JP2014081255A - Method for visual inspection of substrate and imaging apparatus - Google Patents

Method for visual inspection of substrate and imaging apparatus Download PDF

Info

Publication number
JP2014081255A
JP2014081255A JP2012228639A JP2012228639A JP2014081255A JP 2014081255 A JP2014081255 A JP 2014081255A JP 2012228639 A JP2012228639 A JP 2012228639A JP 2012228639 A JP2012228639 A JP 2012228639A JP 2014081255 A JP2014081255 A JP 2014081255A
Authority
JP
Japan
Prior art keywords
substrate
light
main surface
light source
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012228639A
Other languages
Japanese (ja)
Other versions
JP6083189B2 (en
JP2014081255A5 (en
Inventor
Yasushi Furushima
康志 古嶋
Toshihiko Karaki
俊彦 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012228639A priority Critical patent/JP6083189B2/en
Publication of JP2014081255A publication Critical patent/JP2014081255A/en
Publication of JP2014081255A5 publication Critical patent/JP2014081255A5/en
Application granted granted Critical
Publication of JP6083189B2 publication Critical patent/JP6083189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for the visual inspection of a substrate where a vibration piece including an electrode is formed and to provide an imaging apparatus.SOLUTION: The method for the visual inspection of the substrate comprises irradiating the substrate having a first reflecting object on one of a first main surface and a second main surface being the back side of the first main surface and having optical transmittance with first light from the side of the first main surface in a direction crossing the first main surface, to receive the reflection component of the first light reflected by the first reflecting object by first receiving means and for irradiating the substrate with second light from the side of the second main surface in the direction crossing the first main surface, to receive the transmission component of the second light transmitted through the substrate by the first receiving means, to perform the visual inspection of the substrate.

Description

本発明は、基板の外観検査方法および撮像装置に関する。   The present invention relates to a substrate visual inspection method and an imaging apparatus.

振動片は基板から形成されるが、基板にわずかな傷があっても、振動片が不良となってしまうので、基板の傷検出は非常に重要である。
これまで、基板の傷は顕微鏡により作業者が目視検査していたが、目視に頼っていたため、数μm以下の傷(エッチング欠陥)を検出することは非常に困難であった。また、作業が長時間継続して行われるため、作業者に対して負担となっていた。このような問題を解決するため特許文献1において、光をエッチングによって形成された振動片を有する基板に垂直に照射し、基板に反射された反射成分を撮影し、撮影された画像中の反射成分の強度の低い領域を、基板内に形成されたエッチング欠陥として検出するエッチング欠陥検査方法や検査システムが開示されている。これにより被検査物の表面に存在する傷からの反射成分が強調され、画像上に明瞭に浮かび上がるとともに、画像処理により傷の存在を判定するので作業者の負担を軽減することができる。
Although the resonator element is formed from a substrate, even if the substrate has a slight scratch, the resonator element becomes defective. Therefore, detection of a substrate scratch is very important.
Until now, an operator visually inspected the scratch on the substrate with a microscope. However, since it relied on visual observation, it was very difficult to detect a scratch (etching defect) of several μm or less. Moreover, since work is performed continuously for a long time, it is a burden on the worker. In order to solve such a problem, in Patent Document 1, light is irradiated perpendicularly to a substrate having a resonator element formed by etching, a reflection component reflected on the substrate is photographed, and a reflection component in the photographed image is captured. An etching defect inspection method and inspection system for detecting a low-intensity region as an etching defect formed in a substrate are disclosed. As a result, the reflection component from the scratch existing on the surface of the object to be inspected is emphasized and clearly appears on the image, and the presence of the scratch is determined by image processing, so that the burden on the operator can be reduced.

特開2010−85225号公報JP 2010-85225 A

しかし、電極が形成された振動片を有する基板の場合、電極が形成された領域と電極が無い領域では、同一光量の光を基板に垂直に照射した際の、基板に反射された反射成分の強度が大きく異なるため、電極が形成された領域と電極が無い領域に生じた傷(エッチング欠陥)を同時に、検出することができないという問題があった。   However, in the case of a substrate having a resonator element on which an electrode is formed, in a region where the electrode is formed and a region where there is no electrode, when the same amount of light is irradiated perpendicularly to the substrate, Since the strength is greatly different, there is a problem that it is impossible to simultaneously detect a scratch (etching defect) generated in a region where an electrode is formed and a region where no electrode is present.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例に係る基板の外観検査方法は、第1の主面又は前記第1の主面の裏側である第2の主面の一方の面に第1の反射物を備えている光透過性を有する基板に、前記第1の主面側から第1の光を前記第1の主面と交わる方向に照射して前記第1の反射物において反射した第1の光の反射成分と、前記基板に、前記第2の主面側から第2の光を前記第1の主面と交わる方向に照射して前記基板を透過した第2の光の透過成分と、を第1の受光手段で受光することにより前記基板の外観の検査を行う工程、を含むことを特徴とする。   Application Example 1 In the substrate appearance inspection method according to this application example, a first reflector is provided on one surface of the first main surface or the second main surface which is the back side of the first main surface. Of the first light reflected on the first reflector by irradiating the first light-transmitting substrate with the first light in the direction intersecting the first main surface from the first main surface side. A reflection component and a second light transmission component transmitted through the substrate by irradiating the substrate with the second light from the second main surface side in a direction intersecting the first main surface; And a step of inspecting the appearance of the substrate by receiving light with one light receiving means.

本適用例によれば、基板の第1の主面や裏側である第2の主面に反射物となる電極が形成された光透過性の基板であっても、反射物となる電極が形成された領域は、第1の光を照射するとエッチング欠陥がある領域で光が散乱し、反射成分の強度がエッチング欠陥のない領域に比べ小さくなるので、この第1の反射成分を第1の受光手段で受光することによりエッチング欠陥を検出することができる。また、電極が形成されていない光透過性の領域は、基板の裏面となる第2の主面側から、第2の光を照射するとエッチング欠陥がある領域で光が散乱し、透過成分の強度がエッチング欠陥のない領域に比べ小さくなるので、この第2の透過成分を第1の受光手段で受光することによりエッチング欠陥を検出することができる。よって、反射物となる電極が形成された光透過性の基板に生じたエッチング欠陥を、電極の有無に限定されず同時に検出することができるという効果がある。   According to this application example, even if the substrate is a light transmissive substrate in which an electrode serving as a reflector is formed on the first major surface or the second major surface on the back side of the substrate, an electrode serving as a reflector is formed. When the first region is irradiated with the first light, the light is scattered in the region having the etching defect, and the intensity of the reflection component is smaller than that in the region without the etching defect. Etching defects can be detected by receiving light with the means. Further, in the light-transmitting region where the electrode is not formed, when the second light is irradiated from the second main surface side which is the back surface of the substrate, the light is scattered in the region where there is an etching defect, and the intensity of the transmitted component Is smaller than a region having no etching defect, so that the etching defect can be detected by receiving the second transmission component by the first light receiving means. Therefore, there is an effect that etching defects generated in the light-transmitting substrate on which the electrode serving as the reflector is formed can be detected simultaneously without being limited to the presence or absence of the electrode.

[適用例2]上記適用例に記載の基板の外観検査方法において、前記基板は他方の面に第2の反射物を備え、前記第2の主面側から第3の光を前記第2の主面と交わる方向に照射して前記第2の反射物において反射した第3の光の反射成分と、前記第1の主面側から第4の光を前記第1の主面と交わる方向に照射して前記基板を透過した第4の光の透過成分と、を第2の受光手段で受光することにより前記基板の外観の検査を行う工程、を更に含むことを特徴とする。   Application Example 2 In the substrate appearance inspection method according to the application example described above, the substrate includes a second reflector on the other surface, and third light is emitted from the second main surface side to the second light. In the direction intersecting with the first main surface, the fourth light component from the first main surface side is reflected from the reflection component of the third light irradiated in the direction intersecting the main surface and reflected by the second reflector. And a step of inspecting the appearance of the substrate by receiving the transmitted light component of the fourth light that has been irradiated and transmitted through the substrate with a second light receiving means.

本適用例によれば、光透過性の基板の第2の主面に反射物となる電極が形成された基板であっても、第3の光を基板の第2の主面側から、第4の光を基板の第1の主面側から照射することにより、エッチング欠陥がある領域で光が散乱されるため、エッチング欠陥の有無による第3の反射成分と第4の透過成分との強度差を第2の受光手段で受光することで、第2の主面の電極が形成された領域と電極が形成されていない光透過性の領域とに生じたエッチング欠陥を検出することができるという効果がある。   According to this application example, the third light is transmitted from the second main surface side of the substrate to the second main surface of the light transmissive substrate from the second main surface side of the substrate. 4 is irradiated from the first main surface side of the substrate, so that light is scattered in a region where there is an etching defect. Therefore, the intensity of the third reflection component and the fourth transmission component depending on the presence or absence of the etching defect. By receiving the difference with the second light receiving means, it is possible to detect etching defects generated in the region where the electrode of the second main surface is formed and the light-transmitting region where the electrode is not formed. effective.

[適用例3]上記適用例に記載の基板の外観検査方法において、前記基板は、水晶で構成されていることを特徴とする。   Application Example 3 In the substrate appearance inspection method according to the application example described above, the substrate is made of quartz.

本適用例によれば、水晶は光透過性の材料であるため、反射物となる電極が形成された水晶基板に生じたエッチング欠陥を、電極の有無に限定されず同時に検出することができるという効果がある。   According to this application example, since quartz is a light-transmitting material, it is possible to simultaneously detect etching defects generated in a quartz substrate on which an electrode serving as a reflector is formed, regardless of the presence or absence of the electrode. effective.

[適用例4]上記適用例に記載の基板の外観検査方法において、前記外観の検査はエッチング欠陥の検査であることを特徴とする。   Application Example 4 In the substrate appearance inspection method according to the application example, the appearance inspection is an etching defect inspection.

本適用例によれば、作業者による目視検査では非常に困難であった数μm以下のエッチング欠陥を容易に検出することができ、検出精度を向上することができるという効果がある。   According to this application example, it is possible to easily detect an etching defect of several μm or less, which is very difficult by visual inspection by an operator, and it is possible to improve detection accuracy.

[適用例5]上記適用例に記載の基板の外観検査方法において、前記第1の光の反射成分を前記第1の受光手段で受光することを特徴とする。   Application Example 5 In the substrate appearance inspection method according to the application example, the reflection component of the first light is received by the first light receiving unit.

本適用例によれば、基板の電極が形成された領域では、エッチング欠陥がある領域で第1の光が散乱され反射成分の強度が小さくなるため、エッチング欠陥の有無による第1の反射成分の強度差を第1の受光手段で受光することにより、基板の電極が形成された領域に生じたエッチング欠陥を検出することができるという効果がある。   According to this application example, in the region where the electrode of the substrate is formed, the first light is scattered in the region having the etching defect and the intensity of the reflection component is reduced. By receiving the intensity difference with the first light receiving means, there is an effect that it is possible to detect an etching defect generated in the region where the electrode of the substrate is formed.

