged so as to overlap in the stacking direction Y.
  • the weft 14 is inserted into the openings of the first warp 21 and the second warp 22 and the weft 14 is inserted into the openings of the third warp 23 and the fourth warp 24 in the same manner as described above.
  • the insertion is done.
  • the fiber structure 111 after the weaving step has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 3 over the entire first direction X1.
  • the thickness of the second auxiliary thread 15b is smaller than that of the first auxiliary thread 15a. That is, in the woven flat fiber structure 111, the thickness of the auxiliary thread 15 is smaller in the inner layer in the stacking direction Y than in the outer surface 11a. Therefore, at the stage of the flat fiber structure 11, the paths of the third warp threads 23 and the fourth warp threads 24 that engage with the second auxiliary thread 15b are the first warp threads 21 and the first warp threads that engage with the first auxiliary thread 15a. It is shorter than the path of the two warp threads 22.
  • a sampling process is performed.
  • the first auxiliary thread 15a and the second auxiliary thread 15b are extracted from the fiber structure 111. Since the first auxiliary thread 15a and the second auxiliary thread 15b are removed from the fiber structure 111 by the extraction step, it can be said that the thickness of the first auxiliary thread 15a and the second auxiliary thread 15b is reduced by the extraction step. On the other hand, the thicknesses of the first thread 13a and the second thread 14a do not change before and after the extraction process. Therefore, it can be said that the first auxiliary thread 15a and the second auxiliary thread 15b have a property that the amount of decrease in thickness is larger than that of the first thread 13a and the second thread 14a with the extraction step.
  • the sampling process corresponds to the reduction process.
  • the 22 paths are shorter than before the sampling process. Therefore, in the fiber structure 111, the first warp 21 and the second warp 22 become loose. A surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22.
  • the third warp threads 23 and the third warp threads 23 and the second auxiliary threads that are engaged with the second auxiliary threads 15b are extracted by the amount that the second auxiliary threads 15b constituting the third weft layer 43 are extracted.
  • the path of the 4 warp threads 24 is also shorter than that before the extraction process. Therefore, in the fiber structure 111, the third warp 23 and the fourth warp 24 become loose, and a surplus that does not contribute to the path is generated in the third warp 23 and the fourth warp 24.
  • the path of the third warp thread 23 and the fourth warp thread 24 was the first. It was shorter than the path of the 1st warp 21 and the 2nd warp 22. That is, the amount of decrease in the paths of the third warp 23 and the fourth warp 24 due to the extraction of the second auxiliary thread 15b is the amount of decrease in the paths of the first warp 21 and the second warp 22 due to the extraction of the first auxiliary thread 15a. Is smaller than Therefore, in the fiber structure 111 after the extraction step, the excess amount of the third warp 23 and the fourth warp 24 is smaller than that of the first warp 21 and the second warp 22.
  • the shaping step the flat fiber structure 111 after the extraction step is fitted into the mold in the same manner as in the first embodiment to shape the fiber structure 111 into an L shape shown in FIG.
  • the surplus of the first warp 21 and the second warp 22 and the surplus of the third warp 23 and the fourth warp 24 generated after the extraction step are extended along the first direction X1.
  • the size in the first direction X1 can be extended by the above surplus as compared with the fiber structure 111 before shaping.
  • the portion of the outer surface 11a of the fiber structure 111 where the first warp 21 and the second warp 22 are located is the portion where the third warp 23 and the fourth warp 24 are located, and is larger than the outer surface 11a. It extends more along the first direction X1 than the portion of the inner layer in the stacking direction Y.
  • the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18. Then, the fiber-reinforced composite material 10 is formed by performing an impregnation step after the shaping step.
  • the following effects can be obtained in addition to the effects of the first embodiment.
  • the surplus in the first warp 21 and the second warp 22 is larger than the surplus in the third warp 23 and the fourth warp 24. Therefore, the amount of elongation of the first warp 21 and the second warp 22 on the bending outer side of the third warp 23 and the fourth warp 24 can be increased, so that the above-mentioned elongation can be adjusted according to the shape of the fiber structure 11 after shaping. You can set the amount.
  • the first weft layer 41 and the second weft layer are formed from one side to the other in the stacking direction Y, as in the first embodiment.
  • the weft layers are laminated in the order of 42, the third weft layer 43, the fourth weft layer 44, the fifth weft layer 45, the sixth weft layer 46, and the seventh weft layer 47.
  • the weft layer other than the first weft layer 41 is composed of the second thread 14a
  • the first weft layer 41 is composed of the auxiliary thread 15.
  • the auxiliary yarn 15 constituting the first weft layer 41 is referred to as a weft auxiliary yarn 115a.
  • both the first warp 121 and the second warp 122 and the third warp 123 and the fourth warp 124 are the first weft layer 41, the second weft layer 42, and the second warp.
  • the three weft layers 43 are arranged on both sides in the stacking direction Y.
  • the fiber structure 161 includes the fifth warp 125 and the sixth warp 126 arranged on both sides of the third weft layer 43 and the fourth weft layer 44 in the stacking direction Y, and the fourth weft layer 44 as the warp 13. It has a seventh warp 127 and an eighth warp 128 arranged on both sides of the fifth weft layer 45 in the stacking direction Y.
  • the fiber structure 161 includes the 9th warp 129 and the 10th warp 130 and the 6th weft layer 46 arranged on both sides of the 5th weft layer 45 and the 6th weft layer 46 in the stacking direction Y as the warp 13. And the eleventh warp 131 and the twelfth warp 132 arranged on both sides of the seventh weft layer 47 in the stacking direction Y.
  • the fiber structure 161 has the 13th warp 133 and the 14th warp 134 arranged on both sides of the 7th weft layer 47 in the stacking direction Y as the warp 13.
  • the warp threads 13 other than the third warp thread 123 and the fourth warp thread 124 are composed of the first thread 13a.
  • the third warp 123 and the fourth warp 124 are composed of an auxiliary thread 15.
  • the auxiliary thread 15 constituting the third warp thread 123 and the fourth warp thread 124 will be referred to as a warp auxiliary thread 115b.
  • the warp auxiliary threads 115b constituting the third warp thread 123 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the outer surface 11a.
  • the warp auxiliary yarn 115b constituting the fourth warp yarn 124 overlaps in the stacking direction Y in the inner layer in the stacking direction Y with respect to the outer surface 11a.
  • the warp auxiliary thread 115b overlaps the first warp thread 121 and the second warp thread 122 over the entire first direction X1 of the fiber structure 161.
  • the first warp threads 121 and the second warp threads 122 are alternately located along the first direction X1.
  • the weft auxiliary thread 115a constituting the first weft thread layer 41 is provided with the warp auxiliary thread 115b in the stacking direction Y in the inner layer in the stacking direction Y than the first warp thread 121. Overlapping through.
  • the weft auxiliary yarn 115a constituting the first weft yarn layer 41 is formed in the inner layer in the stacking direction Y from the second warp yarn 122 in the stacking direction Y. It overlaps with the warp auxiliary thread 115b. Further, the weft auxiliary yarn 115a forming the first weft layer 41 and the second yarn 14a forming the third weft layer 43 include the first warp 121, the second warp 122, the third warp 123, and the fourth warp 124. Are engaged.
  • the weft auxiliary threads 115a adjacent to each other in the first direction X1 are engaged with the first warp 121, the second warp 122, the third warp 123, and the fourth warp 124 adjacent to each other in the second direction X2. doing.
  • the first warp 121 and the third warp 123 are engaged with one
  • the second warp 122 and the fourth warp 124 are engaged with the other. Engaged.
  • first warp 121, the second warp 122, the third warp 123, and the fourth warp 124 are not engaged with the second thread 14a constituting the second weft layer 42.
  • the weft auxiliary yarn 115a forming the first weft layer 41, the second yarn 14a forming the second weft layer 42, and the second yarn 14a forming the third weft layer 43 are the first warp 121 and the second warp 122.
  • the third warp 123, and the fourth warp 124 are connected in the stacking direction Y.
  • the first warp 121 and the second warp 122 correspond to the outer yarn.
  • the fiber structure 161 after shaping in the present embodiment has an L-shaped three-dimensional shape as in the first embodiment. Then, in the fiber structure 161 after shaping, the weft auxiliary thread 115a and the warp auxiliary thread 115b are eliminated from the fiber structure 161. As a result, as shown in FIG. 1, among the dimensions along the first direction X1 of the fiber structure 161 after shaping, the dimension L2 passing through the outside of the bent portion 18 passes through the inside of the bent portion 18. It is larger than L1.
  • the method for producing the fiber structure 161 in the present embodiment includes a weaving step, a shaping step, and an impregnation step, and also includes a sampling step of extracting the auxiliary thread 15.
  • the manufacturing method in the first embodiment is different from the manufacturing method in that a sampling step is performed instead of the heating step.
  • the warp beam supplies the second auxiliary thread 15b in addition to the first thread 13a as the warp thread 13, and the heddle frame is the first thread 13a and the warp auxiliary thread 115b.
  • Make an opening The opening operation of the first warp thread 121 and the second warp thread 122 by the heddle frame maintains a state in which the warp auxiliary thread 115b is overlapped with each warp thread 13 in the inner layer in the stacking direction Y than each warp thread 13. Do it while doing.
  • the set of the warp auxiliary thread 115b in the first warp 121 and the warp auxiliary thread 123 in the third warp 123, and the warp auxiliary thread 115b in the first thread 13a and the fourth warp 124 in the second warp 122 By alternately moving the sets up and down in the stacking direction Y, openings by the first warp set 151 and the second warp set 152 are sequentially formed.
  • the set of the first warp thread 13a in the first warp thread 121 and the warp auxiliary thread 115b in the third warp thread 123 is referred to as the first warp thread set 151.
  • the set of the first thread 13a in the second warp 122 and the warp auxiliary thread 115b in the fourth warp 124 is called the second warp set 152.
  • each weft 14 is wefted into the opening between the first warp assembly 151 and the second warp assembly 152.
  • each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the weft auxiliary yarn 115a of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn of the third weft layer 43. It is wefted so that it is arranged in the order of 14a.
  • first warp set 151 and the second warp set 152 are engaged with the weft auxiliary thread 115a of the first weft layer 41 and the second thread 14a of the third weft layer 43.
  • first warp set 151 and the second warp set 152 the weft auxiliary thread 115a of the first weft layer 41, the second thread 14a of the second weft layer 42, and the second thread 14a of the third weft layer 43 are laminated. It will be combined with Y.
  • the weft auxiliary thread 115a is the first warp 121 in the inner layer in the stacking direction Y than the first warp 121. And are arranged so as to overlap with each other via the warp auxiliary thread 115b in the stacking direction Y.
  • the weft auxiliary thread 115a is laminated with the second warp 122 in the inner layer in the stacking direction Y than the second warp 122. They are arranged so as to overlap with each other via the warp auxiliary thread 115b in the direction Y.
  • the fiber structure 161 after the weaving step in the present embodiment has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 4 over the entire first direction X1.
  • the weft auxiliary thread 115a and the warp auxiliary thread 115b are extracted from the fiber structure 161. Since the weft auxiliary thread 115a and the warp auxiliary thread 115b are removed from the fiber structure 161 by the extraction step, it can be said that the thickness of the weft auxiliary thread 115a and the warp auxiliary thread 115b is reduced by the extraction step. On the other hand, the thicknesses of the first thread 13a and the second thread 14a do not change before and after the extraction process.
  • the weft auxiliary yarn 115a and the warp auxiliary yarn 115b have a property that the amount of decrease in thickness is larger than that of the first yarn 13a and the second yarn 14a with the extraction step.
  • the sampling process corresponds to the reduction process.
  • the first warp threads 121 and the second warp threads 122 that were engaged with the weft auxiliary threads 115a by the amount of the weft auxiliary threads 115a constituting the first weft thread layer 41 were extracted.
  • the route is shorter than before the sampling process.
  • the paths of 121 and the second warp 122 are shorter than before the extraction process. Therefore, in the fiber structure 161, the first warp 121 and the second warp 122 become loose, and a surplus that does not contribute to the path is generated in the first warp 121 and the second warp 122.
  • the flat fiber structure 161 after the extraction step is fitted into the mold in the same manner as in the first embodiment to shape the fiber structure 161 into the L shape shown in FIG.
  • the surplus portion of the first warp thread 121 and the second warp thread 122 generated after the extraction step is extended along the first direction X1.
  • the size in the first direction X1 can be extended by the above surplus as compared with the fiber structure 161 before shaping.
  • the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18.
  • the fiber-reinforced composite material 10 is formed by performing an impregnation step after the shaping step.
  • the following effects can be obtained in addition to the effects of the first embodiment.
  • (3-1) Auxiliary yarn 15 is added to both the warp yarn 13 and the weft yarn 14 to weave the fiber structure 161. Therefore, as compared with the case where the auxiliary thread 15 is added to only one of the warp thread 13 and the weft thread 14, the surplus portion that does not contribute to the path generated in the first warp thread 121 and the second warp thread 122 becomes longer. Therefore, when the fiber structure 161 is shaped, the outer surface 11a of the fiber structure 161 becomes more elongated along the first direction X1, so that the occurrence of wrinkles inside the bending of the fiber structure 161 can be further suppressed. ..
  • a thread composed of fibers other than carbon fibers may be adopted as the first thread 13a or the second thread 14a.
  • fibers other than carbon fibers include glass fibers.
  • the auxiliary yarn 15 in the first embodiment in which the heating step is performed is composed of synthetic fibers other than nylon fibers as long as it has a melting point lower than that of the first yarn 13a and the second yarn 14a. May be good.
  • the auxiliary thread 15 in the second embodiment and the third embodiment in which the extraction process is performed may be composed of synthetic fibers other than nylon fibers, or may be composed of fibers other than synthetic fibers. There may be. Since the auxiliary thread 15 does not remain in the fiber structures 111 and 161 after shaping, the material of the auxiliary thread 15 can be freely selected.
  • the auxiliary thread 15 may be melted by heating in the heating step so that the auxiliary thread 15 disappears in the fiber structure 11 after the heating step. Further, in the first embodiment, the sampling step in the second embodiment and the third embodiment may be performed instead of the heating step.
  • the heating step in the first embodiment may be performed instead of the sampling step.
  • the auxiliary thread 15 since the auxiliary thread 15 is melted by the heating step, the auxiliary thread 15 may be eliminated in the fiber structures 111 and 161 after the heating step, and the thickness of the auxiliary thread 15 is smaller than that before the heating step. It may be.
  • the auxiliary arranged in the fiber structures 11, 111, 161 other than these steps instead of the heating step in the first embodiment and the sampling step in the second embodiment and the third embodiment, the auxiliary arranged in the fiber structures 11, 111, 161 other than these steps.
  • a reduction step of reducing the thickness of the thread 15 may be adopted.
  • the fiber structures 11, 111, 161 after the weaving step are put in a container filled with a chemical solution having a property of dissolving the auxiliary thread 15 by causing a chemical reaction with the auxiliary thread 15.
  • the thread 15 may be melted.
  • the auxiliary yarn 15 is arranged in the inner layer in the stacking direction Y from these weft layers.
  • the weft layer may be provided as one layer or two or more layers.
  • the auxiliary yarn 15 constituting the first weft layer 41 becomes the first auxiliary yarn 15a
  • the auxiliary yarn 15 constituting the weft layer other than the first weft layer 41 becomes the second auxiliary yarn 15b.
  • the thickness of each of the second auxiliary threads 15b may be set to be smaller in the stacking direction Y toward the inner layer than the outer surface 11a.
  • the first weft layer 41 may be changed to one composed of the second thread 14a.
  • the auxiliary threads 15 are not arranged as the weft threads 14, but are arranged only as the warp threads 13.
  • auxiliary thread 15 bulky fibers having a lower fiber density than the first thread 13a and the second thread 14a may be adopted.
  • an auxiliary yarn 15 having a thickness similar to that of the first yarn 13a and the second yarn 14a and having a fiber density lower than that of the first yarn 13a and the second yarn 14a is adopted.
  • the thickness of the auxiliary thread 15 having a low fiber density is high. The amount of decrease is larger than that of the first thread 13a and the second thread 14a.
  • the first warp thread 21 and the second warp thread 22 have a surplus that does not contribute to the path by the amount that the thickness of the auxiliary thread 15 is reduced. Therefore, as in each of the above embodiments, the occurrence of wrinkles inside the bending of the fiber structures 11, 111, 161 can be suppressed.
  • the first direction X1 may be the direction in which the yarn spindle of the weft 14 extends
  • the second direction X2 may be the direction in which the yarn spindle of the warp 13 extends.
  • the first plane portion 16, the bent portion 18, and the second plane portion 17 are continuous along the direction in which the yarn spindle of the weft 14 extends.
  • the arrangement of the auxiliary threads 15 may be performed only in a partial range of the fiber structures 11, 111, 161 in the first direction X1.
  • the auxiliary threads 15 may be arranged in a range including a portion to be a bent portion 18, or a range excluding the bent portion 18.
  • the auxiliary thread 15 may be arranged in a range including one or both of the first flat surface portion 16 and the second flat surface portion 17.
  • the shape of the fiber structures 11, 111, 161 after shaping is not limited to the L shape.
  • the shaping of the fiber structures 11, 111, 161 may be performed so that the radius of curvature of the bent portion 18 is larger than that shown in FIG. 1, or the radius of curvature of the bent portion 18 is larger than that shown in FIG. May be reduced.
  • X1 1st direction X2 2nd direction Y Laminating direction 10a Multilayer woven fabric 11,111,161 Fiber structure 11a Outer side surface 13 Warp thread 13a 1st thread 14 Weft thread 14a 2nd thread 15 Auxiliary thread 15a 1st auxiliary thread 15b 2nd auxiliary thread 16 1st flat part 17 2nd flat part 18 Bending part 21,121 1st warp 22,122 2nd warp 23,123 3rd warp 24,124 4th warp 115a Weft auxiliary thread 115b Warp auxiliary thread

Abstract

A fiber structure (11) has first yarns (13a) composed of reinforcing fibers as warp yarns (13), and also has second yarns (14a) composed of reinforcing fibers as weft yarns (14). First warp yarns (21) and second warp yarns (22) are arranged on an outer surface (11a) on the bending outer side of the fiber structure (11). The first warp yarns (21) and the second warp yarns (22) are engaged with the second yarns (14a). The fiber structure (11) includes auxiliary yarns (15) that are located in an inner layer with respect to the first warp yarns (21) and the second warp yarns (22) in a lamination direction Y, and that are arranged so as to overlap the first warp yarns (21) and the second warp yarns (22) in the lamination direction Y. The auxiliary yarns (15) have the property that the amount of reduction in thickness is larger than those of the first yarns (13a) and the second yarns (14a).

