JP2014079722A - Ozone water manufacturing method - Google Patents

Ozone water manufacturing method Download PDF

Info

Publication number
JP2014079722A
JP2014079722A JP2012230801A JP2012230801A JP2014079722A JP 2014079722 A JP2014079722 A JP 2014079722A JP 2012230801 A JP2012230801 A JP 2012230801A JP 2012230801 A JP2012230801 A JP 2012230801A JP 2014079722 A JP2014079722 A JP 2014079722A
Authority
JP
Japan
Prior art keywords
water
ozone
hydrogen peroxide
treatment
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230801A
Other languages
Japanese (ja)
Inventor
Yoshifumi Hayashi
佳史 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012230801A priority Critical patent/JP2014079722A/en
Publication of JP2014079722A publication Critical patent/JP2014079722A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ozone water manufacturing method for efficiently manufacturing ozone water of a high concentration.SOLUTION: The provided ozone water manufacturing method is an ozone water manufacturing method for manufacturing ozone water 20a scheduled to be used at a use point following the dissolution of ozone into ultrapure water obtained by further treating water obtained from a primary pure water system 2 where an ultraviolet oxidation treatment of oxidizing the water obtained from the primary pure water system 2 with ultraviolet rays at an intensity yielding a hydrogen peroxide concentration of 15.0 μg/L or above, a hydrogen peroxide removal treatment of removing hydrogen peroxide from the water having undergone the ultraviolet oxidation treatment so as to realize a hydrogen peroxide concentration of 10.0 μg/L or below, and an ozone dissolving treatment of dissolving ozone into the water having undergone the hydrogen peroxide removal treatment so as to realize an eventual ozone concentration of 30 mg/L or above are performed and where carbon dioxide is dissolved into the water before the execution of the hydrogen peroxide removal treatment or after the execution of the hydrogen peroxide removal treatment and before the execution of the ozone dissolving treatment or during the ozone dissolving treatment.

Description

本発明は、超純水に高濃度でオゾンを溶解させたオゾン水を製造する方法に関する。   The present invention relates to a method for producing ozone water in which ozone is dissolved at a high concentration in ultrapure water.

半導体デバイス(液晶表示装置を含む)の製造プロセスにおいては、基板の表面に付着する有機物やパーティクル等を除去するために、基板に対して洗浄処理が繰り返される。ここに使用される洗浄液としては有機溶剤、酸液等が多用されているが、最近では環境面で問題の少ないオゾン水も使用され始めている。   In the manufacturing process of a semiconductor device (including a liquid crystal display device), a cleaning process is repeated on the substrate in order to remove organic substances, particles, and the like attached to the surface of the substrate. As the cleaning liquid used here, an organic solvent, an acid liquid, and the like are frequently used. Recently, ozone water having less environmental problems has begun to be used.

半導体デバイスの製造プロセスにおいて使用されるオゾン水には、反応性の点からオゾン濃度が高いこと、及び半導体デバイスの性質上、クリーン度が高く、不純物を含まないことが要求される。これらの要求に応えるため、そのオゾン水は通常、次のような方法で製造されている。   The ozone water used in the semiconductor device manufacturing process is required to have a high ozone concentration from the viewpoint of reactivity and a high cleanness and no impurities due to the nature of the semiconductor device. In order to meet these requirements, the ozone water is usually manufactured by the following method.

超純水製造装置は、凝集沈殿装置、濾過器及び濾過水タンク等からなる前処理システムと、イオン交換器、精密濾過膜装置、逆浸透膜装置及び一次純水タンク等からなる一次純水システムと、脱気器、紫外線酸化器、イオン交換器及び限外濾過膜装置等からなるサブシステムから構成されている。そして、従来、オゾン水は、超純水製造装置のサブシステムで、紫外線酸化器による処理水を一部抜き出して、オゾン溶解部へ供給し、この処理水を電解するか或いは無声放電によって発生させたオゾンガスを溶解させることにより、製造されていた。なお、電解によりオゾンガスを発生させる場合は、原料として超純水を使用し、無声放電によりオゾンガスを発生させる場合は、原料として主に高純度酸素ガスを使用する。   The ultrapure water production equipment includes a pretreatment system comprising a coagulation sedimentation device, a filter and a filtrate water tank, and a primary pure water system comprising an ion exchanger, a microfiltration membrane device, a reverse osmosis membrane device and a primary pure water tank. And a subsystem comprising a deaerator, an ultraviolet oxidizer, an ion exchanger, an ultrafiltration membrane device, and the like. Conventionally, ozone water is a sub-system of the ultrapure water production apparatus, and a part of the treated water extracted by the ultraviolet oxidizer is extracted and supplied to the ozone dissolving part, and this treated water is electrolyzed or generated by silent discharge. It was manufactured by dissolving ozone gas. When ozone gas is generated by electrolysis, ultrapure water is used as a raw material, and when ozone gas is generated by silent discharge, high-purity oxygen gas is mainly used as a raw material.

オゾンは不安定な物質であり、水中において自己分解を起こしやすいため、オゾンガスを溶解させる超純水に予めTOC成分や二酸化炭素を添加することで、オゾン水におけるオゾンの自己分解を抑制する方法等がある(特許文献1:特許第4827286号公報)。   Since ozone is an unstable substance and is prone to self-decomposition in water, a method for suppressing the self-decomposition of ozone in ozone water by adding TOC components and carbon dioxide in advance to ultrapure water that dissolves ozone gas, etc. (Patent Document 1: Japanese Patent No. 4827286).

また、従来の超純水製造装置において使用されていた紫外線殺菌器及び紫外線酸化器が超純水中に過酸化水素を約20〜100μg/L生成させ、この過酸化水素が著しくオゾン分解を促進するため、超純水に含まれる過酸化水素を特定濃度以下に制御することにより、オゾン水濃度が10mg/L以下のオゾン水のユースポイントへの送水時における自己分解を抑制する方法も存在する(特許文献2:特許第3734207号公報)。   In addition, the ultraviolet sterilizer and the ultraviolet oxidizer used in the conventional ultrapure water production system generate about 20-100μg / L of hydrogen peroxide in ultrapure water, and this hydrogen peroxide significantly promotes ozonolysis. Therefore, there is also a method for suppressing self-decomposition at the time of water supply to a use point of ozone water having an ozone water concentration of 10 mg / L or less by controlling the hydrogen peroxide contained in the ultrapure water to a specific concentration or less. (Patent Document 2: Japanese Patent No. 3734207).

特許第4827286号公報(特許請求の範囲)Japanese Patent No. 4827286 (Claims) 特許第3734207号公報(特許請求の範囲)Japanese Patent No. 3734207 (Claims)

オゾン水は単なる洗浄に使用される他、最近ではレジスト剥離への適用が考えられている。単なる洗浄に使用されるオゾン水のオゾン濃度は5mg/L程度であるのに対し、レジスト剥離に使用されるオゾン水のオゾン濃度は通常、30mg/L以上であり、50mg/L以上、あるいは、100mg/Lに達する場合もある。   Ozone water is used only for cleaning, and recently it is considered to be applied to resist stripping. The ozone concentration of ozone water used for simple cleaning is about 5 mg / L, whereas the ozone concentration of ozone water used for resist stripping is usually 30 mg / L or more, 50 mg / L or more, or It may reach 100 mg / L.

ところが、上記のような従来のオゾン水製造方法は、高濃度のオゾン水を製造するものではない。例えば、特許文献2は、超純水に含まれる過酸化水素を特定濃度以下に制御することにより、10.0mg/L以下のオゾン水を製造することが記載されているのみで、10.0mg/Lを超える高濃度のオゾン水を製造することについては、具体的な開示がない。   However, the conventional ozone water production method as described above does not produce high-concentration ozone water. For example, Patent Document 2 only describes that ozone water having a concentration of 10.0 mg / L or less is produced by controlling hydrogen peroxide contained in ultrapure water to a specific concentration or less. There is no specific disclosure about producing high-concentration ozone water exceeding / L.

従って、本発明は、高濃度のオゾン水を効率よく製造するためのオゾン水の製造方法を提供することを目的とする。   Therefore, an object of this invention is to provide the manufacturing method of ozone water for manufacturing high concentration ozone water efficiently.

かかる実情において、本発明者らは鋭意検討を行った結果、オゾン水は溶存している過酸化水素の影響を受けて分解するが、(1)オゾン濃度が30mg/L以上になると、過酸化水素の影響によるオゾンの分解が顕著に大きくなること、(2)そのため、オゾンを溶解させる水中の過酸化水素の濃度が高いと、超純水に30mg/L以上の高濃度のオゾンを溶解させるときに、溶解時にオゾンが多量に分解してしまい、オゾン発生器の出力を見込みの出力より高くしないと、目的とする濃度のオゾン水が得られないこと、(3)そして、過酸化水素濃度を特定の範囲とすることにより、高濃度のオゾン水を製造するときに、オゾン発生器の出力を低く抑えることができることを見出し、本発明を完成させるに至った。   Under such circumstances, the present inventors have conducted intensive studies, and as a result, ozone water decomposes under the influence of dissolved hydrogen peroxide. (1) When the ozone concentration reaches 30 mg / L or more, it is peroxidized. (2) Therefore, when the concentration of hydrogen peroxide in the water in which ozone is dissolved is high, high concentration ozone of 30 mg / L or more is dissolved in ultrapure water. Ozone sometimes decomposes at the time of dissolution, and the ozone generator output cannot be obtained unless the output of the ozone generator is higher than the expected output. (3) Hydrogen peroxide concentration It was found that the output of the ozone generator can be kept low when producing high-concentration ozone water by making the specific range within the range, and the present invention has been completed.

すなわち、本発明は、一次純水システムで得られた水を更に処理して得られる超純水にオゾンを溶解させてユースポイントで使用するオゾン水を製造するオゾン水製造方法において、
該一次純水システムで得られた水を、過酸化水素の濃度が15.0μg/L以上となる強度で紫外線酸化する紫外線酸化処理と、
該紫外線酸化処理が行われた水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理と、
該過酸化水素除去処理が行われた水に、オゾン濃度が30mg/L以上となるまでオゾンを溶解させるオゾン溶解処理と、
を行い、
該過酸化水素除去処理を行う前か、あるいは、該過酸化水素除去処理を行った後且つ該オゾン溶解処理を行う前か、あるいは、該オゾン溶解処理のときに、二酸化炭素を溶解させること、
を特徴とするオゾン水製造方法を提供するものである。
That is, the present invention relates to an ozone water production method for producing ozone water to be used at a use point by dissolving ozone in ultra pure water obtained by further processing water obtained by a primary pure water system.
An ultraviolet oxidation treatment in which the water obtained by the primary pure water system is subjected to ultraviolet oxidation at an intensity such that the concentration of hydrogen peroxide is 15.0 μg / L or more;
Removing hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment to reduce the hydrogen peroxide concentration to 10.0 μg / L or less;
Ozone-dissolving treatment for dissolving ozone in the water subjected to the hydrogen peroxide removal treatment until the ozone concentration becomes 30 mg / L or more;
And
Dissolving the carbon dioxide before the hydrogen peroxide removal treatment, or after the hydrogen peroxide removal treatment and before the ozone dissolution treatment, or at the time of the ozone dissolution treatment;
An ozone water production method is provided.

本発明によれば、高濃度のオゾン水を効率よく製造するためのオゾン水の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of ozone water for manufacturing high concentration ozone water efficiently can be provided.

本発明のオゾン水製造方法が実施される超純水製造システムの形態例を示す模式図である。It is a schematic diagram which shows the example of the form of the ultrapure water manufacturing system with which the ozone water manufacturing method of this invention is implemented. 本発明のオゾン水製造方法が実施される超純水製造システムの形態例を示す模式図である。It is a schematic diagram which shows the example of the form of the ultrapure water manufacturing system with which the ozone water manufacturing method of this invention is implemented. 本発明のオゾン水製造方法が実施される超純水製造システムの形態例を示す模式図である。It is a schematic diagram which shows the example of the form of the ultrapure water manufacturing system with which the ozone water manufacturing method of this invention is implemented. 実施例1で用いたオゾン水製造システムを示す模式図である。1 is a schematic diagram showing an ozone water production system used in Example 1. FIG. 比較例1で用いたオゾン水製造システムを示す模式図である。It is a schematic diagram which shows the ozone water manufacturing system used in the comparative example 1. 実施例及び比較例の配管移送試験の結果を示すグラフである。It is a graph which shows the result of the piping transfer test of an Example and a comparative example.

本発明のオゾン水製造方法は、一次純水システムで得られた水を更に処理して得られる超純水にオゾンを溶解させてユースポイントで使用するオゾン水を製造するオゾン水製造方法において、
該一次純水システムで得られた水を、過酸化水素の濃度が15.0μg/L以上となる強度で紫外線酸化する紫外線酸化処理と、
該紫外線酸化処理が行われた水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理と、
該過酸化水素除去処理が行われた水に、オゾン濃度が30mg/L以上となるまでオゾンを溶解させるオゾン溶解処理と、
を行い、
該過酸化水素除去処理を行う前か、あるいは、該過酸化水素除去処理を行った後且つ該オゾン溶解処理を行う前か、あるいは、該オゾン溶解処理のときに、二酸化炭素を溶解させること、
を特徴とするオゾン水製造方法である。
なお、本明細書においては、一般に必ずしも明確に定義分けされていない純水、超純水などの語で説明される高純度水を総称して「超純水」という。
The ozone water production method of the present invention is an ozone water production method for producing ozone water to be used at a use point by dissolving ozone in ultrapure water obtained by further processing water obtained by a primary pure water system.
An ultraviolet oxidation treatment in which the water obtained by the primary pure water system is subjected to ultraviolet oxidation at an intensity such that the concentration of hydrogen peroxide is 15.0 μg / L or more;
Removing hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment to reduce the hydrogen peroxide concentration to 10.0 μg / L or less;
Ozone-dissolving treatment for dissolving ozone in the water subjected to the hydrogen peroxide removal treatment until the ozone concentration becomes 30 mg / L or more;
And
Dissolving the carbon dioxide before the hydrogen peroxide removal treatment, or after the hydrogen peroxide removal treatment and before the ozone dissolution treatment, or at the time of the ozone dissolution treatment;
Is a method for producing ozone water.
In the present specification, high-purity water that is generally not clearly defined and described in terms of pure water, ultra-pure water, and the like is collectively referred to as “ultra-pure water”.

本発明のオゾン水製造方法について、図1〜図3を参照して説明する。図1〜図3は、本発明のオゾン水製造方法が実施される超純水製造システムの形態例を示す模式図である。   The ozone water production method of the present invention will be described with reference to FIGS. 1 to 3 are schematic views showing an example of an ultrapure water production system in which the ozone water production method of the present invention is implemented.

図1中、超純水製造システム22aは、原水5が処理される前処理システム1と、前処理システムの処理水が処理される一次純水システム2と、一次純水システムで処理することにより得られる水3が処理されるサブシステム30aと、からなる。サブシステム30aは、一次純水システム2で得られた水3を処理して、超純水21(オゾンを溶解させない超純水)と、高濃度のオゾンを溶解させた超純水であるオゾン水20aとを、得るシステムであり、脱気器31と、紫外線酸化器10と、イオン交換器32aと、限外濾過膜装置13aと、からなる超純水製造ラインと、紫外線酸化器10の後段で超純水製造ラインから分岐し、過酸化水素除去手段11と、イオン交換器32bと、二酸化炭素溶解手段12と、限外濾過膜装置13bと、オゾン溶解部14と、オゾン発生器15と、からなるオゾン水製造ラインと、で構成されている。サブシステム30a中、超純水製造ラインでは、脱気器31→紫外線酸化器10→イオン交換器32a→限外濾過膜装置13aの順に繋がっており、また、オゾン水製造ラインでは、紫外線酸化器10の後段から分岐して、過酸化水素除去手段11→イオン交換器32b→二酸化炭素溶解手段12→限外濾過膜装置13b→オゾン溶解部14の順に繋がっており、オゾン溶解部14にはオゾン発生器15が繋がっている。   In FIG. 1, the ultrapure water production system 22a is processed by a pretreatment system 1 in which raw water 5 is treated, a primary pure water system 2 in which treated water of the pretreatment system is treated, and a primary pure water system. And a subsystem 30a in which the resulting water 3 is treated. The sub-system 30a treats the water 3 obtained in the primary pure water system 2, and ultrapure water 21 (superpure water that does not dissolve ozone) and ozone that is ultrapure water in which high-concentration ozone is dissolved. A system for obtaining water 20a, an ultrapure water production line comprising a deaerator 31, an ultraviolet oxidizer 10, an ion exchanger 32a, and an ultrafiltration membrane device 13a; Branched from the ultrapure water production line in the latter stage, hydrogen peroxide removing means 11, ion exchanger 32b, carbon dioxide dissolving means 12, ultrafiltration membrane device 13b, ozone dissolving section 14, and ozone generator 15 And an ozone water production line. In the sub system 30a, the ultrapure water production line is connected in the order of deaerator 31 → ultraviolet oxidizer 10 → ion exchanger 32a → ultrafiltration membrane device 13a. In the ozone water production line, the ultra violet oxidizer 10 is branched from the subsequent stage, and is connected in the order of hydrogen peroxide removing means 11 → ion exchanger 32b → carbon dioxide dissolving means 12 → ultrafiltration membrane device 13b → ozone dissolving part 14. The generator 15 is connected.