[適用例6]上記適用例に記載の基板の外観検査方法において、前記第2の光の透過成分を前記第1の受光手段で受光することを特徴とする。   Application Example 6 In the substrate appearance inspection method according to the application example described above, the transmission component of the second light is received by the first light receiving unit.

本適用例によれば、基板の電極が形成されていない領域では、エッチング欠陥がある領域で第2の光が散乱され透過成分の強度が小さくなるため、エッチング欠陥の有無による第2の透過成分の強度差を第1の受光手段で受光することにより、基板の電極が形成されていない領域に生じたエッチング欠陥を検出することができるという効果がある。   According to this application example, in the region where the electrode of the substrate is not formed, the second light is scattered in the region having the etching defect and the intensity of the transmission component is reduced. By receiving the difference in intensity by the first light receiving means, there is an effect that it is possible to detect an etching defect generated in a region where the electrode of the substrate is not formed.

[適用例7]上記適用例に記載の基板の外観検査方法において、前記第1の光と前記第2の光とを前記第1の主面の法線方向に沿って前記基板に照射することを特徴とする。   Application Example 7 In the substrate appearance inspection method according to the application example described above, the substrate is irradiated with the first light and the second light along a normal direction of the first main surface. It is characterized by.

本適用例によれば、第1の光と第2の光を基板の第1の主面に垂直に照射されることにより、基板のエッジや振動片のエッジからの散乱光を低減できるという効果がある。また、エッチング欠陥に起因する第1の反射成分と第2の透過成分の強度の小さい領域とエッチング欠陥がない領域の第1の反射成分と第2の透過成分の強度の大きい領域とのコントラストを向上させ、両領域のエッチング欠陥を同時に、精度良く検出することができるという効果がある。   According to this application example, by irradiating the first light and the second light perpendicularly to the first main surface of the substrate, it is possible to reduce scattered light from the edge of the substrate or the edge of the vibrating piece. There is. Further, the contrast between the first reflection component and the second transmission component having a low intensity due to the etching defect and the first reflection component and the second transmission component having a high intensity of the etching defect without the etching defect are expressed as follows. There is an effect that the etching defects in both regions can be simultaneously and accurately detected.

[適用例8]上記適用例に記載の基板の外観検査方法において、前記第1の光を発光する第1の光源の光量に対し、前記第2の光を発光する第2の光源の光量が1.5倍以上2.5倍以下の範囲にあることを特徴とする。   Application Example 8 In the substrate appearance inspection method according to the application example described above, the light amount of the second light source that emits the second light is greater than the light amount of the first light source that emits the first light. It exists in the range of 1.5 times or more and 2.5 times or less.

本適用例によれば、第1の光源の光量に対し、第2の光源の光量が1.5倍以上2.5倍以下の範囲とすることで、第1の光による電極が形成された領域の反射成分の強度と、第2の光による電極が形成されていない領域の透過成分の強度とが同程度となり、電極が形成された領域と電極が形成されていない領域に生じたエッチング欠陥領域の有無による光の強度差が検知できることとなり、反射物となる電極が形成された光透過性の基板に生じたエッチング欠陥を、電極の有無に限定されず同時に検出することができるという効果がある。   According to this application example, the electrode of the first light is formed by setting the light amount of the second light source in the range of 1.5 to 2.5 times the light amount of the first light source. The intensity of the reflection component in the region and the intensity of the transmission component in the region where the electrode is not formed by the second light are approximately the same, and the etching defect generated in the region where the electrode is formed and the region where the electrode is not formed The light intensity difference depending on the presence or absence of the region can be detected, and the etching defect generated on the light-transmitting substrate on which the electrode serving as the reflector is formed can be detected simultaneously without being limited to the presence or absence of the electrode. is there.

[適用例9]上記適用例に記載の基板の外観検査方法において、前記第1の受光手段で前記第1の反射成分と前記第2の透過成分とを受光することにより前記基板の外観を検査する工程と、前記第2の受光手段で前記第3の反射成分と前記第4の透過成分とを受光することにより前記基板の外観を検査する工程との間を、搬送手段によって前記基板を搬送することを特徴とする。   Application Example 9 In the substrate appearance inspection method according to the application example described above, the appearance of the substrate is inspected by receiving the first reflection component and the second transmission component by the first light receiving unit. And the step of inspecting the appearance of the substrate by receiving the third reflection component and the fourth transmission component by the second light receiving unit, and transporting the substrate by the transport unit. It is characterized by doing.

本適用例によれば、反射物となる電極が光透過性の基板の第1の主面と第2の主面に形成された基板の外観検査において、第1の受光手段により第1の主面の電極領域に生じたエッチング欠陥を検査した後に、第2の受光手段で第2の主面の電極領域に生じたエッチング欠陥を検査し、基板の両主面の外観検査を行う際に、第1の受光手段設置位置から第2の受光手段設置位置まで、搬送手段により基板を搬送することができるため、基板の主面を反転することなく、短時間で基板の両主面の外観検査を行うことができ、コスト低減に大きな効果がある。   According to this application example, in the visual inspection of the substrate in which the electrode serving as the reflector is formed on the first main surface and the second main surface of the light-transmitting substrate, the first light receiving unit performs the first main light receiving unit. After inspecting the etching defect generated in the electrode region of the surface, the second light receiving means inspects the etching defect generated in the electrode region of the second main surface, and when performing the appearance inspection of both main surfaces of the substrate, Since the substrate can be transferred from the first light receiving means installation position to the second light receiving means installation position by the transfer means, the appearance inspection of both main surfaces of the substrate can be performed in a short time without inverting the main surface of the substrate. Can be performed, which has a great effect on cost reduction.

[適用例10]本適用例に係る撮像装置は、第1の光源と、光軸が前記第1の光源と少なくとも一部が重なり、且つ光学的に向かい合っていて、光量が前記第1の光源に対して1.5倍以上2.5倍以下の範囲にある第2の光源と、前記第2の光源と前記光軸上であって、且つ光学的に向かい合う位置に配置されている受光手段と、を備えていることを特徴とする。   Application Example 10 In an imaging apparatus according to this application example, the first light source has an optical axis that is at least partially overlapped with the first light source and is optically opposed, and the amount of light is the first light source. A second light source in a range of 1.5 times to 2.5 times the light source, and a light receiving means disposed on the optical axis and the optical axis opposite to the second light source. And.

本適用例によれば、受光手段と第1の光源と第2の光源とが光軸上に重なる位置で、且つ受光手段と第1の光源に対向して第2の光源が配置されることにより、第1の光源と第2の光源との間に設置された被検査物に第1の光源の光と第2の光源の光を照射することで、被検査物の主面で反射した第1の光源の反射成分と被検査物を透過した第2の光源の透過成分とを受光手段で受光することができる。また、第2の光源の光量を第1の光源に対して1.5倍以上2.5倍以下の範囲とすることで、第1の光源の光による反射成分と第2の光源の光にある透過成分との強度を同程度とすることができる。そのため、被検査物の反射成分の生じる領域と透過成分の生じる領域において、エッチング欠陥の有無による光の強度差を検知できることとなり、反射成分の生じる領域と透過成分の生じる領域に生じたエッチング欠陥を同時に検出することができる撮像装置を提供することができる。   According to this application example, the second light source is disposed at a position where the light receiving unit, the first light source, and the second light source overlap on the optical axis and facing the light receiving unit and the first light source. By irradiating the light of the 1st light source and the light of the 2nd light source to the to-be-inspected object installed between the 1st light source and the 2nd light source, it reflected on the main surface of the to-be-inspected object The light receiving means can receive the reflection component of the first light source and the transmission component of the second light source that has passed through the inspection object. In addition, by setting the light amount of the second light source in the range of 1.5 times to 2.5 times that of the first light source, the reflected light component of the first light source and the light of the second light source can be reduced. The intensity with a certain transmission component can be made comparable. Therefore, the difference in light intensity due to the presence or absence of etching defects can be detected in the region where the reflection component of the inspection object is generated and the region where the transmission component is generated. An imaging device capable of detecting at the same time can be provided.

本発明の第1の実施形態に係る基板の外観検査方法および撮像装置の模式図。1 is a schematic diagram of a substrate visual inspection method and an imaging apparatus according to a first embodiment of the present invention. 検査対象の基板である水晶基板と結晶軸との関係を説明するための図。The figure for demonstrating the relationship between the crystal substrate which is a board | substrate to be examined, and a crystal axis. 検査対象の基板の模式図。The schematic diagram of the board | substrate to be examined. 検査対象の基板に形成された振動片の模式図であり、(a)は平面図、(b)はA−A断面図。It is a schematic diagram of the vibration piece formed in the board | substrate of a test object, (a) is a top view, (b) is AA sectional drawing. 振動片が形成された検査対象の基板の製造工程の一例を示す工程図。Process drawing which shows an example of the manufacturing process of the board | substrate of the test object in which the vibration piece was formed. 振動片が形成された検査対象の基板の外形形成工程を示す基板(振動片)の概略断面図および欠損部がエッチング欠陥に成長する過程を示す図。FIG. 5 is a schematic cross-sectional view of a substrate (vibrating piece) showing an outer shape forming process of a substrate to be inspected on which a vibrating piece is formed, and a diagram showing a process in which a defect portion grows into an etching defect. 振動片が形成された検査対象の基板のメサ形成工程を示す基板(振動片)の概略断面図および欠損部やエッチチャンネルがエッチング欠陥に成長する過程を示す図。FIG. 4 is a schematic cross-sectional view of a substrate (vibration piece) showing a mesa formation process of a substrate to be inspected on which a vibration piece is formed, and a diagram showing a process in which a defect portion or an etch channel grows into an etching defect. 振動片が形成された検査対象の基板の電極形成工程を示す基板(振動片)の概略断面図。The schematic sectional drawing of the board | substrate (vibration piece) which shows the electrode formation process of the board | substrate of the test object in which the vibration piece was formed. 第1の光源と第2の光源との光量比率に対する各種要因に起因するエッチング欠陥の検出率を示す図。The figure which shows the detection rate of the etching defect resulting from the various factors with respect to the light quantity ratio of the 1st light source and the 2nd light source. 基板に光を照射しエッチング欠陥を検出する方法を説明する図であり、(a)は基板の断面を示す模式図、(b)は受光手段から見える画像の模式図。It is a figure explaining the method to irradiate light to a board | substrate, and to detect an etching defect, (a) is a schematic diagram which shows the cross section of a board | substrate, (b) is a schematic diagram of the image seen from a light-receiving means. 画像処理の模式図であり、(a)は処理前の分割平面を示す図、(b)は処理後の分割平面を示す図。It is a schematic diagram of an image process, (a) is a figure which shows the division | segmentation plane before a process, (b) is a figure which shows the division | segmentation plane after a process. 本発明の第2の実施形態に係る基板の外観検査方法および撮像装置の模式図。The schematic diagram of the external appearance inspection method and imaging device of a board concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る基板の外観検査方法および撮像装置の模式図。The schematic diagram of the external appearance inspection method and imaging device of a substrate concerning a 3rd embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の第1の実施形態に係る基板の外観検査方法、およびこれを具現化した撮像装置を示した模式図である。
電極14が形成された基板10の外観検査方法は、基板10の電極14が形成された領域においては、第1の光源32の第1の光38aを全反射ミラー36に反射させて、第1の光38aを基板10に垂直に照射する。その後、基板10の電極14で反射され、全反射ミラー36を透過した第1の反射成分38bを撮影し、撮影された画像中の第1の反射成分38bの強度の低い領域を、基板10内に生じたエッチング欠陥92として検出するものである。また、基板10の電極14が形成されていない領域においては、第2の光源42の第2の光48aを全反射ミラー46に反射させて、第2の光48aを基板10に垂直に照射する。その後、基板10を透過し、全反射ミラー36を透過した第2の透過成分48cを撮影し、撮影された画像中の第2の透過成分48cの強度の低い領域を、基板10内に生じたエッチング欠陥92として検出するものである。
FIG. 1 is a schematic diagram showing a substrate visual inspection method according to a first embodiment of the present invention and an imaging apparatus embodying the method.
In the visual inspection method for the substrate 10 on which the electrode 14 is formed, the first light 38 a of the first light source 32 is reflected by the total reflection mirror 36 in the region where the electrode 14 is formed on the substrate 10. Is irradiated perpendicularly to the substrate 10. Thereafter, the first reflection component 38b reflected by the electrode 14 of the substrate 10 and transmitted through the total reflection mirror 36 is photographed, and the low-intensity region of the first reflection component 38b in the photographed image is captured in the substrate 10. This is detected as an etching defect 92 generated in step (b). Further, in the region where the electrode 14 of the substrate 10 is not formed, the second light 48a of the second light source 42 is reflected by the total reflection mirror 46, and the second light 48a is irradiated to the substrate 10 perpendicularly. . Thereafter, the second transmissive component 48c that was transmitted through the substrate 10 and transmitted through the total reflection mirror 36 was photographed, and a region having a low intensity of the second transmissive component 48c in the photographed image was generated in the substrate 10. This is detected as an etching defect 92.