Description

繊維構造体及び繊維構造体の製造方法Fiber structure and manufacturing method of fiber structure
 本開示は、繊維構造体及び繊維構造体の製造方法に関する。 The present disclosure relates to a fiber structure and a method for manufacturing the fiber structure.
 繊維構造体に樹脂をマトリックスとした繊維強化複合材が、航空機、自動車及び建築物等の構造材として用いられている。繊維構造体としては、複数の繊維層が積層された多層織物の繊維構造体がある。また、繊維強化複合材の用途に合わせて、繊維構造体の形状を、例えばL字状やU字状等の曲げ部を有した形状とすることがある。この場合、平板状に形成された繊維構造体を賦形して曲げ部を有する形状とする。 A fiber-reinforced composite material with a resin matrix in the fiber structure is used as a structural material for aircraft, automobiles, buildings, etc. As the fiber structure, there is a fiber structure of a multilayer woven fabric in which a plurality of fiber layers are laminated. Further, depending on the use of the fiber reinforced composite material, the shape of the fiber structure may be a shape having a bent portion such as an L shape or a U shape. In this case, the fibrous structure formed in a flat plate shape is shaped to have a bent portion.
 ここで、繊維構造体には強化繊維からなる糸が使用されることがある。強化繊維は一般に伸びが非常に小さい。そのため、強化繊維からなる糸が使用された繊維構造体を賦形して曲げ部を有する形状とする際、曲げ部の外側に配列された糸が伸びにくいことで、曲げ部の内側に皺が生じるおそれがある。曲げ部の内側に皺が生じると、繊維構造体に樹脂を含浸させる際に、曲げ部に樹脂が浸透しにくくなるため、好ましくない。 Here, a thread made of reinforcing fibers may be used for the fiber structure. Reinforcing fibers generally have very low elongation. Therefore, when a fiber structure in which a thread made of reinforcing fibers is used is shaped to have a bent portion, the threads arranged on the outside of the bent portion are difficult to stretch, and wrinkles are formed on the inside of the bent portion. May occur. Wrinkles on the inside of the bent portion are not preferable because the resin does not easily penetrate into the bent portion when the fiber structure is impregnated with the resin.
 そこで、特許文献1に記載の繊維構造体では、曲げ部の両側に位置する平面部と曲げ部とに延びる糸の糸主軸が延びる方向において、曲げ部の一方側の平面部にて曲げ部の内側に繋がる糸の経路と、曲げ部の他方側の平面部にて曲げ部の内側に繋がる糸の経路とを、曲げ部にて繊維構造体の厚み方向で交差させている。これにより、曲げ部の両側に位置する平面部と曲げ部との間で、曲げ内側に配列された糸の経路を長くできるため、曲げ部の内側に皺が生じにくくなる。 Therefore, in the fiber structure described in Patent Document 1, in the direction in which the yarn spindles of the threads extending to the flat surface portions located on both sides of the bent portion and the bent portion extend, the flat surface portion on one side of the bent portion has a bent portion. The path of the thread connected to the inside and the path of the thread connected to the inside of the bent portion at the flat surface portion on the other side of the bent portion intersect at the bent portion in the thickness direction of the fiber structure. As a result, the path of the threads arranged inside the bend can be lengthened between the flat surface portions located on both sides of the bend portion and the bend portion, so that wrinkles are less likely to occur inside the bend portion.
特開2015-501890号公報JP 2015-501890
 しかしながら、特許文献1に記載の繊維構造体では、糸の経路の交差する部分で糸同士が重なることになるため、重なった糸同士がこすれて糸の強度低下が生じるおそれがある。こうした懸念を考慮して、上記のように曲げ内側にて糸の経路を交差させる態様以外で、繊維構造体の曲げ内側での皺の発生を抑制することが望まれていた。 However, in the fiber structure described in Patent Document 1, since the threads overlap each other at the intersection of the thread paths, the overlapped threads may rub against each other and the strength of the threads may decrease. In consideration of such concerns, it has been desired to suppress the occurrence of wrinkles on the inside of the bending of the fiber structure, except for the mode in which the yarn paths are crossed on the inside of the bending as described above.
 本開示は、上記課題を解決するためになされたものであり、その目的は、曲げ内側における皺の発生を抑制できる繊維構造体及び繊維構造体の製造方法を提供することにある。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide a fiber structure capable of suppressing the occurrence of wrinkles on the inside of bending and a method for producing the fiber structure.
 上記課題を解決する繊維構造体は、強化繊維からなる第1糸及び第2糸が互いに直交する方向に配列された多層織物である平板状の繊維構造体であり、前記第1糸の糸主軸が延びる方向を第1方向とするとともに、前記第2糸の糸主軸が延びる方向を第2方向とするとき、前記多層織物の積層方向における一方面が外側面として曲げ外側になるように、前記第1方向に沿って曲げられる賦形用の繊維構造体であって、前記外側面に配列された前記第1糸を外側糸とするとき、前記多層織物は、前記積層方向における前記外側糸よりも内層にあって、前記積層方向にて前記外側糸と重なって配列された補助糸を備え、前記補助糸は、前記第1糸及び前記第2糸よりも太さの減少量が大きい性質を有することを特徴とする。 The fiber structure that solves the above problems is a flat plate-like fiber structure that is a multilayer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in directions orthogonal to each other, and the yarn main shaft of the first yarn. When the direction in which the yarn extends is the first direction and the direction in which the yarn main shaft of the second yarn extends is the second direction, the one side in the laminating direction of the multilayer woven fabric is bent as the outer side and becomes the outer side. When the fiber structure for shaping that is bent along the first direction and the first yarn arranged on the outer surface is the outer yarn, the multilayer woven fabric is more than the outer yarn in the laminating direction. Also in the inner layer, the auxiliary yarn is provided so as to overlap the outer yarn in the stacking direction, and the auxiliary yarn has a property that the amount of decrease in thickness is larger than that of the first yarn and the second yarn. It is characterized by having.
 上記課題を解決する繊維構造体の製造方法は、強化繊維からなる第1糸及び第2糸が互いに直交する方向に配列された多層織物である平板状の繊維構造体の製造方法であり、前記第1糸の糸主軸が延びる方向を第1方向とするとともに、前記第2糸の糸主軸が延びる方向を第2方向とするとき、前記多層織物の積層方向における一方面が外側面として曲げ外側になるように、前記第1方向に沿って曲げられる賦形用の繊維構造体の製造方法であって、前記第1糸を外側糸として前記外側面に配列させるとともに、補助糸を前記積層方向における前記外側糸よりも内層に配列させるとともに前記積層方向にて前記外側糸と重なって配列させることにより、前記多層織物を製織する製織工程と、前記補助糸の太さを小さくする縮小工程と、を備えることを特徴とする。 The method for producing a fiber structure that solves the above problems is a method for producing a flat plate-shaped fiber structure that is a multilayer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in directions orthogonal to each other. When the direction in which the yarn main shaft of the first yarn extends is the first direction and the direction in which the yarn main shaft of the second yarn extends is the second direction, one surface in the stacking direction of the multilayer woven fabric is bent as the outer surface. It is a method of manufacturing a fiber structure for shaping that is bent along the first direction so as to be such that the first yarn is arranged on the outer surface as an outer yarn and auxiliary yarns are arranged in the stacking direction. A weaving step of weaving the multilayer woven fabric by arranging the outer yarns in the inner layer and overlapping the outer yarns in the laminating direction, and a reduction step of reducing the thickness of the auxiliary yarns. It is characterized by having.
 上記構成及び上記方法によれば、補助糸の太さが小さくなった分だけ、賦形後における外側糸の経路が賦形前よりも短くなる。そのため、外側糸には、経路に寄与しない余剰分が発生する。賦形後の繊維構造体では、外側糸の余剰分だけ第1方向での寸法を賦形前の繊維構造体よりも伸ばすことができる。賦形後の繊維構造体において曲げ内側に配列される第1糸の第1方向での寸法が余剰しにくくなるため、曲げ内側における皺の発生を抑制できる。 According to the above configuration and the above method, the path of the outer thread after shaping becomes shorter than that before shaping by the amount that the thickness of the auxiliary thread is reduced. Therefore, a surplus that does not contribute to the path is generated in the outer yarn. In the fiber structure after shaping, the dimension in the first direction can be extended by the excess of the outer thread as compared with the fiber structure before shaping. In the fiber structure after shaping, the dimensions of the first yarns arranged inside the bend in the first direction are less likely to be excessive, so that the occurrence of wrinkles inside the bend can be suppressed.
 繊維構造体において、前記補助糸は緯糸であることが好ましい。
 繊維構造体を製織する際には、綜絖枠による経糸の開口動作と、その開口動作によって形成された経糸開口に対する緯糸の挿入と、を繰り返すことで行われる。経糸の開口動作は経糸全体を上下移動することで行うため、製織に用いる経糸の数が多くなるほど、経糸の開口動作に係る工数が増大するおそれがある。上記構成によれば、補助糸を緯糸として追加して繊維構造体を製織できる。そのため、補助糸を経糸として繊維構造体に追加する場合と比較して、補助糸の追加に係る工数の増大を低減できる。
In the fiber structure, the auxiliary yarn is preferably a weft.
When weaving a fiber structure, the warp opening operation by the heddle frame and the insertion of the weft thread into the warp opening formed by the opening operation are repeated. Since the opening operation of the warp is performed by moving the entire warp up and down, the man-hours related to the opening operation of the warp may increase as the number of warp used for weaving increases. According to the above configuration, the fiber structure can be woven by adding an auxiliary yarn as a weft. Therefore, the increase in man-hours related to the addition of the auxiliary yarn can be reduced as compared with the case where the auxiliary yarn is added to the fiber structure as a warp.
 繊維構造体において、前記補助糸は、前記第1糸及び前記第2糸よりも融点が低いことが好ましい。
 上記構成によれば、第1糸及び第2糸の融点よりも低い温度、且つ補助糸の融点以上の温度でもって繊維構造体の加熱処理を行えば、補助糸が溶けて補助糸の太さが小さくなる。そして、補助糸の太さが小さくなった分だけ、外側糸の経路を短くできる。したがって、外側糸に経路に寄与しない余剰分を生じさせることで、曲げ内側における皺の発生を抑制できる。
In the fiber structure, the auxiliary yarn preferably has a lower melting point than the first yarn and the second yarn.
According to the above configuration, if the fiber structure is heat-treated at a temperature lower than the melting points of the first yarn and the second yarn and at a temperature equal to or higher than the melting point of the auxiliary yarn, the auxiliary yarn melts and the thickness of the auxiliary yarn is increased. Becomes smaller. Then, the path of the outer thread can be shortened by the amount that the thickness of the auxiliary thread is reduced. Therefore, by generating a surplus that does not contribute to the path in the outer yarn, it is possible to suppress the occurrence of wrinkles inside the bending.
 繊維構造体において、前記補助糸は、前記第1糸及び前記第2糸よりも繊維密度が低いことが好ましい。
 上記構成によれば、補助糸の繊維密度が第1糸及び第2糸よりも低いため、周りから押圧を受けた際での補助糸の太さの減少量は、第1糸及び第2糸よりも大きくなる。賦形後の繊維構造体での補助糸は、賦形に伴って周りの糸から押圧を受けることにより、賦形前の繊維構造体での補助糸よりも太さが小さくなる。したがって、外側糸に経路に寄与しない余剰分を生じさせることで、曲げ内側における皺の発生を抑制できる。
In the fiber structure, the auxiliary yarn preferably has a lower fiber density than the first yarn and the second yarn.
According to the above configuration, since the fiber density of the auxiliary yarn is lower than that of the first yarn and the second yarn, the amount of decrease in the thickness of the auxiliary yarn when pressed from the surroundings is the amount of decrease in the thickness of the first yarn and the second yarn. Will be larger than. The auxiliary thread in the fiber structure after shaping is pressed by the surrounding threads during shaping, so that the thickness of the auxiliary thread in the fiber structure before shaping becomes smaller than that in the auxiliary thread in the fiber structure before shaping. Therefore, by generating a surplus that does not contribute to the path in the outer yarn, it is possible to suppress the occurrence of wrinkles inside the bending.
 繊維構造体において、前記積層方向における前記外側糸よりも内層にあって、前記積層方向にて前記外側糸と重なって配列された前記補助糸を第1補助糸とし、前記積層方向において前記外側糸よりも内層に配列された前記第1糸を内層糸とするとき、前記多層織物は、前記積層方向における前記内層糸よりも内層にあって、前記積層方向にて前記内層糸と重なって配列された前記補助糸である第2補助糸をさらに備え、前記第2補助糸は、前記第1補助糸よりも太さが小さいことが好ましい。 In the fiber structure, the auxiliary yarn which is in the inner layer of the outer yarn in the laminating direction and is arranged so as to overlap the outer yarn in the laminating direction is used as the first auxiliary yarn, and the outer yarn is used in the laminating direction. When the first yarn arranged in the inner layer is used as the inner layer yarn, the multilayer fabric is in the inner layer of the inner layer yarn in the stacking direction and is arranged so as to overlap the inner layer yarn in the stacking direction. It is preferable that the second auxiliary thread, which is the auxiliary thread, is further provided, and the thickness of the second auxiliary thread is smaller than that of the first auxiliary thread.
 上記構成では、賦形前の繊維構造体での補助糸の太さが積層方向の内層ほど小さくなる。ここで、賦形後の繊維構造体では、補助糸の太さが小さくなった分だけ、外側糸と内層糸との双方に、経路に寄与しない余剰分が発生する。その余剰分は、上記の補助糸の太さの減少量が大きいほど大きくなるため、上記余剰分は内層糸よりも外側糸の方が大きくなる。そのため、内層糸よりも曲げ外側にある外側糸の伸び量を大きくできるため、繊維構造体の賦形後の形状に合わせて上記の伸び量を設定できる。 In the above configuration, the thickness of the auxiliary thread in the fiber structure before shaping becomes smaller as the inner layer in the stacking direction. Here, in the fiber structure after shaping, a surplus that does not contribute to the path is generated in both the outer thread and the inner layer thread by the amount that the thickness of the auxiliary thread is reduced. The surplus increases as the amount of decrease in the thickness of the auxiliary yarn increases. Therefore, the surplus increases in the outer yarn as in the inner yarn. Therefore, since the amount of elongation of the outer yarn on the bending outer side can be made larger than that of the inner layer yarn, the above-mentioned elongation amount can be set according to the shape of the fiber structure after shaping.
 この発明によれば、曲げ内側における皺の発生を抑制できる。 According to the present invention, the occurrence of wrinkles inside the bend can be suppressed.
第1の実施形態での繊維強化複合材を示す斜視図。The perspective view which shows the fiber-reinforced composite material in the 1st Embodiment. 第1の実施形態での繊維構造体を模式的に示す断面図。The cross-sectional view which shows typically the fiber structure in 1st Embodiment. 第2の実施形態での繊維構造体を模式的に示す断面図。The cross-sectional view which shows typically the fiber structure in 2nd Embodiment. 第3の実施形態での繊維構造体を模式的に示す断面図。The cross-sectional view which shows typically the fiber structure in 3rd Embodiment.
第1の実施形態First Embodiment
 以下、繊維構造体及び繊維構造体の製造方法を具体化した第1の実施形態について図1及び図2を用いて説明する。 Hereinafter, the fiber structure and the first embodiment embodying the method for manufacturing the fiber structure will be described with reference to FIGS. 1 and 2.
 図1に示すように、繊維構造体11は、マトリックス樹脂12が含浸されることで繊維強化複合材10を構成している。マトリックス樹脂12としては、例えば、熱硬化性樹脂のエポキシ樹脂が使用される。繊維構造体11は多層織物10aからなる。平板状の繊維構造体11がL字状に賦形されることで、立体形状の繊維構造体11が形成されている。繊維構造体11は、第1平面部16と、第2平面部17と、第1平面部16と第2平面部17の間に位置する曲げ部18とが連続する立体的な板状である。なお、多層織物10aの積層方向を積層方向Yという。 As shown in FIG. 1, the fiber structure 11 is impregnated with the matrix resin 12 to form the fiber reinforced composite material 10. As the matrix resin 12, for example, an epoxy resin which is a thermosetting resin is used. The fiber structure 11 is made of a multilayer woven fabric 10a. The three-dimensional fiber structure 11 is formed by shaping the flat fiber structure 11 into an L shape. The fiber structure 11 has a three-dimensional plate shape in which the first flat surface portion 16, the second flat surface portion 17, and the bent portion 18 located between the first flat surface portion 16 and the second flat surface portion 17 are continuous. .. The laminating direction of the multilayer woven fabric 10a is referred to as the laminating direction Y.
 次に、繊維構造体11を賦形する前の平板状の状態で説明する。
 図1又は図2に示すように、本実施形態の繊維構造体11は、複数本の緯糸14が第1方向X1へ配列されて形成された緯糸層を複数有する。複数の緯糸層は積層方向Yに積層されている。複数の緯糸14の糸主軸は第2方向X2に延びている。なお、第1方向X1及び第2方向X2は、いずれも積層方向Yに直交する方向であり、且つ互いに直交する方向である。繊維構造体11では、積層方向Yの一方側から他方側に、第1緯糸層41、第2緯糸層42、第3緯糸層43、第4緯糸層44、第5緯糸層45、第6緯糸層46、及び第7緯糸層47の順で緯糸層が積層されている。第1緯糸層41以外の緯糸層は、複数の強化繊維が束ねられた強化繊維束からなる第2糸14aで構成されている。第1緯糸層41は補助糸15から構成されている。本実施形態の第2糸14aを構成する強化繊維は炭素繊維である。本実施形態の補助糸15を構成する繊維はナイロン繊維である。
Next, the state of a flat plate before shaping the fiber structure 11 will be described.
As shown in FIG. 1 or 2, the fiber structure 11 of the present embodiment has a plurality of weft layers formed by arranging a plurality of wefts 14 in the first direction X1. The plurality of weft layers are laminated in the stacking direction Y. The yarn spindles of the plurality of weft yarns 14 extend in the second direction X2. The first direction X1 and the second direction X2 are both directions orthogonal to the stacking direction Y and orthogonal to each other. In the fiber structure 11, from one side to the other side in the stacking direction Y, the first weft layer 41, the second weft layer 42, the third weft layer 43, the fourth weft layer 44, the fifth weft layer 45, and the sixth weft The weft layers are laminated in the order of the layer 46 and the seventh weft layer 47. The weft layer other than the first weft layer 41 is composed of a second yarn 14a composed of a bundle of reinforcing fibers in which a plurality of reinforcing fibers are bundled. The first weft layer 41 is composed of an auxiliary yarn 15. The reinforcing fiber constituting the second yarn 14a of the present embodiment is a carbon fiber. The fiber constituting the auxiliary thread 15 of the present embodiment is a nylon fiber.