なお、図1に示す超純水製造システム22aにおいて、前処理システム1は、凝集沈殿装置、濾過器及び濾過水タンクからなり、また、一次純水システム2は、イオン交換器、精密濾過膜装置、逆浸透膜装置及び一次純水タンクからなる(図2に示す超純水製造システム22b及び図3に示す超純水製造システム22cにおいても、同様である。)。   In the ultrapure water production system 22a shown in FIG. 1, the pretreatment system 1 includes a coagulation sedimentation device, a filter and a filtrate water tank, and the primary pure water system 2 includes an ion exchanger and a microfiltration membrane device. , Comprising a reverse osmosis membrane device and a primary pure water tank (the same applies to the ultrapure water production system 22b shown in FIG. 2 and the ultrapure water production system 22c shown in FIG. 3).

超純水製造システム22aを用いて、超純水及びオゾン水を製造するには、先ず、原水5を前処理システム1で処理し、原水5中の懸濁物質やコロイド物質の除去、熱交換処理等を行った後、得られた処理水を一次純水システムで処理して、一次純水システムの処理水3を得る。次いで、一次純水システムで得られた水3を、脱気器31で処理して、純水中の酸素ガス、窒素ガス、二酸化炭素ガス等を脱気した後、脱気された純水を、紫外線酸化器10を用いて紫外線酸化する紫外線酸化処理を行う。この紫外線酸化処理では、紫外線酸化された後の水中の過酸化水素の濃度が15.0μg/L以上となるような強度で、紫外線酸化を行う。次いで、紫外線酸化処理が行われた水を、イオン交換器32aで処理して、脱イオンし、次いで、脱イオン処理された水を、限外濾過膜装置13aを用いて処理し、微粒子を濾過により除去して、超純水21(オゾンが溶解されていない超純水)を得る。そして、ユースポイント(UP)で使用するために、得られた超純水21を、ユースポイント(UP)へと送液する。また、紫外線酸化器10とイオン交換器32aとを繋ぐ送液管から、紫外線酸化処理が行われた水を、一部抜出し、過酸化水素除去手段11へ送液する。そして、抜き出した水、すなわち、紫外線酸化処理が行われた水を、過酸化水素除去手段11にて処理し、水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理を行う。次いで、過酸化水素除去処理が行われた水を、イオン交換器32bで処理して、脱イオンする。次いで、脱イオンされた水に、二酸化炭素溶解手段12を用いて二酸化炭素を溶解させる。このとき、二酸化炭素を溶解させた後の水中のpHが2〜6程度となるように、二酸化炭素の溶解量を調節する。次いで、二酸化炭素を溶解させた水を、限外濾過膜装置13bを用い処理し、微粒子を濾過により除去する微粒子除去処理を行う。次いで、微粒子除去処理が行われた水に、オゾン溶解部14にて、オゾン発生器15で発生させたオゾン17を溶解させるオゾン溶解処理を行う。このオゾン溶解処理では、オゾン溶解後のオゾン水中のオゾン濃度が30mg/L以上となるように、オゾン発生器15の出力、オゾンガス流量等を調節する。このようにして、高濃度のオゾンが溶解している超純水であるオゾン水20aを得る。そして、ユースポイント(UP)で使用するために、得られたオゾン水20aを、ユースポイント(UP)へと送液する。   In order to produce ultrapure water and ozone water using the ultrapure water production system 22a, first, the raw water 5 is treated by the pretreatment system 1, and the suspended substances and colloidal substances in the raw water 5 are removed and heat exchange is performed. After performing a process etc., the obtained treated water is processed with a primary pure water system, and the treated water 3 of a primary pure water system is obtained. Next, the water 3 obtained by the primary pure water system is treated by the deaerator 31 to degas oxygen gas, nitrogen gas, carbon dioxide gas, etc. in the pure water, and then the degassed pure water is removed. Then, an ultraviolet oxidation process for performing ultraviolet oxidation using the ultraviolet oxidizer 10 is performed. In this ultraviolet oxidation treatment, the ultraviolet oxidation is performed at such an intensity that the concentration of hydrogen peroxide in the water after the ultraviolet oxidation becomes 15.0 μg / L or more. Next, the water subjected to the ultraviolet oxidation treatment is treated with the ion exchanger 32a to deionize, and then the deionized water is treated with the ultrafiltration membrane device 13a to filter the fine particles. To obtain ultrapure water 21 (ultrapure water in which ozone is not dissolved). Then, for use at the use point (UP), the obtained ultrapure water 21 is fed to the use point (UP). Further, a part of the water subjected to the ultraviolet oxidation treatment is extracted from the liquid feed pipe connecting the ultraviolet oxidizer 10 and the ion exchanger 32 a and fed to the hydrogen peroxide removing means 11. Then, the extracted water, that is, the water subjected to the ultraviolet oxidation treatment is treated by the hydrogen peroxide removing means 11 to remove the hydrogen peroxide in the water, so that the hydrogen peroxide concentration is 10.0 μg / L or less. To remove hydrogen peroxide. Next, the water that has undergone the hydrogen peroxide removal treatment is treated by the ion exchanger 32b and deionized. Next, carbon dioxide is dissolved in the deionized water using the carbon dioxide dissolving means 12. At this time, the amount of carbon dioxide dissolved is adjusted so that the pH in water after dissolving carbon dioxide is about 2 to 6. Next, the water in which carbon dioxide is dissolved is treated using the ultrafiltration membrane device 13b, and fine particle removal treatment is performed to remove the fine particles by filtration. Next, an ozone dissolution process is performed in the ozone dissolution unit 14 to dissolve the ozone 17 generated by the ozone generator 15 in the water subjected to the fine particle removal process. In this ozone dissolution treatment, the output of the ozone generator 15, the ozone gas flow rate, and the like are adjusted so that the ozone concentration in the ozone water after ozone dissolution becomes 30 mg / L or more. In this way, ozone water 20a which is ultrapure water in which high-concentration ozone is dissolved is obtained. Then, for use at the use point (UP), the obtained ozone water 20a is fed to the use point (UP).

図2中、超純水製造システム22bは、原水5が処理される前処理システム1と、前処理システムの処理水が処理される一次純水システム2と、一次純水システムで処理することにより得られる水3が処理されるサブシステム30bと、からなる。サブシステム30bは、一次純水システム2で得られた水3を処理して、超純水21(オゾンを溶解させない超純水)と、高濃度のオゾンを溶解させた超純水であるオゾン水20bとを、得るシステムであり、脱気器31と、紫外線酸化器10と、イオン交換器32aと、限外濾過膜装置13aと、からなる超純水製造ラインと、紫外線酸化器10の後段で超純水製造ラインから分岐し、イオン交換器32bと、二酸化炭素溶解手段12と、過酸化水素除去手段11と、限外濾過膜装置13bと、オゾン溶解部14と、オゾン発生器15と、からなるオゾン水製造ラインと、で構成されている。サブシステム30b中、超純水製造ラインでは、脱気器31→紫外線酸化器10→イオン交換器32a→限外濾過膜装置13aの順に繋がっており、また、オゾン水製造ラインでは、紫外線酸化器10の後段から分岐して、イオン交換器32b→二酸化炭素溶解手段12→過酸化水素除去手段11→限外濾過膜装置13b→オゾン溶解部14の順に繋がっており、オゾン溶解部14にはオゾン発生器15が繋がっている。   In FIG. 2, the ultrapure water production system 22b is processed by the pretreatment system 1 in which the raw water 5 is treated, the primary pure water system 2 in which the treated water of the pretreatment system is treated, and the primary pure water system. And a subsystem 30b in which the obtained water 3 is treated. The subsystem 30b treats the water 3 obtained by the primary pure water system 2, and ultrapure water 21 (superpure water that does not dissolve ozone) and ozone that is ultrapure water in which high-concentration ozone is dissolved. A system for obtaining water 20b, an ultrapure water production line comprising a deaerator 31, an ultraviolet oxidizer 10, an ion exchanger 32a, and an ultrafiltration membrane device 13a; It branches from an ultrapure water production line in the latter stage, ion exchanger 32b, carbon dioxide dissolution means 12, hydrogen peroxide removal means 11, ultrafiltration membrane device 13b, ozone dissolution part 14, and ozone generator 15 And an ozone water production line. In the sub-system 30b, the ultrapure water production line is connected in the order of deaerator 31 → ultraviolet oxidizer 10 → ion exchanger 32a → ultrafiltration membrane device 13a. 10 is branched from an ion exchanger 32b → carbon dioxide dissolving means 12 → hydrogen peroxide removing means 11 → ultrafiltration membrane device 13b → ozone dissolving part 14, and ozone dissolving part 14 includes ozone. The generator 15 is connected.

超純水製造システム22bを用いて、超純水及びオゾン水を製造するには、先ず、原水5を前処理システム1で処理し、原水5中の懸濁物質やコロイド物質の除去、熱交換処理等を行った後、得られた処理水を一次純水システムで処理して、一次純水システムの処理水3を得る。次いで、一次純水システムで得られた水3を、脱気器31で処理して、純水中の酸素ガス、窒素ガス、二酸化炭素ガス等を脱気した後、脱気された水を、紫外線酸化器10を用いて紫外線酸化する紫外線酸化処理を行う。この紫外線酸化処理では、紫外線酸化された後の水中の過酸化水素の濃度が15.0μg/L以上になるような強度で、紫外線酸化を行う。次いで、紫外線酸化処理が行われた水を、イオン交換器32aで処理して、脱イオンし、次いで、脱イオン処理された水を、限外濾過膜装置13aを用いて処理し、微粒子を濾過により除去して、超純水21(オゾンが溶解されていない超純水)を得る。そして、ユースポイント(UP)で使用するために、得られた超純水21を、ユースポイント(UP)へと送液する。また、紫外線酸化器10とイオン交換器32aとを繋ぐ送液管から、紫外線酸化処理が行われた水を、一部抜出して、イオン交換器32bに送液する。そして、抜き出した水、すなわち、紫外線酸化処理が行われた水をイオン交換器32bで処理して、脱イオンする。次いで、脱イオンされた水に、二酸化炭素溶解手段12を用いて二酸化炭素を溶解させる。このとき、二酸化炭素を溶解させた後の水中のpHが2〜6程度となるように、二酸化炭素の溶解量を調節する。次いで、二酸化炭素が溶解された水を、過酸化水素除去手段11にて処理し、水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理を行う。次いで、過酸化水素除去処理が行われた水を、限外濾過膜装置13bを用い処理し、微粒子を濾過により除去する微粒子除去処理を行う。次いで、微粒子除去処理が行われた水に、オゾン溶解部14にて、オゾン発生器15で発生させたオゾン17を溶解させるオゾン溶解処理を行う。このオゾン溶解処理では、オゾン溶解後のオゾン水中のオゾン濃度が30mg/L以上となるように、オゾン発生器15の出力、オゾンガス流量等を調節する。このようにして、高濃度のオゾンが溶解している超純水であるオゾン水20bを得る。そして、ユースポイント(UP)で使用するために、得られたオゾン水20bを、ユースポイント(UP)へと送液する。   In order to produce ultrapure water and ozone water using the ultrapure water production system 22b, first, the raw water 5 is treated by the pretreatment system 1, and the suspended substances and colloidal substances in the raw water 5 are removed and heat exchange is performed. After performing a process etc., the obtained treated water is processed with a primary pure water system, and the treated water 3 of a primary pure water system is obtained. Next, the water 3 obtained in the primary pure water system is treated with the deaerator 31 to degas oxygen gas, nitrogen gas, carbon dioxide gas, etc. in the pure water, An ultraviolet oxidation process for performing ultraviolet oxidation using the ultraviolet oxidizer 10 is performed. In this ultraviolet oxidation treatment, the ultraviolet oxidation is performed at such an intensity that the concentration of hydrogen peroxide in the water after the ultraviolet oxidation becomes 15.0 μg / L or more. Next, the water subjected to the ultraviolet oxidation treatment is treated with the ion exchanger 32a to deionize, and then the deionized water is treated with the ultrafiltration membrane device 13a to filter the fine particles. To obtain ultrapure water 21 (ultrapure water in which ozone is not dissolved). Then, for use at the use point (UP), the obtained ultrapure water 21 is fed to the use point (UP). In addition, a part of the water subjected to the ultraviolet oxidation treatment is extracted from the liquid feed pipe connecting the ultraviolet oxidizer 10 and the ion exchanger 32a, and is sent to the ion exchanger 32b. Then, the extracted water, that is, the water subjected to the ultraviolet oxidation treatment is processed by the ion exchanger 32b and deionized. Next, carbon dioxide is dissolved in the deionized water using the carbon dioxide dissolving means 12. At this time, the amount of carbon dioxide dissolved is adjusted so that the pH in water after dissolving carbon dioxide is about 2 to 6. Next, water in which carbon dioxide is dissolved is treated by the hydrogen peroxide removing means 11 to remove hydrogen peroxide in the water, so that the hydrogen peroxide concentration is reduced to 10.0 μg / L or less. I do. Next, the water that has undergone the hydrogen peroxide removal treatment is treated using the ultrafiltration membrane device 13b, and the fine particle removal treatment is performed to remove the fine particles by filtration. Next, an ozone dissolution process is performed in the ozone dissolution unit 14 to dissolve the ozone 17 generated by the ozone generator 15 in the water subjected to the fine particle removal process. In this ozone dissolution treatment, the output of the ozone generator 15, the ozone gas flow rate, and the like are adjusted so that the ozone concentration in the ozone water after ozone dissolution becomes 30 mg / L or more. In this way, ozone water 20b, which is ultrapure water in which high-concentration ozone is dissolved, is obtained. Then, for use at the use point (UP), the obtained ozone water 20b is fed to the use point (UP).

図3中、超純水製造システム22cは、原水5が処理される前処理システム1と、前処理システムの処理水が処理される一次純水システム2と、一次純水システムで処理することにより得られる水3が処理されるサブシステム30cと、からなる。サブシステム30cは、一次純水システム2で得られた水3を処理して、超純水21(オゾンを溶解させない超純水)と、高濃度のオゾンを溶解させた超純水であるオゾン水20cとを、得るシステムであり、脱気器31と、紫外線酸化器10と、イオン交換器32aと、限外濾過膜装置13aと、からなる超純水製造ラインと、紫外線酸化器10の後段で超純水製造ラインから分岐し、過酸化水素除去手段11と、イオン交換器32bと、限外濾過膜装置13bと、オゾン溶解部14と、オゾン発生器15と、二酸化炭素供給管18と、からなるオゾン水製造ラインと、で構成されている。サブシステム30c中、超純水製造ラインでは、脱気器31→紫外線酸化器10→イオン交換器32a→限外濾過膜装置13aの順に繋がっており、また、オゾン水製造ラインでは、紫外線酸化器10の後段から分岐して、過酸化水素除去手段11→イオン交換器32b→限外濾過膜装置13b→オゾン溶解部14の順に繋がっており、オゾン溶解部14にはオゾン発生器15が繋がっており、オゾン発生器15で発生させたオゾン17をオゾン溶解部14に供給するための供給管に、二酸化炭素供給管18が繋がっている。   In FIG. 3, the ultrapure water production system 22c is processed by the pretreatment system 1 in which the raw water 5 is treated, the primary pure water system 2 in which the treated water of the pretreatment system is treated, and the primary pure water system. And a subsystem 30c in which the obtained water 3 is treated. The subsystem 30c treats the water 3 obtained by the primary pure water system 2, and ultrapure water 21 (superpure water that does not dissolve ozone) and ozone that is ultrapure water in which high-concentration ozone is dissolved. A system for obtaining water 20c, an ultrapure water production line comprising a deaerator 31, an ultraviolet oxidizer 10, an ion exchanger 32a, and an ultrafiltration membrane device 13a; Branched from the ultrapure water production line in the latter stage, the hydrogen peroxide removing means 11, the ion exchanger 32b, the ultrafiltration membrane device 13b, the ozone dissolving part 14, the ozone generator 15, and the carbon dioxide supply pipe 18 And an ozone water production line. In the sub-system 30c, the ultrapure water production line is connected in the order of deaerator 31 → ultraviolet oxidizer 10 → ion exchanger 32a → ultrafiltration membrane device 13a. In the ozone water production line, the ultra violet oxidizer 10 is branched from the subsequent stage and is connected in the order of hydrogen peroxide removing means 11 → ion exchanger 32b → ultrafiltration membrane device 13b → ozone dissolving unit 14, and ozone generator 15 is connected to ozone dissolving unit 14. A carbon dioxide supply pipe 18 is connected to a supply pipe for supplying the ozone 17 generated by the ozone generator 15 to the ozone dissolving section 14.