そして、これを具現化する基板10の外観を検査する撮像装置1は、鏡筒20、第1の光源32、第2の光源42、全反射ミラー36,46、カメラなどの撮像手段である受光手段50、検出手段となる検出部60、試料台70により構成され、電極14が形成された基板10を検査対象としている。なお、エッチング欠陥92とは、後述するが振動片が形成された基板の製造工程におけるゴミや耐蝕膜のキズ、基板材料のエッチチャンネルなどが起因となって基板エッチング時に発生した基板表面の凹状の欠損や基板内部の貫通孔である。   And the imaging device 1 which inspects the external appearance of the board | substrate 10 which embodies this is light reception which is imaging means, such as the lens-barrel 20, the 1st light source 32, the 2nd light source 42, the total reflection mirrors 36 and 46, and a camera. The inspection target is the substrate 10 including the means 50, the detection unit 60 serving as the detection means, and the sample stage 70, on which the electrode 14 is formed. As will be described later, the etching defect 92 is a concave surface on the surface of the substrate generated during etching of the substrate due to dust, scratches in the corrosion-resistant film, etch channels of the substrate material, and the like in the manufacturing process of the substrate on which the resonator element is formed. It is a defect or a through hole inside the substrate.

次に、本発明の第1の実施形態に係る外観検査方法における検査対象の基板について説明する。
図2は、基板10の一例とする水晶基板と結晶軸との関係を示した図である。基板10は、図2に示すように、矩形状であり、互いに直交する結晶軸X、Y、Zを有し、XZ面をX軸の回りに所定の角度θだけ回転させた平面に沿って、切り出された回転Yカット水晶基板である。
回転Yカット水晶基板の角度θが35.25°(35°15′)の場合、ATカット水晶基板と呼称され、優れた周波数温度特性を有する。ここで、ATカット水晶基板は、直交する結晶軸X、Y’、Z’を有し、厚み方向がY’軸であり、Y’軸に直交するX軸とZ’軸を含む面が主面であり、主面に厚み滑り振動が主振動として励振される。
Next, a substrate to be inspected in the appearance inspection method according to the first embodiment of the present invention will be described.
FIG. 2 is a diagram illustrating a relationship between a crystal substrate as an example of the substrate 10 and a crystal axis. As shown in FIG. 2, the substrate 10 has a rectangular shape, has crystal axes X, Y, and Z orthogonal to each other, and is along a plane obtained by rotating the XZ plane by a predetermined angle θ around the X axis. This is a cut out Y-cut quartz crystal substrate.
When the angle θ of the rotated Y-cut quartz substrate is 35.25 ° (35 ° 15 ′), it is called an AT-cut quartz substrate and has excellent frequency temperature characteristics. Here, the AT-cut quartz substrate has crystal axes X, Y ′, and Z ′ that are orthogonal to each other, the thickness direction is the Y′-axis, and the surface that includes the X-axis and the Z′-axis orthogonal to the Y′-axis is the main. A thickness-shear vibration is excited as a main vibration on the main surface.

ここで、水晶基板に生じるエッチチャンネルについて説明する。
Z軸を結晶の成長方向とする水晶原石にはZ軸方向に伸びたエッチチャンネルが形成される。これは、Z軸方向の結晶成長の速度より、Z軸方向と垂直な方向の結晶成長の速度が遅いことに起因する。このエッチチャンネルは原石やそれから切り出した素板の段階でも検出することは可能であるが、目視検査のため正確な位置の検出は困難である。しかし、このエッチチャンネルは後段の振動片にメサ部を形成するウェットエッチング工程において、エッチチャンネルが基板の表面に露出した領域からエッチング液が侵入することにより、欠陥のない領域と比べてエッチングレートの速いエッチチャンネル領域がエッチングされて内径が拡大し、貫通孔のような形態を有するエッチング欠陥92(図7(h)参照)として表れることになる。よって、エッチチャンネルが少ない水晶原石より切り出した水晶基板を用いることが望ましい。
Here, the etch channel generated in the quartz substrate will be described.
Etch channels extending in the Z-axis direction are formed in the quartz crystal with the Z-axis as the crystal growth direction. This is because the crystal growth rate in the direction perpendicular to the Z-axis direction is slower than the crystal growth rate in the Z-axis direction. This etch channel can be detected even at the stage of the rough or the base plate cut out from it, but it is difficult to detect the exact position because of visual inspection. However, this etch channel has a higher etching rate than a defect-free region because the etchant enters from the region where the etch channel is exposed on the surface of the substrate in the wet etching process in which the mesa portion is formed in the subsequent vibrating piece. The fast etch channel region is etched to increase the inner diameter, and appears as an etching defect 92 (see FIG. 7H) having a shape like a through hole. Therefore, it is desirable to use a quartz substrate cut out from a quartz crystal with few etch channels.

図3は、本発明に係る検査対象の基板の模式図である。図4は、検査対象の基板に形成された振動片の模式図であり、図4(a)は平面図、図4(b)は図4(a)のA−A断面図である。なお、以降の説明では、説明の便宜上、Y’軸方向から見たときの平面視において、+Y’軸方向の面を上面、−Y’軸方向の面を下面として説明する。   FIG. 3 is a schematic view of a substrate to be inspected according to the present invention. 4A and 4B are schematic views of a resonator element formed on a substrate to be inspected. FIG. 4A is a plan view, and FIG. 4B is a cross-sectional view taken along line AA in FIG. In the following description, for convenience of description, the plane in the + Y′-axis direction will be described as the upper surface and the −Y′-axis direction surface in the plan view when viewed from the Y′-axis direction.

検査対象の基板10には、複数個の振動片12がウェットエッチング工程により形成されている。振動片12は、基板10中央部にウェットエッチング工程により形成されたメサ部16を有し、メサ部16の上下面10a,10bに電極14が設けられている。また、基板10端部にはパッケージ内部端子(図示しない)への支持・固定と導通を図るためのパッド電極15が設けられている。なお、振動片12にメサ部16を設けることは、振動エネルギーを電極14下に閉じ込め、外部へ漏洩する振動エネルギーを防止するためであり、振動片12のCI(クリスタルインピーダンス)値を小さくする効果がある。   A plurality of vibrating pieces 12 are formed on the substrate 10 to be inspected by a wet etching process. The resonator element 12 has a mesa portion 16 formed by a wet etching process at the center of the substrate 10, and electrodes 14 are provided on the upper and lower surfaces 10 a and 10 b of the mesa portion 16. Further, a pad electrode 15 is provided at the end of the substrate 10 for supporting / fixing and conducting to a package internal terminal (not shown). The provision of the mesa portion 16 in the resonator element 12 is for confining the vibration energy under the electrode 14 and preventing the vibration energy leaking to the outside, and the effect of reducing the CI (crystal impedance) value of the resonator element 12. There is.

次に、ATカット水晶基板を用いた場合の基板にエッチング欠陥が生じる過程を図5〜図8を用いて説明する。
図5は、振動片が形成された検査対象の基板の製造工程の一例を示す工程図である。図6は、図5の外形形成工程を示す基板(振動片)の概略断面図および欠損部がエッチング欠陥に成長する過程を示す図である。図7は、図5のメサ形成工程を示す基板(振動片)の概略断面図および欠損部やエッチチャンネルがエッチング欠陥に成長する過程を示す図である。図8は、図5の電極形成工程を示す基板(振動片)の概略断面図である。
Next, a process in which an etching defect occurs in a substrate when an AT cut quartz substrate is used will be described with reference to FIGS.
FIG. 5 is a process diagram illustrating an example of a manufacturing process of a substrate to be inspected on which a resonator element is formed. FIG. 6 is a schematic cross-sectional view of a substrate (vibration piece) showing the outer shape forming step of FIG. 5 and a process of growing a defect portion into an etching defect. FIG. 7 is a schematic cross-sectional view of a substrate (vibration piece) showing the mesa formation process of FIG. 5 and a process of growing a defect portion or an etch channel into an etching defect. FIG. 8 is a schematic cross-sectional view of the substrate (vibration piece) showing the electrode forming step of FIG.

基板10に形成される振動片12の製造工程は、振動片12の外形を形成するための外形形成工程と、振動片12の上下面10a,10bにメサ部16を形成するメサ形成工程と、振動片12の上下面10a,10bに電極14を形成する電極形成工程と、からなり、フォトリソグラフィ技術を用いて行われる。   The manufacturing process of the vibrating element 12 formed on the substrate 10 includes an outer shape forming process for forming the outer shape of the vibrating element 12, and a mesa forming process for forming the mesa portion 16 on the upper and lower surfaces 10a and 10b of the vibrating element 12. And an electrode forming process for forming electrodes 14 on the upper and lower surfaces 10a and 10b of the resonator element 12, and is performed using a photolithography technique.