 繊維構造体11は、積層方向Yに配列された複数本の経糸13を有する。複数の経糸13の糸主軸は第1方向X1に延びている。また、繊維構造体11は、経糸13として、第1緯糸層41、第2緯糸層42、及び第3緯糸層43の積層方向Yの両側に配列された第1経糸21及び第2経糸22と、第3緯糸層43及び第4緯糸層44の積層方向Yの両側に配列された第3経糸23及び第4経糸24と、を有する。さらに、繊維構造体11は、経糸13として、第4緯糸層44及び第5緯糸層45の積層方向Yの両側に配列された第5経糸25及び第6経糸26と、第5緯糸層45及び第6緯糸層46の積層方向Yの両側に配列された第7経糸27及び第8経糸28と、を有する。加えて、繊維構造体11は、経糸13として、第6緯糸層46及び第7緯糸層47の積層方向Yの両側に配列された第9経糸29及び第10経糸30と、第7緯糸層47の積層方向Yの両側に配列された第11経糸31及び第12経糸32と、を有する。これら経糸13の全ては、複数の強化繊維が束ねられた強化繊維束からなる第1糸13aで構成されている。本実施形態の第1糸13aを構成する強化繊維は炭素繊維である。また、各経糸13は、第2方向X2へ複数配列されている。第2方向X2に配列された経糸13同士は、積層方向Yで同様の配列態様を有する。 The fiber structure 11 has a plurality of warp threads 13 arranged in the stacking direction Y. The yarn spindles of the plurality of warp yarns 13 extend in the first direction X1. Further, the fiber structure 11 includes, as the warp 13, the first warp 21 and the second warp 22 arranged on both sides of the first weft layer 41, the second weft layer 42, and the third weft layer 43 in the stacking direction Y. , A third warp 23 and a fourth warp 24 arranged on both sides of the third weft layer 43 and the fourth weft layer 44 in the stacking direction Y. Further, the fiber structure 11 has, as the warp 13, the fifth warp 25 and the sixth warp 26 arranged on both sides of the fourth weft layer 44 and the fifth weft layer 45 in the stacking direction Y, the fifth weft layer 45, and the fifth weft layer 45. It has a seventh warp 27 and an eighth warp 28 arranged on both sides of the sixth weft layer 46 in the stacking direction Y. In addition, the fiber structure 11 has the 9th warp 29 and the 10th warp 30 and the 7th weft layer 47 arranged on both sides of the 6th weft layer 46 and the 7th weft layer 47 in the stacking direction Y as the warp 13. The eleventh warp 31 and the twelfth warp 32 are arranged on both sides in the stacking direction Y. All of these warp threads 13 are composed of a first thread 13a composed of a reinforcing fiber bundle in which a plurality of reinforcing fibers are bundled. The reinforcing fiber constituting the first yarn 13a of the present embodiment is a carbon fiber. Further, a plurality of the warp threads 13 are arranged in the second direction X2. The warp threads 13 arranged in the second direction X2 have a similar arrangement mode in the stacking direction Y.
 積層方向Yにおける繊維構造体11の一方面としての外側面11aには、第1経糸21と第2経糸22とが第1方向X1にて交互に位置する。外側面11aに位置した第1経糸21には、その第1経糸21よりも積層方向Yの内層にて、第1緯糸層41を構成する補助糸15が積層方向Yで重なっている。外側面11aに位置した第2経糸22には、その第2経糸22よりも積層方向Yの内層にて、第1緯糸層41を構成する補助糸15が積層方向Yで重なっている。また、第1緯糸層41を構成する補助糸15及び第3緯糸層43を構成する第2糸14aには、第1経糸21及び第2経糸22が係合している。第1緯糸層41において第1方向X1で隣り合う補助糸15には、第2方向X2で隣り合う第1経糸21及び第2経糸22が係合している。例えば、第1方向X1で隣り合う2本の補助糸15のうち、一方には第1経糸21が係合するとともに、他方には第2経糸22が係合している。また、第2緯糸層42を構成する第2糸14aには、第1経糸21及び第2経糸22が係合していない。第1緯糸層41を構成する補助糸15、第2緯糸層42を構成する第2糸14a、及び第3緯糸層43を構成する第2糸14aは、第1経糸21及び第2経糸22によって積層方向Yに結合されている。本実施形態では、第1経糸21及び第2経糸22が外側糸に相当する。また、積層方向Yにおける繊維構造体11の他方面としての内側面11bには、第10経糸30及び第12経糸32と、第9経糸29及び第11経糸31と、が第1方向X1にて交互に位置する。 The first warp 21 and the second warp 22 are alternately positioned in the first direction X1 on the outer surface 11a as one surface of the fiber structure 11 in the stacking direction Y. On the first warp 21 located on the outer side surface 11a, auxiliary threads 15 constituting the first weft layer 41 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the first warp 21. On the second warp 22 located on the outer side surface 11a, auxiliary threads 15 constituting the first weft layer 41 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the second warp 22. Further, the first warp thread 21 and the second warp thread 22 are engaged with the auxiliary thread 15 forming the first weft thread layer 41 and the second thread 14a forming the third weft thread layer 43. In the first weft layer 41, the auxiliary yarns 15 adjacent to each other in the first direction X1 are engaged with the first warp yarns 21 and the second warp yarns 22 adjacent to each other in the second direction X2. For example, of the two auxiliary threads 15 adjacent to each other in the first direction X1, the first warp 21 is engaged with one and the second warp 22 is engaged with the other. Further, the first warp 21 and the second warp 22 are not engaged with the second thread 14a forming the second weft layer 42. The auxiliary yarn 15 forming the first weft layer 41, the second yarn 14a forming the second weft layer 42, and the second yarn 14a forming the third weft layer 43 are formed by the first warp 21 and the second warp 22. It is bonded in the stacking direction Y. In the present embodiment, the first warp 21 and the second warp 22 correspond to the outer yarn. Further, on the inner side surface 11b as the other surface of the fiber structure 11 in the stacking direction Y, the tenth warp 30 and the twelfth warp 32 and the ninth warp 29 and the eleventh warp 31 are in the first direction X1. Alternately located.
 次に、繊維構造体11について、L字状に賦形された状態で説明する。
 図1又は図2に示すように、賦形後の繊維構造体11では、第1方向X1における第1平面部16と第2平面部17との中間部が第1方向X1に沿って曲げられることで曲げ部18が形成されている。第1平面部16と曲げ部18と第2平面部17とは、経糸13によって第1方向X1に沿って連続している。賦形された繊維構造体11では、外側面11aが曲げ外側となっているとともに内側面11bが曲げ内側となっている。
Next, the fiber structure 11 will be described in an L-shaped shape.
As shown in FIG. 1 or 2, in the fiber structure 11 after shaping, the intermediate portion between the first plane portion 16 and the second plane portion 17 in the first direction X1 is bent along the first direction X1. As a result, the bent portion 18 is formed. The first flat surface portion 16, the bent portion 18, and the second flat surface portion 17 are continuous along the first direction X1 by the warp threads 13. In the shaped fiber structure 11, the outer surface 11a is the bent outer side and the inner side surface 11b is the bent inner side.
 図1に示すように、第1平面部16及び第2平面部17のそれぞれには、複数本の緯糸14が第1方向X1に並べられているとともに、複数本の経糸13が第2方向X2に並べられている。第1平面部16及び第2平面部17に配列された各緯糸14は、積層方向Yに波打つ状態で第2方向X2に延びている。第1平面部16及び第2平面部17に配列された各経糸13は、積層方向Yに波打つ状態で第1方向X1に延びている。また、曲げ部18には、複数本の経糸13及び複数本の緯糸14が、積層方向Yに波打つ状態で曲げ部18の弧に沿って並べられている。なお、賦形された繊維構造体11では、第1平面部16と第2平面部17とで、配列された経糸13の延びる方向が異なっている。すなわち経糸13の糸主軸方向である第1方向X1が、第1平面部16と第2平面部17とで異なっている。 As shown in FIG. 1, in each of the first plane portion 16 and the second plane portion 17, a plurality of weft threads 14 are arranged in the first direction X1, and a plurality of warp threads 13 are arranged in the second direction X2. They are lined up in. Each weft 14 arranged in the first plane portion 16 and the second plane portion 17 extends in the second direction X2 in a wavy state in the stacking direction Y. Each of the warp threads 13 arranged in the first plane portion 16 and the second plane portion 17 extends in the first direction X1 in a wavy state in the stacking direction Y. Further, in the bent portion 18, a plurality of warp threads 13 and a plurality of weft threads 14 are arranged along the arc of the bent portion 18 in a wavy state in the stacking direction Y. In the shaped fiber structure 11, the extending directions of the arranged warp threads 13 are different between the first plane portion 16 and the second plane portion 17. That is, the first direction X1 which is the yarn main axis direction of the warp thread 13 is different between the first plane portion 16 and the second plane portion 17.
 図2に二点鎖線で示すように、賦形後の繊維構造体11では、第1緯糸層41を構成する補助糸15の太さが繊維構造体11の賦形前よりも小さくなっている。図1に示すように、賦形後の繊維構造体11の第1方向X1に沿った寸法のうち、曲げ部18の外側を通過する寸法L2は、曲げ部18の内側を通過する寸法L1よりも大きい。 As shown by the alternate long and short dash line in FIG. 2, in the fiber structure 11 after shaping, the thickness of the auxiliary thread 15 constituting the first weft layer 41 is smaller than that before shaping of the fiber structure 11. .. As shown in FIG. 1, among the dimensions of the fiber structure 11 after shaping along the first direction X1, the dimension L2 passing outside the bent portion 18 is larger than the dimension L1 passing inside the bent portion 18. Is also big.
 次に、本実施形態における繊維構造体11の製造方法について、本実施形態での作用と合わせて説明する。
 繊維構造体11の製造方法は、平板状の繊維構造体11を製織する製織工程と、繊維構造体11を加熱する加熱工程と、繊維構造体11を賦形する賦形工程と、繊維構造体11に樹脂を含浸させる含浸工程と、を備える。製織工程においては、多層織機を用いて平板状の繊維構造体11の製織を行う。本実施形態の多層織機は、複数本の経糸13を供給する経糸ビームと、複数本の経糸13を上下に移動させて開口させる綜絖枠と、を備える。多層織機においては、経糸13の開口に対して、第2糸14a及び補助糸15の少なくとも一方が緯糸14として緯入れ機構により挿入される。綜絖枠を上下動させることで、各経糸13を構成する第1糸13aごとの開口を行う。綜絖枠の上下動が繰り返されることで開口が順次形成される。
Next, the method for producing the fiber structure 11 in the present embodiment will be described together with the operation in the present embodiment.
The method for manufacturing the fiber structure 11 includes a weaving step of weaving a flat plate-shaped fiber structure 11, a heating step of heating the fiber structure 11, a shaping step of shaping the fiber structure 11, and a fiber structure. 11 is provided with an impregnation step of impregnating the resin. In the weaving process, the flat fiber structure 11 is woven using a multi-layer loom. The multi-layer loom of the present embodiment includes a warp beam for supplying a plurality of warp threads 13 and a heddle frame for opening the plurality of warp threads 13 by moving them up and down. In the multi-layer loom, at least one of the second yarn 14a and the auxiliary yarn 15 is inserted as the weft yarn 14 by the weft insertion mechanism into the opening of the warp yarn 13. By moving the heddle frame up and down, each of the first threads 13a constituting each warp thread 13 is opened. By repeating the vertical movement of the heddle frame, openings are sequentially formed.
 第1緯糸層41、第2緯糸層42、及び第3緯糸層43を形成するときには、第1経糸21と第2経糸22との開口に各緯糸14が緯入れされる。ここで、各緯糸14は、積層方向Yの外側面11a側から、第1緯糸層41の補助糸15、第2緯糸層42の第2糸14a、及び第3緯糸層43の第2糸14aの順で配列するように緯入れされる。これにより、第1経糸21と第2経糸22とが、第1緯糸層41の補助糸15及び第3緯糸層43の第2糸14aに係合するようになる。第1経糸21と第2経糸22とによって、第1緯糸層41の補助糸15、第2緯糸層42の第2糸14a、及び第3緯糸層43の第2糸14aが積層方向Yに結合されるようになる。また、繊維構造体11での第1方向X1において、外側面11aに第1経糸21が位置する部分では、第1経糸21よりも積層方向Yの内層にて補助糸15が第1経糸21と積層方向Yで重なって配列される。繊維構造体11での第1方向X1において、外側面11aに第2経糸22が位置する部分では、第2経糸22よりも積層方向Yの内層にて補助糸15が第2経糸22と積層方向Yで重なって配列される。 When forming the first weft layer 41, the second weft layer 42, and the third weft layer 43, each weft 14 is wefted into the opening between the first warp 21 and the second warp 22. Here, each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the auxiliary yarn 15 of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn 14a of the third weft layer 43. It is wefted so that it is arranged in the order of. As a result, the first warp 21 and the second warp 22 engage with the auxiliary thread 15 of the first weft layer 41 and the second thread 14a of the third weft layer 43. The auxiliary yarn 15 of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn 14a of the third weft layer 43 are coupled in the stacking direction Y by the first warp 21 and the second warp 22. Will be done. Further, in the first direction X1 of the fiber structure 11, in the portion where the first warp 21 is located on the outer surface 11a, the auxiliary thread 15 becomes the first warp 21 in the inner layer in the stacking direction Y than the first warp 21. They are arranged so as to overlap in the stacking direction Y. In the first direction X1 of the fiber structure 11, in the portion where the second warp 22 is located on the outer surface 11a, the auxiliary thread 15 is in the stacking direction with the second warp 22 in the inner layer in the stacking direction Y than the second warp 22. They are arranged overlapping with Y.
 第1方向X1の全体で、同様に第1経糸21と第2経糸22との開口への補助糸15及び第2糸14aの挿入が行われる。製織工程後の繊維構造体11では、第1方向X1の全体に亘って図2に示した経糸13及び緯糸14の配列態様を有したものとなる。 Similarly, the auxiliary thread 15 and the second thread 14a are inserted into the openings of the first warp thread 21 and the second warp thread 22 in the entire first direction X1. The fiber structure 11 after the weaving step has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 2 over the entire first direction X1.
 綜絖枠による経糸13の開口の形成と、開口への緯糸14の挿入とを繰り返すことで、平板状の繊維構造体11を形成する。形成された繊維構造体11では、外側面11aに第1経糸21及び第2経糸22が配列するとともに、第1経糸21をはじめ全ての経糸13がそれぞれ第2糸14aと係合する。平板状の繊維構造体11の製織が完了することで、製織工程が完了する。 The flat fiber structure 11 is formed by repeating the formation of the opening of the warp thread 13 by the heddle frame and the insertion of the weft thread 14 into the opening. In the formed fiber structure 11, the first warp 21 and the second warp 22 are arranged on the outer surface 11a, and all the warp 13 including the first warp 21 engage with the second warp 14a, respectively. When the weaving of the flat plate-shaped fiber structure 11 is completed, the weaving process is completed.
 製織工程の後は加熱工程を行う。加熱工程では、繊維構造体11を加熱炉内に入れて所定の温度まで加熱する。この所定の温度は、第1糸13a及び第2糸14aを構成する炭素繊維の融点より低い温度であって、且つ補助糸15を構成するナイロン繊維の融点以上の温度である。加熱工程では、繊維構造体11における補助糸15が溶ける。そのため、加熱工程後の繊維構造体11では、図2に二点鎖線で示すように補助糸15の太さが小さくなる。その一方で、加熱工程において第1糸13a及び第2糸14aは溶けないため、加熱工程の前後で第1糸13a及び第2糸14aの太さは変わらない。したがって、加熱工程に伴って、補助糸15は第1糸13a及び第2糸14aよりも太さの減少量が大きい性質を有するといえる。本実施形態では、加熱工程が縮小工程に相当する。 After the weaving process, a heating process is performed. In the heating step, the fiber structure 11 is placed in a heating furnace and heated to a predetermined temperature. This predetermined temperature is lower than the melting point of the carbon fibers constituting the first yarn 13a and the second yarn 14a, and is higher than the melting point of the nylon fibers constituting the auxiliary yarn 15. In the heating step, the auxiliary thread 15 in the fiber structure 11 is melted. Therefore, in the fiber structure 11 after the heating step, the thickness of the auxiliary thread 15 becomes smaller as shown by the alternate long and short dash line in FIG. On the other hand, since the first yarn 13a and the second yarn 14a do not melt in the heating step, the thicknesses of the first yarn 13a and the second yarn 14a do not change before and after the heating step. Therefore, it can be said that the auxiliary yarn 15 has a property that the amount of decrease in thickness is larger than that of the first yarn 13a and the second yarn 14a with the heating step. In this embodiment, the heating step corresponds to the reduction step.
 加熱工程後の繊維構造体11では、第1緯糸層41を構成する補助糸15の太さが小さくなった分だけ、この補助糸15に係合する第1経糸21及び第2経糸22の経路が加熱工程前よりも短くなる。そのため、繊維構造体11において、第1経糸21及び第2経糸22が弛むようになる。第1経糸21及び第2経糸22には、経路に寄与しない余剰分が発生する。 In the fiber structure 11 after the heating step, the paths of the first warp threads 21 and the second warp threads 22 that engage with the auxiliary threads 15 are reduced by the amount that the thickness of the auxiliary threads 15 constituting the first weft layer 41 is reduced. Is shorter than before the heating process. Therefore, in the fiber structure 11, the first warp 21 and the second warp 22 become loose. A surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22.
 加熱工程の後は賦形工程を行う。賦形工程では、加熱工程後の平板状の繊維構造体11を型に嵌め込むことで、図1に示したL字状に繊維構造体11を賦形する。この賦形工程において、加熱工程後に生じていた第1経糸21及び第2経糸22の余剰分が、第1方向X1に沿って伸びるようになる。賦形後の繊維構造体11では、第1経糸21及び第2経糸22の余剰分だけ、第1方向X1での寸法を賦形前の繊維構造体11よりも伸ばすことができる。これにより、賦形後の繊維構造体11は、曲げ部18の外側を通過する寸法L2が、曲げ部18の内側を通過する寸法L1よりも大きくなる。 After the heating process, perform the shaping process. In the shaping step, the flat fiber structure 11 after the heating step is fitted into the mold to shape the fiber structure 11 into an L shape shown in FIG. In this shaping step, the surplus of the first warp 21 and the second warp 22 generated after the heating step grows along the first direction X1. In the fiber structure 11 after shaping, the dimensions in the first direction X1 can be extended by the surplus of the first warp 21 and the second warp 22 as compared with the fiber structure 11 before shaping. As a result, in the fiber structure 11 after shaping, the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18.
 賦形工程の後は含浸工程を行う。含浸工程では、賦形後の繊維構造体11に対してマトリックス樹脂12を含浸させることで繊維強化複合材10を形成する。
 上記実施形態によれば以下の効果を得ることができる。
After the shaping step, an impregnation step is performed. In the impregnation step, the fiber-reinforced composite material 10 is formed by impregnating the fiber structure 11 after shaping with the matrix resin 12.
According to the above embodiment, the following effects can be obtained.
 (1-1)補助糸15は、繊維構造体11の賦形後での補助糸15の太さを繊維構造体11の賦形前よりも小さくすることにより、補助糸15の太さが小さくなった分だけ、賦形後における第1経糸21及び第2経糸22の経路が賦形前よりも短くなる。そのため、第1経糸21及び第2経糸22には、経路に寄与しない余剰分が発生する。賦形後の繊維構造体11では、第1経糸21及び第2経糸22の余剰分だけ第1方向X1での寸法を賦形前の繊維構造体11よりも伸ばすことができる。賦形後の繊維構造体11において曲げ内側に配列される第1糸13aの第1方向X1での寸法が余剰しにくくなるため、繊維構造体11の曲げ内側における皺の発生を抑制できる。 (1-1) The auxiliary thread 15 has a smaller thickness of the auxiliary thread 15 after shaping the fiber structure 11 by making the thickness of the auxiliary thread 15 smaller than that before shaping the fiber structure 11. The path of the first warp 21 and the second warp 22 after shaping becomes shorter than that before shaping. Therefore, a surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22. In the fiber structure 11 after shaping, the dimensions in the first direction X1 can be extended by the surplus of the first warp 21 and the second warp 22 as compared with the fiber structure 11 before shaping. In the fiber structure 11 after shaping, the dimensions of the first yarn 13a arranged inside the bend in the first direction X1 are less likely to be excessive, so that the occurrence of wrinkles inside the bend of the fiber structure 11 can be suppressed.
 (1-2)繊維構造体11を製織する際には、綜絖枠による経糸13の開口動作と、その開口動作によって形成された経糸13の開口に対する緯糸14の挿入と、を繰り返すことで行われる。経糸13の開口動作は経糸13の全体を上下移動することで行うため、製織に用いる経糸13の数が多くなるほど、経糸13の開口動作に係る工数が増大するおそれがある。上記実施形態では、補助糸15を緯糸14として追加して繊維構造体11を製織している。そのため、補助糸15を経糸13として繊維構造体11に追加する場合と比較して、補助糸15の追加に係る工数の増大を低減できる。 (1-2) When weaving the fiber structure 11, the opening operation of the warp thread 13 by the heddle frame and the insertion of the weft thread 14 into the opening of the warp thread 13 formed by the opening operation are repeated. .. Since the opening operation of the warp thread 13 is performed by moving the entire warp thread 13 up and down, as the number of warp threads 13 used for weaving increases, the man-hours related to the opening operation of the warp thread 13 may increase. In the above embodiment, the auxiliary yarn 15 is added as the weft yarn 14 to weave the fiber structure 11. Therefore, as compared with the case where the auxiliary thread 15 is added to the fiber structure 11 as the warp thread 13, the increase in man-hours related to the addition of the auxiliary thread 15 can be reduced.