超純水製造システム22cを用いて、オゾン水を製造するには、先ず、原水5を前処理システム1で処理し、原水5中の懸濁物質やコロイド物質の除去、熱交換処理等を行った後、得られた処理水を一次純水システムで処理して、一次純水システムの処理水3を得る。次いで、一次純水システムで得られた水3を、脱気器31で処理して、水中の酸素ガス、窒素ガス、二酸化炭素ガス等を脱気した後、脱気された水を、紫外線酸化器10を用いて紫外線酸化する紫外線酸化処理を行う。この紫外線酸化処理では、紫外線酸化された後の水中の過酸化水素の濃度が15.0μg/L以上となるような強度で、紫外線酸化を行う。次いで、紫外線酸化処理が行われた水を、イオン交換器32aで処理して、脱イオンし、次いで、脱イオン処理された水を、限外濾過膜装置13aを用いて処理し、微粒子を濾過により除去して、超純水21(オゾンが溶解されていない超純水)を得る。そして、ユースポイント(UP)で使用するために、得られた超純水21を、ユースポイント(UP)へと送液する。また、紫外線酸化器10とイオン交換器32aとを繋ぐ送液管から、紫外線酸化処理が行われた水を、一部抜出して、過酸化水素除去手段11へ送液する。そして、抜き出した水、すなわち。紫外線酸化処理が行われた水を、過酸化水素除去手段11にて処理し、水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理を行う。次いで、過酸化水素除去処理が行われた水を、イオン交換器32bで処理して、脱イオンする。次いで、脱イオンされた水を、限外濾過膜装置13bを用い処理し、微粒子を濾過により除去する微粒子除去処理を行う。次いで、微粒子除去処理が行われた水に、オゾン溶解部14にて、オゾン及び二酸化炭素を溶解させるオゾン溶解処理を行う。このとき、オゾン溶解部14には、オゾン発生器15で発生させたオゾン17及び二酸化炭素供給管18より供給される二酸化炭素の混合気体を供給する。このオゾン溶解処理では、オゾン溶解後のオゾン水中のオゾン濃度が30mg/L以上となるように、オゾン発生器15の出力、オゾンガス流量等を調節する。また、オゾン溶解処理のときに、二酸化炭素を溶解させるが、二酸化炭素を溶解させた後の水中のpHが2〜6程度となるように、二酸化炭素の溶解量を調節する。このようにして、超純水に高濃度でオゾンを溶解させたオゾン水20cを得る。そして、ユースポイント(UP)で使用するために、得られたオゾン水20cを、ユースポイント(UP)へと送液する。   In order to produce ozone water using the ultrapure water production system 22c, first, the raw water 5 is treated by the pretreatment system 1, and the suspended substances and colloidal substances in the raw water 5 are removed and heat exchange treatment is performed. Then, the treated water obtained is treated with a primary pure water system to obtain treated water 3 of the primary pure water system. Next, the water 3 obtained by the primary pure water system is treated by the deaerator 31 to degas oxygen gas, nitrogen gas, carbon dioxide gas, etc. in the water, and then the degassed water is subjected to ultraviolet oxidation. Using the vessel 10, an ultraviolet oxidation process for performing ultraviolet oxidation is performed. In this ultraviolet oxidation treatment, the ultraviolet oxidation is performed at such an intensity that the concentration of hydrogen peroxide in the water after the ultraviolet oxidation becomes 15.0 μg / L or more. Next, the water subjected to the ultraviolet oxidation treatment is treated with the ion exchanger 32a to deionize, and then the deionized water is treated with the ultrafiltration membrane device 13a to filter the fine particles. To obtain ultrapure water 21 (ultrapure water in which ozone is not dissolved). Then, for use at the use point (UP), the obtained ultrapure water 21 is fed to the use point (UP). Further, a part of the water subjected to the ultraviolet oxidation treatment is extracted from the liquid feed pipe connecting the ultraviolet oxidizer 10 and the ion exchanger 32 a and fed to the hydrogen peroxide removing means 11. And the extracted water, ie. Hydrogen peroxide removal treatment is performed by treating the water subjected to the ultraviolet oxidation treatment with the hydrogen peroxide removal means 11 to remove the hydrogen peroxide in the water so that the hydrogen peroxide concentration is 10.0 μg / L or less. Do. Next, the water that has undergone the hydrogen peroxide removal treatment is treated by the ion exchanger 32b and deionized. Next, the deionized water is treated using the ultrafiltration membrane device 13b, and a fine particle removal process is performed to remove the fine particles by filtration. Next, an ozone dissolution process for dissolving ozone and carbon dioxide is performed in the ozone dissolution unit 14 in the water subjected to the fine particle removal process. At this time, a mixture gas of ozone 17 generated by the ozone generator 15 and carbon dioxide supplied from the carbon dioxide supply pipe 18 is supplied to the ozone dissolving part 14. In this ozone dissolution treatment, the output of the ozone generator 15, the ozone gas flow rate, and the like are adjusted so that the ozone concentration in the ozone water after ozone dissolution becomes 30 mg / L or more. Further, during the ozone dissolution treatment, carbon dioxide is dissolved, but the amount of carbon dioxide dissolved is adjusted so that the pH in water after dissolving the carbon dioxide is about 2-6. In this way, ozone water 20c in which ozone is dissolved at a high concentration in ultrapure water is obtained. Then, in order to use at the use point (UP), the obtained ozone water 20c is fed to the use point (UP).

このように、本発明のオゾン水製造方法は、レジストの剥離を行う処理等のユースポイントで使用するための高濃度のオゾン水を製造するためのオゾン水の製造方法であって、一次純水システムで得られた水を更に処理して得られる超純水にオゾンを溶解させて、高濃度でオゾンが溶解している超純水であるオゾン水を得るためのオゾン水製造方法である。   As described above, the ozone water production method of the present invention is a production method of ozone water for producing high-concentration ozone water for use at a point of use such as a process for stripping a resist. This is an ozone water production method for obtaining ozone water which is ultrapure water in which ozone is dissolved at a high concentration by dissolving ozone in ultrapure water obtained by further processing water obtained by the system.

なお、図1〜図3には、本発明のオゾン水製造方法の形態例を実施するための超純水製造システムが示されているが、本発明のオゾン水製造方法は、これに限定されるものではない。   1 to 3 show an ultrapure water production system for implementing an embodiment of the ozone water production method of the present invention, the ozone water production method of the present invention is not limited to this. It is not something.

本発明のオゾン水製造方法に係る紫外線酸化処理は、一次純水システムで得られた水を紫外線酸化する処理であり、紫外線酸化処理後の水(紫外線酸化処理水)中の過酸化水素の濃度が15.0μg/L以上となるような強度で、紫外線酸化を行う処理である。   The ultraviolet oxidation treatment according to the ozone water production method of the present invention is a treatment for ultraviolet oxidation of water obtained by a primary pure water system, and the concentration of hydrogen peroxide in the water after ultraviolet oxidation treatment (ultraviolet oxidation treatment water). Is a treatment for performing ultraviolet oxidation at such an intensity that the concentration becomes 15.0 μg / L or more.

紫外線酸化処理で処理される被処理水は、一次純水システムで得られた純水である。図1〜図3に示す超純水製造装置の形態例では、紫外線酸化処理で処理される被処理水は、原水を、凝集沈殿装置、濾過器及び濾過水タンクからなる前処理システムで処理し、その処理水を、イオン交換器、精密濾過膜装置、逆浸透膜装置及び一次純水タンクからなる一次純水システムで処理して得られる水を、脱気器で脱気した水であるが、これに限定されるものではなく、紫外線酸化処理で処理される被処理水としては、一次純水システムで、イオン成分、有機物成分、微粒子等の除去がされた水であれば、どのような被処理水を用いて得られたものであるかは制限されず、また、どのような一次純水システムで得られたものであるかは制限されない。また、紫外線酸化処理で、紫外線酸化処理が行われる水は、一次純水システムで得られた水であるが、この一次純水システムで得られた水とは、一次純水システムで処理した直後の水という意味ではなく、紫外線酸化処理より前段で、一次純水システムで処理が行われた水という意味である。つまり、一次純水システムで得られた水とは、一次純水システムで処理された直後の純水であってもよいし、あるいは、一次純水システムで処理が行われた後に、必要に応じて、例えば、脱気、脱イオン、熱交換等の処理が行われた水であってもよい。言い換えると、本発明のオゾン水製造方法では、一次純水システムで得られた水を、そのまま、紫外線酸化処理してもよいし、あるいは、一次純水システムで処理した後に、例えば、脱気、脱イオン、熱交換等の処理を行ってから、紫外線酸化処理を行ってもよい。   The treated water to be treated by the ultraviolet oxidation treatment is pure water obtained by the primary pure water system. In the embodiment of the ultrapure water production apparatus shown in FIGS. 1 to 3, the water to be treated by the ultraviolet oxidation treatment is treated with raw water by a pretreatment system comprising a coagulating sedimentation apparatus, a filter and a filtrate water tank. The water obtained by treating the treated water with a primary pure water system comprising an ion exchanger, a microfiltration membrane device, a reverse osmosis membrane device and a primary pure water tank is water deaerated with a deaerator. However, the water to be treated by the ultraviolet oxidation treatment is not limited to this, and any water can be used as long as the ionic components, organic components, fine particles, etc. are removed in the primary pure water system. It is not limited whether it is obtained using treated water, and it is not limited what primary pure water system is used. In addition, the water that is subjected to ultraviolet oxidation treatment in the ultraviolet oxidation treatment is water obtained by the primary pure water system, but the water obtained by this primary pure water system is immediately after being treated by the primary pure water system. This means that the water has been treated in the primary pure water system before the ultraviolet oxidation treatment. In other words, the water obtained by the primary pure water system may be pure water immediately after being treated by the primary pure water system, or after being treated by the primary pure water system, if necessary. For example, water that has been subjected to treatment such as deaeration, deionization, and heat exchange may be used. In other words, in the ozone water production method of the present invention, the water obtained by the primary pure water system may be subjected to ultraviolet oxidation treatment as it is, or after being treated by the primary pure water system, for example, deaeration, An ultraviolet oxidation treatment may be performed after a treatment such as deionization or heat exchange.

一次純水システムの被処理水は、原水として、例えば、工業用水、市水、井水等を、前処理システムで前処理した処理水である。前処理システムとしては、上述したものの他に、例えば、凝集加圧浮上処理、活性炭吸着処理、除鉄除マンガン処理、熱交換処理等を行うものが挙げられる。また、一次純水システムとしては、上述したものの他に、例えば、真空脱気処理、脱炭酸処理、紫外線殺菌処理等を行うものが挙げられる。   The treated water of the primary pure water system is treated water obtained by pretreating, for example, industrial water, city water, well water, or the like as raw water with a pretreatment system. Examples of the pretreatment system include those that perform, for example, agglomeration pressure flotation treatment, activated carbon adsorption treatment, iron removal manganese removal treatment, heat exchange treatment, and the like in addition to those described above. Moreover, as a primary pure water system, what performs a vacuum deaeration process, a decarbonation process, an ultraviolet sterilization process etc. other than what was mentioned above is mentioned, for example.

紫外線酸化処理の被処理水である一次純水システムで得られた水は、抵抗率が、好ましくは1MΩ・cm以上、特に好ましくは10〜18MΩ・cmの水であり、また、TOCは、好ましくは1〜100μg/L、特に好ましくは1〜10μg/Lの水である。   The water obtained by the primary pure water system which is the water to be treated by the ultraviolet oxidation treatment is water having a resistivity of preferably 1 MΩ · cm or more, particularly preferably 10 to 18 MΩ · cm, and TOC is preferably Is 1 to 100 μg / L, particularly preferably 1 to 10 μg / L of water.

紫外線酸化処理では、被処理水である一次純水システムで得られた水に、紫外線を照射することにより、水中の有機物を酸化分解する。このとき、紫外線酸化処理後の水(紫外線酸化処理水)中の過酸化水素の濃度が15.0μg/L以上、好ましくは20.0〜50.0μg/Lとなるような強度で紫外線を照射する。紫外線酸化処理後の水中の過酸化水素の濃度を上記範囲とする理由は、紫外線酸化処理後の水の過酸化水素濃度が15.0μg/L未満では紫外線強度が水中の有機物を酸化分解するのに不十分であるためである。また、50.0μg/Lを超えても、水中の有機物を酸化分解する効果は得られるものの、紫外線の無効消費が増加し処理コストの増加を招くため、コストの観点からは50.0μg/L以下が好ましい。   In the ultraviolet oxidation treatment, the organic matter in the water is oxidized and decomposed by irradiating the water obtained by the primary pure water system as the water to be treated with ultraviolet rays. At this time, the ultraviolet rays are irradiated with such an intensity that the concentration of hydrogen peroxide in the water after ultraviolet oxidation treatment (ultraviolet oxidation water) is 15.0 μg / L or more, preferably 20.0 to 50.0 μg / L. To do. The reason why the concentration of hydrogen peroxide in the water after ultraviolet oxidation treatment is in the above range is that when the hydrogen peroxide concentration in the water after ultraviolet oxidation treatment is less than 15.0 μg / L, the ultraviolet intensity oxidizes and decomposes organic substances in water. This is because it is insufficient. Moreover, even if it exceeds 50.0 μg / L, the effect of oxidizing and decomposing organic substances in water can be obtained, but the invalid consumption of ultraviolet rays increases and the processing cost increases, so from the viewpoint of cost, 50.0 μg / L The following is preferred.

紫外線酸化処理を行うための紫外線酸化装置としては、被処理水中の有機物を分解可能なものであれば特に制限されないが、被処理水に少なくとも185nm付近の波長を照射可能な紫外線ランプを備えたものが好ましい。紫外線酸化装置は、185nm付近の波長の紫外線に加えて、それより有機物分解能力が低い254nm付近の波長の紫外線も照射可能な装置であることがより好ましい。なお、254nm付近の波長は照射するが、185nm付近の波長はほとんど照射しない紫外線照射装置もあるが、これは主に殺菌目的に用いられ、一般に紫外線殺菌装置といわれており、上述した紫外線酸化装置とは区別して用いられている。本発明においては、185nm付近の波長及び254nm付近の波長を有する紫外線を共に強く照射できる紫外線酸化装置を用いることが、有機物を良好に分解できるため好ましい。また、紫外線酸化装置に用いられる紫外線ランプとしては、特に制限されないが、低圧水銀ランプが好ましい。また、紫外線酸化装置としては、流通型、浸漬型等が挙げられ、このうち、流通型が処理効率が高い点で好ましい。   The ultraviolet oxidation apparatus for performing the ultraviolet oxidation treatment is not particularly limited as long as it can decompose organic substances in the water to be treated, but is equipped with an ultraviolet lamp capable of irradiating the water to be treated with a wavelength of at least about 185 nm. Is preferred. The ultraviolet oxidation apparatus is more preferably an apparatus that can irradiate ultraviolet rays having a wavelength near 254 nm, which has a lower ability to decompose organic substances, in addition to ultraviolet rays having a wavelength around 185 nm. There is an ultraviolet irradiation apparatus that irradiates a wavelength near 254 nm but hardly irradiates a wavelength near 185 nm. This ultraviolet irradiation apparatus is mainly used for sterilization purposes and is generally called an ultraviolet sterilization apparatus. It is used in distinction. In the present invention, it is preferable to use an ultraviolet oxidizer that can strongly irradiate ultraviolet rays having a wavelength of around 185 nm and a wavelength of around 254 nm because organic substances can be decomposed satisfactorily. The ultraviolet lamp used in the ultraviolet oxidation apparatus is not particularly limited, but a low-pressure mercury lamp is preferable. In addition, examples of the ultraviolet oxidation apparatus include a distribution type and an immersion type, and among these, the distribution type is preferable in terms of high processing efficiency.

本発明のオゾン水製造方法に係る過酸化水素除去処理は、紫外線酸化処理が行われた水を、過酸化水素除去手段により処理して、水中の過酸化水素を除去し、過酸化水素除去処理後の水(過酸化水素除去処理水)中の過酸化水素濃度を10.0μg/L以下にする処理である。   The hydrogen peroxide removal treatment according to the ozone water production method of the present invention is performed by treating the water subjected to the ultraviolet oxidation treatment with the hydrogen peroxide removal means to remove the hydrogen peroxide in the water, and the hydrogen peroxide removal treatment This is a treatment for reducing the hydrogen peroxide concentration in the subsequent water (hydrogen peroxide removal treated water) to 10.0 μg / L or less.

