JP2010240641A - Method of manufacturing hydrogen peroxide decomposition treated water, apparatus for manufacturing hydrogen peroxide decomposition treated water, treating tank, method of manufacturing ultrapure water, apparatus for manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, method of manufacturing ozone dissolved water, apparatus for manufacturing ozone dissolved water, and method of cleaning electronic components - Google Patents

Method of manufacturing hydrogen peroxide decomposition treated water, apparatus for manufacturing hydrogen peroxide decomposition treated water, treating tank, method of manufacturing ultrapure water, apparatus for manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, method of manufacturing ozone dissolved water, apparatus for manufacturing ozone dissolved water, and method of cleaning electronic components Download PDF

Info

Publication number
JP2010240641A
JP2010240641A JP2010057392A JP2010057392A JP2010240641A JP 2010240641 A JP2010240641 A JP 2010240641A JP 2010057392 A JP2010057392 A JP 2010057392A JP 2010057392 A JP2010057392 A JP 2010057392A JP 2010240641 A JP2010240641 A JP 2010240641A
Authority
JP
Japan
Prior art keywords
water
hydrogen peroxide
monolith
platinum group
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010057392A
Other languages
Japanese (ja)
Other versions
JP5329463B2 (en
Inventor
Hiroshi Sugawara
広 菅原
Kazushige Takahashi
一重 高橋
Hitoshi Takada
仁 高田
Masami Murayama
雅美 村山
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2010057392A priority Critical patent/JP5329463B2/en
Publication of JP2010240641A publication Critical patent/JP2010240641A/en
Application granted granted Critical
Publication of JP5329463B2 publication Critical patent/JP5329463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing hydrogen peroxide decomposition treated water by efficiently decomposing and removing hydrogen peroxide without requiring a large-size catalyst tower even when causing water to pass through the tower with such a large water passage velocity (SV) exceeding 2,000 h<SP>-1</SP>or thinning a packed bed height of catalyst. <P>SOLUTION: In the method of manufacturing hydrogen peroxide decomposition treated water, hydrogen peroxide-containing water is brought into contact with a platinum group metal carrier catalyst prepared by carrying platinum group metal to a monolith organic porous anion exchanger. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法に関するものである。   The present invention relates to a method for producing hydrogen peroxide-decomposed treated water, an apparatus for producing hydrogen peroxide-decomposed treated water, a treatment tank, a method for producing ultrapure water, an apparatus for producing ultrapure water, a method for producing hydrogen-dissolved water, and hydrogen dissolving. The present invention relates to a water production device, a method for producing ozone-dissolved water, a device for producing ozone-dissolved water, and a method for cleaning electronic components.

半導体製造産業においては、不純物を高度に除去した超純水を用いてシリコンウエハの洗浄等が行われている。超純水は、一般に原水(河川水、地下水、工業用水等)中に含まれる懸濁物質や有機物の一部を前処理工程で除去した後、その処理水を一次純水系システム及び二次純水系システム(サブシステム)で順次処理することによって製造され、ウエハ洗浄を行うユースポイントに供給される。このような超純水は、不純物の定量も困難であるほどの純度を有するが、全く不純物を有していないわけではない。   In the semiconductor manufacturing industry, silicon wafers are cleaned using ultrapure water from which impurities are highly removed. Ultrapure water generally removes part of suspended matter and organic matter contained in raw water (river water, groundwater, industrial water, etc.) in the pretreatment process, and then treats the treated water with the primary pure water system and secondary pure water. Manufactured by sequential processing in an aqueous system (subsystem) and supplied to a use point for wafer cleaning. Such ultrapure water has such a purity that it is difficult to quantify the impurities, but it does not have no impurities at all.

前述した超純水の製造方法では、一般に、サブシステムに設置した紫外線酸化装置によって有機物の分解を行っている。紫外線酸化処理の過程では過酸化水素が副生するため、紫外線酸化装置の処理水中には、過酸化水素が残存しているのが一般的である。   In the above-described method for producing ultrapure water, generally, organic substances are decomposed by an ultraviolet oxidation apparatus installed in a subsystem. Since hydrogen peroxide is by-produced in the process of ultraviolet oxidation, it is common that hydrogen peroxide remains in the treated water of the ultraviolet oxidation apparatus.