 (1-3)補助糸15は、第1糸13a及び第2糸14aよりも融点が低い。そのため、加熱工程において、第1糸13a及び第2糸14aの融点よりも低い温度、且つ補助糸15の融点以上の温度でもって繊維構造体11の加熱処理を行えば、加熱工程で補助糸15が溶けて補助糸15の太さが小さくなる。そして、補助糸15の太さが小さくなった分だけ、第1経糸21及び第2経糸22の経路を短くできる。したがって、第1経糸21及び第2経糸22に経路に寄与しない余剰分を生じさせることで、繊維構造体11の曲げ内側における皺の発生を抑制できる。 (1-3) The auxiliary thread 15 has a lower melting point than the first thread 13a and the second thread 14a. Therefore, if the fiber structure 11 is heat-treated at a temperature lower than the melting points of the first yarn 13a and the second yarn 14a and at a temperature equal to or higher than the melting point of the auxiliary yarn 15 in the heating step, the auxiliary yarn 15 is heated in the heating step. Melts and the thickness of the auxiliary thread 15 becomes smaller. Then, the paths of the first warp thread 21 and the second warp thread 22 can be shortened by the amount that the thickness of the auxiliary thread 15 is reduced. Therefore, by generating a surplus that does not contribute to the path in the first warp 21 and the second warp 22, it is possible to suppress the occurrence of wrinkles inside the bending of the fiber structure 11.
 (1-4)繊維構造体11への樹脂含浸の精度低下、繊維構造体11の意匠性の低下、及び繊維構造体11の曲げ部18の内側部分の強度低下といった、繊維構造体11の曲げ部18の内側に皺が生じた場合での不都合を抑制できる。 (1-4) Bending of the fiber structure 11 such as a decrease in the accuracy of resin impregnation into the fiber structure 11, a decrease in the design of the fiber structure 11, and a decrease in the strength of the inner portion of the bent portion 18 of the fiber structure 11. It is possible to suppress inconvenience when wrinkles are formed inside the portion 18.
第2の実施形態Second embodiment
 以下、繊維構造体及び繊維構造体の製造方法を具体化した第2の実施形態について図1及び図3を用いて説明する。なお以下では、第1の実施形態との相違点を中心に説明する。 Hereinafter, a second embodiment embodying the fiber structure and the method for manufacturing the fiber structure will be described with reference to FIGS. 1 and 3. In the following, the differences from the first embodiment will be mainly described.
 まず、繊維構造体111を賦形する前の平板状の状態で説明する。
 図1又は図3に示すように、本実施形態の繊維構造体111では、積層方向Yの一方側から他方側に、第1緯糸層41、第2緯糸層42、第3緯糸層43、第4緯糸層44、第5緯糸層45、第6緯糸層46、第7緯糸層47、及び第8緯糸層48の順で緯糸層が積層されている。第1緯糸層41及び第3緯糸層43以外の緯糸層は第2糸14aから構成されている。第1緯糸層41及び第3緯糸層43は補助糸15から構成されている。以下では、第1緯糸層41を構成する補助糸15を第1補助糸15aというとともに、第3緯糸層43を構成する補助糸15を第2補助糸15bという。本実施形態において、第2補助糸15bは第1補助糸15aよりも太さが小さい。
First, a flat plate-like state before shaping the fiber structure 111 will be described.
As shown in FIG. 1 or 3, in the fiber structure 111 of the present embodiment, the first weft layer 41, the second weft layer 42, the third weft layer 43, and the third weft layer 43 are arranged from one side to the other in the stacking direction Y. The weft layers are laminated in the order of the 4 weft layer 44, the 5th weft layer 45, the 6th weft layer 46, the 7th weft layer 47, and the 8th weft layer 48. The weft layers other than the first weft layer 41 and the third weft layer 43 are composed of the second yarn 14a. The first weft layer 41 and the third weft layer 43 are composed of auxiliary threads 15. In the following, the auxiliary thread 15 constituting the first weft layer 41 is referred to as a first auxiliary thread 15a, and the auxiliary thread 15 constituting the third weft layer 43 is referred to as a second auxiliary thread 15b. In the present embodiment, the second auxiliary thread 15b is smaller in thickness than the first auxiliary thread 15a.
 繊維構造体111は、経糸13として、第1緯糸層41、第2緯糸層42、第3緯糸層43、及び第4緯糸層44の積層方向Yの両側に配列された第1経糸21及び第2経糸22と、第3緯糸層43、第4緯糸層44、及び第5緯糸層45の積層方向Yの両側に配列された第3経糸23及び第4経糸24と、を有する。さらに、繊維構造体111は、経糸13として、第5緯糸層45及び第6緯糸層46の積層方向Yの両側に配列された第5経糸25及び第6経糸26と、第6緯糸層46及び第7緯糸層47の積層方向Yの両側に配列された第7経糸27及び第8経糸28と、を有する。加えて、繊維構造体111は、経糸13として、第7緯糸層47及び第8緯糸層48の積層方向Yの両側に配列された第9経糸29及び第10経糸30と、第8緯糸層48の積層方向Yの両側に配列された第11経糸31及び第12経糸32と、を有する。これら経糸13は全て第1糸13aから構成されている。 The fiber structure 111 is a warp 13, and the first warp 21 and the first warp 21 and the first warp layer 41 arranged on both sides of the first weft layer 41, the second weft layer 42, the third weft layer 43, and the fourth weft layer 44 in the stacking direction Y. It has two warp threads 22, a third warp thread 23 and a fourth warp thread 24 arranged on both sides of the third weft thread layer 43, the fourth weft layer 44, and the fifth weft layer 45 in the stacking direction Y. Further, the fiber structure 111 includes the fifth warp threads 25 and the sixth warp threads 26 arranged on both sides of the fifth weft thread layer 45 and the sixth weft layer 46 in the stacking direction Y, the sixth weft thread layer 46, and the warp threads 13. It has a seventh warp 27 and an eighth warp 28 arranged on both sides of the seventh weft layer 47 in the stacking direction Y. In addition, the fiber structure 111 includes the 9th warp 29 and the 10th warp 30 and the 8th weft layer 48 arranged on both sides of the 7th weft layer 47 and the 8th weft layer 48 in the stacking direction Y as the warp 13. The eleventh warp 31 and the twelfth warp 32 are arranged on both sides in the stacking direction Y. All of these warp threads 13 are composed of the first thread 13a.
 また、繊維構造体111の外側面11aに位置した第1経糸21には、その第1経糸21よりも積層方向Yの内層にて、第1緯糸層41を構成する第1補助糸15aが積層方向Yで重なっている。繊維構造体111の外側面11aに位置した第2経糸22には、その第2経糸22よりも積層方向Yの内層にて、第1緯糸層41を構成する第1補助糸15aが積層方向Yで重なっている。また、第1緯糸層41を構成する第1補助糸15a及び第4緯糸層44を構成する第2糸14aには、第1経糸21及び第2経糸22が係合している。第1緯糸層41において第1方向X1で隣り合う第1補助糸15aには、第2方向X2で隣り合う第1経糸21及び第2経糸22が係合している。例えば、第1方向X1で隣り合う2本の第1補助糸15aのうち、一方には第1経糸21が係合するとともに、他方には第2経糸22が係合している。また、第2緯糸層42を構成する第2糸14a及び第3緯糸層43を構成する第2補助糸15bには、第1経糸21及び第2経糸22が係合していない。第1緯糸層41を構成する第1補助糸15a、第2緯糸層42を構成する第2糸14a、第3緯糸層43を構成する第2補助糸15b、及び第4緯糸層44を構成する第2糸14aは、第1経糸21及び第2経糸22によって積層方向Yに結合されている。本実施形態では、第1経糸21及び第2経糸22が外側糸に相当する。 Further, on the first warp yarn 21 located on the outer surface 11a of the fiber structure 111, the first auxiliary yarn 15a constituting the first weft yarn layer 41 is laminated on the inner layer in the stacking direction Y from the first warp yarn 21. It overlaps in the direction Y. In the second warp 22 located on the outer surface 11a of the fiber structure 111, the first auxiliary yarn 15a constituting the first weft layer 41 is formed in the inner layer in the stacking direction Y from the second warp 22 in the stacking direction Y. It overlaps with. Further, the first warp 21 and the second warp 22 are engaged with the first auxiliary thread 15a constituting the first weft layer 41 and the second thread 14a forming the fourth weft layer 44. In the first weft layer 41, the first auxiliary yarn 15a adjacent to each other in the first direction X1 is engaged with the first warp yarn 21 and the second warp yarn 22 adjacent to each other in the second direction X2. For example, of the two adjacent first auxiliary threads 15a in the first direction X1, the first warp thread 21 is engaged with one and the second warp thread 22 is engaged with the other. Further, the first warp 21 and the second warp 22 are not engaged with the second yarn 14a constituting the second weft layer 42 and the second auxiliary yarn 15b forming the third weft layer 43. The first auxiliary yarn 15a constituting the first weft layer 41, the second yarn 14a forming the second weft layer 42, the second auxiliary yarn 15b forming the third weft layer 43, and the fourth weft layer 44 are formed. The second yarn 14a is connected in the stacking direction Y by the first warp 21 and the second warp 22. In the present embodiment, the first warp 21 and the second warp 22 correspond to the outer yarn.
 積層方向Yにおける第3緯糸層43よりも外側面11a側の繊維構造体11には、第3経糸23と第4経糸24とが第1方向X1にて交互に位置する。すなわち、第3緯糸層43よりも外側面11a側に位置した第3経糸23には、その第3経糸23よりも積層方向Yの内層にて、第3緯糸層43を構成する第2補助糸15bが積層方向Yで重なっている。第3緯糸層43よりも外側面11a側に位置した第4経糸24には、その第4経糸24よりも積層方向Yの内層にて、第3緯糸層43を構成する第2補助糸15bが積層方向Yで重なっている。また、第3緯糸層43を構成する第2補助糸15b及び第5緯糸層45を構成する第2糸14aには、第3経糸23及び第4経糸24が係合している。第3緯糸層43において第1方向X1で隣り合う第2補助糸15bには、第2方向X2で隣り合う第3経糸23及び第4経糸24が係合している。例えば、第1方向X1で隣り合う2本の第2補助糸15bのうち、一方には第3経糸23が係合するとともに、他方には第4経糸24が係合している。また、第4緯糸層44を構成する第2糸14aには、第3経糸23及び第4経糸24が係合していない。第3緯糸層43を構成する第2補助糸15b、第4緯糸層44を構成する第2糸14a、及び第5緯糸層45を構成する第2糸14aは、第3経糸23及び第4経糸24によって積層方向Yに結合されている。本実施形態では、第3経糸23及び第4経糸24が内層糸に相当する。 In the fiber structure 11 on the outer surface 11a side of the third weft layer 43 in the stacking direction Y, the third warp 23 and the fourth warp 24 are alternately positioned in the first direction X1. That is, the third warp thread 23 located on the outer surface 11a side of the third weft thread layer 43 has a second auxiliary thread forming the third weft thread layer 43 in the inner layer in the stacking direction Y from the third warp thread 23. 15b overlaps in the stacking direction Y. The fourth warp yarn 24 located on the outer surface 11a side of the third weft yarn layer 43 has a second auxiliary yarn 15b constituting the third weft yarn layer 43 in the inner layer in the stacking direction Y from the fourth warp yarn 24. They overlap in the stacking direction Y. Further, the third warp thread 23 and the fourth warp thread 24 are engaged with the second auxiliary thread 15b forming the third weft thread layer 43 and the second thread 14a forming the fifth weft thread layer 45. In the third weft layer 43, the second auxiliary yarn 15b adjacent to each other in the first direction X1 is engaged with the third warp yarn 23 and the fourth warp yarn 24 adjacent to each other in the second direction X2. For example, of the two second auxiliary threads 15b adjacent to each other in the first direction X1, the third warp thread 23 is engaged with one and the fourth warp thread 24 is engaged with the other. Further, the third warp 23 and the fourth warp 24 are not engaged with the second thread 14a constituting the fourth weft layer 44. The second auxiliary yarn 15b constituting the third weft layer 43, the second yarn 14a constituting the fourth weft layer 44, and the second yarn 14a constituting the fifth weft layer 45 are the third warp 23 and the fourth warp. It is connected in the stacking direction Y by 24. In the present embodiment, the third warp 23 and the fourth warp 24 correspond to the inner layer yarn.
 次に、繊維構造体111について賦形された状態で説明する。
 本実施形態での賦形後の繊維構造体111は、第1の実施形態と同様にL字状の立体形状となっている。そして、賦形後の繊維構造体111では、第1補助糸15a及び第2補助糸15bが繊維構造体111から無くなっている。これにより、図1に示すように、賦形後の繊維構造体111の第1方向X1に沿った寸法のうち、曲げ部18の外側を通過する寸法L2が曲げ部18の内側を通過する寸法L1よりも大きくなっている。
Next, the fiber structure 111 will be described in a shaped state.
The fiber structure 111 after shaping in the present embodiment has an L-shaped three-dimensional shape as in the first embodiment. Then, in the fiber structure 111 after shaping, the first auxiliary thread 15a and the second auxiliary thread 15b are missing from the fiber structure 111. As a result, as shown in FIG. 1, among the dimensions along the first direction X1 of the fiber structure 111 after shaping, the dimension L2 passing through the outside of the bent portion 18 passes through the inside of the bent portion 18. It is larger than L1.
 次に、本実施形態における繊維構造体111の製造方法について、本実施形態での作用と合わせて説明する。
 繊維構造体11の製造方法は、製織工程、賦形工程、及び含浸工程を備えるほか、補助糸15を抜き取る抜取工程を備える。第1の実施形態での製造方法からは、加熱工程にかえて抜取工程を行う点が異なっている。
Next, the method for producing the fiber structure 111 in the present embodiment will be described together with the operation in the present embodiment.
The method for producing the fiber structure 11 includes a weaving step, a shaping step, and an impregnation step, and also includes a sampling step of extracting the auxiliary thread 15. The manufacturing method in the first embodiment is different from the manufacturing method in that a sampling step is performed instead of the heating step.
 まず、製織工程においては、多層織機を用いて平板状の繊維構造体111の製織を行う。そして、多層織機においては、経糸13の開口に対して、第2糸14a、第1補助糸15a、及び第2補助糸15bのいずれかが緯糸14として緯入れ機構により挿入される。 First, in the weaving process, the flat fiber structure 111 is woven using a multi-layer loom. Then, in the multilayer loom, any one of the second yarn 14a, the first auxiliary yarn 15a, and the second auxiliary yarn 15b is inserted as the weft yarn 14 by the weft insertion mechanism into the opening of the warp yarn 13.
 第1緯糸層41、第2緯糸層42、第3緯糸層43、及び第4緯糸層44を形成するときには、第1経糸21と第2経糸22との開口に各緯糸14が緯入れされる。ここで、各緯糸14は、積層方向Yの外側面11a側から、第1緯糸層41の第1補助糸15a、第2緯糸層42の第2糸14a、第3緯糸層43の第2補助糸15b、及び第4緯糸層44の第2糸14aの順で配列するように緯入れされる。これにより、第1経糸21と第2経糸22とが、第1緯糸層41の第1補助糸15a及び第4緯糸層44の第2糸14aに係合するようになる。第1経糸21と第2経糸22とによって、第1緯糸層41の第1補助糸15a、第2緯糸層42の第2糸14a、第3緯糸層43の第2補助糸15b、及び第4緯糸層44の第2糸14aが積層方向Yで結合されるようになる。また、繊維構造体111での第1方向X1において、外側面11aに第1経糸21が位置する部分では、第1経糸21よりも積層方向Yの内層にて第1補助糸15aが第1経糸21と積層方向Yで重なって配列される。繊維構造体111での第1方向X1において、外側面11aに第2経糸22が位置する部分では、第2経糸22よりも積層方向Yの内層にて第1補助糸15aが第2経糸22と積層方向Yで重なって配列される。 When forming the first weft layer 41, the second weft layer 42, the third weft layer 43, and the fourth weft layer 44, each weft 14 is wefted into the openings between the first warp 21 and the second warp 22. .. Here, each weft 14 is a second auxiliary thread 15a of the first weft layer 41, a second thread 14a of the second weft layer 42, and a second auxiliary thread of the third weft layer 43 from the outer surface 11a side in the stacking direction Y. The yarn 15b and the second yarn 14a of the fourth weft layer 44 are wefted so as to be arranged in this order. As a result, the first warp yarn 21 and the second warp yarn 22 engage with the first auxiliary yarn 15a of the first weft yarn layer 41 and the second yarn 14a of the fourth weft yarn layer 44. By the first warp 21 and the second warp 22, the first auxiliary thread 15a of the first weft layer 41, the second thread 14a of the second weft layer 42, the second auxiliary thread 15b of the third weft layer 43, and the fourth The second yarn 14a of the weft layer 44 is joined in the stacking direction Y. Further, in the first direction X1 of the fiber structure 111, in the portion where the first warp 21 is located on the outer surface 11a, the first auxiliary thread 15a is the first warp in the inner layer in the stacking direction Y than the first warp 21. It is arranged so as to overlap with 21 in the stacking direction Y. In the portion where the second warp 22 is located on the outer surface 11a in the first direction X1 of the fiber structure 111, the first auxiliary thread 15a and the second warp 22 are formed in the inner layer in the stacking direction Y than the second warp 22. They are arranged so as to overlap in the stacking direction Y.
 また、第3緯糸層43、第4緯糸層44、及び第5緯糸層45を形成するときには、第3経糸23と第4経糸24との開口に各緯糸14が緯入れされる。ここで、各緯糸14は、積層方向Yの外側面11a側から、第3緯糸層43の第2補助糸15b、第4緯糸層44の第2糸14a、及び第5緯糸層45の第2糸14aの順で配列するように緯入れされる。これにより、第3経糸23と第4経糸24とが、第3緯糸層43の第2補助糸15b及び第5緯糸層45の第2糸14aに係合するようになる。第3経糸23と第4経糸24とによって、第3緯糸層43の第2補助糸15b、第4緯糸層44の第2糸14a、及び第5緯糸層45の第2糸14aが積層方向Yで結合されるようになる。また、繊維構造体111での第1方向X1において、外側面11a側に第3経糸23が位置する部分では、第3経糸23よりも積層方向Yの内層にて第2補助糸15bが第3経糸23と積層方向Yで重なって配列される。繊維構造体111での第1方向X1において、外側面11a側に第4経糸24が位置する部分では、第4経糸24よりも積層方向Yの内層にて第2補助糸15bが第4経糸24と積層方向Yで重なって配列される。 Further, when forming the third weft layer 43, the fourth weft layer 44, and the fifth weft layer 45, each weft 14 is wefted into the openings between the third warp 23 and the fourth warp 24. Here, each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the second auxiliary yarn 15b of the third weft layer 43, the second yarn 14a of the fourth weft layer 44, and the second yarn layer 45 of the fifth weft layer 45. Wefting is performed so that the threads 14a are arranged in this order. As a result, the third warp thread 23 and the fourth warp thread 24 are engaged with the second auxiliary thread 15b of the third weft thread layer 43 and the second thread 14a of the fifth weft thread layer 45. By the third warp 23 and the fourth warp 24, the second auxiliary yarn 15b of the third weft layer 43, the second yarn 14a of the fourth weft layer 44, and the second yarn 14a of the fifth weft layer 45 are laminated in the stacking direction Y. Will be combined with. Further, in the first direction X1 of the fiber structure 111, in the portion where the third warp 23 is located on the outer surface 11a side, the second auxiliary thread 15b is the third in the inner layer in the stacking direction Y than the third warp 23. The warp threads 23 and the warp threads 23 are arranged so as to overlap each other in the stacking direction Y. In the portion of the fiber structure 111 in the first direction X1 where the fourth warp 24 is located on the outer surface 11a side, the second auxiliary thread 15b is the fourth warp 24 in the inner layer in the stacking direction Y than the fourth warp 24. And are arranged so as to overlap in the stacking direction Y.
 第1方向X1の全体で、上記と同様に、第1経糸21と第2経糸22との開口への緯糸14の挿入、及び第3経糸23と第4経糸24との開口への緯糸14の挿入が行われる。製織工程後の繊維構造体111では、第1方向X1の全体に亘って図3に示した経糸13及び緯糸14の配列態様を有したものとなる。 In the entire first direction X1, the weft 14 is inserted into the openings of the first warp 21 and the second warp 22 and the weft 14 is inserted into the openings of the third warp 23 and the fourth warp 24 in the same manner as described above. The insertion is done. The fiber structure 111 after the weaving step has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 3 over the entire first direction X1.