過酸化水素除去処理で、過酸化水素除去処理が行われる水は、紫外線酸化処理が行われた水であるが、この紫外線酸化処理が行われた水とは、紫外線酸化処理が行われた直後の水という意味ではなく、過酸化水素除去処理より前段で、紫外線酸化処理が行われた水という意味である。つまり、紫外線酸化処理が行われた水とは、紫外線酸化処理が行われた直後の水であってもよいし、あるいは、紫外線酸化処理が行われた後に、例えば、脱イオン、二酸化炭素の溶解、膜濾過等の処理が行われた水であってもよい。言い換えると、本発明のオゾン水製造方法では、紫外線酸化処理の直後に過酸化水素除去処理を行ってもよいし、あるいは、紫外線酸化処理の後に、例えば、脱イオン、二酸化炭素の溶解、膜濾過等の処理を行ってから、過酸化水素除去処理を行ってもよい。   In the hydrogen peroxide removal process, the water that is subjected to the hydrogen peroxide removal process is the water that has been subjected to the ultraviolet oxidation process. The water that has been subjected to the ultraviolet oxidation process is immediately after the ultraviolet oxidation process is performed. This means that the water has been subjected to ultraviolet oxidation treatment before the hydrogen peroxide removal treatment. In other words, the water subjected to the ultraviolet oxidation treatment may be water immediately after the ultraviolet oxidation treatment is performed, or after the ultraviolet oxidation treatment is performed, for example, deionization or dissolution of carbon dioxide. Water that has been subjected to treatment such as membrane filtration may also be used. In other words, in the ozone water production method of the present invention, the hydrogen peroxide removal treatment may be performed immediately after the ultraviolet oxidation treatment, or after the ultraviolet oxidation treatment, for example, deionization, dissolution of carbon dioxide, membrane filtration The hydrogen peroxide removal treatment may be performed after performing such treatment.

過酸化水素除去処理において、水から過酸化水素を除去する方法としては、(i)紫外線酸化処理が行われた水中の過酸化水素を吸着材に吸着させる方法、(ii)紫外線酸化処理が行われた水中の過酸化水素を分解する方法が挙げられる。   In the hydrogen peroxide removal treatment, the method for removing hydrogen peroxide from water includes (i) a method in which hydrogen peroxide in water subjected to ultraviolet oxidation treatment is adsorbed on an adsorbent, and (ii) ultraviolet oxidation treatment is performed. There is a method of decomposing hydrogen peroxide in water.

上記(i)の方法に用いられる吸着材としては、例えば、活性炭、合成吸着剤等が挙げられる。   Examples of the adsorbent used in the method (i) include activated carbon and synthetic adsorbent.

上記(ii)の方法としては、例えば、過酸化水素分解触媒に、被処理水を接触させる方法、活性炭に被処理水を接触させる方法、被処理水を加熱する方法等が挙げられる。   Examples of the method (ii) include a method of bringing the water to be treated into contact with the hydrogen peroxide decomposition catalyst, a method of bringing the water to be treated into contact with activated carbon, and a method of heating the water to be treated.

上記(ii)の方法における過酸化水素分解触媒としては、白金族金属が担持された粒状のイオン交換樹脂、金属イオン型の粒状の陽イオン交換樹脂、白金族金属が担持された非粒状の有機多孔質体又は白金族金属が担持された非粒状の有機多孔質イオン交換体が挙げられる。なお、これらの過酸化水素分解触媒については、後述する。以下、白金族金属が担持された非粒状の有機多孔質体を、白金族金属担持非粒状有機多孔質体とも記載し、白金族金属が担持された非粒状の有機多孔質イオン交換体を、白金族金属担持非粒状有機多孔質イオン交換体とも記載する。   Examples of the hydrogen peroxide decomposition catalyst in the method (ii) include a granular ion exchange resin carrying a platinum group metal, a metal ion type granular cation exchange resin, and a non-granular organic material carrying a platinum group metal. Examples thereof include a non-granular organic porous ion exchanger on which a porous body or a platinum group metal is supported. These hydrogen peroxide decomposition catalysts will be described later. Hereinafter, the non-particulate organic porous body on which the platinum group metal is supported is also referred to as a platinum group metal-supported non-particulate organic porous body, and the non-particulate organic porous ion exchanger on which the platinum group metal is supported, Also described as a platinum group metal-supported non-particulate organic porous ion exchanger.

過酸化水素除去処理では、紫外線酸化処理が行われた水を、過酸化水素除去手段により処理して、水中の過酸化水素を除去し、過酸化水素除去処理後の水中の過酸化水素濃度を10.0μg/L以下、好ましくは2.0μg/L以下、特に好ましくは1.0μg/L以下とする。過酸化水素除去処理後の水中の過酸化水素濃度が、上記範囲にあることにより、オゾン水の製造効率が高くなる。   In the hydrogen peroxide removal treatment, the hydrogen-oxidized water is treated by the hydrogen peroxide removal means to remove the hydrogen peroxide in the water, and the hydrogen peroxide concentration in the water after the hydrogen peroxide removal treatment is reduced. 10.0 μg / L or less, preferably 2.0 μg / L or less, particularly preferably 1.0 μg / L or less. When the hydrogen peroxide concentration in the water after the hydrogen peroxide removal treatment is in the above range, the production efficiency of ozone water is increased.

なお、純水中の低濃度過酸化水素の定量方法としては、公知のフェノールフタリン法、例えば、特公昭56−54582号公報に記載の方法が挙げられる。すなわち、過酸化水素を含んだ検液30mlを正確にビーカーに採取し、4×10−3Mのフェノールフタリンアルカリ溶液0.3mlを加え、更に、4×10−4Mの硫酸銅溶液0.3mlを加え、穏やかに攪拌し、数分間放置する。放置により桃赤色を呈する液を光路長50mmの比色セルに移し、540nmの波長で分光分析して吸光度を測定し、測定した吸光度に基づいて予め作成した吸光度−過酸化水素濃度の検量曲線から過酸化水素の濃度を決定すればよい。この方法における過酸化水素の検出下限値は、1mg/Lである。 As a method for quantifying low-concentration hydrogen peroxide in pure water, a known phenol phthaline method, for example, the method described in JP-B-56-54582 can be mentioned. Specifically, 30 ml of a test solution containing hydrogen peroxide was accurately collected in a beaker, 0.3 ml of a 4 × 10 −3 M phenolphthalin alkaline solution was added, and a 4 × 10 −4 M copper sulfate solution was added. Add 3 ml, stir gently and let stand for a few minutes. The solution exhibiting a pinkish red color is transferred to a colorimetric cell having an optical path length of 50 mm, and the absorbance is measured by spectroscopic analysis at a wavelength of 540 nm. From the absorbance-hydrogen peroxide concentration calibration curve prepared in advance based on the measured absorbance. What is necessary is just to determine the density | concentration of hydrogen peroxide. The lower limit of detection of hydrogen peroxide in this method is 1 mg / L.

本発明のオゾン水製造方法に係るオゾン溶解処理は、過酸化水素除去処理が行われた水に、オゾン濃度が30mg/L以上となるまでオゾンを溶解させる処理である。   The ozone dissolution treatment according to the ozone water production method of the present invention is a treatment for dissolving ozone in the water subjected to the hydrogen peroxide removal treatment until the ozone concentration becomes 30 mg / L or more.

オゾン溶解処理で、オゾンが溶解される水は、過酸化水素除去処理が行われた水であるが、この過酸化水素除去処理が行われた水とは、過酸化水素除去処理が行われた直後の水という意味ではなく、オゾン溶解処理より前段で、過酸化水素除去処理が行われた水という意味である。つまり、過酸化水素除去処理が行われた水とは、過酸化水素除去処理が行われた直後の水であってもよいし、あるいは、過酸化水素除去処理が行われた後に、例えば、脱イオン、二酸化炭素の溶解、膜濾過等の処理が行われた水であってもよい。言い換えると、本発明のオゾン水製造方法では、過酸化水素除去処理の直後にオゾン溶解処理を行ってもよいし、あるいは、過酸化水素除去処理の後に、例えば、脱イオン、二酸化炭素の溶解、膜濾過等の処理を行ってから、オゾン溶解処理を行ってもよい。   In the ozone dissolution treatment, water in which ozone is dissolved is water that has been subjected to hydrogen peroxide removal treatment, but water that has undergone this hydrogen peroxide removal treatment has been subjected to hydrogen peroxide removal treatment. It does not mean water immediately after, but means water that has been subjected to hydrogen peroxide removal treatment before the ozone dissolution treatment. In other words, the water that has undergone the hydrogen peroxide removal treatment may be water immediately after the hydrogen peroxide removal treatment, or after the hydrogen peroxide removal treatment, Water that has been subjected to treatments such as ion dissolution, carbon dioxide dissolution, and membrane filtration may also be used. In other words, in the ozone water production method of the present invention, ozone dissolution treatment may be performed immediately after the hydrogen peroxide removal treatment, or after the hydrogen peroxide removal treatment, for example, deionization, carbon dioxide dissolution, Ozone dissolution treatment may be performed after treatment such as membrane filtration.

オゾン溶解処理では、オゾン発生器で発生されたオゾンを、オゾン溶解部に供給して、オゾン溶解部にて、過酸化水素除去処理が行われた水に、オゾンを溶解させる。   In the ozone dissolution treatment, ozone generated by the ozone generator is supplied to the ozone dissolution portion, and ozone is dissolved in the water subjected to the hydrogen peroxide removal treatment in the ozone dissolution portion.

オゾン発生器としては、特に制限されず、例えば、無声放電法、電解法等によるオゾン発生器が挙げられる。無声放電法のオゾン発生器では、原料ガスとして高純度の酸素ガスのみを使用すると、オゾン発生器の所期の性能が発揮されず、生成されるオゾンガス中のオゾン濃度が著しく低下するという問題がある。このオゾン発生器におけるオゾンガス濃度の低下に対しては、従来原料ガスとしての高純度酸素ガスに少量の窒素ガスを添加することが行われている。   The ozone generator is not particularly limited, and examples thereof include an ozone generator by a silent discharge method, an electrolysis method, or the like. In the silent discharge method ozone generator, if only high-purity oxygen gas is used as the raw material gas, the expected performance of the ozone generator is not exhibited, and the ozone concentration in the generated ozone gas is significantly reduced. is there. In order to reduce the ozone gas concentration in the ozone generator, a small amount of nitrogen gas is added to high-purity oxygen gas as a conventional raw material gas.

オゾン溶解部にて、過酸化水素除去処理が行われた水に、オゾン発生器で発生させたオゾンを溶解させる方法としては、特に制限されず、例えば、被処理水にガス透過膜を介してオゾンガスを注入して溶解させる膜溶解方法、被処理水中にオゾンガスをバブリングして溶解させる方法、被処理水中にエジェクターを介してオゾンガスを溶解させる方法、ガス溶解槽に被処理水を供給するポンプの上流側にオゾンガスを供給し、ポンプ内の攪拌によって溶解させる方法等が挙げられる。上記膜溶解方法に用いられるガス透過性膜としては、オゾンの強い酸化力に耐え得る、フッ素樹脂系の疎水性多孔質膜が好適であるが、これに限定されるものではない。   The method of dissolving ozone generated by the ozone generator in water that has been subjected to hydrogen peroxide removal treatment in the ozone dissolving section is not particularly limited, and for example, the water to be treated is passed through a gas permeable membrane. A method of dissolving a film by injecting ozone gas, a method of bubbling ozone gas into the water to be treated, a method of dissolving ozone gas through the ejector in the water to be treated, and a pump for supplying the water to be treated to the gas dissolution tank For example, ozone gas is supplied to the upstream side and dissolved by stirring in the pump. As the gas permeable membrane used for the membrane dissolution method, a fluororesin-based hydrophobic porous membrane that can withstand the strong oxidizing power of ozone is suitable, but is not limited thereto.

オゾン溶解処理では、過酸化水素除去処理が行われた水に、オゾン濃度が30mg/L以上、好ましくは50mg/L以上、特に好ましくは100mg/L以上となるまでオゾンを溶解させる。なお、オゾン濃度の上限は、使用目的やオゾン水製造コスト等に応じて、適宜選択されるが、通常300mg/L以下である。   In the ozone dissolution treatment, ozone is dissolved in the water subjected to the hydrogen peroxide removal treatment until the ozone concentration becomes 30 mg / L or more, preferably 50 mg / L or more, particularly preferably 100 mg / L or more. In addition, although the upper limit of ozone concentration is suitably selected according to a use purpose, ozone water manufacturing cost, etc., it is usually 300 mg / L or less.

そして、本発明のオゾン水製造方法では、過酸化水素除去処理を行う前に二酸化炭素を溶解させるか、あるいは、過酸化水素除去処理を行った後且つオゾン溶解処理を行う前に二酸化炭素を溶解させるか、あるいは、オゾン溶解処理のときに、オゾンと共に二酸化炭素を溶解させる。   In the ozone water production method of the present invention, carbon dioxide is dissolved before the hydrogen peroxide removal treatment, or carbon dioxide is dissolved after the hydrogen peroxide removal treatment and before the ozone dissolution treatment. Alternatively, carbon dioxide is dissolved together with ozone during ozone dissolution treatment.

オゾン水に二酸化炭素を共存させることにより、オゾンの分解が抑制される。
このようなオゾンの分解抑制効果は、炭酸イオンの効果又はpHを酸性にすることによる効果である。被処理水(二酸化炭素が溶解される水)に二酸化炭素を溶解させるときには、溶解後の水のpHが、7未満、好ましくは2〜6程度、特に好ましくは4〜6程度となるまで、被処理水に二酸化炭素を溶解させる。被処理水に二酸化炭素を溶解させる方法としては、被処理水中への二酸化炭素のバブリング、ラインミキサーによる混合、ガス透過性の膜による膜溶解等が挙げられる。膜溶解に用いられるガス透過性の膜は、ポリジメチルシロキサン、ポリオレフィン、ポリスルフォン等の非多孔質膜; フッ素樹脂、ポリエチレン、ポリプロピレン等の疎水性多孔質膜等を中空糸状やスパイラル状にモジュール化したもの等が挙げられる。
By making carbon dioxide coexist in ozone water, decomposition of ozone is suppressed.
Such an effect of suppressing the decomposition of ozone is an effect of carbonate ions or an effect of making pH acidic. When carbon dioxide is dissolved in water to be treated (water in which carbon dioxide is dissolved), the pH of the water after dissolution is less than 7, preferably about 2 to 6, particularly preferably about 4 to 6. Dissolve carbon dioxide in treated water. Examples of the method for dissolving carbon dioxide in the water to be treated include bubbling carbon dioxide in the water to be treated, mixing with a line mixer, and dissolving a membrane with a gas permeable membrane. Gas-permeable membranes used for membrane dissolution are non-porous membranes such as polydimethylsiloxane, polyolefin, and polysulfone; hydrophobic porous membranes such as fluororesin, polyethylene, and polypropylene are modularized into hollow fibers and spirals. And the like.

被処理水への二酸化炭素の溶解を、オゾン溶解処理と同時に行うこともできる。被処理水(過酸化水素除去処理水)にオゾンと同時に二酸化炭素を溶解させる方法としては、オゾン及び二酸化炭素の混合気体を、オゾン溶解部へ供給する方法が挙げられる。   The dissolution of carbon dioxide in the water to be treated can be performed simultaneously with the ozone dissolution treatment. As a method of dissolving carbon dioxide simultaneously with ozone in the water to be treated (hydrogen peroxide-removed treated water), a method of supplying a mixed gas of ozone and carbon dioxide to the ozone dissolving part can be mentioned.

本発明のオゾン水製造方法では、過酸化水素除去処理を行った後且つオゾン溶解処理を行う前に、濾過により水中の微粒子を除去する微粒子除去処理を行うことが、過酸化水素除去処理において、過酸化水素除去手段から混入する可能性のある微粒子を除去できる点で、好ましい。微粒子を濾過により除去する微粒子除去手段としては、精密濾過膜装置、限外濾過膜装置等の膜処理装置が挙げられる。精密濾過膜には孔径0.1〜1μm程度の細孔を有する有機膜が用いられる。また、限外濾過膜には分画分子量3,000〜10,000程度の細孔を有するポリスルホン膜、酢酸セルロース膜等が用いられる。精密濾過膜装置又は限外濾過膜装置におけるモジュール形状は、ホローファイバー形、スパイラル形、チューブラー形及び平膜形等が用いられる。   In the ozone water production method of the present invention, after the hydrogen peroxide removal treatment and before the ozone dissolution treatment, the fine particle removal treatment for removing the fine particles in the water by filtration is performed. This is preferable in that fine particles that may be mixed in from the hydrogen peroxide removing means can be removed. Examples of the fine particle removing means for removing fine particles by filtration include membrane treatment devices such as a microfiltration membrane device and an ultrafiltration membrane device. As the microfiltration membrane, an organic membrane having pores having a pore diameter of about 0.1 to 1 μm is used. For the ultrafiltration membrane, a polysulfone membrane having a fractional molecular weight of about 3,000 to 10,000, a cellulose acetate membrane or the like is used. As the module shape in the microfiltration membrane device or the ultrafiltration membrane device, a hollow fiber shape, a spiral shape, a tubular shape, a flat membrane shape, or the like is used.