図6の外形形成工程では、先ず、基板10を純水で洗浄し(ST1)、続いて、基板10の上下面10a,10bに、耐蝕膜80(例えばクロム(Cr)を下地膜とした金(Au))を蒸着装置、あるいはスパッタ装置等を用いて成膜し、次に、耐蝕膜80の表面全体にレジスト82を塗布する(ST2)。
その後、露光・現像することで、基板10の上に振動片12の外形形成マスクを形成する(ST3)。
続いて、マスク開口から露出した耐蝕膜80をエッチング(金(Au)は、例えば、よう化カリウム溶液を用い、次いで、下地膜であるクロム(Cr)は硝酸2セリウムアンモニウム溶液を用い)し、マスク開口から露出した基板10を、例えば水晶基板の場合には、エッチング液としてフッ化アンモニウム溶液等を用いてエッチングする(ST4)。
更に、レジスト82と外形形成マスクである耐蝕膜80を剥離する(ST5)ことで、振動片12が形成された基板10が完成する。
In the outer shape forming step of FIG. 6, first, the substrate 10 is washed with pure water (ST1), and then a corrosion-resistant film 80 (for example, chromium (Cr) as a base film is formed on the upper and lower surfaces 10a and 10b of the substrate 10). (Au)) is deposited using a vapor deposition device or a sputtering device, and then a resist 82 is applied to the entire surface of the corrosion-resistant film 80 (ST2).
Thereafter, exposure / development is performed to form an outer shape forming mask of the resonator element 12 on the substrate 10 (ST3).
Subsequently, the corrosion-resistant film 80 exposed from the mask opening is etched (gold (Au) uses, for example, a potassium iodide solution, and then chromium (Cr) as a base film uses a ceric ammonium nitrate solution), For example, in the case of a quartz substrate, the substrate 10 exposed from the mask opening is etched using an ammonium fluoride solution or the like as an etching solution (ST4).
Further, the resist 10 and the corrosion-resistant film 80 that is the outer shape forming mask are peeled off (ST5), whereby the substrate 10 on which the resonator element 12 is formed is completed.

ここで、基板10の表面にゴミ(例えば、基板破損片、金属片、有機物)が付着し、その上に耐蝕膜80が成膜され、ゴミが付着した領域の耐蝕膜80が欠損したことにより欠損部91がエッチング欠陥92に成長する過程について説明する。
図6(b)において、耐蝕膜80を成膜した際にゴミにより生じた耐蝕膜80の欠損部91があると、図6(d)の基板エッチングにおいて、振動片12の外形形状に貫通するエッチングを施す間に、エッチング液がレジスト82に浸透し、欠損部91に到達することで、基板10の表面がエッチングされ凹状のエッチング欠陥92に成長する。なお、ゴミ付着が起因のエッチング欠陥92は、外形形成工程に限らず、メサ形成工程においても発生する可能性がある。
Here, dust (for example, broken substrate pieces, metal pieces, organic matter) adheres to the surface of the substrate 10, the corrosion-resistant film 80 is formed thereon, and the corrosion-resistant film 80 in the region where the dust adheres is lost. A process in which the defect portion 91 grows into the etching defect 92 will be described.
In FIG. 6B, if there is a defect 91 in the corrosion-resistant film 80 generated by dust when the corrosion-resistant film 80 is formed, the outer shape of the resonator element 12 is penetrated in the substrate etching of FIG. 6D. During the etching, the etching solution penetrates the resist 82 and reaches the defect portion 91, whereby the surface of the substrate 10 is etched and grows into a concave etching defect 92. Note that the etching defect 92 due to dust adhesion may occur not only in the outer shape forming process but also in the mesa forming process.

次に、図7のメサ形成工程では、図6の外形形成工程と同様に、振動片12の外形形状が施された基板10の上下面10a,10bに、耐蝕膜80を蒸着装置、あるいはスパッタ装置等を用いて成膜し、次に、耐蝕膜80の表面全体にレジスト82を塗布する(ST6)。
その後、露光・現像することで、振動片12の上にメサ形成マスクを形成する(ST7)。
続いて、マスク開口から露出した耐蝕膜80をエッチングし、マスク開口から露出した基板10を、エッチング液でエッチングする(ST8)。
更に、レジスト82とメサ形成マスクである耐蝕膜80を剥離する(ST9)ことで、メサ部16を有する振動片12が形成された基板10が完成する。
Next, in the mesa forming step of FIG. 7, as in the outer shape forming step of FIG. 6, the corrosion-resistant film 80 is deposited on the upper and lower surfaces 10a, 10b of the substrate 10 on which the outer shape of the resonator element 12 has been applied. A film is formed using an apparatus or the like, and then a resist 82 is applied to the entire surface of the corrosion-resistant film 80 (ST6).
Thereafter, a mesa forming mask is formed on the vibrating piece 12 by exposure and development (ST7).
Subsequently, the corrosion-resistant film 80 exposed from the mask opening is etched, and the substrate 10 exposed from the mask opening is etched with an etchant (ST8).
Further, the resist 10 and the corrosion-resistant film 80 that is a mesa formation mask are peeled off (ST9), whereby the substrate 10 on which the resonator element 12 having the mesa portion 16 is formed is completed.

ここで、耐蝕膜80の表面にキズが生じ耐蝕膜80が欠損したことにより欠損部91がエッチング欠陥92に成長する過程と、基板10のエッチチャンネル90に起因しエッチング欠陥92に成長する過程とについて説明する。
図7(f)において、耐蝕膜80の表面にキズによる耐蝕膜80の欠損部91があると、図7(h)のメサ形成エッチングにおいて、ゴミによるエッチング欠陥92と同様に、メサ形成エッチングを施す間に、エッチング液がレジスト82に浸透し、欠損部91に到達することで、基板10の表面がエッチングされ凹状のエッチング欠陥92に成長する。なお、キズが起因のエッチング欠陥92は、メサ形成工程に限らず、外形形成工程においても発生する可能性があり、また、エッチング欠陥92の大きさは、メサ部16を形成するエッチング時間が振動片12の外形を形成するエッチング時間より短いため、外形形成時に生じたものに比べ、比較的小さい。
Here, a process in which scratches are generated on the surface of the corrosion-resistant film 80 and the corrosion-resistant film 80 is lost, so that a defect 91 grows into an etching defect 92 and a process in which the etching channel 90 of the substrate 10 causes the etching defect 92 to grow. Will be described.
In FIG. 7F, if there is a defect 91 in the corrosion-resistant film 80 due to scratches on the surface of the corrosion-resistant film 80, the mesa formation etching in the mesa formation etching of FIG. During the application, the etching solution penetrates the resist 82 and reaches the defect portion 91, whereby the surface of the substrate 10 is etched and grows into a concave etching defect 92. The etching defect 92 due to scratches may occur not only in the mesa formation process but also in the outer shape formation process, and the size of the etching defect 92 varies depending on the etching time for forming the mesa portion 16. Since it is shorter than the etching time for forming the outer shape of the piece 12, it is relatively small compared to that generated during the outer shape formation.

図6(a)や図7(f)において、基板10のエッチチャンネル90は、水晶にガラス(広義には、非晶質)が埋まっている構造であると考えられ、周りの水晶よりもエッチングレートが高い。そのため、図7(h)では、メサ形成マスクを形成後、耐蝕膜80をエッチングすると、エッチチャンネル90が露出する。その後、メサ形成エッチング時に、エッチング液によりエッチチャンネル90のガラスがエッチングされ、貫通後内径が広がり、貫通孔のようなエッチング欠陥92に成長する。一方、耐蝕膜80で覆われているエッチチャンネル90は、エッチング液によって侵食されず、ガラスが埋まった状態を維持する。   In FIGS. 6A and 7F, the etch channel 90 of the substrate 10 is considered to have a structure in which glass (amorphous in a broad sense) is embedded in the crystal, and is etched more than the surrounding crystal. The rate is high. Therefore, in FIG. 7H, when the corrosion resistant film 80 is etched after the mesa formation mask is formed, the etch channel 90 is exposed. Thereafter, during the mesa formation etching, the glass of the etch channel 90 is etched by the etchant, and the inner diameter increases after the penetration, and grows into an etching defect 92 such as a through hole. On the other hand, the etch channel 90 covered with the anticorrosion film 80 is not eroded by the etchant and maintains a state where the glass is buried.

上述した振動片12に生じたエッチング欠陥92は、振動エネルギーの減衰や不要なスプリアス振動の発生の原因となり、振動片12のCI値の低下や周波数ジャンプ不良を引き起こすこととなる。また、貫通孔のようなエッチング欠陥92は、応力が集中する箇所となって強度が低下し、割れや欠けによる不良の原因となる。そのため、振動片12が基板10から取り外されパッケージ等に実装される前に、外観検査によりエッチング欠陥92を検出する必要がある。従って、基板10上に生じたエッチング欠陥92を検出することは、特性不良や破損不良の低減を図る上で非常に重要である。   The above-described etching defect 92 generated in the resonator element 12 causes attenuation of vibration energy and generation of unnecessary spurious vibration, and causes a decrease in the CI value of the resonator element 12 and a defective frequency jump. In addition, the etching defect 92 such as a through hole becomes a location where stress is concentrated, the strength is lowered, and causes a defect due to cracking or chipping. Therefore, it is necessary to detect the etching defect 92 by visual inspection before the resonator element 12 is detached from the substrate 10 and mounted on a package or the like. Accordingly, it is very important to detect the etching defect 92 generated on the substrate 10 in order to reduce characteristic defects and breakage defects.

次に、図8の電極形成工程では、メサ部16を有する振動片12が形成された基板10の上下面10a,10bに、反射物となる電極膜13(例えばクロム(Cr)を下地膜とした金(Au))を蒸着装置、あるいはスパッタ装置等を用いて成膜し、次に、電極膜13の表面全体にレジスト82を塗布する(ST10)。
その後、露光・現像することで、メサ部16を有する振動片12の上に電極形成マスクを形成する(ST11)。
続いて、マスク開口から露出した電極膜13をエッチングする(ST12)。
更に、レジスト82を剥離する(ST13)ことで、電極14が設けられたメサ部16を有する振動片12が形成された基板10が完成する。
Next, in the electrode formation process of FIG. 8, the electrode film 13 (for example, chromium (Cr) as a base material is used as the base film on the upper and lower surfaces 10a and 10b of the substrate 10 on which the resonator element 12 having the mesa portion 16 is formed. The gold (Au)) is deposited using a vapor deposition device or a sputtering device, and then a resist 82 is applied to the entire surface of the electrode film 13 (ST10).
Thereafter, an electrode formation mask is formed on the vibrating piece 12 having the mesa portion 16 by exposure and development (ST11).
Subsequently, the electrode film 13 exposed from the mask opening is etched (ST12).
Further, the resist 82 is peeled off (ST13), whereby the substrate 10 on which the resonator element 12 having the mesa portion 16 provided with the electrode 14 is formed is completed.