 ここで、第1補助糸15aよりも第2補助糸15bは太さが小さい。すなわち、製織された平板状の繊維構造体111では、補助糸15の太さが外側面11aよりも積層方向Yの内層ほど小さくなる。そのため、平板状の繊維構造体11の段階では、第2補助糸15bと係合する第3経糸23及び第4経糸24の経路が、第1補助糸15aと係合する第1経糸21及び第2経糸22の経路よりも短くなっている。 Here, the thickness of the second auxiliary thread 15b is smaller than that of the first auxiliary thread 15a. That is, in the woven flat fiber structure 111, the thickness of the auxiliary thread 15 is smaller in the inner layer in the stacking direction Y than in the outer surface 11a. Therefore, at the stage of the flat fiber structure 11, the paths of the third warp threads 23 and the fourth warp threads 24 that engage with the second auxiliary thread 15b are the first warp threads 21 and the first warp threads that engage with the first auxiliary thread 15a. It is shorter than the path of the two warp threads 22.
 製織工程の後は抜取工程を行う。抜取工程では、繊維構造体111からの第1補助糸15a及び第2補助糸15bの抜き取りを行う。抜取工程によって第1補助糸15a及び第2補助糸15bが繊維構造体111から無くなるため、抜取工程によって第1補助糸15a及び第2補助糸15bの太さが小さくなるともいえる。その一方で、抜取工程前後で第1糸13a及び第2糸14aの太さは変わらない。したがって、抜取工程に伴って、第1補助糸15a及び第2補助糸15bは第1糸13a及び第2糸14aよりも太さの減少量が大きい性質を有するといえる。本実施形態では、抜取工程が縮小工程に相当する。 After the weaving process, a sampling process is performed. In the extraction step, the first auxiliary thread 15a and the second auxiliary thread 15b are extracted from the fiber structure 111. Since the first auxiliary thread 15a and the second auxiliary thread 15b are removed from the fiber structure 111 by the extraction step, it can be said that the thickness of the first auxiliary thread 15a and the second auxiliary thread 15b is reduced by the extraction step. On the other hand, the thicknesses of the first thread 13a and the second thread 14a do not change before and after the extraction process. Therefore, it can be said that the first auxiliary thread 15a and the second auxiliary thread 15b have a property that the amount of decrease in thickness is larger than that of the first thread 13a and the second thread 14a with the extraction step. In the present embodiment, the sampling process corresponds to the reduction process.
 抜取工程後の繊維構造体111では、第1緯糸層41を構成する第1補助糸15aが抜き取られた分だけ、この第1補助糸15aに係合していた第1経糸21及び第2経糸22の経路が抜取工程前よりも短くなる。そのため、繊維構造体111において、第1経糸21及び第2経糸22が弛むようになる。第1経糸21及び第2経糸22には、経路に寄与しない余剰分が発生する。 In the fiber structure 111 after the extraction step, the first warp thread 21 and the second warp thread that were engaged with the first auxiliary thread 15a by the amount that the first auxiliary thread 15a constituting the first weft layer 41 was extracted. The 22 paths are shorter than before the sampling process. Therefore, in the fiber structure 111, the first warp 21 and the second warp 22 become loose. A surplus that does not contribute to the path is generated in the first warp 21 and the second warp 22.
 また、抜取工程後の繊維構造体111では、第3緯糸層43を構成する第2補助糸15bが抜き取られた分だけ、この第2補助糸15bに係合していた第3経糸23及び第4経糸24の経路も抜取工程前より短くなる。そのため、繊維構造体111において、第3経糸23及び第4経糸24が弛むようになり、第3経糸23及び第4経糸24に経路に寄与しない余剰分が発生する。ここで、抜取工程前の繊維構造体111では、第2補助糸15bの太さが第1補助糸15aの太さよりも小さかったために、第3経糸23及び第4経糸24の経路の方が第1経糸21及び第2経糸22の経路よりも短かった。すなわち、第2補助糸15bの抜き取りに伴う第3経糸23及び第4経糸24の経路の減少量は、第1補助糸15aの抜き取りに伴う第1経糸21及び第2経糸22の経路の減少量よりも小さくなる。このため、抜取工程後の繊維構造体111では、第3経糸23及び第4経糸24の方が第1経糸21及び第2経糸22よりも上記余剰分が少なくなる。 Further, in the fiber structure 111 after the extraction step, the third warp threads 23 and the third warp threads 23 and the second auxiliary threads that are engaged with the second auxiliary threads 15b are extracted by the amount that the second auxiliary threads 15b constituting the third weft layer 43 are extracted. The path of the 4 warp threads 24 is also shorter than that before the extraction process. Therefore, in the fiber structure 111, the third warp 23 and the fourth warp 24 become loose, and a surplus that does not contribute to the path is generated in the third warp 23 and the fourth warp 24. Here, in the fiber structure 111 before the extraction step, since the thickness of the second auxiliary thread 15b was smaller than the thickness of the first auxiliary thread 15a, the path of the third warp thread 23 and the fourth warp thread 24 was the first. It was shorter than the path of the 1st warp 21 and the 2nd warp 22. That is, the amount of decrease in the paths of the third warp 23 and the fourth warp 24 due to the extraction of the second auxiliary thread 15b is the amount of decrease in the paths of the first warp 21 and the second warp 22 due to the extraction of the first auxiliary thread 15a. Is smaller than Therefore, in the fiber structure 111 after the extraction step, the excess amount of the third warp 23 and the fourth warp 24 is smaller than that of the first warp 21 and the second warp 22.
 抜取工程の後は賦形工程を行う。賦形工程では、抜取工程後の平板状の繊維構造体111を第1の実施形態と同様に型に嵌め込むことで図1に示したL字状に繊維構造体111を賦形する。この賦形工程において、抜取工程後に生じていた第1経糸21及び第2経糸22の余剰分と第3経糸23及び第4経糸24の余剰分とが、第1方向X1に沿って伸びるようになる。賦形後の繊維構造体111では、上記の余剰分だけ、第1方向X1での寸法を賦形前の繊維構造体111よりも伸ばすことができる。 After the sampling process, perform the shaping process. In the shaping step, the flat fiber structure 111 after the extraction step is fitted into the mold in the same manner as in the first embodiment to shape the fiber structure 111 into an L shape shown in FIG. In this shaping step, the surplus of the first warp 21 and the second warp 22 and the surplus of the third warp 23 and the fourth warp 24 generated after the extraction step are extended along the first direction X1. Become. In the fiber structure 111 after shaping, the size in the first direction X1 can be extended by the above surplus as compared with the fiber structure 111 before shaping.
 第1経糸21及び第2経糸22での上記の余剰分が、第3経糸23及び第4経糸24での上記の余剰分よりも長い。そのため、第1経糸21及び第2経糸22が位置する繊維構造体111の外側面11aの部分の方が、第3経糸23及び第4経糸24が位置する部分であって、外側面11aよりも積層方向Yでの内層の部分よりも、第1方向X1に沿って大きく伸びることとなる。これにより、賦形後の繊維構造体111では、曲げ部18の外側を通過する寸法L2が、曲げ部18の内側を通過する寸法L1よりも大きくなる。そして、賦形工程後に含浸工程を行うことで繊維強化複合材10を形成する。 The above-mentioned surplus in the first warp 21 and the second warp 22 is longer than the above-mentioned surplus in the third warp 23 and the fourth warp 24. Therefore, the portion of the outer surface 11a of the fiber structure 111 where the first warp 21 and the second warp 22 are located is the portion where the third warp 23 and the fourth warp 24 are located, and is larger than the outer surface 11a. It extends more along the first direction X1 than the portion of the inner layer in the stacking direction Y. As a result, in the fiber structure 111 after shaping, the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18. Then, the fiber-reinforced composite material 10 is formed by performing an impregnation step after the shaping step.
 上記実施形態によれば、第1の実施形態での効果に加えて以下の効果を得ることができる。
 (2-1)第2補助糸15bが第1補助糸15aよりも太さが小さいため、賦形前の繊維構造体11では、外側面11aよりも積層方向Yの内層ほど補助糸15の太さが小さくなることとなる。賦形後の繊維構造体11では、第3経糸23及び第4経糸24での余剰分よりも第1経糸21及び第2経糸22での余剰分の方が大きくなる。そのため、第3経糸23及び第4経糸24よりも曲げ外側にある第1経糸21及び第2経糸22の伸び量を大きくできるため、繊維構造体11の賦形後の形状に合わせて上記の伸び量を設定できる。
According to the above embodiment, the following effects can be obtained in addition to the effects of the first embodiment.
(2-1) Since the second auxiliary thread 15b is smaller in thickness than the first auxiliary thread 15a, in the fiber structure 11 before shaping, the inner layer in the stacking direction Y is thicker than the outer surface 11a. Will be smaller. In the fiber structure 11 after shaping, the surplus in the first warp 21 and the second warp 22 is larger than the surplus in the third warp 23 and the fourth warp 24. Therefore, the amount of elongation of the first warp 21 and the second warp 22 on the bending outer side of the third warp 23 and the fourth warp 24 can be increased, so that the above-mentioned elongation can be adjusted according to the shape of the fiber structure 11 after shaping. You can set the amount.
第3の実施形態Third Embodiment
 以下、繊維構造体及び繊維構造体の製造方法を具体化した第3の実施形態について図1及び図4を用いて説明する。なお以下では、第1の実施形態との相違点を中心に説明する。 Hereinafter, the fiber structure and the third embodiment embodying the method for manufacturing the fiber structure will be described with reference to FIGS. 1 and 4. In the following, the differences from the first embodiment will be mainly described.
 まず、繊維構造体161を賦形する前の平板状の状態で説明する。
 図1又は図4に示すように、本実施形態の繊維構造体161では、第1の実施形態と同様に、積層方向Yの一方側から他方側に、第1緯糸層41、第2緯糸層42、第3緯糸層43、第4緯糸層44、第5緯糸層45、第6緯糸層46、及び第7緯糸層47の順で緯糸層が積層されている。そして、第1の実施形態と同様に、第1緯糸層41以外の緯糸層が第2糸14aから構成されているとともに、第1緯糸層41が補助糸15から構成されている。なお以下では、第1緯糸層41を構成する補助糸15を緯補助糸115aという。
First, a flat plate-like state before shaping the fiber structure 161 will be described.
As shown in FIG. 1 or FIG. 4, in the fiber structure 161 of the present embodiment, the first weft layer 41 and the second weft layer are formed from one side to the other in the stacking direction Y, as in the first embodiment. The weft layers are laminated in the order of 42, the third weft layer 43, the fourth weft layer 44, the fifth weft layer 45, the sixth weft layer 46, and the seventh weft layer 47. Then, as in the first embodiment, the weft layer other than the first weft layer 41 is composed of the second thread 14a, and the first weft layer 41 is composed of the auxiliary thread 15. In the following, the auxiliary yarn 15 constituting the first weft layer 41 is referred to as a weft auxiliary yarn 115a.
 繊維構造体161の経糸13のうち、第1経糸121及び第2経糸122と、第3経糸123及び第4経糸124と、の両方が、第1緯糸層41、第2緯糸層42、及び第3緯糸層43の積層方向Yの両側に配列されている。さらに、繊維構造体161は、経糸13として、第3緯糸層43及び第4緯糸層44の積層方向Yの両側に配列された第5経糸125及び第6経糸126と、第4緯糸層44及び第5緯糸層45の積層方向Yの両側に配列された第7経糸127及び第8経糸128と、を有する。加えて、繊維構造体161は、経糸13として、第5緯糸層45及び第6緯糸層46の積層方向Yの両側に配列された第9経糸129及び第10経糸130と、第6緯糸層46及び第7緯糸層47の積層方向Yの両側に配列された第11経糸131及び第12経糸132と、を有する。繊維構造体161は、経糸13として、第7緯糸層47の積層方向Yの両側に配列された第13経糸133及び第14経糸134を有する。第3経糸123及び第4経糸124以外の経糸13は第1糸13aから構成されている。第3経糸123及び第4経糸124は補助糸15から構成されている。なお以下では、第3経糸123及び第4経糸124を構成する補助糸15を経補助糸115bという。 Of the warp 13 of the fiber structure 161, both the first warp 121 and the second warp 122 and the third warp 123 and the fourth warp 124 are the first weft layer 41, the second weft layer 42, and the second warp. The three weft layers 43 are arranged on both sides in the stacking direction Y. Further, the fiber structure 161 includes the fifth warp 125 and the sixth warp 126 arranged on both sides of the third weft layer 43 and the fourth weft layer 44 in the stacking direction Y, and the fourth weft layer 44 as the warp 13. It has a seventh warp 127 and an eighth warp 128 arranged on both sides of the fifth weft layer 45 in the stacking direction Y. In addition, the fiber structure 161 includes the 9th warp 129 and the 10th warp 130 and the 6th weft layer 46 arranged on both sides of the 5th weft layer 45 and the 6th weft layer 46 in the stacking direction Y as the warp 13. And the eleventh warp 131 and the twelfth warp 132 arranged on both sides of the seventh weft layer 47 in the stacking direction Y. The fiber structure 161 has the 13th warp 133 and the 14th warp 134 arranged on both sides of the 7th weft layer 47 in the stacking direction Y as the warp 13. The warp threads 13 other than the third warp thread 123 and the fourth warp thread 124 are composed of the first thread 13a. The third warp 123 and the fourth warp 124 are composed of an auxiliary thread 15. In the following, the auxiliary thread 15 constituting the third warp thread 123 and the fourth warp thread 124 will be referred to as a warp auxiliary thread 115b.
 第1経糸121には、外側面11aよりも積層方向Yの内層にて、第3経糸123を構成する経補助糸115bが積層方向Yで重なっている。第2経糸122には、外側面11aよりも積層方向Yの内層にて、第4経糸124を構成する経補助糸115bが積層方向Yで重なっている。繊維構造体161の第1方向X1の全体に亘って、第1経糸121及び第2経糸122に経補助糸115bが重なっている。 On the first warp thread 121, the warp auxiliary threads 115b constituting the third warp thread 123 are overlapped in the stacking direction Y in the inner layer in the stacking direction Y with respect to the outer surface 11a. On the second warp yarn 122, the warp auxiliary yarn 115b constituting the fourth warp yarn 124 overlaps in the stacking direction Y in the inner layer in the stacking direction Y with respect to the outer surface 11a. The warp auxiliary thread 115b overlaps the first warp thread 121 and the second warp thread 122 over the entire first direction X1 of the fiber structure 161.
 また、繊維構造体111の外側面11aには、第1経糸121と第2経糸122とが第1方向X1に沿って交互に位置している。外側面11aに位置した第1経糸121には、その第1経糸121よりも積層方向Yの内層にて、第1緯糸層41を構成する緯補助糸115aが積層方向Yで経補助糸115bを介して重なっている。繊維構造体111の外側面11aに位置した第2経糸122には、その第2経糸122よりも積層方向Yの内層にて、第1緯糸層41を構成する緯補助糸115aが積層方向Yで経補助糸115bを介して重なっている。また、第1緯糸層41を構成する緯補助糸115a及び第3緯糸層43を構成する第2糸14aには、第1経糸121、第2経糸122、第3経糸123、及び第4経糸124が係合している。第1緯糸層41において第1方向X1で隣り合う緯補助糸115aには、第2方向X2で隣り合う第1経糸121、第2経糸122、第3経糸123、及び第4経糸124が係合している。例えば、第1方向X1で隣り合う2本の緯補助糸115aのうち、一方には第1経糸121及び第3経糸123が係合するとともに、他方には第2経糸122及び第4経糸124が係合している。また、第2緯糸層42を構成する第2糸14aには、第1経糸121、第2経糸122、第3経糸123、及び第4経糸124が係合していない。第1緯糸層41を構成する緯補助糸115a、第2緯糸層42を構成する第2糸14a、及び第3緯糸層43を構成する第2糸14aは、第1経糸121、第2経糸122、第3経糸123、及び第4経糸124によって積層方向Yに結合されている。本実施形態では、第1経糸121及び第2経糸122が外側糸に相当する。 Further, on the outer surface 11a of the fiber structure 111, the first warp threads 121 and the second warp threads 122 are alternately located along the first direction X1. In the first warp thread 121 located on the outer side surface 11a, the weft auxiliary thread 115a constituting the first weft thread layer 41 is provided with the warp auxiliary thread 115b in the stacking direction Y in the inner layer in the stacking direction Y than the first warp thread 121. Overlapping through. In the second warp yarn 122 located on the outer surface 11a of the fiber structure 111, the weft auxiliary yarn 115a constituting the first weft yarn layer 41 is formed in the inner layer in the stacking direction Y from the second warp yarn 122 in the stacking direction Y. It overlaps with the warp auxiliary thread 115b. Further, the weft auxiliary yarn 115a forming the first weft layer 41 and the second yarn 14a forming the third weft layer 43 include the first warp 121, the second warp 122, the third warp 123, and the fourth warp 124. Are engaged. In the first weft layer 41, the weft auxiliary threads 115a adjacent to each other in the first direction X1 are engaged with the first warp 121, the second warp 122, the third warp 123, and the fourth warp 124 adjacent to each other in the second direction X2. doing. For example, of the two weft auxiliary threads 115a adjacent to each other in the first direction X1, the first warp 121 and the third warp 123 are engaged with one, and the second warp 122 and the fourth warp 124 are engaged with the other. Engaged. Further, the first warp 121, the second warp 122, the third warp 123, and the fourth warp 124 are not engaged with the second thread 14a constituting the second weft layer 42. The weft auxiliary yarn 115a forming the first weft layer 41, the second yarn 14a forming the second weft layer 42, and the second yarn 14a forming the third weft layer 43 are the first warp 121 and the second warp 122. , The third warp 123, and the fourth warp 124 are connected in the stacking direction Y. In the present embodiment, the first warp 121 and the second warp 122 correspond to the outer yarn.
 次に、繊維構造体161について賦形された状態で説明する。
 本実施形態での賦形後の繊維構造体161は、第1の実施形態と同様にL字状の立体形状となっている。そして、賦形後の繊維構造体161では、緯補助糸115a及び経補助糸115bが繊維構造体161から無くなっている。これにより、図1に示すように、賦形後の繊維構造体161の第1方向X1に沿った寸法のうち、曲げ部18の外側を通過する寸法L2が曲げ部18の内側を通過する寸法L1よりも大きくなっている。
Next, the fiber structure 161 will be described in a shaped state.
The fiber structure 161 after shaping in the present embodiment has an L-shaped three-dimensional shape as in the first embodiment. Then, in the fiber structure 161 after shaping, the weft auxiliary thread 115a and the warp auxiliary thread 115b are eliminated from the fiber structure 161. As a result, as shown in FIG. 1, among the dimensions along the first direction X1 of the fiber structure 161 after shaping, the dimension L2 passing through the outside of the bent portion 18 passes through the inside of the bent portion 18. It is larger than L1.
 次に、本実施形態における繊維構造体161の製造方法について、本実施形態での作用と合わせて説明する。
 繊維構造体11の製造方法は、製織工程、賦形工程、及び含浸工程を備えるほか、補助糸15を抜き取る抜取工程を備える。第1の実施形態での製造方法からは、加熱工程にかえて抜取工程を行う点が異なっている。
Next, the method for producing the fiber structure 161 in the present embodiment will be described together with the operation in the present embodiment.
The method for producing the fiber structure 11 includes a weaving step, a shaping step, and an impregnation step, and also includes a sampling step of extracting the auxiliary thread 15. The manufacturing method in the first embodiment is different from the manufacturing method in that a sampling step is performed instead of the heating step.
 まず、本実施形態の製織工程で用いる多層織機では、経糸ビームが経糸13として第1糸13aに加えて第2補助糸15bを供給するとともに、綜絖枠が第1糸13a及び経補助糸115bの開口を行う。なお、綜絖枠による第1経糸121と第2経糸122との開口動作は、それぞれの経糸13よりも積層方向Yの内層にて、それぞれの経糸13に経補助糸115bが重なった状態を維持しつつ行う。これにより、第1経糸121での第1糸13a及び第3経糸123での経補助糸115bの組と、第2経糸122での第1糸13a及び第4経糸124での経補助糸115bの組とが、交互に積層方向Yの上下にて移動することで、第1経糸組151及び第2経糸組152による開口が順次形成される。以下では、第1経糸121での第1糸13a及び第3経糸123での経補助糸115bの組を第1経糸組151という。第2経糸122での第1糸13a及び第4経糸124での経補助糸115bの組を第2経糸組152という。 First, in the multi-layer loom used in the weaving process of the present embodiment, the warp beam supplies the second auxiliary thread 15b in addition to the first thread 13a as the warp thread 13, and the heddle frame is the first thread 13a and the warp auxiliary thread 115b. Make an opening. The opening operation of the first warp thread 121 and the second warp thread 122 by the heddle frame maintains a state in which the warp auxiliary thread 115b is overlapped with each warp thread 13 in the inner layer in the stacking direction Y than each warp thread 13. Do it while doing. As a result, the set of the warp auxiliary thread 115b in the first warp 121 and the warp auxiliary thread 123 in the third warp 123, and the warp auxiliary thread 115b in the first thread 13a and the fourth warp 124 in the second warp 122. By alternately moving the sets up and down in the stacking direction Y, openings by the first warp set 151 and the second warp set 152 are sequentially formed. Hereinafter, the set of the first warp thread 13a in the first warp thread 121 and the warp auxiliary thread 115b in the third warp thread 123 is referred to as the first warp thread set 151. The set of the first thread 13a in the second warp 122 and the warp auxiliary thread 115b in the fourth warp 124 is called the second warp set 152.