そこで、紫外線酸化装置の処理水中に含まれる過酸化水素を、合成炭素系粒状吸着剤を用いて吸着除去する方法が提案されている(特許文献1(特開平9−29233号公報)参照)。この方法によれば、紫外線酸化装置の処理水中に残存する過酸化水素自体を除去することから、ウエハ表面の自然酸化皮膜の形成を抑制することが可能であるが、この方法では、所定の過酸化水素除去率を達成するためには、多量の合成炭素系粒状吸着剤を充填した大型の吸着塔が必要であった。   Therefore, a method has been proposed in which hydrogen peroxide contained in the treated water of the ultraviolet oxidation apparatus is adsorbed and removed using a synthetic carbon-based granular adsorbent (see Patent Document 1 (Japanese Patent Laid-Open No. 9-29233)). According to this method, it is possible to suppress the formation of a natural oxide film on the wafer surface because hydrogen peroxide itself remaining in the treated water of the ultraviolet oxidizer is removed. In order to achieve the removal rate of hydrogen oxide, a large adsorption tower filled with a large amount of a synthetic carbon-based granular adsorbent was required.

また、紫外線酸化装置の処理水中に含まれる過酸化水素を、白金族金属ナノコロイド粒子を担体に担持させた触媒によって分解する方法が提案されている(特許文献2(特開2007−185587号公報)参照)。   In addition, a method has been proposed in which hydrogen peroxide contained in treated water of an ultraviolet oxidation apparatus is decomposed with a catalyst in which platinum group metal nanocolloid particles are supported on a carrier (Patent Document 2 (Japanese Patent Laid-Open No. 2007-185587). )reference).

一方、半導体製造工程においては、基板等の被処理体の洗浄水として、水素溶解水やオゾン溶解水が知られているが、この水素溶解水やオゾン溶解水は、超純水等を原水としてこれに水素ガスやオゾンガスを溶解してなるものであり、これら水素溶解水やオゾン溶解水も、過酸化水素含有量が低減されることが望まれている。過酸化水素含有量が低減されることで、水素溶解水については、被処理体表面の酸化抑制効果、オゾン溶解水については、オゾンの自己分解反応抑制による配管移送時におけるオゾン濃度の減少度の低減効果がある。   On the other hand, in the semiconductor manufacturing process, hydrogen-dissolved water and ozone-dissolved water are known as cleaning water for the object to be processed such as a substrate. The hydrogen-dissolved water and ozone-dissolved water are obtained by using ultrapure water as raw water. This is formed by dissolving hydrogen gas or ozone gas, and it is desired that the hydrogen-dissolved water and ozone-dissolved water also have a reduced hydrogen peroxide content. By reducing the hydrogen peroxide content, hydrogen-dissolved water has an effect of suppressing oxidation on the surface of the object to be treated, and ozone-dissolved water has a degree of decrease in ozone concentration during pipe transfer due to suppression of ozone self-decomposition reaction. There is a reduction effect.

特開平9−29233号公報JP-A-9-29233 特開2007−185587号公報JP 2007-185587 A

しかしながら、特許文献1記載の方法では、所定の過酸化水素除去率を達成するためには、多量の合成炭素系粒状吸着剤を充填した大型の吸着塔が必要となる。また、特許文献2記載の方法においては、通水空間速度(SV)が100〜2000h−1と比較的低い領域でしか触媒を使用できず、SVが2000h−1を超えると、過酸化水素の分解除去が不十分になってしまう。 However, the method described in Patent Document 1 requires a large adsorption tower packed with a large amount of a synthetic carbon-based granular adsorbent in order to achieve a predetermined hydrogen peroxide removal rate. Further, in the method described in Patent Document 2, the water passage space velocity (SV) is not available a catalyst only in a relatively low region and 100~2000H -1, the SV exceeds 2000h -1, hydrogen peroxide Decomposition and removal become insufficient.