次に、電極が形成された振動片を有する基板の外観検査方法について詳細に説明する。
図1において、鏡筒20は、第1の光源32と全反射ミラー36と受光手段50とを保持するものである。鏡筒20は全体として円筒形の形状を有しており、光の乱反射を防止するため内壁は艶消し塗装等により光を吸収できるように処理されている。また、鏡筒20は垂直に立てられ、試料台70もしくは系外の所定部材(図示しない)によって固定されている。
Next, a method for inspecting the appearance of a substrate having a resonator element on which an electrode is formed will be described in detail.
In FIG. 1, the lens barrel 20 holds a first light source 32, a total reflection mirror 36, and a light receiving means 50. The lens barrel 20 has a cylindrical shape as a whole, and the inner wall is treated so as to be able to absorb light by matte coating or the like in order to prevent irregular reflection of light. Further, the lens barrel 20 is set up vertically and fixed by the sample stage 70 or a predetermined member (not shown) outside the system.

鏡筒20の上端の開口部22と下端の開口部24とは平面視して互いに重なる位置に形成されている。そして、上端の開口部22には受光手段50が取り付けられ、下端の開口部24は試料台70に向けられている。鏡筒20の中央部には水平方向に分岐管30が取り付けられており、分岐管30の先端には第1の光38aを発生する第1の光源32が取り付けられている。   The opening 22 at the upper end and the opening 24 at the lower end of the lens barrel 20 are formed at positions that overlap each other in plan view. The light receiving means 50 is attached to the opening 22 at the upper end, and the opening 24 at the lower end is directed to the sample stage 70. A branch tube 30 is attached to the central portion of the lens barrel 20 in the horizontal direction, and a first light source 32 that generates first light 38 a is attached to the tip of the branch tube 30.

全反射ミラー36は、鏡筒20の開口部22と開口部24の中心を結ぶ線上(光軸C)であって分岐管30と同じ高さ位置に取り付けられている。全反射ミラー36はミラー面を垂直方向からほぼ45°上端側を分岐管30側に傾けた状態で鏡筒20の内壁に取り付けられている。   The total reflection mirror 36 is mounted on the line (optical axis C) connecting the opening 22 and the center of the opening 24 of the lens barrel 20 and at the same height as the branch tube 30. The total reflection mirror 36 is attached to the inner wall of the lens barrel 20 with the mirror surface inclined at an angle of approximately 45 ° from the vertical direction toward the branch tube 30.

第1の光源32は、受光手段50が検知可能で、且つ、全反射ミラー36および基板10が光吸収しない周波数帯域を有するものを用いる。また、第1の光源32の後段にはレンズ34が配設され第1の光38aを平行光にして出射できるようにしている。第1の光源32は所定の周波数帯域に広がったスペクトルを有するもの(白色光)でも良いが、レンズ34の色収差を考慮すると単色光であることが望ましい。第1の光38aを平行光とすることにより光路上で第1の光38aが拡散して受光手段50に到達する第1の反射成分38bの強度が減少することを防ぐことができる。また、基板10に到達する第1の光38aが全て基板10の主面(上面10a)に垂直に入射されるため、基板10のエッジや振動片12のエッジからの散乱光が受光手段50に迷光として混入することを防ぎ、後述のコントラストの低下を防止できる。   As the first light source 32, a light source having a frequency band that can be detected by the light receiving unit 50 and is not absorbed by the total reflection mirror 36 and the substrate 10 is used. In addition, a lens 34 is disposed after the first light source 32 so that the first light 38a can be emitted as parallel light. The first light source 32 may be a light having a spectrum spread in a predetermined frequency band (white light), but is preferably monochromatic light in consideration of chromatic aberration of the lens 34. By making the first light 38a parallel light, it is possible to prevent the first light 38a from diffusing on the optical path and reducing the intensity of the first reflection component 38b reaching the light receiving means 50. Further, since all of the first light 38 a that reaches the substrate 10 is incident perpendicularly to the main surface (upper surface 10 a) of the substrate 10, scattered light from the edge of the substrate 10 or the edge of the vibrating piece 12 enters the light receiving means 50. Mixing as stray light can be prevented, and a reduction in contrast described later can be prevented.

鏡筒20の下方には、基板10を載せる試料台70が配置されている。試料台70は空洞状の開口部72が形成されている。開口部72は平面視して鏡筒20の開口部22,24と重なる位置(光軸C上)に形成されている。この開口部72を塞ぐように基板10が載置される。   A sample table 70 on which the substrate 10 is placed is disposed below the lens barrel 20. The sample stage 70 has a hollow opening 72 formed therein. The opening 72 is formed at a position (on the optical axis C) overlapping the openings 22 and 24 of the lens barrel 20 in plan view. The substrate 10 is placed so as to close the opening 72.

更に、試料台70の下方には、第2の光源42が取り付けられた光源部40が配置されている。光源部40は、第2の光源42とレンズ44と全反射ミラー46とで構成されている。
全反射ミラー46は、鏡筒20の開口部22,24の中心を結ぶ線上(光軸C)に取り付けられている。全反射ミラー46はミラー面を垂直方向からほぼ45°下端側を第2の光源42側に傾けた状態で光源部40の内部に取り付けられている。
Further, a light source unit 40 to which a second light source 42 is attached is disposed below the sample stage 70. The light source unit 40 includes a second light source 42, a lens 44, and a total reflection mirror 46.
The total reflection mirror 46 is attached on a line (optical axis C) connecting the centers of the openings 22 and 24 of the lens barrel 20. The total reflection mirror 46 is attached to the inside of the light source unit 40 with the mirror surface tilted at about 45 ° from the vertical direction to the second light source 42 side.

第2の光源42は、受光手段50が検知可能で、且つ、全反射ミラー46および基板10が光吸収しない周波数帯域を有するものを用いる。また、第2の光源42の後段にはレンズ44が配設され第2の光48aを平行光にして出射できるようにしている。第2の光源42は所定の周波数帯域に広がったスペクトルを有するもの(白色光)でも良いが、レンズ44の色収差を考慮すると単色光であることが望ましい。第2の光48aを平行光とすることにより光路上で第2の光48aが拡散して受光手段50に到達する第2の透過成分48cの強度が減少することを防ぐことができるとともに、基板10に到達する第2の光48aが全て基板10の下面10bに垂直に入射されるため、基板10のエッジや振動片12のエッジからの散乱光が受光手段50に迷光として混入することを防ぎ、後述のコントラストの低下を防止できる。   As the second light source 42, a light source having a frequency band that can be detected by the light receiving unit 50 and is not absorbed by the total reflection mirror 46 and the substrate 10 is used. In addition, a lens 44 is disposed following the second light source 42 so that the second light 48a can be emitted as parallel light. The second light source 42 may be one having a spectrum spread in a predetermined frequency band (white light), but considering the chromatic aberration of the lens 44, monochromatic light is desirable. By making the second light 48a parallel light, it is possible to prevent the second light 48a from diffusing along the optical path and preventing the intensity of the second transmissive component 48c reaching the light receiving means 50 from being reduced. Since all the second light 48a reaching 10 is incident perpendicularly on the lower surface 10b of the substrate 10, it is possible to prevent scattered light from the edge of the substrate 10 and the edge of the resonator element 12 from entering the light receiving means 50 as stray light. Therefore, it is possible to prevent a decrease in contrast described later.

鏡筒20の上端の開口部22に取り付けられた受光手段50は、基板10上に形成された電極14の上面14aで反射された第1の反射成分38bと、基板10の電極14が形成されていない領域を通過した第2の透過成分48cとを撮影するものである。受光手段50はレンズ56と撮像素子52とにより形成されている。受光手段50の光軸Cは垂直であり鏡筒20の円形の開口部22,24の中心同士を結ぶ線と一致させている。同様に全反射ミラー36,46の中央部も光軸Cが通過する。以上の光学系により、第1の光源32から発せられた第1の光38aは、平行光の状態で全反射ミラー36に垂直下方に反射され、基板10で垂直上方に反射され、全反射ミラー36を透過した第1の反射成分38bとなる。また、第2の光源42から発せられた第2の光48aは、平行光の状態で全反射ミラー46に垂直上方に反射され、基板10を通過し、全反射ミラー36を透過した第2の透過成分48cとなる。そして、第1の反射成分38bと第2の透過成分48cとが平行光の状態を維持して受光手段50に到達する。   The light receiving means 50 attached to the opening 22 at the upper end of the lens barrel 20 is formed with the first reflection component 38b reflected by the upper surface 14a of the electrode 14 formed on the substrate 10 and the electrode 14 of the substrate 10. The second transmissive component 48c that has passed through the unoccupied region is photographed. The light receiving means 50 is formed by a lens 56 and an image sensor 52. The optical axis C of the light receiving means 50 is vertical and coincides with a line connecting the centers of the circular openings 22 and 24 of the lens barrel 20. Similarly, the optical axis C also passes through the central portions of the total reflection mirrors 36 and 46. By the optical system described above, the first light 38a emitted from the first light source 32 is reflected vertically downward by the total reflection mirror 36 in the state of parallel light, reflected by the substrate 10 vertically upward, and totally reflected mirror. The first reflection component 38 b that has passed through 36 is obtained. The second light 48 a emitted from the second light source 42 is reflected vertically upward by the total reflection mirror 46 in the state of parallel light, passes through the substrate 10, and passes through the total reflection mirror 36. It becomes the transmission component 48c. Then, the first reflection component 38b and the second transmission component 48c reach the light receiving means 50 while maintaining the state of parallel light.

受光手段50の撮像素子52は、撮像面54の法線が光軸Cと一致する。受光手段50の焦点は、電極14の膜厚が最大でも1μm程度なので、基板10の上面10aに合わせるようにレンズ56の位置が調整されている。よって、撮像素子52は基板10の上面10aに焦点を合わせた画像を撮影可能となる。なお、受光手段50の焦点を基板10の上面10aに合わせるのは、焦点が合っている上面10a近くのエッチング欠陥92の像と、焦点が合っている下面10b近くのエッチング欠陥92の像とを比べた場合、上面10a近くのエッチング欠陥92の像のほうがシャープに見え、焦点を合わせやすいからである。また、メサ部16が形成された基板10の場合には、エッチチャンネル90に起因するエッチング欠陥92が生じ、寸法の小さいエッチング欠陥92をミス無く検出するために、メサ部16が形成されていない基板10の上面10aに焦点を合わせることが望ましい。   In the imaging device 52 of the light receiving means 50, the normal line of the imaging surface 54 coincides with the optical axis C. Since the focus of the light receiving means 50 is about 1 μm at the maximum, the position of the lens 56 is adjusted so as to match the upper surface 10 a of the substrate 10. Therefore, the image sensor 52 can capture an image focused on the upper surface 10 a of the substrate 10. The light receiving means 50 is focused on the top surface 10a of the substrate 10 because the image of the etching defect 92 near the focused top surface 10a and the image of the etching defect 92 near the focused bottom surface 10b are aligned. In comparison, the image of the etching defect 92 near the upper surface 10a looks sharper and easier to focus. Further, in the case of the substrate 10 on which the mesa portion 16 is formed, the etching defect 92 due to the etch channel 90 occurs, and the mesa portion 16 is not formed in order to detect the etching defect 92 having a small size without mistake. It is desirable to focus on the upper surface 10a of the substrate 10.