 第1緯糸層41、第2緯糸層42、及び第3緯糸層43を形成するときには、第1経糸組151と第2経糸組152との開口に各緯糸14が緯入れされる。ここで、各緯糸14は、積層方向Yの外側面11a側から、第1緯糸層41の緯補助糸115a、第2緯糸層42の第2糸14a、及び第3緯糸層43の第2糸14aの順で配列するように緯入れされる。これにより、第1経糸組151と第2経糸組152とが、第1緯糸層41の緯補助糸115a及び第3緯糸層43の第2糸14aに係合するようになる。第1経糸組151と第2経糸組152とによって、第1緯糸層41の緯補助糸115a、第2緯糸層42の第2糸14a、及び第3緯糸層43の第2糸14aが積層方向Yに結合されるようになる。また、繊維構造体11での第1方向X1において、外側面11aに第1経糸121が位置する部分では、第1経糸121よりも積層方向Yの内層にて緯補助糸115aが第1経糸121と積層方向Yで経補助糸115bを介して重なって配列される。繊維構造体11での第1方向X1において、外側面11aに第2経糸122が位置する部分では、第2経糸122よりも積層方向Yの内層にて緯補助糸115aが第2経糸122と積層方向Yで経補助糸115bを介して重なって配列される。 When forming the first weft layer 41, the second weft layer 42, and the third weft layer 43, each weft 14 is wefted into the opening between the first warp assembly 151 and the second warp assembly 152. Here, each weft 14 is formed from the outer surface 11a side in the stacking direction Y, the weft auxiliary yarn 115a of the first weft layer 41, the second yarn 14a of the second weft layer 42, and the second yarn of the third weft layer 43. It is wefted so that it is arranged in the order of 14a. As a result, the first warp set 151 and the second warp set 152 are engaged with the weft auxiliary thread 115a of the first weft layer 41 and the second thread 14a of the third weft layer 43. By the first warp set 151 and the second warp set 152, the weft auxiliary thread 115a of the first weft layer 41, the second thread 14a of the second weft layer 42, and the second thread 14a of the third weft layer 43 are laminated. It will be combined with Y. Further, in the first direction X1 of the fiber structure 11, in the portion where the first warp 121 is located on the outer surface 11a, the weft auxiliary thread 115a is the first warp 121 in the inner layer in the stacking direction Y than the first warp 121. And are arranged so as to overlap with each other via the warp auxiliary thread 115b in the stacking direction Y. In the portion of the fiber structure 11 in the first direction X1 where the second warp 122 is located on the outer surface 11a, the weft auxiliary thread 115a is laminated with the second warp 122 in the inner layer in the stacking direction Y than the second warp 122. They are arranged so as to overlap with each other via the warp auxiliary thread 115b in the direction Y.
 第1方向X1の全体で、同様に第1経糸組151と第2経糸組152との開口への緯補助糸115a及び第2糸14aの挿入が行われる。本実施形態での製織工程後の繊維構造体161では、第1方向X1の全体に亘って図4に示した経糸13及び緯糸14の配列態様を有したものとなる。 Similarly, the weft auxiliary thread 115a and the second thread 14a are inserted into the openings of the first warp set 151 and the second warp set 152 in the entire first direction X1. The fiber structure 161 after the weaving step in the present embodiment has the arrangement mode of the warp threads 13 and the weft threads 14 shown in FIG. 4 over the entire first direction X1.
 製織工程の後は抜取工程を行う。抜取工程では、繊維構造体161からの緯補助糸115a及び経補助糸115bの抜き取りを行う。抜取工程によって緯補助糸115a及び経補助糸115bが繊維構造体161から無くなるため、抜取工程によって緯補助糸115a及び経補助糸115bの太さが小さくなるともいえる。その一方で、抜取工程前後で第1糸13a及び第2糸14aの太さは変わらない。したがって、抜取工程に伴って、緯補助糸115a及び経補助糸115bは第1糸13a及び第2糸14aよりも太さの減少量が大きい性質を有するといえる。なお、本実施形態では抜取工程が縮小工程に相当する。 After the weaving process, a sampling process is performed. In the extraction step, the weft auxiliary thread 115a and the warp auxiliary thread 115b are extracted from the fiber structure 161. Since the weft auxiliary thread 115a and the warp auxiliary thread 115b are removed from the fiber structure 161 by the extraction step, it can be said that the thickness of the weft auxiliary thread 115a and the warp auxiliary thread 115b is reduced by the extraction step. On the other hand, the thicknesses of the first thread 13a and the second thread 14a do not change before and after the extraction process. Therefore, it can be said that the weft auxiliary yarn 115a and the warp auxiliary yarn 115b have a property that the amount of decrease in thickness is larger than that of the first yarn 13a and the second yarn 14a with the extraction step. In this embodiment, the sampling process corresponds to the reduction process.
 抜取工程後の繊維構造体161では、第1緯糸層41を構成する緯補助糸115aが抜き取られた分だけ、この緯補助糸115aに係合していた第1経糸121及び第2経糸122の経路が抜取工程前よりも短くなる。また、抜取工程後の繊維構造体161では、第3経糸123及び第4経糸124としての経補助糸115bが抜き取られた分だけ、この経補助糸115bに積層方向Yで重なっていた第1経糸121及び第2経糸122の経路が抜取工程前よりも短くなる。したがって、繊維構造体161において、第1経糸121及び第2経糸122が弛むようになり、第1経糸121及び第2経糸122に経路に寄与しない余剰分が発生する。 In the fiber structure 161 after the extraction step, the first warp threads 121 and the second warp threads 122 that were engaged with the weft auxiliary threads 115a by the amount of the weft auxiliary threads 115a constituting the first weft thread layer 41 were extracted. The route is shorter than before the sampling process. Further, in the fiber structure 161 after the extraction step, the first warp yarn overlapped with the warp auxiliary yarn 115b in the stacking direction Y by the amount by which the warp auxiliary yarn 115b as the third warp yarn 123 and the fourth warp yarn 124 was extracted. The paths of 121 and the second warp 122 are shorter than before the extraction process. Therefore, in the fiber structure 161, the first warp 121 and the second warp 122 become loose, and a surplus that does not contribute to the path is generated in the first warp 121 and the second warp 122.
 抜取工程の後は賦形工程を行う。賦形工程では、抜取工程後の平板状の繊維構造体161を第1の実施形態と同様に型に嵌め込むことで図1に示したL字状に繊維構造体161を賦形する。この賦形工程において、抜取工程後に生じていた第1経糸121及び第2経糸122の余剰分が、第1方向X1に沿って伸びるようになる。賦形後の繊維構造体161では、上記の余剰分だけ、第1方向X1での寸法を賦形前の繊維構造体161よりも伸ばすことができる。これにより、賦形後の繊維構造体161では、曲げ部18の外側を通過する寸法L2が、曲げ部18の内側を通過する寸法L1よりも大きくなる。そして、賦形工程後に含浸工程を行うことで繊維強化複合材10を形成する。 After the sampling process, perform the shaping process. In the shaping step, the flat fiber structure 161 after the extraction step is fitted into the mold in the same manner as in the first embodiment to shape the fiber structure 161 into the L shape shown in FIG. In this shaping step, the surplus portion of the first warp thread 121 and the second warp thread 122 generated after the extraction step is extended along the first direction X1. In the fiber structure 161 after shaping, the size in the first direction X1 can be extended by the above surplus as compared with the fiber structure 161 before shaping. As a result, in the fiber structure 161 after shaping, the dimension L2 passing outside the bent portion 18 becomes larger than the dimension L1 passing inside the bent portion 18. Then, the fiber-reinforced composite material 10 is formed by performing an impregnation step after the shaping step.
 上記実施形態によれば、第1の実施形態での効果に加えて以下の効果を得ることができる。
 (3-1)経糸13及び緯糸14の両方に補助糸15を追加して繊維構造体161を製織している。そのため、経糸13及び緯糸14のいずれか一方のみに補助糸15を追加する場合と比較して、第1経糸121及び第2経糸122に生じる経路に寄与しない余剰分がより長くなる。したがって、繊維構造体161の賦形の際に繊維構造体161の外側面11aが第1方向X1に沿ってより伸びるようになるため、繊維構造体161の曲げ内側における皺の発生をさらに抑制できる。
According to the above embodiment, the following effects can be obtained in addition to the effects of the first embodiment.
(3-1) Auxiliary yarn 15 is added to both the warp yarn 13 and the weft yarn 14 to weave the fiber structure 161. Therefore, as compared with the case where the auxiliary thread 15 is added to only one of the warp thread 13 and the weft thread 14, the surplus portion that does not contribute to the path generated in the first warp thread 121 and the second warp thread 122 becomes longer. Therefore, when the fiber structure 161 is shaped, the outer surface 11a of the fiber structure 161 becomes more elongated along the first direction X1, so that the occurrence of wrinkles inside the bending of the fiber structure 161 can be further suppressed. ..
 なお、上記の各実施形態は、以下のように変更して実施することができる。上記の各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。 Note that each of the above embodiments can be modified and implemented as follows. Each of the above embodiments and the following modified examples can be implemented in combination with each other within a technically consistent range.
 〇 第2の実施形態及び第3の実施形態において、炭素繊維以外の繊維で構成された糸を第1糸13aや第2糸14aとして採用してもよい。炭素繊維以外の繊維としては、例えばガラス繊維が挙げられる。 〇 In the second embodiment and the third embodiment, a thread composed of fibers other than carbon fibers may be adopted as the first thread 13a or the second thread 14a. Examples of fibers other than carbon fibers include glass fibers.
 〇 加熱工程を行う第1の実施形態での補助糸15は、第1糸13a及び第2糸14aよりも低い融点を有するものであれば、ナイロン繊維以外の化繊から構成されるものであってもよい。 〇 The auxiliary yarn 15 in the first embodiment in which the heating step is performed is composed of synthetic fibers other than nylon fibers as long as it has a melting point lower than that of the first yarn 13a and the second yarn 14a. May be good.
 〇 抜取工程を行う第2の実施形態や第3の実施形態での補助糸15は、ナイロン繊維以外の化繊から構成されるものであってもよいし、化繊以外の繊維から構成されるものであってもよい。賦形後の繊維構造体111,161には補助糸15が残らないため、補助糸15の材料は自由に選択可能である。 〇 The auxiliary thread 15 in the second embodiment and the third embodiment in which the extraction process is performed may be composed of synthetic fibers other than nylon fibers, or may be composed of fibers other than synthetic fibers. There may be. Since the auxiliary thread 15 does not remain in the fiber structures 111 and 161 after shaping, the material of the auxiliary thread 15 can be freely selected.
 〇 第1の実施形態において、加熱工程後の繊維構造体11にて補助糸15が無くなるように、加熱工程での加熱で補助糸15を溶かしてもよい。また、第1の実施形態において、加熱工程に替えて第2の実施形態及び第3の実施形態での抜取工程を行ってもよい。 〇 In the first embodiment, the auxiliary thread 15 may be melted by heating in the heating step so that the auxiliary thread 15 disappears in the fiber structure 11 after the heating step. Further, in the first embodiment, the sampling step in the second embodiment and the third embodiment may be performed instead of the heating step.
 〇 第2の実施形態及び第3の実施形態において、抜取工程に替えて第1の実施形態での加熱工程を行ってもよい。この場合、加熱工程によって補助糸15が溶けることで、加熱工程後の繊維構造体111,161にて補助糸15が無くなっていてもよいし、補助糸15の太さが加熱工程前よりも小さくなっていてもよい。 〇 In the second embodiment and the third embodiment, the heating step in the first embodiment may be performed instead of the sampling step. In this case, since the auxiliary thread 15 is melted by the heating step, the auxiliary thread 15 may be eliminated in the fiber structures 111 and 161 after the heating step, and the thickness of the auxiliary thread 15 is smaller than that before the heating step. It may be.
 〇 第1の実施形態での加熱工程や、第2の実施形態及び第3の実施形態での抜取工程に替えて、これらの工程以外で、繊維構造体11,111,161に配列された補助糸15の太さを小さくする縮小工程を採用してもよい。この縮小工程では、例えば、補助糸15と化学反応を起こすことで補助糸15を溶かす性質を持つ薬液を満たした容器内に、製織工程後の繊維構造体11,111,161を入れることで補助糸15を溶かすようにしてもよい。 〇 Instead of the heating step in the first embodiment and the sampling step in the second embodiment and the third embodiment, the auxiliary arranged in the fiber structures 11, 111, 161 other than these steps. A reduction step of reducing the thickness of the thread 15 may be adopted. In this reduction step, for example, the fiber structures 11, 111, 161 after the weaving step are put in a container filled with a chemical solution having a property of dissolving the auxiliary thread 15 by causing a chemical reaction with the auxiliary thread 15. The thread 15 may be melted.
 〇 第2の実施形態での繊維構造体111において、第1緯糸層41及び第3緯糸層43に加えて、これらの緯糸層よりも積層方向Yの内層に、補助糸15が配列されてなる緯糸層を1層又は2層以上設けてもよい。この場合、第1緯糸層41を構成する補助糸15が第1補助糸15aとなり、第1緯糸層41以外の緯糸層を構成する補助糸15が第2補助糸15bとなる。そして、この場合でも、各第2補助糸15bの太さを第1補助糸15aよりも小さく設定すれば、第2の実施形態での効果と同様の効果を得ることができる。さらに、この形態にて各第2補助糸15bの太さを、積層方向Yで外側面11aより内層ほど小さくなるよう設定してもよい。 〇 In the fiber structure 111 of the second embodiment, in addition to the first weft layer 41 and the third weft layer 43, the auxiliary yarn 15 is arranged in the inner layer in the stacking direction Y from these weft layers. The weft layer may be provided as one layer or two or more layers. In this case, the auxiliary yarn 15 constituting the first weft layer 41 becomes the first auxiliary yarn 15a, and the auxiliary yarn 15 constituting the weft layer other than the first weft layer 41 becomes the second auxiliary yarn 15b. Even in this case, if the thickness of each of the second auxiliary threads 15b is set to be smaller than that of the first auxiliary thread 15a, the same effect as that of the second embodiment can be obtained. Further, in this embodiment, the thickness of each second auxiliary thread 15b may be set to be smaller in the stacking direction Y toward the inner layer than the outer surface 11a.
 〇 第3の実施形態において、第1緯糸層41を第2糸14aで構成されるものに変更してもよい。この場合の繊維構造体161は、補助糸15が緯糸14としては配列されず、経糸13としてのみ配列される。 〇 In the third embodiment, the first weft layer 41 may be changed to one composed of the second thread 14a. In the fiber structure 161 in this case, the auxiliary threads 15 are not arranged as the weft threads 14, but are arranged only as the warp threads 13.
 〇 補助糸15として、第1糸13a及び第2糸14aよりも繊維密度が低い嵩高の繊維を採用してもよい。具体的には、例えば、第1糸13a及び第2糸14aと同程度の太さを有し、且つ第1糸13a及び第2糸14aよりも低い繊維密度を有する補助糸15を採用する。繊維構造体11,111,161の賦形に伴って、第1糸13a、第2糸14a、及び補助糸15が周りの繊維から押圧を受けるが、この時に繊維密度の低い補助糸15の太さが第1糸13a及び第2糸14aよりも大きい減少量で減少する。賦形後の繊維構造体11,111,161では、補助糸15の太さが小さくなった分だけ、第1経糸21及び第2経糸22には経路に寄与しない余剰分が生じるようになる。したがって、上記の各実施形態と同様に、繊維構造体11,111,161での曲げ内側における皺の発生を抑制できる。 〇 As the auxiliary thread 15, bulky fibers having a lower fiber density than the first thread 13a and the second thread 14a may be adopted. Specifically, for example, an auxiliary yarn 15 having a thickness similar to that of the first yarn 13a and the second yarn 14a and having a fiber density lower than that of the first yarn 13a and the second yarn 14a is adopted. Along with the shaping of the fiber structures 11, 111, 161 the first thread 13a, the second thread 14a, and the auxiliary thread 15 are pressed by the surrounding fibers, but at this time, the thickness of the auxiliary thread 15 having a low fiber density is high. The amount of decrease is larger than that of the first thread 13a and the second thread 14a. In the fiber structures 11, 111, 161 after shaping, the first warp thread 21 and the second warp thread 22 have a surplus that does not contribute to the path by the amount that the thickness of the auxiliary thread 15 is reduced. Therefore, as in each of the above embodiments, the occurrence of wrinkles inside the bending of the fiber structures 11, 111, 161 can be suppressed.
 〇 第1方向X1が緯糸14の糸主軸が延びる方向であるとともに、第2方向X2が経糸13の糸主軸が延びる方向であってもよい。この場合の繊維構造体11,111,161では、緯糸14の糸主軸が延びる方向に沿って、第1平面部16、曲げ部18、及び第2平面部17が連続したものとなる。そして、上記の各実施形態において、経糸13を緯糸14に変更するとともに緯糸14を経糸13に変更する。この場合によっても、上記の各実施形態と同様の効果を得ることができる。 〇 The first direction X1 may be the direction in which the yarn spindle of the weft 14 extends, and the second direction X2 may be the direction in which the yarn spindle of the warp 13 extends. In the fiber structures 11, 111, 161 in this case, the first plane portion 16, the bent portion 18, and the second plane portion 17 are continuous along the direction in which the yarn spindle of the weft 14 extends. Then, in each of the above embodiments, the warp thread 13 is changed to the weft thread 14 and the weft thread 14 is changed to the warp thread 13. Even in this case, the same effect as that of each of the above embodiments can be obtained.
 〇 補助糸15の配列は、第1方向X1での繊維構造体11,111,161の一部範囲にのみ行ってもよい。この場合、例えば、賦形前の繊維構造体11,111,161において、曲げ部18となる部分を含んだ範囲に補助糸15を配列させてもよいし、曲げ部18を除く範囲であって、第1平面部16及び第2平面部17の一方又は両方を含んだ範囲に補助糸15を配列させてもよい。 〇 The arrangement of the auxiliary threads 15 may be performed only in a partial range of the fiber structures 11, 111, 161 in the first direction X1. In this case, for example, in the fiber structures 11, 111, 161 before shaping, the auxiliary threads 15 may be arranged in a range including a portion to be a bent portion 18, or a range excluding the bent portion 18. , The auxiliary thread 15 may be arranged in a range including one or both of the first flat surface portion 16 and the second flat surface portion 17.
 〇 賦形後の繊維構造体11,111,161の形状はL字状に限らない。繊維構造体11,111,161の賦形は、曲げ部18の曲率半径が図1に示す態様よりも大きくなるように行ってもよいし、曲げ部18の曲率半径が図1に示す態様よりも小さくなるように行ってもよい。 〇 The shape of the fiber structures 11, 111, 161 after shaping is not limited to the L shape. The shaping of the fiber structures 11, 111, 161 may be performed so that the radius of curvature of the bent portion 18 is larger than that shown in FIG. 1, or the radius of curvature of the bent portion 18 is larger than that shown in FIG. May be reduced.
 X1  第1方向
 X2  第2方向
 Y  積層方向
 10a  多層織物
 11,111,161  繊維構造体
 11a  外側面
 13  経糸
 13a  第1糸
 14  緯糸
 14a  第2糸
 15  補助糸
 15a  第1補助糸
 15b  第2補助糸
 16  第1平面部
 17  第2平面部
 18  曲げ部
 21,121  第1経糸
 22,122  第2経糸
 23,123  第3経糸
 24,124  第4経糸
 115a  緯補助糸
 115b  経補助糸
X1 1st direction X2 2nd direction Y Laminating direction 10a Multilayer woven fabric 11,111,161 Fiber structure 11a Outer side surface 13 Warp thread 13a 1st thread 14 Weft thread 14a 2nd thread 15 Auxiliary thread 15a 1st auxiliary thread 15b 2nd auxiliary thread 16 1st flat part 17 2nd flat part 18 Bending part 21,121 1st warp 22,122 2nd warp 23,123 3rd warp 24,124 4th warp 115a Weft auxiliary thread 115b Warp auxiliary thread