本発明のオゾン水製造方法では、更に、懸濁物質の除去処理、イオン性物質の除去処理、殺菌処理、有機物除去処理、微粒子の除去処理、脱気処理等の処理を、必要に応じて、組み合わせて行うことができる。   In the ozone water production method of the present invention, further, if necessary, the suspended matter removal treatment, the ionic substance removal treatment, the sterilization treatment, the organic matter removal treatment, the fine particle removal treatment, the deaeration treatment, etc. Can be combined.

本発明のオゾン水製造方法により得られるオゾン水は、高濃度のオゾンが溶解されている超純水である。本発明のオゾン水製造方法により得られるオゾン水のオゾン濃度は、30mg/L以上、好ましくは50mg/L以上、特に好ましくは100mg/L以上である。なお、オゾン濃度の上限は、使用目的やオゾン水製造コスト等に応じて、適宜選択されるが、通常300mg/L以下である。   The ozone water obtained by the ozone water production method of the present invention is ultrapure water in which high-concentration ozone is dissolved. The ozone concentration of ozone water obtained by the ozone water production method of the present invention is 30 mg / L or more, preferably 50 mg / L or more, particularly preferably 100 mg / L or more. In addition, although the upper limit of ozone concentration is suitably selected according to a use purpose, ozone water manufacturing cost, etc., it is usually 300 mg / L or less.

オゾン水中のオゾン濃度が30mg/L以上と高濃度になると、オゾン水中に存在する過酸化水素の影響によるオゾンの分解が顕著に大きくなるため、超純水に30mg/L以上と高濃度のオゾンを溶解させるときに、水中に過酸化水素が多く存在すると、オゾンが多量に分解してしまい、オゾン発生器の出力を、見込みの出力より高くしないと、目的とする濃度のオゾン水が得られない。なお、見込みの出力とは、オゾンの分解が全くなかったとした場合に、目的とする濃度のオゾン水を得るために必要なオゾン量を発生させるために必要なオゾン発生器の出力を指す。   If the ozone concentration in the ozone water is as high as 30 mg / L or higher, the decomposition of ozone due to the influence of hydrogen peroxide present in the ozone water will be significantly increased. When water is dissolved, if there is a lot of hydrogen peroxide in the water, ozone will be decomposed in large quantities. If the output of the ozone generator is not set higher than the expected output, ozone water of the desired concentration can be obtained. Absent. Note that the expected output refers to the output of the ozone generator necessary for generating the amount of ozone necessary for obtaining ozone water having a target concentration when there is no decomposition of ozone.

そこで、本発明のオゾン水製造方法では、紫外線酸化処理により過酸化水素の濃度が15.0μg/L以上となった水を、過酸化水素除去処理にて、水中の過酸化水素濃度を10.0μg/L以下、好ましくは2.0μg/L以下、特に好ましくは1.0μg/L以下にすることにより、オゾン溶解処理で、被処理水にオゾンをオゾン濃度が30mg/L以上、好ましくは50mg/L以上、特に好ましくは100mg/L以上となるまで溶解させるときに、オゾン発生器の出力を低くすることができる、すなわち、オゾン水の製造効率を高くすることができる。   Therefore, in the ozone water production method of the present invention, water whose hydrogen peroxide concentration has become 15.0 μg / L or more by the ultraviolet oxidation treatment is reduced to 10. The ozone concentration in the water to be treated is 30 mg / L or more, preferably 50 mg in the ozone dissolution treatment by adjusting it to 0 μg / L or less, preferably 2.0 μg / L or less, particularly preferably 1.0 μg / L or less. / L or higher, particularly preferably, when dissolving until it is 100 mg / L or higher, the output of the ozone generator can be lowered, that is, the production efficiency of ozone water can be increased.

一方、オゾン水中のオゾン濃度が10mg/L程度又はそれ以下の低濃度のときは、オゾン水中に存在する過酸化水素の影響によるオゾンの分解は、それほど大きくないため、超純水に10mg/L程度又はそれ以下と低濃度のオゾンを溶解させる溶解させるときには、オゾン発生器の出力を見込みの出力と同程度か若干高めにすれば、目的とする濃度のオゾン水が得られる。   On the other hand, when the ozone concentration in the ozone water is a low concentration of about 10 mg / L or less, the decomposition of ozone due to the influence of hydrogen peroxide present in the ozone water is not so large. When dissolving ozone having a low concentration of about or less, if the output of the ozone generator is set to the same level or slightly higher than the expected output, ozone water of the target concentration can be obtained.

また、オゾン水中のオゾン濃度が30mg/L以上と高濃度になると、オゾン水中に存在する過酸化水素の影響によるオゾンの分解が顕著に大きくなるため、オゾン濃度が30mg/L以上のオゾン水では、オゾン水中に過酸化水素が多く存在すると、製造後のオゾンの分解速度が顕著に速くなる。   In addition, when the ozone concentration in the ozone water is as high as 30 mg / L or more, the decomposition of ozone due to the influence of hydrogen peroxide present in the ozone water becomes remarkably large. Therefore, in ozone water having an ozone concentration of 30 mg / L or more When a large amount of hydrogen peroxide is present in the ozone water, the decomposition rate of ozone after production is remarkably increased.

そこで、本発明のオゾン水製造方法では、紫外線酸化処理により過酸化水素の濃度が15.0μg/L以上となった水を、過酸化水素除去処理にて、水中の過酸化水素濃度を10.0μg/L以下、好ましくは2.0μg/L以下、特に好ましくは1.0μg/L以下とし、且つ、オゾンをオゾン濃度が30mg/L以上、好ましくは50mg/L以上、特に好ましくは100mg/L以上となるまで溶解させることにより、製造後のオゾンの分解速度が小さいオゾン水が得られる。   Therefore, in the ozone water production method of the present invention, water whose hydrogen peroxide concentration has become 15.0 μg / L or more by the ultraviolet oxidation treatment is reduced to 10. 0 μg / L or less, preferably 2.0 μg / L or less, particularly preferably 1.0 μg / L or less, and ozone has an ozone concentration of 30 mg / L or more, preferably 50 mg / L or more, particularly preferably 100 mg / L. By dissolving until it becomes above, ozone water having a low decomposition rate of ozone after production can be obtained.

<過酸化水素分解触媒>
過酸化水素除去処理に用いられる過酸化水素分解触媒としては、白金族金属が担持された粒状のイオン交換樹脂、金属イオン型の粒状の陽イオン交換樹脂、白金族金属が担持された非粒状の有機多孔質体又は白金族金属が担持された非粒状の有機多孔質イオン交換体が挙げられる。
<Hydrogen peroxide decomposition catalyst>
The hydrogen peroxide decomposition catalyst used for the hydrogen peroxide removal treatment includes a granular ion exchange resin carrying a platinum group metal, a granular ion exchange resin of a metal ion type, and a non-granular form carrying a platinum group metal. Examples thereof include an organic porous body or a non-particulate organic porous ion exchanger on which a platinum group metal is supported.

<白金族金属担持非粒状有機多孔質体、白金族金属担持非粒状有機多孔質イオン交換体>
白金族金属担持非粒状有機多孔質体としては、非粒状有機多孔質体に、平均粒子径1〜100nmの白金族金属のナノ粒子が担持されており、非粒子状有機多孔質体が、連続骨格相と連続空孔相からなり、連続骨格の厚みは1〜60μm、連続空孔の平均直径は10〜200μm、全細孔容積は0.5〜10ml/gであり、白金族金属の担持量が、乾燥状態で0.004〜20重量%である白金族金属担持非粒状有機多孔質体が挙げられる。
<Platinum group metal-supported non-particulate organic porous body, platinum group metal-supported non-particulate organic porous ion exchanger>
As the platinum group metal-supported non-particulate organic porous body, platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported on the non-particulate organic porous body, and the non-particulate organic porous body is continuous. Consisting of a skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 60 μm, the average diameter of the continuous pores is 10 to 200 μm, the total pore volume is 0.5 to 10 ml / g, and the platinum group metal is supported. Examples include a platinum group metal-supported non-particulate organic porous material having an amount of 0.004 to 20% by weight in a dry state.

また、白金族金属担持非粒状有機多孔質イオン交換体としては、非粒状有機多孔質イオン交換体に、平均粒子径1〜100nmの白金族金属のナノ粒子が担持されており、非粒子状有機多孔質イオン交換体は、連続骨格相と連続空孔相からなり、連続骨格の厚みは1〜60μm、連続空孔の平均直径は10〜200μm、全細孔容積は0.5〜10ml/gであり、乾燥状態での重量当りのイオン交換容量は1〜6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しており、白金族金属の担持量が、乾燥状態で0.004〜20重量%である白金族金属担持非粒状有機多孔質イオン交換体が挙げられる。   The platinum group metal-supported non-particulate organic porous ion exchanger is a non-particulate organic porous ion exchanger in which platinum group metal nanoparticles having an average particle diameter of 1 to 100 nm are supported. The porous ion exchanger comprises a continuous skeleton phase and a continuous pore phase, the thickness of the continuous skeleton is 1 to 60 μm, the average diameter of the continuous pores is 10 to 200 μm, and the total pore volume is 0.5 to 10 ml / g. The ion exchange capacity per weight in the dry state is 1 to 6 mg equivalent / g, the ion exchange groups are uniformly distributed in the organic porous ion exchanger, and the supported amount of the platinum group metal is Examples include a platinum group metal-supported non-particulate organic porous ion exchanger of 0.004 to 20% by weight in a dry state.

なお、非粒状有機多孔質体又は非粒状有機多孔質イオン交換体の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、非粒状有機多孔質体又は非粒状有機多孔質イオン交換体の構造及び連続骨格の厚みは、SEM観察により求められる。非粒状有機多孔質体又は非粒状有機多孔質イオン交換体に担持されている白金族金属のナノ粒子の粒子径は、TEM観察により求められる。   In addition, the average diameter of the opening of a non-particulate organic porous body or a non-particulate organic porous ion exchanger is measured by the mercury intrusion method, and indicates the maximum value of the pore distribution curve obtained by the mercury intrusion method. Further, the structure of the non-particulate organic porous body or the non-particulate organic porous ion exchanger and the thickness of the continuous skeleton are determined by SEM observation. The particle diameter of the platinum group metal nanoparticles supported on the non-particulate organic porous body or the non-particulate organic porous ion exchanger is determined by TEM observation.

上記の白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体は、非粒状有機多孔質体又は非粒子状有機多孔質イオン交換体に、平均粒子径1〜100nmの白金族金属が担持されているので、高い過酸化水素分解触媒活性を示し、且つ、200〜20000h−1好ましくは2000〜20000h−1の空間速度(SV)で被処理水を通水させることができる。 The platinum group metal-supported non-particulate organic porous body or the platinum group metal-supported non-particulate organic porous ion exchanger has an average particle diameter of 1 to 1 to the non-particulate organic porous body or the non-particulate organic porous ion exchanger. since 100nm platinum group metal is supported, show a high hydrogen peroxide decomposition catalytic activity, and, thereby passed through the treated water at a space velocity of 200~20000H -1 preferably 2000~20000h -1 (SV) be able to.

白金族金属担持非粒状有機多孔質体において、白金族金属が担持されている担体は、非粒状有機多孔質体であるが、この非粒状有機多孔質交換体とは、モノリス状有機多孔質交換体である。また、白金族金属担持非粒状有機多孔質イオン交換体において、白金族金属が担持されている担体は、非粒状有機多孔質イオン交換体であるが、この非粒状有機多孔質イオン交換体とは、モノリス状有機多孔質イオン交換体であり、モノリス状有機多孔質体にイオン交換基が導入されたものである。   In the platinum group metal-supported non-particulate organic porous body, the carrier on which the platinum group metal is supported is a non-particulate organic porous body. This non-particulate organic porous exchanger is a monolithic organic porous exchange. Is the body. In the platinum group metal-supported non-particulate organic porous ion exchanger, the carrier on which the platinum group metal is supported is a non-particulate organic porous ion exchanger. A monolithic organic porous ion exchanger, in which an ion exchange group is introduced into the monolithic organic porous body.

モノリス状有機多孔質体は、骨格が有機ポリマーにより形成されており、骨格間に反応液の流路となる連通孔を多数有する多孔質体である。そして、モノリス状有機多孔質イオン交換体は、このモノリス状有機多孔質体の骨格中にイオン交換基が均一に分布するように導入されている多孔質体である。なお、本明細書中、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質イオン交換体」を単に「モノリスイオン交換体」とも言い、また、モノリスの製造における中間体(前駆体)である「モノリス状有機多孔質中間体」を単に「モノリス中間体」とも言う。   The monolithic organic porous body is a porous body having a skeleton formed of an organic polymer and a large number of communication holes serving as a flow path for a reaction solution between the skeletons. The monolithic organic porous ion exchanger is a porous body introduced so that ion exchange groups are uniformly distributed in the skeleton of the monolithic organic porous body. In the present specification, “monolithic organic porous material” is also simply referred to as “monolith”, and “monolithic organic porous ion exchanger” is also simply referred to as “monolith ion exchanger”, and is also an intermediate in the production of monoliths. The “monolithic organic porous intermediate” that is the body (precursor) is also simply referred to as “monolith intermediate”.

このようなモノリス又はモノリスイオン交換体の構造例としては、特開2002−306976号公報や特開2009−62512号公報に開示されている連続気泡構造や、特開2009−67982号公報に開示されている共連続構造や、特開2009−7550号公報に開示されている粒子凝集型構造や、特開2009−108294号公報に開示されている粒子複合型構造等が挙げられる。   Examples of the structure of such a monolith or monolith ion exchanger are disclosed in Japanese Patent Application Laid-Open No. 2002-306976 and Japanese Patent Application Laid-Open No. 2009-62512, and Japanese Patent Application Laid-Open No. 2009-67982. A co-continuous structure, a particle aggregation type structure disclosed in JP 2009-7550 A, a particle composite type structure disclosed in JP 2009-108294 A, and the like.

上記モノリス、すなわち、白金族金属粒子の担体となるモノリスの形態例(以下、モノリス(1)とも記載する。)及び上記モノリスイオン交換体、すなわち、白金族金属粒子の担体となるモノリスイオン交換体の形態例(以下、モノリスイオン交換体(1)とも記載する。)としては、特開2009−67982号公報に開示されている共連続構造を有するモノリス及びモノリスイオン交換体が挙げられる。
つまり、モノリス(1)は、イオン交換基が導入される前のモノリスであり、全構成単位中、架橋構造単位を0.1〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5〜10ml/gである有機多孔質体である。
また、モノリスイオン交換体(1)は、全構成単位中、架橋構造単位を0.1〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが乾燥状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μmの三次元的に連続した空孔とからなる共連続構造体であって、乾燥状態での全細孔容積が0.5〜10ml/gであり、イオン交換基を有しており、乾燥状態での重量当りのイオン交換容量が1〜6mg当量/gであり、イオン交換基が有機多孔質イオン交換体中に均一に分布しているモノリスイオン交換体である。
Examples of monoliths serving as carriers for the above monolith, that is, platinum group metal particles (hereinafter also referred to as monolith (1)) and monolith ion exchangers, that is, monolith ion exchangers serving as the carrier for platinum group metal particles Examples of the form (hereinafter also referred to as monolith ion exchanger (1)) include monoliths and monolith ion exchangers having a co-continuous structure disclosed in JP-A No. 2009-67982.
That is, the monolith (1) is a monolith before the ion exchange group is introduced, and has an average thickness composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of a crosslinked structural unit among all the structural units. Is a co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm in a dry state and three-dimensionally continuous pores having an average diameter of 10 to 200 μm between the skeletons, An organic porous body having a total pore volume of 0.5 to 10 ml / g in a dry state.
In addition, the monolith ion exchanger (1) has a three-dimensional average thickness of 1 to 60 μm in a dry state composed of an aromatic vinyl polymer containing 0.1 to 5.0 mol% of a crosslinked structural unit among all the structural units. A continuous structure and three-dimensionally continuous pores having an average diameter of 10 to 200 μm in the dry state between the skeletons, and the total pore volume in the dry state is 0 5 to 10 ml / g, having an ion exchange group, an ion exchange capacity per weight in a dry state of 1 to 6 mg equivalent / g, and the ion exchange group in the organic porous ion exchanger It is a monolithic ion exchanger that is uniformly distributed.

モノリス(1)又はモノリスイオン交換体(1)は、平均太さが乾燥状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で10〜200μm、好ましくは15〜180μm、特に好ましくは20〜150μmの三次元的に連続した空孔とからなる共連続構造体である。共連続構造とは、連続する骨格相と連続する空孔相とが絡み合ってそれぞれが共に3次元的に連続する構造である。この連続した空孔は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがない。また、骨格が太いため機械的強度が高い。   The monolith (1) or the monolith ion exchanger (1) has a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm in a dry state, and an average diameter between the skeletons in a dry state. It is a co-continuous structure composed of three-dimensionally continuous pores of 10 to 200 μm, preferably 15 to 180 μm, particularly preferably 20 to 150 μm. The co-continuous structure is a structure in which a continuous skeleton phase and a continuous vacancy phase are intertwined, and both are three-dimensionally continuous. The continuous pores have higher continuity of the pores than the conventional open-cell type monolith and the particle aggregation type monolith, and the size thereof is not biased. Moreover, since the skeleton is thick, the mechanical strength is high.