次に、2つの光源の光量比率とエッチング欠陥の検出率の関係について説明する。
図9は、第1の光源と第2の光源との光量比率に対する各種要因に起因するエッチング欠陥の検出率を示す図である。図10は、基板に光を照射しエッチング欠陥を検出する方法を説明する図であり、図10(a)は基板の断面を示す模式図、図10(b)は受光手段から見える画像の模式図である。
Next, the relationship between the light quantity ratio of the two light sources and the etching defect detection rate will be described.
FIG. 9 is a diagram showing a detection rate of etching defects caused by various factors with respect to the light amount ratio between the first light source and the second light source. 10A and 10B are diagrams for explaining a method of detecting etching defects by irradiating the substrate with light. FIG. 10A is a schematic view showing a cross section of the substrate, and FIG. 10B is a schematic view of an image seen from the light receiving means. FIG.

図9より、第1の光源32と第2の光源42との光量比率が1.5倍以上2.5倍以下の範囲で、基板10の電極領域と無電極領域においてエッチング欠陥92を検出することが可能である。しかし、無電極領域においては検出率100%とならず、ゴミやキズ起因のエッチング欠陥92は検出率70%以上である。また、エッチチャンネル起因のエッチング欠陥92については検出率30%以上と大幅に劣化する。これは、エッチチャンネル起因のエッチング欠陥92の寸法が約3μmと、ゴミやキズ起因のエッチング欠陥92の寸法10μm以上に比べ、非常に小さいためである。従って、電極領域と無電極領域において検出率100%を得るためには、光量比率を約2倍とすることが望ましい。   From FIG. 9, the etching defect 92 is detected in the electrode region and the non-electrode region of the substrate 10 in the range where the light quantity ratio between the first light source 32 and the second light source 42 is 1.5 times or more and 2.5 times or less. It is possible. However, the detection rate does not become 100% in the electrodeless region, and the etching defect 92 due to dust and scratches has a detection rate of 70% or more. In addition, the etching defect 92 due to the etch channel is greatly deteriorated to a detection rate of 30% or more. This is because the size of the etching defect 92 caused by the etch channel is about 3 μm, which is very small compared to the size of the etching defect 92 caused by dust or scratches of 10 μm or more. Therefore, in order to obtain a detection rate of 100% in the electrode region and the non-electrode region, it is desirable to make the light amount ratio approximately twice.

この理由は、図10(a)に示すように、基板10の電極領域では、第1の光源32の第1の光38aが電極14の上面14aに反射し、第1の光38aの強度のほぼ100%が受光手段50に到達する。それに対し、第2の光源42の第2の光48aは、基板10を透過する第2の透過成分48cと、基板10の下面10bで反射する第2の反射成分48bとに分けられるため、受光手段50に到達する第2の透過成分48cの強度は、第2の光48aの強度の約50%に半減することとなる。そのため、受光手段50に到達する第1の反射成分38bの強度は第2の透過成分48cの強度の約2倍となり、エッチング欠陥92の散乱による第1の反射成分38bや第2の透過成分48cの強度低下に比べ、第1の反射成分38bや第2の透過成分48cとの強度差が大きいので、電極領域と無電極領域とのエッチング欠陥92を同時に検出することができない。従って、第1の光源32の光量に対し、第2の光源42の光量を約2倍とすることで、電極領域で反射した第1の反射成分38bの強度と無電極領域を透過した第2の透過成分48cの強度をほぼ同等にすることができる。よって、電極領域と無電極領域におけるエッチング欠陥92を同時に検出することが可能となる。   The reason for this is that, as shown in FIG. 10A, in the electrode region of the substrate 10, the first light 38a of the first light source 32 is reflected by the upper surface 14a of the electrode 14, and the intensity of the first light 38a is increased. Almost 100% reaches the light receiving means 50. On the other hand, the second light 48a of the second light source 42 is divided into a second transmissive component 48c that is transmitted through the substrate 10 and a second reflective component 48b that is reflected from the lower surface 10b of the substrate 10, so that it receives light. The intensity of the second transmission component 48c reaching the means 50 is halved to about 50% of the intensity of the second light 48a. Therefore, the intensity of the first reflection component 38b reaching the light receiving means 50 is about twice the intensity of the second transmission component 48c, and the first reflection component 38b and the second transmission component 48c due to scattering of the etching defect 92 are obtained. Since the intensity difference between the first reflection component 38b and the second transmission component 48c is larger than the intensity decrease, the etching defect 92 between the electrode region and the non-electrode region cannot be detected at the same time. Therefore, by making the light amount of the second light source 42 about twice the light amount of the first light source 32, the intensity of the first reflection component 38b reflected by the electrode region and the second light transmitted through the non-electrode region are obtained. The intensity of the transmitted component 48c can be made substantially equal. Therefore, the etching defect 92 in the electrode region and the non-electrode region can be detected at the same time.

図10(b)は、図10(a)のエッチチャンネルを起因としたエッチング欠陥を受光手段から見た画像の模式図である。撮像素子52は平面視したエッチング欠陥92をネガ画像として得ることができる。なお、図10(b)においては、第1の反射成分38bや第2の透過成分48cの強度の低い領域が黒く、逆に高い領域が白く描かれている。   FIG. 10B is a schematic diagram of an image of the etching defect caused by the etch channel of FIG. The image sensor 52 can obtain the etching defect 92 in a plan view as a negative image. In FIG. 10B, the low intensity areas of the first reflection component 38b and the second transmission component 48c are drawn in black, and the high areas are drawn in white.

撮像素子52によって得られた画像データ62は検出部60に出力される。画像データ62は、例えば撮像素子52の撮像面54と同一面を形成する平面座標を有し、撮像素子52の中心(光軸C)を平面座標の原点とし、撮像素子52を構成する撮像面54に並べられた受光素子(図示しない)の間隔を平面分解能とし、各受光素子の平面座標の座標位置ごとの反射成分や透過成分の強度を有するものである。
検出部60は、画像データ62が示す反射成分や透過成分の強度の分布から所定の閾値以下になる領域を抽出することによりエッチング欠陥92を検出するものである。
Image data 62 obtained by the image sensor 52 is output to the detection unit 60. The image data 62 has, for example, planar coordinates that form the same plane as the imaging surface 54 of the imaging element 52, and the imaging plane that configures the imaging element 52 with the center (optical axis C) of the imaging element 52 as the origin of the planar coordinates. The interval between the light receiving elements (not shown) arranged in 54 is defined as the plane resolution, and has the intensity of the reflection component and the transmission component for each coordinate position of the plane coordinates of each light receiving element.
The detection unit 60 detects the etching defect 92 by extracting a region that is equal to or less than a predetermined threshold from the intensity distribution of the reflection component and the transmission component indicated by the image data 62.

図11は、画像処理の模式図であり、図11(a)は処理前の分割平面を示す図、図11(b)は処理後の分割平面を示す図である。検出部60における画像処理は、例えば、図11(a)に示すように画像データ62が示す平面座標を所定の大きさの分割平面64に分割する。このとき分割平面64の最小単位は受光素子(図示しない)の面積(画素の面積)である。そして分割平面64ごとに反射成分強度を例えば256段の強度レベルに簡略化する。そして強度レベルが100以下の分割平面64が所定の個数直線状に並んで存在する場合には(図11(b)は3個)その領域にエッチング欠陥92があるものと判断して検出信号を外部に出力すればよい。このように検出部60において、分割平面64の大きさ、強度レベルの段数、強度レベルの閾値を適切に設定することにより、基板10中のエッチング欠陥92を検出することができる。   11A and 11B are schematic diagrams of image processing. FIG. 11A is a diagram illustrating a divided plane before processing, and FIG. 11B is a diagram illustrating a divided plane after processing. In the image processing in the detection unit 60, for example, as shown in FIG. 11A, the plane coordinates indicated by the image data 62 are divided into divided planes 64 having a predetermined size. At this time, the minimum unit of the dividing plane 64 is an area (pixel area) of a light receiving element (not shown). Then, for each divided plane 64, the reflection component intensity is simplified to, for example, an intensity level of 256 steps. If there are a predetermined number of dividing planes 64 having an intensity level of 100 or less (three in FIG. 11B), it is determined that there is an etching defect 92 in that region, and a detection signal is output. Output to the outside. As described above, the detection unit 60 can detect the etching defect 92 in the substrate 10 by appropriately setting the size of the division plane 64, the number of steps of the intensity level, and the threshold of the intensity level.

以上、電極が形成された振動片を有する基板の外観検査方法、およびこれを具現化した撮像装置を、電極14が設けられたメサ部16を有する振動片12が形成されたATカット水晶基板で説明したが、検査対象とする基板は、特に限定されず、電極が設けられた、平板の振動片や逆メサ部を有する振動片が形成されたATカット水晶基板、音叉型振動片やジャイロ振動片が形成されたZカット水晶基板などでも構わない。   As described above, a method for inspecting the appearance of a substrate having a vibrating piece on which an electrode is formed, and an imaging apparatus that embodies the substrate are an AT-cut quartz substrate on which a vibrating piece 12 having a mesa portion 16 provided with an electrode 14 is formed. As described above, the substrate to be inspected is not particularly limited, and is an AT-cut quartz crystal substrate, a tuning-fork type vibration piece, and a gyro vibration formed with a vibrating piece having a flat plate or an inverted mesa portion provided with electrodes. A Z-cut quartz substrate on which a piece is formed may be used.

次に、本発明の第2の実施形態に係る基板の外観検査方法および撮像装置について説明する。
図12は、本発明の第2の実施形態に係る基板の外観検査方法、およびこれを具現化した撮像装置を示した模式図である。
図12に示すように、第2の実施形態に係る撮像装置1aは、第1の実施形態に係る撮像装置1と同じ構成の第1の検査システムと、第1の実施形態に係る撮像装置1を上下反転させた構成の第2の検査システムと、基板10が設置された試料台70を搬送する搬送部74とから構成されている。
Next, a substrate visual inspection method and an imaging apparatus according to a second embodiment of the present invention will be described.
FIG. 12 is a schematic view showing a substrate visual inspection method according to a second embodiment of the present invention and an imaging apparatus that embodies the substrate visual inspection method.
As illustrated in FIG. 12, the imaging apparatus 1 a according to the second embodiment includes a first inspection system having the same configuration as the imaging apparatus 1 according to the first embodiment, and the imaging apparatus 1 according to the first embodiment. Is composed of a second inspection system that is vertically inverted and a transport unit 74 that transports the sample stage 70 on which the substrate 10 is installed.

第1の検査システムは、搬送部74の上方に、第1の光源32が取り付けられた分岐管30と検出部60が接続された第1の受光手段50とを保持した鏡筒20が設置され、搬送部74の下方には、第2の光源42が取り付けられた光源部40が配置されている。また、第2の検査システムは、搬送部74の上方に、第4の光源42aが取り付けられた光源部40aが配置され、搬送部74の下方には、第3の光源32aが取り付けられた分岐管30aと検出部60aが接続された第2の受光手段50aとを保持した鏡筒20aが設置されている。   In the first inspection system, the lens barrel 20 holding the branch tube 30 to which the first light source 32 is attached and the first light receiving means 50 to which the detection unit 60 is connected is installed above the transport unit 74. A light source unit 40 to which the second light source 42 is attached is disposed below the transport unit 74. Further, in the second inspection system, the light source unit 40a to which the fourth light source 42a is attached is arranged above the transport unit 74, and the branch to which the third light source 32a is attached below the transport unit 74. A lens barrel 20a holding the tube 30a and the second light receiving means 50a to which the detector 60a is connected is installed.