Claims (6)

  1.  強化繊維からなる第1糸及び第2糸が互いに直交する方向に配列された多層織物である平板状の繊維構造体であり、
     前記第1糸の糸主軸が延びる方向を第1方向とするとともに、前記第2糸の糸主軸が延びる方向を第2方向とするとき、
     前記多層織物の積層方向における一方面が外側面として曲げ外側になるように、前記第1方向に沿って曲げられる賦形用の繊維構造体であって、
     前記外側面に配列された前記第1糸を外側糸とするとき、
     前記多層織物は、前記積層方向における前記外側糸よりも内層にあって、前記積層方向にて前記外側糸と重なって配列された補助糸を備え、
     前記補助糸は、前記第1糸及び前記第2糸よりも太さの減少量が大きい性質を有することを特徴とする繊維構造体。
    It is a flat plate-like fiber structure which is a multi-layer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in the directions orthogonal to each other.
    When the direction in which the yarn spindle of the first yarn extends is the first direction and the direction in which the yarn spindle of the second yarn extends is the second direction,
    A fiber structure for shaping that is bent along the first direction so that one surface in the laminating direction of the multilayer woven fabric is bent as an outer surface.
    When the first yarn arranged on the outer surface is used as the outer yarn,
    The multilayer woven fabric includes auxiliary yarns that are in the inner layer of the outer yarns in the laminating direction and are arranged so as to overlap the outer yarns in the laminating direction.
    The auxiliary yarn is a fiber structure characterized in that the amount of decrease in thickness is larger than that of the first yarn and the second yarn.
  2.  前記補助糸は緯糸である請求項1に記載の繊維構造体。 The fiber structure according to claim 1, wherein the auxiliary yarn is a weft yarn.
  3.  前記補助糸は、前記第1糸及び前記第2糸よりも融点が低い請求項1又は請求項2に記載の繊維構造体。 The fiber structure according to claim 1 or 2, wherein the auxiliary yarn has a melting point lower than that of the first yarn and the second yarn.
  4.  前記補助糸は、前記第1糸及び前記第2糸よりも繊維密度が低い請求項1又は請求項2に記載の繊維構造体。 The fiber structure according to claim 1 or 2, wherein the auxiliary yarn has a fiber density lower than that of the first yarn and the second yarn.
  5.  前記積層方向における前記外側糸よりも内層にあって、前記積層方向にて前記外側糸と重なって配列された前記補助糸を第1補助糸とし、
     前記積層方向において前記外側糸よりも内層に配列された前記第1糸を内層糸とするとき、
     前記多層織物は、前記積層方向における前記内層糸よりも内層にあって、前記積層方向にて前記内層糸と重なって配列された前記補助糸である第2補助糸をさらに備え、
     前記第2補助糸は、前記第1補助糸よりも太さが小さい請求項1~請求項4のうちいずれか一項に記載の繊維構造体。
    The auxiliary yarn that is in the inner layer of the outer yarn in the stacking direction and is arranged so as to overlap the outer yarn in the stacking direction is used as the first auxiliary yarn.
    When the first yarn arranged in the inner layer of the outer yarn in the stacking direction is used as the inner yarn,
    The multilayer woven fabric further includes a second auxiliary yarn which is an auxiliary yarn which is in the inner layer of the inner layer yarn in the laminating direction and is arranged so as to overlap the inner layer yarn in the laminating direction.
    The fiber structure according to any one of claims 1 to 4, wherein the second auxiliary thread has a thickness smaller than that of the first auxiliary thread.
  6.  強化繊維からなる第1糸及び第2糸が互いに直交する方向に配列された多層織物である平板状の繊維構造体の製造方法であり、
     前記第1糸の糸主軸が延びる方向を第1方向とするとともに、前記第2糸の糸主軸が延びる方向を第2方向とするとき、
     前記多層織物の積層方向における一方面が外側面として曲げ外側になるように、前記第1方向に沿って曲げられる賦形用の繊維構造体の製造方法であって、
     前記第1糸を外側糸として前記外側面に配列させるとともに、補助糸を前記積層方向における前記外側糸よりも内層に配列させるとともに前記積層方向にて前記外側糸と重なって配列させることにより、前記多層織物を製織する製織工程と、
     前記補助糸の太さを小さくする縮小工程と、を備えることを特徴とする繊維構造体の製造方法。
    It is a method of manufacturing a flat plate-like fiber structure which is a multi-layer woven fabric in which the first yarn and the second yarn made of reinforcing fibers are arranged in the directions orthogonal to each other.
    When the direction in which the yarn spindle of the first yarn extends is the first direction and the direction in which the yarn spindle of the second yarn extends is the second direction,
    A method for manufacturing a fiber structure for shaping, which is bent along the first direction so that one surface in the laminating direction of the multilayer woven fabric is bent as an outer surface.
    By arranging the first yarn as an outer yarn on the outer surface, arranging the auxiliary yarn in an inner layer than the outer yarn in the stacking direction, and arranging the auxiliary yarn in an overlapping manner with the outer yarn in the stacking direction. Weaving process for weaving multi-layer fabrics and
    A method for producing a fiber structure, which comprises a reduction step of reducing the thickness of the auxiliary yarn.
PCT/JP2020/025424 2019-07-11 2020-06-29 Fiber structure and method for manufacturing fiber structure WO2021006081A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129574 2019-07-11
JP2019129574A JP2021014646A (en) 2019-07-11 2019-07-11 Fiber structure and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021006081A1 true WO2021006081A1 (en) 2021-01-14