このような状況下、本発明は、SVが2000h−1を超えるような大きなSVで通水したり、触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して過酸化水素分解処理水を製造する方法と製造装置を提供することを第1の目的とするものである。また、本発明は、過酸化水素の分解処理時にSVが2000h−1を超えるような大きなSVで通水したり、分解触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して超純水を製造する方法と製造装置を提供することを第2の目的とするものである。さらに、本発明は、過酸化水素の分解処理時にSVが2000h−1を超えるような大きなSVで通水したり、分解触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去しつつ水素溶解水を製造する方法と製造装置を提供することを第3の目的とするものである。加えて、本発明は、過酸化水素の分解処理時にSVが2000h−1を超えるような大きなSVで通水したり、分解触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去しつつオゾン溶解水を製造する方法と製造装置を提供することを第4の目的とするものである。さらに加えて、本発明は、上記超純水の製造装置、水素溶解水の製造装置、オゾン溶解水の製造装置等を小型化し、容易に維持管理し得る処理槽を提供することを第5の目的とするものである。そして、本発明は、上記過酸化水素分解処理水を含む洗浄水、超純水を含む洗浄水、水素溶解水を含む洗浄水およびオゾン溶解水を含む洗浄水から選ばれる一種以上の洗浄水を用いた電子部品の洗浄方法を提供することを第6の目的とするものである。 Under such circumstances, the present invention is able to decompose and remove hydrogen peroxide with high efficiency even when water is passed with a large SV exceeding SVh- 1 or the packed bed height of the catalyst is reduced. It is a first object of the present invention to provide a method and a production apparatus for producing hydrogen oxide decomposition treated water. In addition, the present invention decomposes hydrogen peroxide with high efficiency even when water is passed through a large SV that exceeds 2000 h −1 during the decomposition treatment of hydrogen peroxide or the packed bed height of the decomposition catalyst is reduced. It is a second object of the present invention to provide a method and an apparatus for producing ultrapure water by removing. Furthermore, the present invention decomposes hydrogen peroxide with high efficiency even when water is passed through a large SV that exceeds 2000 h −1 during the decomposition treatment of hydrogen peroxide or the packed bed height of the decomposition catalyst is reduced. A third object is to provide a method and a production apparatus for producing hydrogen-dissolved water while removing it. In addition, according to the present invention, hydrogen peroxide can be made highly efficient even when water is passed through a large SV that exceeds 2000 h −1 during the decomposition treatment of hydrogen peroxide or the packed bed height of the decomposition catalyst is reduced. A fourth object is to provide a method and a production apparatus for producing ozone-dissolved water while decomposing and removing it. In addition, the fifth aspect of the present invention is to provide a treatment tank that can downsize and easily maintain and manage the ultrapure water production apparatus, the hydrogen dissolved water production apparatus, the ozone dissolved water production apparatus, and the like. It is the purpose. The present invention provides at least one type of cleaning water selected from cleaning water containing the hydrogen peroxide decomposition treated water, cleaning water containing ultrapure water, cleaning water containing hydrogen-dissolved water, and cleaning water containing ozone-dissolved water. It is a sixth object to provide a cleaning method for the used electronic component.

本発明者等は、上記目的を達成するために鋭意研究を重ねた結果、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、過酸化水素含有水とを接触させることにより、上記技術課題を解決し得ることを見出し、本知見に基づいて本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, hydrogen peroxide-containing water, The present inventors have found that the above technical problem can be solved by bringing them into contact with each other, and have completed the present invention based on this finding.