三次元的に連続した空孔の平均直径が乾燥状態で10μm未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、200μmを超えると、反応液とモノリス又はモノリスイオン交換体との接触が不十分となり、その結果、触媒活性が不十分となるため好ましくない。また、骨格の平均太さが乾燥状態で1μm未満であると、高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリス又はモノリスイオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通液時の圧力損失が増大するため好ましくない。   If the average diameter of the three-dimensionally continuous pores is less than 10 μm in the dry state, the pressure loss at the time of passing the liquid increases, which is not preferable. If it exceeds 200 μm, the reaction solution and the monolith or monolith ion exchanger As a result, the contact with the catalyst becomes insufficient, resulting in insufficient catalytic activity. Moreover, when the average thickness of the skeleton is less than 1 μm in a dry state, the monolith or the monolith ion exchanger is greatly deformed when the liquid is passed at a high flow rate. Furthermore, the contact efficiency between the reaction liquid and the monolith or monolith ion exchanger is lowered, and the catalytic effect is lowered, which is not preferable. On the other hand, if the thickness of the skeleton exceeds 60 μm, the skeleton becomes too thick, and the pressure loss during liquid passage increases, which is not preferable.

乾燥状態のモノリス(1)の開口の平均直径、モノリスイオン交換体(1)の開口の平均直径及び以下に述べるモノリスの製造のI処理で得られる、乾燥状態のモノリス中間体(1)の開口の平均直径は、水銀圧入法により測定され、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、モノリス(1)又はモノリスイオン交換体(1)の骨格の乾燥状態での平均太さは、乾燥状態のモノリス(1)又はモノリスイオン交換体(1)のSEM観察により求められる。具体的には、乾燥状態のモノリス(1)又はモノリスイオン交換体(1)のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、それらの平均値を平均太さとする。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。   The average diameter of the opening of the monolith (1) in the dry state, the average diameter of the opening of the monolith ion exchanger (1) and the opening of the monolith intermediate (1) in the dry state obtained by the I treatment in the production of the monolith described below The average diameter is measured by the mercury intrusion method and refers to the maximum value of the pore distribution curve obtained by the mercury intrusion method. The average thickness of the skeleton of the monolith (1) or the monolith ion exchanger (1) in the dry state is determined by SEM observation of the dry monolith (1) or the monolith ion exchanger (1). Specifically, the SEM observation of the dried monolith (1) or monolith ion exchanger (1) is performed at least three times, the thickness of the skeleton in the obtained image is measured, and the average value thereof is calculated as the average thickness. Say it. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、モノリス(1)又はモノリスイオン交換体(1)の乾燥状態での重量当りの全細孔容積は、0.5〜10ml/gである。全細孔容積が0.5ml/g未満であると、通液時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過量が小さくなり、処理量が低下してしまうため好ましくない。一方、全細孔容積が10ml/gを超えると、機械的強度が低下して、特に高流速で通液した際にモノリス又はモノリスイオン交換体が大きく変形してしまうため好ましくない。更に、反応液とモノリス(1)又はモノリスイオン交換体(1)との接触効率が低下するため、触媒効率も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、反応液との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通液が可能となる。   The total pore volume per weight in the dry state of the monolith (1) or monolith ion exchanger (1) is 0.5 to 10 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of liquid passing is increased, which is not preferable. Further, the permeation amount per unit cross-sectional area is decreased, and the processing amount is decreased. Therefore, it is not preferable. On the other hand, when the total pore volume exceeds 10 ml / g, the mechanical strength is lowered, and the monolith or the monolith ion exchanger is greatly deformed particularly when the liquid is passed at a high flow rate. Furthermore, since the contact efficiency between the reaction liquid and the monolith (1) or the monolith ion exchanger (1) is lowered, the catalyst efficiency is also lowered, which is not preferable. If the three-dimensionally continuous pore size and total pore volume are within the above ranges, the contact with the reaction solution is extremely uniform, the contact area is large, and the solution can be passed under a low pressure loss. .

モノリス(1)又はモノリスイオン交換体(1)において、骨格を構成する材料は、全構成単位中、0.1〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the monolith (1) or the monolith ion exchanger (1), the material constituting the skeleton is 0.1 to 5 mol%, preferably 0.5 to 3.0 mol% of a crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.1 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is used because of its ease of forming a co-continuous structure, ease of introduction of ion-exchange groups, high mechanical strength, and high stability against acids or alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

モノリスイオン交換体(1)において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで簡単に確認される。また、イオン交換基が、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the monolith ion exchanger (1), the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith. Here, “ion exchange groups are uniformly distributed” means that the distribution of ion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution status of the ion exchange groups can be easily confirmed by using EPMA. In addition, if the ion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the monolith, the physical and chemical properties of the surface and the interior can be made uniform, so that they are resistant to swelling and shrinkage. Improves.

モノリスイオン交換体(1)に導入されているイオン交換基は、カチオン交換基又はアニオン交換基である。カチオン交換基としては、カルボン酸基、イミノ二酢酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。アニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   The ion exchange group introduced into the monolith ion exchanger (1) is a cation exchange group or an anion exchange group. Examples of the cation exchange group include a carboxylic acid group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphoric ester group. Examples of anion exchange groups include quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, tertiary sulfonium group, and phosphonium group. Etc.

モノリスイオン交換体(1)は、乾燥状態での重量当りのイオン交換容量が1〜6mg当量/gのイオン交換容量を有する。モノリスイオン交換体(1)は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのイオン交換容量を飛躍的に大きくすることができる。重量当りのイオン交換容量が上記範囲にあることにより、触媒内部のpHなど触媒活性点の周りの環境を変えることができ、これにより触媒活性が高くなる。モノリスイオン交換体(1)がモノリスアニオン交換体の場合は、モノリスアニオン交換体(1)には、アニオン交換基が導入されており、乾燥状態での重量当りのアニオン交換容量は、1〜6mg当量/gである。また、モノリスイオン交換体(1)がモノリスカチオン交換体の場合は、モノリスカチオン交換体(1)には、カチオン交換基が導入されており、乾燥状態での重量当りのカチオン交換容量は、1〜6mg当量/gである。   The monolith ion exchanger (1) has an ion exchange capacity of 1 to 6 mg equivalent / g of ion exchange capacity per weight in a dry state. Since the monolith ion exchanger (1) has high continuity and uniformity of three-dimensionally continuous pores, the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, it is possible to dramatically increase the ion exchange capacity per volume while keeping the pressure loss low. When the ion exchange capacity per weight is in the above range, the environment around the catalyst active point such as the pH inside the catalyst can be changed, and thereby the catalyst activity is increased. When the monolith ion exchanger (1) is a monolith anion exchanger, an anion exchange group is introduced into the monolith anion exchanger (1), and the anion exchange capacity per weight in the dry state is 1 to 6 mg. Equivalent / g. When the monolith ion exchanger (1) is a monolith cation exchanger, a cation exchange group is introduced into the monolith cation exchanger (1), and the cation exchange capacity per weight in a dry state is 1 ~ 6 mg equivalent / g.

モノリス(1)は、特開2009−67982号公報に開示されているモノリス状有機多孔質体の製造方法、つまり、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体(以下、モノリス中間体(1)とも記載する。)を得るI処理、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII処理、II処理で得られた混合物を静置下、且つI処理で得られたモノリス中間体(1)の存在下に重合を行い、共連続構造体である有機多孔質体であるモノリス(1)を得るIII処理、を行うことにより得られる。   Monolith (1) is a method for producing a monolithic organic porous material disclosed in JP-A-2009-66792, that is, a mixture of an oil-soluble monomer not containing an ion exchange group, a surfactant and water. The water-in-oil emulsion is then polymerized, and then the water-in-oil emulsion is polymerized to form a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and not more than 30 ml / g ( Hereinafter, it is also referred to as monolith intermediate (1).) I treatment, aromatic vinyl monomer, 0.3 to 5 mol% in total oil-soluble monomer having at least two vinyl groups in one molecule A mixture of an organic solvent and a polymerization initiator that dissolves the crosslinking agent, aromatic vinyl monomer and crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. It is an organic porous body which is a co-continuous structure by performing polymerization in the presence of the monolith intermediate (1) obtained by standing the mixture obtained by the II treatment and II treatment, and in the presence of the monolith intermediate (1) obtained by the I treatment. It is obtained by performing the III treatment to obtain the monolith (1).

白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体には、白金族金属が担持されている。白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いても良く、更に、二種類以上の金属を合金として用いても良い。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。   A platinum group metal is supported on the platinum group metal-supported non-particulate organic porous body or the platinum group metal-supported non-particulate organic porous ion exchanger. The platinum group metal is ruthenium, rhodium, palladium, osmium, iridium, or platinum. These platinum group metals may be used alone or in combination of two or more metals, and more than one metal may be used as an alloy. Among these, platinum, palladium, and platinum / palladium alloys have high catalytic activity and are preferably used.

白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体に担持されている白金族金属粒子の平均粒子径は、1〜100nmであり、好ましくは1〜50nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、白金族金属粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が100nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、白金族金属粒子の平均粒子径は、透過型電子顕微鏡(TEM)分析により得られるTEM画像を、画像解析することにより求められる。   The average particle size of the platinum group metal particles supported on the platinum group metal-supported non-particulate organic porous material or platinum group metal-supported non-particulate organic porous ion exchanger is 1 to 100 nm, preferably 1 to 50 nm. More preferably, it is 1-20 nm. If the average particle size is less than 1 nm, the possibility that the platinum group metal particles will be detached from the carrier increases, which is not preferable. This is not preferable because the catalytic effect cannot be obtained efficiently. In addition, the average particle diameter of a platinum group metal particle is calculated | required by image-analyzing the TEM image obtained by a transmission electron microscope (TEM) analysis.

白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体中の白金族金属粒子の担持量((白金族金属粒子/乾燥状態の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属粒子の担持量が0.004重量%未満であると、触媒活性が不十分になるため好ましくない。一方、白金族金属粒子の担時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。   Platinum group metal-supported non-particulate organic porous material or platinum group metal-supported non-particulate organic porous ion exchanger supported amount of platinum group metal particles ((platinum group metal particles / platinum group metal-supported catalyst in dry state) × 100 ) Is 0.004 to 20% by weight, preferably 0.005 to 15% by weight. If the supported amount of platinum group metal particles is less than 0.004% by weight, the catalytic activity becomes insufficient, such being undesirable. On the other hand, when the amount of platinum group metal particles is more than 20% by weight, metal elution into water is observed, which is not preferable.

白金族金属担持非粒状有機多孔質体又は白金族金属担持非粒状有機多孔質イオン交換体の製造方法には特に制約はなく、公知の方法により、モノリス又はモノリスイオン交換体に、白金族金属のナノ粒子を担持させることにより、白金族金属担持触媒が得られる。非粒状有機多孔質体又は非粒状有機多孔質イオン交換体に白金族金属を担持する方法としては、例えば、特開2010−240641号公報に開示されている方法が挙げられる。例えば、乾燥状態のモノリスイオン交換体を酢酸パラジウム等の白金族金属化合物のメタノール溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属ナノ粒子をモノリスイオン交換体に担持する方法や、モノリスイオン交換体をテトラアンミンパラジウム錯体等の白金族金属化合物の水溶液に浸漬し、パラジウムイオンをイオン交換によりモノリスイオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属ナノ粒子をモノリスイオン交換体に担持する方法である。   There are no particular restrictions on the method for producing the platinum group metal-supported non-particulate organic porous material or the platinum group metal-supported non-particulate organic porous ion exchanger. By supporting the nanoparticles, a platinum group metal supported catalyst can be obtained. Examples of the method for supporting the platinum group metal on the non-particulate organic porous body or the non-particulate organic porous ion exchanger include the method disclosed in JP 2010-240641 A. For example, a monolith ion exchanger in a dry state is immersed in a methanol solution of a platinum group metal compound such as palladium acetate, and palladium ions are adsorbed on the monolith ion exchanger by ion exchange, and then contacted with a reducing agent to form palladium metal nano-particles. A method of supporting particles on a monolith ion exchanger, a monolith ion exchanger is immersed in an aqueous solution of a platinum group metal compound such as a tetraammine palladium complex, and palladium ions are adsorbed on the monolith ion exchanger by ion exchange, and then a reducing agent In which the palladium metal nanoparticles are supported on the monolith ion exchanger.

白金族金属が担持された粒状のイオン交換樹脂は、粒状のイオン交換樹脂に、白金族金属が担持されたものである。白金族金属の担体となる粒状のイオン交換樹脂としては、特に制限されず、例えば、強塩基性アニオン交換樹脂等が挙げられる。そして、粒状のイオン交換樹脂に、公知の方法により白金族金属が担持されて、白金族金属が担持された粒状のイオン交換樹脂が得られる。   The granular ion exchange resin carrying a platinum group metal is one in which a platinum group metal is carried on a granular ion exchange resin. The particulate ion exchange resin that serves as the platinum group metal carrier is not particularly limited, and examples thereof include strongly basic anion exchange resins. Then, the granular ion exchange resin is loaded with a platinum group metal by a known method to obtain a granular ion exchange resin loaded with the platinum group metal.

金属が担持された金属イオン型の粒状の陽イオン交換樹脂は、粒状の陽イオン交換樹脂に、鉄イオン、銅イオン、ニッケルイオン、クロムイオン、コバルトイオンなどの金属が担持されたものである。担体となる粒状の陽イオン交換樹脂としては、特に制限されず、例えば、強酸性陽イオン交換樹脂等が挙げられる。そして、粒状の陽イオン交換樹脂に、公知の方法により鉄イオン、銅イオン、ニッケルイオン、クロムイオン、コバルトイオンなどの金属が担持されて、金属イオン型の粒状の陽イオン交換樹脂が得られる。   The metal ion type granular cation exchange resin on which a metal is supported is obtained by supporting a metal such as iron ion, copper ion, nickel ion, chromium ion or cobalt ion on a granular cation exchange resin. The granular cation exchange resin to be a carrier is not particularly limited, and examples thereof include strongly acidic cation exchange resins. And metal, such as an iron ion, copper ion, nickel ion, chromium ion, and cobalt ion, is carry | supported by a granular cation exchange resin by a well-known method, and a metal ion type granular cation exchange resin is obtained.

(実施例)
次に、実施例を挙げて本発明を具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
Next, the present invention will be specifically described by way of examples, but this is merely an example and does not limit the present invention.

<白金族金属担持非粒状有機多孔質イオン交換体の製造>
(モノリス中間体の製造(I処理))
スチレン9.28g、ジビニルベンゼン0.19g、ソルビタンモノオレエート(以下SMOと略す)0.50gおよび2,2’-アゾビス(イソブチロニトリル)0.25gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEMにより観察した。SEM画像から、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は40μm、全細孔容積は18.2ml/gであった。
<Production of platinum group metal-supported non-particulate organic porous ion exchanger>
(Production of monolith intermediate (I treatment))
9.28 g of styrene, 0.19 g of divinylbenzene, 0.50 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.25 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was stirred under reduced pressure to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The internal structure of the monolith intermediate (dry body) thus obtained was observed by SEM. From the SEM image, although the wall section that divides two adjacent macropores is very thin and rod-shaped, it has an open cell structure, and the average of the openings (mesopores) where the macropores and macropores overlap measured by the mercury intrusion method The diameter was 40 μm and the total pore volume was 18.2 ml / g.

(モノリスの製造)
次いで、スチレン216.6g、ジビニルベンゼン4.4g、1-デカノール220g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた(II処理)。次に上記モノリス中間体を反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下50℃で24時間重合させた。重合終了後内容物を取り出し、アセトンでソックスレー抽出した後、減圧乾燥した(III処理)。
このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.2モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した。SEM観察から、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の平均太さは20μmであった。また、水銀圧入法により測定した、当該モノリスの三次元的に連続した空孔の平均直径は70μm、全細孔容積は4.4ml/gであった。なお、空孔の平均直径は、水銀圧入法により得られた細孔分布曲線の極大値から求めた。
(Manufacture of monoliths)
Subsequently, 216.6 g of styrene, 4.4 g of divinylbenzene, 220 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (II treatment). Next, the above monolith intermediate is placed in a reaction vessel, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and degassed in a vacuum chamber. The reaction vessel was sealed and allowed to polymerize at 50 ° C. for 24 hours. After completion of the polymerization, the content was taken out, subjected to Soxhlet extraction with acetone, and then dried under reduced pressure (III treatment).
The internal structure of the monolith (dry body) containing 1.2 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer thus obtained was observed by SEM. From the SEM observation, the monolith has a co-continuous structure in which the skeleton and the vacancies are three-dimensionally continuous, and both phases are intertwined. Moreover, the average thickness of the skeleton measured from the SEM image was 20 μm. Further, the average diameter of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 70 μm, and the total pore volume was 4.4 ml / g. The average diameter of the pores was determined from the maximum value of the pore distribution curve obtained by the mercury intrusion method.