第1の検査システムでは、基板10を光軸C線上に設置し、基板10の上面10aの電極14が形成された領域で反射した第1の光源32から発光された第1の光による第1の反射成分と、基板10の電極14が形成されていない領域を透過した第2の光源42から発光された第2の光による第2の透過成分とを第1の受光手段50で撮影し、エッチング欠陥92を検出する。その後、搬送部74により第2の検査システムの光軸Ca線上に設置された基板10は、第2の検査システムにより、基板10の下面10bの電極14が形成された領域で反射した第3の光源32aから発光された第3の光による第3の反射成分と、基板10の電極14が形成されていない領域を透過した第4の光源42aから発光された第4の光による第4の透過成分とを第2の受光手段50aで撮影し、エッチング欠陥92を検出する。   In the first inspection system, the substrate 10 is placed on the optical axis C line, and the first light is emitted from the first light source 32 reflected from the region where the electrode 14 is formed on the upper surface 10a of the substrate 10. And the second transmissive component of the second light emitted from the second light source 42 that has passed through the region where the electrode 14 of the substrate 10 is not formed is photographed by the first light receiving means 50, Etching defect 92 is detected. Thereafter, the substrate 10 placed on the optical axis Ca line of the second inspection system by the transport unit 74 is reflected by the second inspection system in the region where the electrode 14 on the lower surface 10b of the substrate 10 is formed. The third reflection component by the third light emitted from the light source 32a and the fourth transmission by the fourth light emitted from the fourth light source 42a that has passed through the region where the electrode 14 of the substrate 10 is not formed. The component is photographed by the second light receiving means 50a, and the etching defect 92 is detected.

このような構成により、基板10の上下面10a,10bに電極14が形成された基板10であっても、検査途中で基板を上下反転することなく、基板10の上下面10a,10bに生じたエッチング欠陥92を電極14の有無に関係なく検出することが可能となり、外観検査時間が短縮しコスト低減に大きな効果がある。   With such a configuration, even if the substrate 10 has the electrodes 14 formed on the upper and lower surfaces 10a and 10b of the substrate 10, the substrate 10 is generated on the upper and lower surfaces 10a and 10b without being turned upside down during the inspection. The etching defect 92 can be detected regardless of the presence or absence of the electrode 14, and the visual inspection time is shortened, which has a great effect on cost reduction.

次に、本発明の第3の実施形態に係る基板の外観検査方法および撮像装置について説明する。
図13は、本発明の第3の実施形態に係る基板の外観検査方法、およびこれを具現化した撮像装置を示した模式図である。
図13に示すように、第3の実施形態に係る撮像装置1bは、試料台70の上方に、第1の光源32bが取り付けられた分岐管30bと、第4の光源42cが取り付けられた分岐管40cと、検出部60bが接続された第1の受光手段50bとを保持した鏡筒20bと、が設置されている。また、試料台70の下方には、第3の光源32cが取り付けられた分岐管30cと、第2の光源42bが取り付けられた分岐管40bと、検出部60cが接続された第2の受光手段50cとを保持した鏡筒20cと、が設置された構成である。なお、受光手段50b,50c、鏡筒20b,20c、試料台70は光軸Cb線上に設置されている。
Next, a substrate visual inspection method and an imaging apparatus according to a third embodiment of the present invention will be described.
FIG. 13 is a schematic diagram illustrating a substrate visual inspection method according to a third embodiment of the present invention and an imaging apparatus that embodies the substrate visual inspection method.
As shown in FIG. 13, the imaging apparatus 1b according to the third embodiment includes a branch tube 30b to which a first light source 32b is attached and a branch to which a fourth light source 42c is attached above a sample stage 70. The lens barrel 20b holding the tube 40c and the first light receiving means 50b to which the detection unit 60b is connected is installed. Also, below the sample stage 70, the second light receiving means to which the branch tube 30c to which the third light source 32c is attached, the branch tube 40b to which the second light source 42b is attached, and the detector 60c are connected. A lens barrel 20c holding 50c is installed. The light receiving means 50b and 50c, the lens barrels 20b and 20c, and the sample stage 70 are installed on the optical axis Cb line.

基板10の上下面10a,10bに電極14が形成された基板10は、試料台70を介して光軸Cb線上に設置され、基板10の上面10aの電極14が形成された領域で反射した第1の光源32bから発光された第1の光による第1の反射成分と、基板10の電極14が形成されていない領域を透過した第2の光源42bから発光された第2の光による第2の透過成分とを第1の受光手段50bで撮影し、エッチング欠陥92を検出する。また、基板10の下面10bの電極14が形成された領域で反射した第3の光源32cから発光された第3の光による第3の反射成分と、基板10の電極14が形成されていない領域を透過した第4の光源42cから発光された第4の光による第4の透過成分とを第2の受光手段50cで撮影し、エッチング欠陥92を検出する。   The substrate 10 on which the electrodes 14 are formed on the upper and lower surfaces 10a, 10b of the substrate 10 is placed on the optical axis Cb line via the sample stage 70, and is reflected by the region where the electrode 14 on the upper surface 10a of the substrate 10 is formed. The first reflection component by the first light emitted from the first light source 32b and the second by the second light emitted from the second light source 42b that has passed through the region where the electrode 14 of the substrate 10 is not formed. The transmitted light component is photographed by the first light receiving means 50b, and the etching defect 92 is detected. Further, the third reflection component by the third light emitted from the third light source 32c reflected in the region where the electrode 14 on the lower surface 10b of the substrate 10 is formed, and the region where the electrode 14 of the substrate 10 is not formed. The fourth light-transmitting component of the fourth light emitted from the fourth light source 42c that has passed through is photographed by the second light receiving means 50c, and the etching defect 92 is detected.

このような構成により、基板10の上下面10a,10bに電極14が形成された基板10であっても、検査途中で基板を上下反転することなく、また、基板10を搬送することなく、基板10の上下面10a,10bに生じたエッチング欠陥92を電極14の有無に関係なく検出することが可能となり、外観検査時間を大幅に短縮しコスト低減に非常に大きな効果がある。   With such a configuration, even if the substrate 10 has the electrodes 14 formed on the upper and lower surfaces 10a and 10b of the substrate 10, the substrate is not turned upside down during the inspection, and the substrate 10 is not transported. Etching defects 92 generated on the upper and lower surfaces 10a and 10b 10 can be detected regardless of the presence or absence of the electrode 14, and the visual inspection time can be greatly shortened, and the cost can be greatly reduced.

以上述べたように、本発明の実施形態に係る電極14が形成された基板10の外観検査方法、およびこれを具現化した撮像措置によれば、第1の光源32からの第1の光38aによる基板10の電極14で反射した第1の反射成分38bと、第2の光源42からの第2の光48aによる基板10を透過した第2の透過成分48cとを第1の受光手段50で撮影する。その後、撮影された画像中の第1の反射成分38bと第2の透過成分48cの強度の低い領域を、基板10内に生じたエッチング欠陥92として検出するものである。ここで、エッチング欠陥92がある領域では、第1の光38aと第2の光48aが散乱されるため、第1の反射成分38bや第2の透過成分48cの強度はその領域では小さくなる。よって、画像として示される画像データ62が示す反射成分強度の分布において反射成分強度の小さい領域でエッチング欠陥92を平面視した形状として検出することができる。   As described above, according to the appearance inspection method for the substrate 10 on which the electrode 14 according to the embodiment of the present invention is formed and the imaging measure embodying the method, the first light 38a from the first light source 32 is provided. The first light receiving means 50 generates the first reflection component 38b reflected by the electrode 14 of the substrate 10 and the second transmission component 48c transmitted through the substrate 10 by the second light 48a from the second light source 42. Take a picture. Thereafter, a low-intensity region of the first reflection component 38 b and the second transmission component 48 c in the photographed image is detected as an etching defect 92 generated in the substrate 10. Here, since the first light 38a and the second light 48a are scattered in the region where the etching defect 92 is present, the intensity of the first reflection component 38b and the second transmission component 48c is reduced in that region. Therefore, the etching defect 92 can be detected as a shape in plan view in a region where the reflection component intensity is small in the reflection component intensity distribution indicated by the image data 62 shown as an image.

また、第1の光源32と第2の光源42との光量比率を1.5倍以上2.5倍以下の範囲とすることで、基板10の電極14に反射した第1の反射成分38bと、基板10の電極14が形成されていない領域を透過した第2の透過成分48cとの強度をほぼ同等とすることができる。従って、これまで不可能であった電極14が形成されている基板10であっても、基板10に生じたエッチング欠陥92を、電極14の有無に係らず検出することができる。   Further, by setting the light quantity ratio between the first light source 32 and the second light source 42 in the range of 1.5 times or more and 2.5 times or less, the first reflection component 38b reflected on the electrode 14 of the substrate 10 and The strength of the second transmissive component 48c transmitted through the region where the electrode 14 of the substrate 10 is not formed can be made substantially equal. Therefore, even in the substrate 10 on which the electrode 14 that has been impossible is formed, the etching defect 92 generated in the substrate 10 can be detected regardless of the presence or absence of the electrode 14.

更に、第1の光38aと第2の光48aは基板10の主面に垂直に照射されるため、基板10のエッジや振動片12のエッジからの散乱光を低減できる。また、エッチング欠陥92に起因する第1の反射成分38bと第2の透過成分48cの強度の小さい領域とエッチング欠陥92がない領域の第1の反射成分38bと第2の透過成分48cの強度の大きい領域とのコントラストを向上させ、両領域のエッチング欠陥92を同時に、精度良く検出することができる。   Furthermore, since the first light 38 a and the second light 48 a are irradiated perpendicularly to the main surface of the substrate 10, scattered light from the edge of the substrate 10 or the edge of the resonator element 12 can be reduced. Further, the intensity of the first reflection component 38b and the second transmission component 48c in the region where the first reflection component 38b and the second transmission component 48c due to the etching defect 92 are low and the region where the etching defect 92 is not present. The contrast with a large region can be improved, and the etching defects 92 in both regions can be detected simultaneously with high accuracy.

なお、振動片12に生じたエッチング欠陥92は、振動エネルギーの減衰や不要なスプリアス振動の発生の原因となり、振動片12のCI値の低下や周波数ジャンプ不良を引き起こすこととなる。また、貫通孔のようなエッチング欠陥92は、応力が集中する箇所となって強度が低下し、割れや欠けによる不良の原因となる。よって、このようなエッチング欠陥92を有する振動片12を確実に選別して、その後に形成される振動子や発振器の特性不良や振動片破損による発振不良を低減し、歩留まりを向上させ、コストダウンを図ることができる。   Note that the etching defect 92 generated in the resonator element 12 causes attenuation of vibration energy and generation of unnecessary spurious vibration, and causes a decrease in the CI value of the resonator element 12 and a frequency jump failure. In addition, the etching defect 92 such as a through hole becomes a location where stress is concentrated, the strength is lowered, and causes a defect due to cracking or chipping. Therefore, the resonator element 12 having such an etching defect 92 is reliably selected to reduce the characteristic failure of the vibrator and oscillator formed thereafter and the oscillation defect due to the resonator element breakage, thereby improving the yield and reducing the cost. Can be achieved.