すなわち、本発明は、
(1)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、過酸化水素含有水とを接触させることを特徴とする過酸化水素分解処理水の製造方法、
(2)前記白金族金属の担持量が、前記白金族金属担持触媒1Lあたり10〜30000mgである上記(1)に記載の過酸化水素分解処理水の製造方法、
(3)前記モノリス状有機多孔質アニオン交換体が、OH形である上記(1)または(2)に記載の過酸化水素分解処理水の製造方法、
(4)前記白金族金属担持触媒に、前記過酸化水素含有水を、空間速度2000h−1〜20000h−1で接触させる上記(1)〜(3)のいずれかに記載の過酸化水素分解処理水の製造方法、
(5)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を含み、該触媒と過酸化水素含有水との接触処理部を有することを特徴とする過酸化水素分解処理水の製造装置、
(6)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽(以下、適宜、本発明の処理槽1という)、
(7)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽(以下、適宜、本発明の処理槽2という)、
(8)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽(以下、適宜、本発明の処理槽3という)、
(9)被処理水に対し、紫外線酸化処理と、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と接触させる過酸化水素分解処理と、非再生型イオン交換樹脂と接触させるイオン交換処理と、分離膜によるろ過処理とを、この順番に施すことを特徴とする超純水の製造方法、
(10)紫外線酸化装置と、上記(5)に記載の過酸化水素分解処理水の製造装置と、非再生型イオン交換樹脂を含む非再生型イオン交換装置と、膜分離装置とを、この順番に通水するように設置したことを特徴とする超純水の製造装置(以下、適宜、本発明の超純水の製造装置1という)、
(11)紫外線酸化装置と、上記(6)に記載の処理槽と、膜分離装置とを、この順番に通水するように設置したことを特徴とする超純水の製造装置(以下、適宜、本発明の超純水の製造装置2という)、
(12)紫外線酸化装置と、上記(7)または(8)に記載の処理槽とを、この順番に通水するように設置したことを特徴とする超純水の製造装置(以下、適宜、本発明の超純水の製造装置3という)、
(13)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させる工程の前工程または後工程として、被処理水に対する水素溶解工程を含むことを特徴とする水素溶解水の製造方法、
(14)上記(5)に記載の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とする水素溶解水の製造装置(以下、適宜、本発明の水素溶解水の製造装置1という)、
(15)上記(6)に記載の処理槽と、膜分離装置とを、この順番に通水するように設置するとともに、前記処理槽の上流側または下流側に被処理水に対する水素溶解処理装置を設けてなることを特徴とする水素溶解水の製造装置(以下、適宜、本発明の水素溶解水の製造装置2という)、
(16)上記(7)または(8)に記載の処理槽と、該処理槽の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とする水素溶解水の製造装置(以下、適宜、本発明の水素溶解水の製造装置3という)、
(17)モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させて得られた処理水に対してオゾンを溶解させる工程とを含むことを特徴とするオゾン溶解水の製造方法、
(18)上記(5)に記載の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置(以下、適宜、本発明のオゾン溶解水の製造装置1という)、
(19)前記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに膜分離装置を設けてなる上記(18)に記載のオゾン溶解水の製造装置、
(20)前記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体を含むイオン交換槽と、膜分離装置とをこの順番で設けてなる上記(18)に記載のオゾン溶解水の製造装置、
(21)上記(6)に記載の処理槽と、膜分離装置とを、この順番に通水するように設置するとともに、前記膜分離装置の下流側にオゾン溶解処理装置を設けてなることを特徴とするオゾン溶解水の製造装置(以下、適宜、本発明のオゾン溶解水の製造装置2という)
(22)上記(7)に記載の処理槽と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置(以下、適宜、本発明のオゾン溶解水の製造装置3という)、
(23)上記(8)に記載の処理槽と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置(以下、適宜、本発明のオゾン溶解水の製造装置4という)、
(24)上記(1)〜(4)のいずれかに記載の方法もしくは上記(5)に記載の装置により得られる過酸化水素分解処理水を含む洗浄水、上記(9)に記載の方法もしくは上記(10)〜(12)のいずれかに記載の装置により得られる超純水を含む洗浄水、上記(13)に記載の方法もしくは上記(14)〜(16)のいずれかに記載の装置により得られる水素溶解水を含む洗浄水または上記(17)に記載の方法もしくは上記(18)〜(23)のいずれかに記載の装置により得られるオゾン溶解水を含む洗浄水から選ばれるいずれか一種以上の洗浄水により、表面洗浄することを特徴とする電子部品の洗浄方法、
を提供するものである。
That is, the present invention
(1) A method for producing hydrogen peroxide decomposition treated water, comprising contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water. ,
(2) The method for producing hydrogen peroxide decomposition treated water according to (1), wherein the amount of the platinum group metal supported is 10 to 30000 mg per liter of the platinum group metal supported catalyst,
(3) The method for producing hydrogen peroxide-decomposed water according to (1) or (2), wherein the monolithic organic porous anion exchanger is in the OH form,
(4) The hydrogen peroxide decomposition treatment according to any one of the above (1) to (3), wherein the hydrogen peroxide-containing water is brought into contact with the platinum group metal supported catalyst at a space velocity of 2000 h −1 to 20000 h −1. Water production method,
(5) A peroxide comprising a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and having a contact treatment section between the catalyst and hydrogen peroxide-containing water. Production equipment for hydrocracked water,
(6) A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger with respect to water to be treated. A processing tank (hereinafter, appropriately referred to as the processing tank 1 of the present invention), which is arranged in the same container so as to come into contact in this order,
(7) A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, a non-regenerative ion exchange resin or monolithic organic porous ion exchanger, and a separation membrane. A treatment tank (hereinafter, appropriately referred to as the treatment tank 2 of the present invention), which is arranged in the same container so as to come into contact with the treated water in this order;
(8) A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a separation membrane are arranged in the same container so as to come into contact with water to be treated in this order. A processing tank (hereinafter, appropriately referred to as the processing tank 3 of the present invention),
(9) UV treatment for water to be treated, hydrogen peroxide decomposition treatment in which a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and non-regenerative ions A method for producing ultrapure water, characterized in that an ion exchange treatment to be brought into contact with an exchange resin and a filtration treatment with a separation membrane are performed in this order;
(10) The ultraviolet oxidation apparatus, the apparatus for producing hydrogen peroxide decomposition treated water described in (5) above, the non-regenerative ion exchange apparatus including the non-regenerative ion exchange resin, and the membrane separation apparatus in this order. A device for producing ultrapure water (hereinafter referred to as the ultrapure water production device 1 of the present invention as appropriate),