(モノリスアニオン交換体の製造)
次いで、上記モノリスをカラム状反応器に入れ、クロロスルホン酸1600gと四塩化スズ400g、ジメトキシメタン2500mlからなる溶液を循環・通液して、30℃、5時間反応させ、クロロメチル基を導入した。反応終了後、クロロメチル化モノリスをTHF/水=2/1の混合溶媒で洗浄し、更にTHFで洗浄した。このクロロメチル化モノリスにTHF1600mlとトリメチルアミン30%水溶液1400mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノールで洗浄し、次いで純水で洗浄してモノリスアニオン交換体を得た。
得られたモノリスアニオン交換体のアニオン交換容量は、乾燥状態で4.2mg当量/gであり、四級アンモニウム基が定量的に導入されていることを確認した。また、SEM画像から測定した乾燥状態での骨格の太さは20μmであり、水銀圧入法による測定から求めた、当該モノリスアニオン交換体の三次元的に連続した空孔の乾燥状態での平均直径は70μm、乾燥状態での全細孔容積は4.4ml/gであった。
次に、モノリスアニオン交換体中の四級アンモニウム基の分布状態を確認するため、モノリスアニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。
(Production of monolith anion exchanger)
Next, the monolith was put into a column reactor, and a solution consisting of 1600 g of chlorosulfonic acid, 400 g of tin tetrachloride and 2500 ml of dimethoxymethane was circulated and passed through, and reacted at 30 ° C. for 5 hours to introduce a chloromethyl group. . After completion of the reaction, the chloromethylated monolith was washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolith, 1600 ml of THF and 1400 ml of 30% aqueous solution of trimethylamine were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with methanol and then with pure water to obtain a monolith anion exchanger.
The obtained monolith anion exchanger had an anion exchange capacity of 4.2 mg equivalent / g in a dry state, and it was confirmed that quaternary ammonium groups were quantitatively introduced. Further, the thickness of the skeleton in the dry state measured from the SEM image is 20 μm, and the average diameter in the dry state of the three-dimensional continuous pores of the monolith anion exchanger determined from the measurement by the mercury intrusion method. Was 70 μm and the total pore volume in the dry state was 4.4 ml / g.
Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger, the monolith anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that the chloride ions were uniformly distributed not only on the skeleton surface of the monolith anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. It was.

(白金族金属の担持)
上記モノリスアニオン交換体をCl形にイオン交換した後、乾燥状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム100mgを溶解した希塩酸に24時間浸漬し、塩化パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。塩化パラジウム酸形モノリスアニオン交換体が茶色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。還元後の試料は、数回純水で洗浄した後、検圧乾燥により乾燥させた。
パラジウムの担持量をICP発光分光分析法で求めたところ、パラジウム担持量は3.9重量%であった。モノリスカチオン交換体に担持されたパラジウムの分布状態を確認するため、EPMAによりパラジウムの分布状態を観察した。パラジウムはモノリスアニオン交換体の骨格表面のみならず、骨格内部にも分布しており、内部の方か濃度が若干高いものの、比較的均一に分布していることが確認できた。また、担持されたパラジウム粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。パラジウムナノ粒子の平均粒子径は、8nmであった。
(Supporting platinum group metals)
The monolith anion exchanger was ion-exchanged into Cl form, cut into a cylindrical shape in a dry state, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed in dilute hydrochloric acid in which 100 mg of palladium chloride was dissolved for 24 hours, and ion-exchanged to the palladium chloride acid form. After completion of the immersion, the monolith anion exchanger was washed several times with pure water, and immersed in an aqueous hydrazine solution for 24 hours for reduction treatment. The chloropalladium acid form monolith anion exchanger was brown, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium nanoparticles. The sample after the reduction was washed several times with pure water and then dried by pressure detection drying.
When the amount of palladium supported was determined by ICP emission spectroscopy, the amount of palladium supported was 3.9% by weight. In order to confirm the distribution state of palladium supported on the monolith cation exchanger, the distribution state of palladium was observed by EPMA. It was confirmed that palladium was distributed not only on the surface of the skeleton of the monolith anion exchanger but also inside the skeleton, and it was relatively uniformly distributed inside, although the concentration was slightly higher. In order to measure the average particle diameter of the supported palladium particles, observation with a transmission electron microscope (TEM) was performed. The average particle diameter of the palladium nanoparticles was 8 nm.

(実施例1)
(オゾン水製造試験)
図4に示すオゾン水製造システム35を用いて、オゾン水の製造試験を行った。図4中、オゾン水製造システム35は、紫外線酸化器10と、過酸化水素分解器36と、限外濾過膜装置13bと、オゾン溶解部14と、オゾン発生器15と、により構成されている。過酸化水素分解器36には、上記で得たパラジウム担持モノリスアニオン交換体を、内径57mmのカラムに層高40mm充填したものを用いた。オゾン溶解部14には、オゾン溶解膜を用いた。オゾン発生器15としては、無声放電式オゾン発生装置(住友精密工業株式会社 GRC−RG29)を用いた。
Example 1
(Ozone water production test)
An ozone water production test was conducted using the ozone water production system 35 shown in FIG. In FIG. 4, the ozone water production system 35 includes an ultraviolet oxidizer 10, a hydrogen peroxide decomposer 36, an ultrafiltration membrane device 13 b, an ozone dissolver 14, and an ozone generator 15. . As the hydrogen peroxide decomposer 36, the palladium-supported monolith anion exchanger obtained above was packed in a column having an inner diameter of 57 mm and a layer height of 40 mm. For the ozone dissolving part 14, an ozone dissolving film was used. As the ozone generator 15, a silent discharge type ozone generator (Sumitomo Seimitsu Industry Co., Ltd. GRC-RG29) was used.

オゾン水製造試験では、図4に示すオゾン水製造システム35に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、過酸化水素分解器36、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン水濃度が100.0mg/Lとなるように、オゾン発生器15の放電出力を調節して、オゾンを製造した。
その結果、過酸化水素分解器36で処理した後の超純水(すなわち、オゾン溶解処理が行われる被処理水)中の過酸化水素濃度は1.0μg/L以下であり、オゾン発生器15の放電出力は80%であり、オゾン発生器15からオゾン溶解部14へと供給されるオゾン含有ガス中のオゾン濃度は256gO/Nmであった。
In the ozone water production test, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10 as raw water supplied to the ozone water production system 35 shown in FIG. The output of the ultraviolet oxidizer of the ultraviolet oxidizer 10 was obtained so that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L. The hydrogen peroxide concentration was 15.0 μg / L, Using ultrapure water having a resistivity of 18 MΩ · cm or more and a TOC of 1.0 ppb or less, the supply amount of the water to be treated to the hydrogen peroxide decomposer 36, the ultrafiltration membrane device 13 b and the ozone dissolution unit 14 is 5 L. / Min., And the ozone generator 15 is supplied with a mixed gas of oxygen gas and nitrogen gas. The supply amounts thereof are 10 SLM for oxygen gas (L / min at 0 ° C., 1 atm) and 100 SCCM for nitrogen gas (mL / min). at 0 1 atm), carbon dioxide gas is supplied from the carbon dioxide supply pipe 18, the supply amount is 40 SCCM (mL / min at 0 ° C., 1 atm), and the ozone water concentration is 100.0 mg / L. The discharge power of the generator 15 was adjusted to produce ozone.
As a result, the hydrogen peroxide concentration in the ultrapure water (that is, the water to be treated in which ozone dissolution treatment is performed) after being treated by the hydrogen peroxide decomposer 36 is 1.0 μg / L or less, and the ozone generator 15 The discharge output was 80%, and the ozone concentration in the ozone-containing gas supplied from the ozone generator 15 to the ozone dissolving part 14 was 256 gO 3 / Nm 3 .

(配管移送試験)
上記のようにして製造したオゾン水を、各ユースポイントに送り、各ユースポイントにおけるオゾン濃度を測定した。その結果を図6に示す。過酸化水素の定量には、フェノールフタリン法を用いた。なお、配管移送時間とは、各ユースポイントまでの到達時間を言い、オゾン水流量と各ユースポイントまでの管長から求められる。
(Pipe transfer test)
The ozone water produced as described above was sent to each use point, and the ozone concentration at each use point was measured. The result is shown in FIG. The phenol phthaline method was used for the determination of hydrogen peroxide. In addition, piping transfer time means the arrival time to each use point, and is calculated | required from the ozone water flow rate and the pipe length to each use point.

(比較例1)
(オゾン水製造試験)
図5に示すオゾン水製造システム40を用いて、オゾン水の製造試験を行った。図5中、オゾン水製造システム40は、紫外線酸化器10と、限外濾過膜装置13bと、オゾン溶解部14と、オゾン発生器15と、により構成されている。オゾン溶解部14には、オゾン溶解膜を用いた。オゾン発生器15としては、無声放電式オゾン発生装置(住友精密工業株式会社 GRC−RG29)を用いた。つまり、図5に示すオゾン水製造システム40には、過酸化水素除去手段は設置されていない。
(Comparative Example 1)
(Ozone water production test)
An ozone water production test was performed using the ozone water production system 40 shown in FIG. In FIG. 5, the ozone water production system 40 includes an ultraviolet oxidizer 10, an ultrafiltration membrane device 13 b, an ozone dissolution unit 14, and an ozone generator 15. For the ozone dissolving part 14, an ozone dissolving film was used. As the ozone generator 15, a silent discharge type ozone generator (Sumitomo Seimitsu Industry Co., Ltd. GRC-RG29) was used. That is, no hydrogen peroxide removing means is installed in the ozone water production system 40 shown in FIG.

オゾン水製造試験では、図5に示すオゾン水製造システム40に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン水濃度が90.0mg/Lとなるように、オゾン発生器15の放電出力を調節し、オゾン水を製造した。
その結果、オゾン発生器15の放電出力は80%であり、オゾン発生器15からオゾン溶解部14へと供給されるオゾン含有ガス中のオゾン濃度は256gO/Nmであった。なお、過酸化水素除去手段が設けられていないため、オゾン溶解処理が行われる被処理水中の過酸化水素濃度は15.0μg/Lである。
In the ozone water production test, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10 as raw water supplied to the ozone water production system 40 shown in FIG. The output of the ultraviolet oxidizer of the ultraviolet oxidizer 10 was obtained so that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L. The hydrogen peroxide concentration was 15.0 μg / L, Using ultrapure water having a resistivity of 18 MΩ · cm or more and a TOC of 1.0 ppb or less, the supply amount of the water to be treated to the ultrafiltration membrane device 13b and the ozone dissolving part 14 is 5 L / min, and an ozone generator 15 is supplied with a mixed gas of oxygen gas and nitrogen gas, and the supply amounts thereof are oxygen gas 10 SLM (L / min at 0 ° C., 1 atm) and nitrogen gas 100 SCCM (mL / min at 0 ° C., 1 atm). ,two The carbon dioxide gas is supplied from the carbonized carbon supply pipe 18, the supply amount is 40 SCCM (mL / min at 0 ° C., 1 atm), and the ozone generator 15 is discharged so that the ozone water concentration becomes 90.0 mg / L. The output was adjusted to produce ozone water.
As a result, the discharge output of the ozone generator 15 was 80%, and the ozone concentration in the ozone-containing gas supplied from the ozone generator 15 to the ozone dissolving part 14 was 256 gO 3 / Nm 3 . In addition, since the hydrogen peroxide removal means is not provided, the hydrogen peroxide concentration in the water to be treated in which the ozone dissolution treatment is performed is 15.0 μg / L.

(配管移送試験)
上記のようにして製造したオゾン水を用いる以外は、実施例1と同様にして行った。その結果を図6に示す。
(Pipe transfer test)
It carried out like Example 1 except using the ozone water manufactured as mentioned above. The result is shown in FIG.

(比較例2)
(オゾン水製造試験)
図5に示すオゾン水製造システム40を用いて、オゾン水の製造試験を行った。オゾン水製造試験では、図5に示すオゾン水製造システム40に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン水濃度が100.0mg/Lとなるように、オゾン発生器15の放電出力を調節し、オゾン水を製造した。
その結果、オゾン発生器15の放電出力は100%であり、オゾン発生器15からオゾン溶解部14へと供給されるオゾン含有ガス中のオゾン濃度は287gO/Nmであった。なお、過酸化水素除去手段が設けられていないため、オゾン溶解処理が行われる被処理水中の過酸化水素濃度は15.0μg/Lである。
(Comparative Example 2)
(Ozone water production test)
An ozone water production test was performed using the ozone water production system 40 shown in FIG. In the ozone water production test, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10 as raw water supplied to the ozone water production system 40 shown in FIG. The output of the ultraviolet oxidizer of the ultraviolet oxidizer 10 was obtained so that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L. The hydrogen peroxide concentration was 15.0 μg / L, Using ultrapure water having a resistivity of 18 MΩ · cm or more and a TOC of 1.0 ppb or less, the supply amount of the water to be treated to the ultrafiltration membrane device 13b and the ozone dissolving part 14 is 5 L / min, and an ozone generator 15 is supplied with a mixed gas of oxygen gas and nitrogen gas, and the supply amounts thereof are oxygen gas 10 SLM (L / min at 0 ° C., 1 atm) and nitrogen gas 100 SCCM (mL / min at 0 ° C., 1 atm). ,two The carbon dioxide gas is supplied from the carbonized carbon supply pipe 18, the supply amount is 40 SCCM (mL / min at 0 ° C., 1 atm), and the discharge of the ozone generator 15 is performed so that the ozone water concentration becomes 100.0 mg / L. The output was adjusted to produce ozone water.
As a result, the discharge output of the ozone generator 15 was 100%, and the ozone concentration in the ozone-containing gas supplied from the ozone generator 15 to the ozone dissolving part 14 was 287 gO 3 / Nm 3 . In addition, since the hydrogen peroxide removal means is not provided, the hydrogen peroxide concentration in the water to be treated in which the ozone dissolution treatment is performed is 15.0 μg / L.

(配管移送試験)
上記のようにして製造したオゾン水を用いる以外は、実施例1と同様にして行った。その結果を図6に示す。
(Pipe transfer test)
It carried out like Example 1 except using the ozone water manufactured as mentioned above. The result is shown in FIG.

実施例1と比較例1及び2とを比較すると、オゾンを溶解させる超純水中の過酸化水素濃度が1.0μg/L以下である実施例1では、オゾン水濃度100.0mg/Lのオゾン水を製造するのに、オゾン発生器の放電出力は80%で十分であったのに対し、オゾンを溶解させる超純水中の過酸化水素が15.0μg/Lである比較例1及び2では、オゾン濃度を100.0mg/Lとするためには、オゾン発生器の放電出力を100%とする必要があり、実施例1と同じ放電出力である80%だと、オゾン濃度は90.0mg/Lまでしか達しなかった。このことは、本発明のオゾン水製造方法では、従来のオゾン水製造方法に比べ、高濃度でオゾン水を製造することが可能となることを意味する。また、本発明のオゾン水製造方法では、従来のオゾン水製造方法に比べ、オゾン水濃度が一定の場合、発生させる必要のあるオゾンガス濃度を低く抑えることができるため、オゾン発生器を小規模とすることができ、初期投資を低減すると共に、オゾン製造のための消費電力を削減することも可能となるので、高効率で高濃度のオゾン水の製造が可能となる。
また、図6でのオゾン水濃度減衰傾向で明らかなように、実施例1では、配管移送時間が長くなっても、オゾンの減少量が少なかったのに対し、比較例1及び2では、オゾンの分解が著しく、配管移送時間が長くなるほど、オゾンの減少量が多くなった。つまり、本発明のオゾン水製造方法では、従来のオゾン水製造方法に比べ、高濃度で且つ安定的にオゾン水を使用できるということを意味する。
When Example 1 is compared with Comparative Examples 1 and 2, in Example 1 in which the hydrogen peroxide concentration in the ultrapure water in which ozone is dissolved is 1.0 μg / L or less, the ozone water concentration is 100.0 mg / L. Comparative Example 1 in which the discharge output of the ozone generator was sufficient to produce ozone water was 80%, whereas hydrogen peroxide in ultrapure water for dissolving ozone was 15.0 μg / L. 2, in order to set the ozone concentration to 100.0 mg / L, the discharge output of the ozone generator needs to be 100%. If the discharge output is 80%, which is the same as that of Example 1, the ozone concentration is 90%. Only reached 0.0 mg / L. This means that the ozone water production method of the present invention can produce ozone water at a higher concentration than the conventional ozone water production method. Further, in the ozone water production method of the present invention, the ozone gas concentration required to be generated can be kept low when the ozone water concentration is constant, compared with the conventional ozone water production method. In addition, the initial investment can be reduced and the power consumption for ozone production can be reduced, so that highly efficient and highly concentrated ozone water can be produced.
Further, as apparent from the ozone water concentration attenuation tendency in FIG. 6, in Example 1, the decrease in ozone was small even when the pipe transfer time was long, whereas in Comparative Examples 1 and 2, ozone was reduced. The amount of ozone decrease increased with the remarkable decomposition of the gas and the longer the pipe transfer time. That is, the ozone water production method of the present invention means that ozone water can be used at a high concentration and stably compared to the conventional ozone water production method.