1…撮像装置、10…基板、10a,14a…上面、10b…下面、12…振動片、13…電極膜、14…電極、15…パッド電極、16…メサ部、20…鏡筒、22,24,72…開口部、30…分岐管、32…第1の光源、34,44,56…レンズ、36,46…全反射ミラー、38a…第1の光、38b…第1の反射成分、40…光源部、42…第2の光源、48a…第2の光、48c…第2の透過成分、50…受光手段、52…撮像素子、54…撮像面、60…検出部、62…画像データ、64…分割平面、70…試料台、74…搬送部、80…耐蝕膜、82…レジスト、90…エッチチャンネル、91…欠損部、92…エッチング欠陥。   DESCRIPTION OF SYMBOLS 1 ... Imaging device, 10 ... Board | substrate, 10a, 14a ... Upper surface, 10b ... Lower surface, 12 ... Vibrating piece, 13 ... Electrode film, 14 ... Electrode, 15 ... Pad electrode, 16 ... Mesa part, 20 ... Lens tube, 22, 24, 72 ... opening, 30 ... branch tube, 32 ... first light source, 34, 44, 56 ... lens, 36, 46 ... total reflection mirror, 38a ... first light, 38b ... first reflection component, DESCRIPTION OF SYMBOLS 40 ... Light source part, 42 ... 2nd light source, 48a ... 2nd light, 48c ... 2nd transmissive component, 50 ... Light-receiving means, 52 ... Imaging element, 54 ... Imaging surface, 60 ... Detection part, 62 ... Image Data: 64 ... Dividing plane, 70 ... Sample stage, 74 ... Conveying section, 80 ... Corrosion resistant film, 82 ... Resist, 90 ... Etch channel, 91 ... Defect, 92 ... Etching defect.

Claims (10)

第1の主面又は前記第1の主面の裏側である第2の主面の一方の面に第1の反射物を備えている光透過性を有する基板に、前記第1の主面側から第1の光を前記第1の主面と交わる方向に照射して前記第1の反射物において反射した第1の光の反射成分と、
前記基板に、前記第2の主面側から第2の光を前記第1の主面と交わる方向に照射して前記基板を透過した第2の光の透過成分と、
を第1の受光手段で受光することにより前記基板の外観の検査を行う工程、
を含むことを特徴とする基板の外観検査方法。
The first main surface side of the first main surface or a light transmissive substrate provided with a first reflector on one surface of the second main surface which is the back side of the first main surface. The first light is reflected in the first reflector and the first light is reflected in the direction intersecting the first main surface,
Irradiating the substrate with the second light from the second principal surface side in a direction intersecting the first principal surface and transmitting the second light component transmitted through the substrate;
A step of inspecting the appearance of the substrate by receiving light by the first light receiving means,
A method for inspecting the appearance of a substrate, comprising:
前記基板は他方の面に第2の反射物を備え、
前記第2の主面側から第3の光を前記第2の主面と交わる方向に照射して前記第2の反射物において反射した第3の光の反射成分と、
前記第1の主面側から第4の光を前記第1の主面と交わる方向に照射して前記基板を透過した第4の光の透過成分と、
を第2の受光手段で受光することにより前記基板の外観の検査を行う工程、
を更に含むことを特徴とする請求項1に記載の基板の外観検査方法。
The substrate includes a second reflector on the other surface;
A reflection component of the third light reflected from the second reflector by irradiating the third light from the second main surface side in a direction intersecting the second main surface;
A transmission component of the fourth light transmitted through the substrate by irradiating the fourth light from the first main surface side in a direction intersecting the first main surface;
A step of inspecting the appearance of the substrate by receiving the light by the second light receiving means,
The substrate visual inspection method according to claim 1, further comprising:
前記基板は、水晶で構成されていることを特徴とする請求項1又は2に記載の基板の外観検査方法。   3. The method of inspecting a substrate according to claim 1, wherein the substrate is made of quartz. 前記外観の検査はエッチング欠陥の検査であることを特徴とする請求項1乃至3のいずれか一項に記載の基板の外観検査方法。   The substrate appearance inspection method according to claim 1, wherein the appearance inspection is an etching defect inspection. 前記第1の光の反射成分を前記第1の受光手段で受光することを特徴とする請求項1乃至4のいずれか一項に記載の基板の外観検査方法。   The substrate visual inspection method according to claim 1, wherein the reflection component of the first light is received by the first light receiving unit. 前記第2の光の透過成分を前記第1の受光手段で受光することを特徴とする請求項1乃至5のいずれか一項に記載の基板の外観検査方法。   6. The substrate visual inspection method according to claim 1, wherein the second light transmission component is received by the first light receiving unit. 前記第1の光と前記第2の光とを前記第1の主面の法線方向に沿って前記基板に照射することを特徴とする請求項1乃至6のいずれか一項に記載の基板の外観検査方法。   The substrate according to any one of claims 1 to 6, wherein the substrate is irradiated with the first light and the second light along a normal direction of the first main surface. Visual inspection method. 前記第1の光を発光する第1の光源の光量に対し、前記第2の光を発光する第2の光源の光量が1.5倍以上2.5倍以下の範囲にあることを特徴とする請求項1乃至7のいずれか一項に記載の基板の外観検査方法。   The light quantity of the second light source that emits the second light is in the range of 1.5 to 2.5 times the light quantity of the first light source that emits the first light. The method for inspecting the appearance of a substrate according to any one of claims 1 to 7. 前記第1の受光手段で受光することにより前記基板の外観を検査する工程と、前記第2の受光手段で受光することにより前記基板の外観を検査する工程との間を、
搬送手段によって前記基板を搬送することを特徴とする請求項2乃至8のいずれか一項に記載の基板の外観検査方法。
Between the step of inspecting the appearance of the substrate by receiving light with the first light receiving means and the step of inspecting the appearance of the substrate by receiving light with the second light receiving means,
9. The method of inspecting a substrate according to claim 2, wherein the substrate is transported by a transport unit.
第1の光源と、
光軸が前記第1の光源と少なくとも一部が重なり、且つ光学的に向かい合っていて、光量が前記第1の光源に対して1.5倍以上2.5倍以下の範囲にある第2の光源と、
前記第2の光源と前記光軸上であって、且つ光学的に向かい合う位置に配置されている受光手段と、
を備えていることを特徴とする撮像装置。
A first light source;
A second optical axis is at least partially overlapped with the first light source and is optically opposed, and the amount of light is in a range of 1.5 to 2.5 times that of the first light source. A light source;
A light receiving means arranged on the optical axis and at a position optically facing the second light source;
An imaging apparatus comprising:
JP2012228639A 2012-10-16 2012-10-16 Vibrating piece, vibrator and oscillator manufacturing method, substrate visual inspection method Active JP6083189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228639A JP6083189B2 (en) 2012-10-16 2012-10-16 Vibrating piece, vibrator and oscillator manufacturing method, substrate visual inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228639A JP6083189B2 (en) 2012-10-16 2012-10-16 Vibrating piece, vibrator and oscillator manufacturing method, substrate visual inspection method

Publications (3)

Publication Number Publication Date
JP2014081255A true JP2014081255A (en) 2014-05-08
JP2014081255A5 JP2014081255A5 (en) 2015-11-26
JP6083189B2 JP6083189B2 (en) 2017-02-22

Family

ID=50785572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228639A Active JP6083189B2 (en) 2012-10-16 2012-10-16 Vibrating piece, vibrator and oscillator manufacturing method, substrate visual inspection method

Country Status (1)

Country Link
JP (1) JP6083189B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397604B2 (en) 2019-09-11 2023-12-13 ホシザキ株式会社 Showcase

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160450A (en) * 1989-11-17 1991-07-10 Fujitsu Ltd Method for inspecting defect of mask
JP2002131242A (en) * 2000-10-27 2002-05-09 M I L:Kk Image for surface inspection
JP2010085225A (en) * 2008-09-30 2010-04-15 Epson Toyocom Corp Etching defect inspection method of piezoelectric vibrating chip wafer, and inspection system
JP2010183634A (en) * 2010-03-30 2010-08-19 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator, crystal unit and crystal oscillator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03160450A (en) * 1989-11-17 1991-07-10 Fujitsu Ltd Method for inspecting defect of mask
JP2002131242A (en) * 2000-10-27 2002-05-09 M I L:Kk Image for surface inspection
JP2010085225A (en) * 2008-09-30 2010-04-15 Epson Toyocom Corp Etching defect inspection method of piezoelectric vibrating chip wafer, and inspection system
JP2010183634A (en) * 2010-03-30 2010-08-19 Piedekku Gijutsu Kenkyusho:Kk Methods of manufacturing crystal vibrator, crystal unit and crystal oscillator

Also Published As

Publication number Publication date
JP6083189B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
US9759666B2 (en) Defect detection method and defect detection device and defect observation device provided with same
CN106198568B (en) A kind of measuring device and measuring method of the film with transparent substrates
KR101300132B1 (en) Apparatus for detecting particle in flat glass and detecting method using same
US20110194101A1 (en) Supersensitization of defect inspection method
CN105612611B (en) Multiple spot for improving detection sensitivity illuminates
JP2008014848A (en) Surface inspection method and surface inspecting device
CN110132996A (en) Defect detecting device and its detection method
US20080068587A1 (en) Surface defect detection method and surface defect inspection apparatus
KR20040044071A (en) Method and Apparatus for Inspection Display Panel
JP2010169453A (en) Device and method for inspecting foreign matter
JP6083189B2 (en) Vibrating piece, vibrator and oscillator manufacturing method, substrate visual inspection method
US8934091B2 (en) Monitoring incident beam position in a wafer inspection system
JP5704520B2 (en) Etching defect inspection method and inspection system for piezoelectric vibrating piece wafer
CN106018432A (en) Large-size optical lens surface quality detection method and system
JP3037671B2 (en) Transparent substrate inspection method and transparent substrate inspection device
KR20010106246A (en) An apparatus for monitoring the thickness of an accumulation film in a reactor and a method of conducting the dry-process
JP4626764B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
JP2010085225A (en) Etching defect inspection method of piezoelectric vibrating chip wafer, and inspection system
CN110828294A (en) Grinding performance detection method of chemical mechanical grinding equipment
JPH08210985A (en) Detecting method for particle in film, and detecting device therefor
CN209296282U (en) A kind of ring laser electrode indium envelope quality detecting system
KR101685703B1 (en) Alien substance inspection apparatus and inspection method
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
WO2015164325A1 (en) Volumetric substrate scanner
US11774239B1 (en) Optical measurement device and calibration method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151007

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160610

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170109

R150 Certificate of patent or registration of utility model

Ref document number: 6083189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150