(11) An apparatus for producing ultrapure water (hereinafter referred to as “appropriate”), wherein the ultraviolet oxidation apparatus, the treatment tank described in (6) above, and the membrane separation apparatus are installed so as to pass water in this order. , Called ultrapure water production apparatus 2 of the present invention),
(12) A device for producing ultrapure water (hereinafter referred to as “appropriately”), wherein the ultraviolet oxidizer and the treatment tank described in (7) or (8) are installed so as to pass water in this order. Called ultrapure water production apparatus 3 of the present invention),
(13) contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water; and the platinum group metal-supported catalyst and hydrogen peroxide-containing water. A method for producing hydrogen-dissolved water, comprising a step of dissolving hydrogen in water to be treated as a pre-process or a post-process of the step of contacting
(14) The hydrogen peroxide decomposition treated water production apparatus according to (5) above and a hydrogen dissolution treatment apparatus for water to be treated are provided upstream or downstream of the hydrogen peroxide decomposition treated water production apparatus. A hydrogen-dissolved water production apparatus (hereinafter referred to as the hydrogen-dissolved water production apparatus 1 of the present invention as appropriate),
(15) The treatment tank according to the above (6) and the membrane separation apparatus are installed so as to pass water in this order, and a hydrogen dissolution treatment apparatus for water to be treated on the upstream side or the downstream side of the treatment tank. An apparatus for producing hydrogen-dissolved water (hereinafter referred to as the apparatus for producing hydrogen-dissolved water 2 of the present invention as appropriate),
(16) Hydrogen-dissolved water comprising the treatment tank according to (7) or (8) above and a hydrogen-dissolution treatment apparatus for water to be treated upstream or downstream of the treatment tank Manufacturing apparatus (hereinafter referred to as the hydrogen dissolved water manufacturing apparatus 3 of the present invention as appropriate),
(17) A step of contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water, and the platinum group metal-supported catalyst and hydrogen peroxide-containing water. And a step of dissolving ozone in the treated water obtained by contacting with ozone, a method for producing ozone-dissolved water,
(18) Ozone characterized by comprising the apparatus for producing hydrogen peroxide decomposition treated water as described in (5) above and an ozone dissolution treatment apparatus downstream of the apparatus for producing hydrogen peroxide decomposition treated water Dissolved water production apparatus (hereinafter referred to as ozone dissolved water production apparatus 1 of the present invention as appropriate),
(19) The apparatus for producing ozone-dissolved water according to (18) above, further comprising a membrane separation device on the downstream side of the apparatus for producing hydrogen peroxide-decomposed treated water and upstream of the ozone-dissolving treatment apparatus. ,
(20) An ion exchange tank further comprising a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger on the downstream side of the hydrogen peroxide decomposition treated water production apparatus and upstream of the ozone dissolution treatment apparatus And the apparatus for producing ozone-dissolved water according to (18) above, wherein the membrane separator is provided in this order,
(21) The treatment tank described in (6) above and the membrane separation apparatus are installed so as to pass water in this order, and an ozone dissolution treatment apparatus is provided on the downstream side of the membrane separation apparatus. A device for producing ozone-dissolved water (hereinafter referred to as the device for producing ozone-dissolved water 2 of the present invention as appropriate)
(22) An apparatus for producing ozone-dissolved water comprising the treatment tank according to (7) above and an ozone dissolution treatment apparatus on the downstream side of the treatment tank (hereinafter appropriately referred to as ozone according to the present invention). Dissolved water production device 3),
(23) An apparatus for producing ozone-dissolved water comprising the treatment tank according to (8) above and an ozone dissolution treatment apparatus downstream of the treatment tank (hereinafter referred to as ozone of the present invention as appropriate). Dissolved water manufacturing device 4),
(24) Washing water containing hydrogen peroxide decomposition treated water obtained by the method according to any one of (1) to (4) above or the apparatus according to (5) above, the method according to (9) above or Washing water containing ultrapure water obtained by the apparatus according to any one of (10) to (12) above, the method according to (13) above, or the apparatus according to any of (14) to (16) above Any one selected from wash water containing hydrogen-dissolved water obtained by the above, or wash water containing ozone-dissolved water obtained by the method described in (17) above or the apparatus described in any of (18) to (23) above. A method for cleaning electronic parts, characterized by cleaning the surface with one or more types of cleaning water,
Is to provide.