(参考例1)
(オゾン水製造試験)
図5に示すオゾン水製造システム40を用いて、オゾン水の製造試験を行った。オゾン水製造試験では、図5に示すオゾン水製造システム40に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン発生器15の放電出力を7%として、オゾン水を製造した。
その結果、オゾン発生器15からオゾン溶解部14へと供給されるオゾン含有ガス中のオゾン濃度は31gO/Nmであった。得られたオゾン水中のオゾン濃度は9.9mg/Lであった。なお、過酸化水素除去手段が設けられていないため、オゾン溶解処理が行われる被処理水中の過酸化水素濃度は15.0μg/Lである。
(Reference Example 1)
(Ozone water production test)
An ozone water production test was performed using the ozone water production system 40 shown in FIG. In the ozone water production test, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10 as raw water supplied to the ozone water production system 40 shown in FIG. The output of the ultraviolet oxidizer of the ultraviolet oxidizer 10 was obtained so that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L. The hydrogen peroxide concentration was 15.0 μg / L, Using ultrapure water having a resistivity of 18 MΩ · cm or more and a TOC of 1.0 ppb or less, the supply amount of the water to be treated to the ultrafiltration membrane device 13b and the ozone dissolving part 14 is 5 L / min, and an ozone generator 15 is supplied with a mixed gas of oxygen gas and nitrogen gas, and the supply amounts thereof are oxygen gas 10 SLM (L / min at 0 ° C., 1 atm) and nitrogen gas 100 SCCM (mL / min at 0 ° C., 1 atm). ,two The carbon dioxide gas is supplied from the carbon supply pipe 18, and the supply quantity 40SCCM (mL / min at 0 ℃, 1atm) and, as a 7% discharge output of the ozone generator 15, to produce ozone water.
As a result, the ozone concentration in the ozone-containing gas supplied from the ozone generator 15 to the ozone dissolving part 14 was 31 gO 3 / Nm 3 . The ozone concentration in the obtained ozone water was 9.9 mg / L. In addition, since the hydrogen peroxide removal means is not provided, the hydrogen peroxide concentration in the water to be treated in which the ozone dissolution treatment is performed is 15.0 μg / L.

(配管移送試験)
上記のようにして製造したオゾン水を用いる以外は、実施例1と同様にして行った。その結果を図6に示す。
(Pipe transfer test)
It carried out like Example 1 except using the ozone water manufactured as mentioned above. The result is shown in FIG.

(実施例2及び比較例3)
図4に示すオゾン水製造システム35に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、過酸化水素分解器36、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン発生器15の放電出力を、それぞれ、7%、12%、18%、32%、80%として、オゾン水を製造した。なお、このときのオゾン溶解処理が行われる被処理水中の過酸化水素濃度は1.0μg/L以下である。
また、図5に示すオゾン水製造システム40に供給する原料水として、抵抗率が16MΩ・cm以上、TOCが2.0ppb以下の一次純水を紫外線酸化器10に通水し、紫外線酸化器10の紫外線酸化器の出力を、処理後の超純水中の過酸化水素濃度が15.0μg/Lとなる出力にして得た、過酸化水素濃度が15.0μg/L、電気抵抗率が18MΩ・cm以上、TOCが1.0ppb以下の超純水を用い、限外濾過膜装置13b及びオゾン溶解部14への該被処理水の供給量を5L/minとし、オゾン発生器15へは酸素ガス及び窒素ガスの混合気体を供給し、それぞれの供給量を、酸素ガス10SLM(L/min at 0℃、1atm)と、窒素ガス100SCCM(mL/min at 0℃、1atm)とし、二酸化炭素供給管18より二酸化炭素ガスを供給し、その供給量を40SCCM(mL/min at 0℃、1atm)とし、オゾン発生器15の放電出力を、それぞれ、7%、12%、18%、32%、80%として、オゾン水を製造した。なお、このときのオゾン溶解処理が行われる被処理水中の過酸化水素濃度は15.0μg/Lである。
各オゾン水製造試験により得られたオゾン水の濃度を測定した結果を表1に示す。
(Example 2 and Comparative Example 3)
As raw water to be supplied to the ozone water production system 35 shown in FIG. 4, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10, The output of the oxidizer was obtained so that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L. The hydrogen peroxide concentration was 15.0 μg / L and the electrical resistivity was 18 MΩ · cm. As described above, using ultrapure water with a TOC of 1.0 ppb or less, the supply amount of water to be treated to the hydrogen peroxide decomposer 36, the ultrafiltration membrane device 13b, and the ozone dissolution unit 14 is 5 L / min, and ozone is generated. A gas mixture of oxygen gas and nitrogen gas is supplied to the vessel 15, and the supply amounts thereof are 10 SLM for oxygen gas (L / min at 0 ° C., 1 atm) and 100 SCCM for nitrogen gas (mL / min at 0 ° C., 1 atm). And two Carbon dioxide gas is supplied from the carbonized carbon supply pipe 18, the supply amount is 40 SCCM (mL / min at 0 ° C., 1 atm), and the discharge output of the ozone generator 15 is 7%, 12%, 18%, Ozone water was produced as 32% and 80%. In addition, the hydrogen peroxide density | concentration in the to-be-processed water in which the ozone melt | dissolution process is performed at this time is 1.0 microgram / L or less.
Further, as the raw water supplied to the ozone water production system 40 shown in FIG. 5, primary pure water having a resistivity of 16 MΩ · cm or more and a TOC of 2.0 ppb or less is passed through the ultraviolet oxidizer 10. The output of the UV oxidizer was such that the hydrogen peroxide concentration in the treated ultrapure water was 15.0 μg / L, the hydrogen peroxide concentration was 15.0 μg / L, and the electrical resistivity was 18 MΩ. -Using ultrapure water with a centimeter of at least cm and a TOC of at most 1.0 ppb, the amount of treated water supplied to the ultrafiltration membrane device 13b and the ozone dissolving section 14 is 5 L / min, and oxygen is supplied to the ozone generator 15 Supplying a mixed gas of gas and nitrogen gas, and supplying each gas with oxygen gas 10 SLM (L / min at 0 ° C., 1 atm) and nitrogen gas 100 SCCM (mL / min at 0 ° C., 1 atm), carbon dioxide supply Tube 1 The carbon dioxide gas is further supplied, the supply amount is 40 SCCM (mL / min at 0 ° C., 1 atm), and the discharge output of the ozone generator 15 is 7%, 12%, 18%, 32%, 80%, respectively. As a result, ozone water was produced. In addition, the hydrogen peroxide density | concentration in the to-be-processed water in which the ozone melt | dissolution process is performed at this time is 15.0 microgram / L.
Table 1 shows the results of measuring the concentration of ozone water obtained by each ozone water production test.

Figure 2014079722
*表中の過酸化水素濃度は、オゾン溶解部でオゾン溶解処理が行われる被処理水(超純水)中の過酸化水素濃度である。
Figure 2014079722
* The hydrogen peroxide concentration in the table is the hydrogen peroxide concentration in the water to be treated (ultra-pure water) that is subjected to ozone dissolution treatment in the ozone dissolution zone.

表1の結果から、オゾン水製造時に要求されるオゾン水濃度が、30mg/L以上になると、過酸化水素除去処理を行う場合は、過酸化水素除去処理を行わない場合に比べ、同じ放電出力で製造できるオゾン水中のオゾン濃度を高くすることできるという効果が顕著に表れることが分かった。   From the results shown in Table 1, when the concentration of ozone water required at the time of ozone water production is 30 mg / L or more, the same discharge output is obtained when the hydrogen peroxide removal treatment is performed compared to when the hydrogen peroxide removal treatment is not carried out. It was found that the effect of increasing the ozone concentration in the ozone water that can be produced by the method is remarkably exhibited.

1 前処理システム
2 一次純水システム
3 一次純水システムで得られた水
5 原水
10 紫外線酸化器
11 過酸化水素除去手段
12 二酸化炭素溶解手段
13a、13b 限外濾過膜装置
14 オゾン溶解部
15 オゾン発生器
17 オゾン
20a、20b、20c オゾン水
21 超純水
22a、22b、22c 超純水製造システム
30a、30b、30c サブシステム
31 脱気器
32a、32b イオン交換器
36 過酸化水素分解器
35、40 オゾン水製造システム
DESCRIPTION OF SYMBOLS 1 Pretreatment system 2 Primary pure water system 3 Water obtained by primary pure water system 5 Raw water 10 Ultraviolet oxidizer 11 Hydrogen peroxide removing means 12 Carbon dioxide dissolving means 13a, 13b Ultrafiltration membrane device 14 Ozone dissolving part 15 Ozone Generator 17 Ozone 20a, 20b, 20c Ozone water 21 Ultrapure water 22a, 22b, 22c Ultrapure water production system 30a, 30b, 30c Subsystem 31 Deaerator 32a, 32b Ion exchanger 36 Hydrogen peroxide decomposer 35, 40 Ozone water production system

Claims (4)

一次純水システムで得られた水を更に処理して得られる超純水にオゾンを溶解させてユースポイントで使用するオゾン水を製造するオゾン水製造方法において、
該一次純水システムで得られた水を、過酸化水素の濃度が15.0μg/L以上となる強度で紫外線酸化する紫外線酸化処理と、
該紫外線酸化処理が行われた水中の過酸化水素を除去して、過酸化水素濃度を10.0μg/L以下にする過酸化水素除去処理と、
該過酸化水素除去処理が行われた水に、オゾン濃度が30mg/L以上となるまでオゾンを溶解させるオゾン溶解処理と、
を行い、
該過酸化水素除去処理を行う前か、あるいは、該過酸化水素除去処理を行った後且つ該オゾン溶解処理を行う前か、あるいは、該オゾン溶解処理のときに、二酸化炭素を溶解させること、
を特徴とするオゾン水製造方法。
In an ozone water production method for producing ozone water to be used at a point of use by dissolving ozone in ultrapure water obtained by further processing water obtained by a primary pure water system,
An ultraviolet oxidation treatment in which the water obtained by the primary pure water system is subjected to ultraviolet oxidation at an intensity such that the concentration of hydrogen peroxide is 15.0 μg / L or more;
Removing hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment to reduce the hydrogen peroxide concentration to 10.0 μg / L or less;
Ozone-dissolving treatment for dissolving ozone in the water subjected to the hydrogen peroxide removal treatment until the ozone concentration becomes 30 mg / L or more;
And
Dissolving the carbon dioxide before the hydrogen peroxide removal treatment, or after the hydrogen peroxide removal treatment and before the ozone dissolution treatment, or at the time of the ozone dissolution treatment;
A method for producing ozone water.
前記紫外線酸化処理が行われた水中の過酸化水素を吸着材に吸着させること又は前記紫外線酸化処理が行われた水中の過酸化水素を分解することにより、前記過酸化水素除去処理を行うことを特徴とする請求項1記載のオゾン水製造方法。   Performing the hydrogen peroxide removal treatment by adsorbing the hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment to an adsorbent or decomposing the hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment. The method for producing ozone water according to claim 1. 白金族金属担持イオン交換樹脂、金属イオン型陽イオン交換樹脂、白金族金属担持有機多孔質体又は白金族金属担持有機多孔質イオン交換体に、前記紫外線酸化処理が行われた水を接触させることにより、前記過酸化水素除去処理を行うことを特徴とする請求項2記載のオゾン水製造方法。   Contacting the platinum group metal-supported ion exchange resin, metal ion-type cation exchange resin, platinum group metal-supported organic porous material or platinum group metal-supported organic porous ion exchanger with water subjected to the above-mentioned ultraviolet oxidation treatment The ozone water production method according to claim 2, wherein the hydrogen peroxide removal treatment is performed. 前記紫外線酸化処理が行われた水中の過酸化水素の分解を行った後且つ前記オゾン溶解処理を行う前に、濾過により微粒子を除去する微粒子除去処理を行うことを特徴とする請求項3記載のオゾン水製造方法。   The fine particle removal process of removing fine particles by filtration is performed after the decomposition of hydrogen peroxide in the water subjected to the ultraviolet oxidation treatment and before the ozone dissolution treatment. Ozone water production method.
JP2012230801A 2012-10-18 2012-10-18 Ozone water manufacturing method Pending JP2014079722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230801A JP2014079722A (en) 2012-10-18 2012-10-18 Ozone water manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230801A JP2014079722A (en) 2012-10-18 2012-10-18 Ozone water manufacturing method

Publications (1)

Publication Number Publication Date
JP2014079722A true JP2014079722A (en) 2014-05-08

Family

ID=50784447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230801A Pending JP2014079722A (en) 2012-10-18 2012-10-18 Ozone water manufacturing method

Country Status (1)

Country Link
JP (1) JP2014079722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
JP2019176069A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Gas dissolved water supply system
CN115702116A (en) * 2020-06-08 2023-02-14 三菱电机株式会社 Ozone water production device, water treatment device, and ozone water production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152803A (en) * 2003-11-26 2005-06-16 Siltronic Japan Corp Ozone water supply method
JP2009112979A (en) * 2007-11-08 2009-05-28 Nomura Micro Sci Co Ltd Apparatus and method for producing ozone water
JP2010240641A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing hydrogen peroxide decomposition treated water, apparatus for manufacturing hydrogen peroxide decomposition treated water, treating tank, method of manufacturing ultrapure water, apparatus for manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, method of manufacturing ozone dissolved water, apparatus for manufacturing ozone dissolved water, and method of cleaning electronic components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152803A (en) * 2003-11-26 2005-06-16 Siltronic Japan Corp Ozone water supply method
JP2009112979A (en) * 2007-11-08 2009-05-28 Nomura Micro Sci Co Ltd Apparatus and method for producing ozone water
JP2010240641A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing hydrogen peroxide decomposition treated water, apparatus for manufacturing hydrogen peroxide decomposition treated water, treating tank, method of manufacturing ultrapure water, apparatus for manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, method of manufacturing ozone dissolved water, apparatus for manufacturing ozone dissolved water, and method of cleaning electronic components

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018020272A (en) * 2016-08-02 2018-02-08 オルガノ株式会社 Ultrapure water production device and ultrapure water production method
JP2019176069A (en) * 2018-03-29 2019-10-10 オルガノ株式会社 Gas dissolved water supply system
JP7125850B2 (en) 2018-03-29 2022-08-25 オルガノ株式会社 Gas-dissolved water supply system and gas-dissolved water supply method
CN115702116A (en) * 2020-06-08 2023-02-14 三菱电机株式会社 Ozone water production device, water treatment device, and ozone water production method

Similar Documents

Publication Publication Date Title
JP5329463B2 (en) Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method
KR101668132B1 (en) Catalyst with supported platinum-group metal, process for producing water in which hydrogen peroxide has been decomposed, process for producing water from which dissolved oxygen has been removed, and method of cleaning electronic part
JP5045099B2 (en) Ultrapure water production apparatus and operation method of ultrapure water production apparatus
JP5124946B2 (en) Removal method of hydrogen peroxide in ultrapure water in ultrapure water production equipment
JP6117348B2 (en) Method and system for cleaning copper exposed substrate
JP5604143B2 (en) Dissolved oxygen-removed water production method, dissolved oxygen-removed water production device, dissolved oxygen treatment tank, ultrapure water production method, hydrogen-dissolved water production method, hydrogen-dissolved water production device, and electronic component cleaning method
JP5231299B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
KR102287709B1 (en) Ultrapure Water Manufacturing System
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
JP2010214321A (en) Supported catalyst of platinum group metal, method of producing treated water removed of hydrogen peroxide by decomposing the same, method of producing treated water removed of dissolved oxygen, and method of washing electronic parts
JP4920019B2 (en) Hydrogen peroxide reduction method, hydrogen peroxide reduction device, ultrapure water production device, and cleaning method
JP5647842B2 (en) Pure water or ultrapure water production apparatus and production method
JP6423211B2 (en) Substrate processing method and substrate processing apparatus
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP2014079722A (en) Ozone water manufacturing method
JP5421689B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5484277B2 (en) System and method for measuring total organic carbon content in ultrapure water
JP5567958B2 (en) Method for producing platinum group metal supported catalyst
JP6100664B2 (en) Hydrofluoric acid aqueous solution purification method, substrate processing method and substrate processing apparatus
JP2017175075A (en) Wet cleaning apparatus and wet cleaning method
JP2008086854A (en) Pure water production apparatus
JP6415100B2 (en) Method for treating exposed molybdenum substrate
JP2017189723A (en) Ultrapure water production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160831