Family

ID=74115194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025424 WO2021006081A1 (en) 2019-07-11 2020-06-29 Fiber structure and method for manufacturing fiber structure

Country Status (2)

Country Link
JP (1) JP2021014646A (en)
WO (1) WO2021006081A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230147809A (en) * 2022-04-14 2023-10-24 주식회사 신양 Edge reinforcement fabric for preventing looseness and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191742A (en) * 1989-01-18 1990-07-27 Toyota Autom Loom Works Ltd Three-dimensional cloth and production thereof
JP2007291582A (en) * 2006-03-31 2007-11-08 Toyota Industries Corp Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure
JP2007297753A (en) * 2006-04-03 2007-11-15 Toyota Industries Corp Method for producing three-dimensional fiber structure
JP2013133555A (en) * 2011-12-26 2013-07-08 Toyota Industries Corp Woven fabric base material and fiber-reinforced composite material
JP2015501890A (en) * 2011-12-14 2015-01-19 スネクマ 3D woven fiber structures, fiber preforms obtained from such fiber structures, and composite parts comprising such preforms
JP2018178299A (en) * 2017-04-11 2018-11-15 株式会社豊田自動織機 Fiber structure and method for manufacturing fiber-reinforced composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191742A (en) * 1989-01-18 1990-07-27 Toyota Autom Loom Works Ltd Three-dimensional cloth and production thereof
JP2007291582A (en) * 2006-03-31 2007-11-08 Toyota Industries Corp Three dimensional fiber structure, composite material and method for producing three dimensional fiber structure
JP2007297753A (en) * 2006-04-03 2007-11-15 Toyota Industries Corp Method for producing three-dimensional fiber structure
JP2015501890A (en) * 2011-12-14 2015-01-19 スネクマ 3D woven fiber structures, fiber preforms obtained from such fiber structures, and composite parts comprising such preforms
JP2013133555A (en) * 2011-12-26 2013-07-08 Toyota Industries Corp Woven fabric base material and fiber-reinforced composite material
JP2018178299A (en) * 2017-04-11 2018-11-15 株式会社豊田自動織機 Fiber structure and method for manufacturing fiber-reinforced composite material

Also Published As

Publication number Publication date
JP2021014646A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
RU2496930C2 (en) Improved fibrous structure for п-shaped preforms
CN104918773A (en) Reinforced structural component made of composite material
EP3225872B1 (en) Impact-absorbing material and method for producing impact-absorbing material
US11549643B2 (en) Pressure vessel and pressure-vessel manufacturing method
RU2604444C2 (en) Corner fitting preforms and method for production thereof
WO2018179878A1 (en) Fibrous structure and fiber-reinforced composite material
JP2022182789A (en) Fiber structure, and fiber-reinforced composite material
JP3549271B2 (en) Fiber structure for filling voids
WO2021006081A1 (en) Fiber structure and method for manufacturing fiber structure
JP6493094B2 (en) Fiber structure and fiber reinforced composite
JP7322588B2 (en) Fiber structures and fiber reinforced composites
JP6607026B2 (en) Fiber reinforced composite
JP2021025164A (en) Fiber structure and fiber-reinforce composite material
US11192312B2 (en) Three-dimensional woven preforms for omega stiffeners
US20170268137A1 (en) Fibrous structure and fiber-reinforced composite material
WO2014030633A1 (en) Three-dimensional fiber-reinforced composite
JP7287162B2 (en) Fiber structures and fiber reinforced composites
WO2013035518A1 (en) Woven fabric base material and fiber-reinforced composite material
WO2012014613A1 (en) Fiber substrate and fiber-reinforced composite material
WO2018179877A1 (en) Fibrous structure and fiber-reinforced composite material
JP5644755B2 (en) Textile substrate and fiber reinforced composite material
EP3581690A1 (en) Fiber structure and fiber reinforced composite material
JP2011073402A (en) Preform of fiber-reinforced composite material and method for manufacturing the same
JP2022122656A (en) Fiber structure, fiber-reinforced composite material, and fiber structure manufacturing method
JP2018001475A (en) Preform for fiber-reinforced composite material, and fiber-reinforced composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836951

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836951

Country of ref document: EP

Kind code of ref document: A1