本発明によれば、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用い、被処理水中の過酸化水素を分解することにより、SVが2000h−1を超えるようなSVで通水したり触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して、過酸化水素分解処理水を製造する方法と製造装置を提供することができる。また、本発明によれば、過酸化水素の分解処理時にSVが2000h−1を超えるような大きなSVで通水したり、分解触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して、超純水を製造する方法と製造装置、水素溶解水の製造方法と製造装置、オゾン溶解水の製造方法と製造装置を提供することができる。さらに、本発明によれば、上記超純水の製造装置、水素溶解水の製造装置、オゾン溶解水の製造装置等を小型化し、容易に維持管理し得る処理槽を提供することができる。そして、本発明によれば、上記過酸化水素分解処理水、超純水、水素溶解水またはオゾン溶解水を含む洗浄水を用いた電子部品の洗浄方法を提供することができる。 According to the present invention, by using a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, by decomposing hydrogen peroxide in water to be treated, SV is reduced to 2000 h −1 . To provide a method and a production apparatus for producing hydrogen peroxide decomposition treated water by decomposing and removing hydrogen peroxide with high efficiency even if water is passed through an SV exceeding the above or the packed bed height of the catalyst is reduced. it can. In addition, according to the present invention, hydrogen peroxide is highly efficient even when water is passed through a large SV that exceeds 2000 h −1 during the decomposition treatment of hydrogen peroxide or the packed bed height of the decomposition catalyst is reduced. It is possible to provide a method and apparatus for producing ultrapure water, a method and apparatus for producing hydrogen-dissolved water, a method and apparatus for producing ozone-dissolved water. Furthermore, according to the present invention, it is possible to provide a treatment tank capable of downsizing and easily maintaining and managing the ultrapure water production apparatus, the hydrogen dissolved water production apparatus, the ozone dissolved water production apparatus, and the like. And according to this invention, the washing | cleaning method of the electronic component using the washing water containing the said hydrogen peroxide decomposition | disassembly water, ultrapure water, hydrogen solution water, or ozone solution water can be provided.

処理槽の態様例を示す図である。It is a figure which shows the example of a mode of a processing tank. 超純水の製造装置の態様例を示す図である。It is a figure which shows the example of an aspect of the manufacturing apparatus of ultrapure water. 水素溶解処理装置の態様例を示す図((a)図)およびオゾン溶解処理装置の態様例を示す図((b)図)である。It is the figure ((a) figure) which shows the example of an aspect of a hydrogen dissolution processing apparatus, and the figure ((b) figure) which shows the example of an aspect of an ozone dissolution processing apparatus. オゾン溶解水の製造装置の態様例を示す図である。It is a figure which shows the example of an aspect of the manufacturing apparatus of ozone dissolution water. 本発明の電子部品の洗浄方法の第一の形態例の模式的なフロー図である。It is a typical flowchart of the 1st form example of the washing | cleaning method of the electronic component of this invention. 本発明の電子部品の洗浄方法の第二の形態例の模式的なフロー図である。It is a typical flowchart of the 2nd example of the washing | cleaning method of the electronic component of this invention. 本発明の実施例で作製したモノリスのSEM画像である。It is a SEM image of the monolith produced in the Example of this invention. 本発明の実施例で作製したパラジウムナノ粒子担持触媒におけるパラジウムナノ粒子の分散状態を示すTEM画像である。It is a TEM image which shows the dispersion state of the palladium nanoparticle in the palladium nanoparticle carrying | support catalyst produced in the Example of this invention. 本発明の実施例で作製したモノリスのSEM画像である。It is a SEM image of the monolith produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の表面における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the surface of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の断面(厚み)方向における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the cross section (thickness) direction of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製したパラジウムナノ粒子担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。It is a TEM image which showed the dispersion state of the palladium nanoparticle in the palladium nanoparticle carrying | support catalyst produced in the Example of this invention. 本発明の実施例で作製したモノリスのSEM画像(a)および同SEM画像の断面として表れる骨格部を手動転写した図(b)である。It is the figure which transcribe | transferred manually the skeleton part which appears as a cross section of the SEM image (a) and the SEM image of the monolith produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の表面における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the surface of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の断面(厚み)方向における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the cross section (thickness) direction of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製した担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。It is a TEM image which showed the dispersion state of the palladium nanoparticle in the supported catalyst produced in the Example of this invention. 本発明の実施例で作製したモノリスのSEM画像である。It is a SEM image of the monolith produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の表面における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the surface of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製したモノリスアニオン交換体の断面(厚み)方向における塩化物イオンの分布状態を示したEPMA画像である。It is the EPMA image which showed the distribution state of the chloride ion in the cross section (thickness) direction of the monolith anion exchanger produced in the Example of this invention. 本発明の実施例で作製した担持触媒におけるパラジウムナノ粒子の分散状態を示したTEM画像である。It is a TEM image which showed the dispersion state of the palladium nanoparticle in the supported catalyst produced in the Example of this invention. 本発明の実施例で作製したモノリス中間体のSEM画像である。It is a SEM image of the monolith intermediate body produced in the Example of this invention. 第4のモノリスアニオン交換体の共連続構造を模式的に示した図である。It is the figure which showed typically the co-continuous structure of the 4th monolith anion exchanger. 本発明の実施例および比較例で用いた処理槽の形態を示す図である。It is a figure which shows the form of the processing tank used by the Example and comparative example of this invention.

本発明は、過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法からなるが、これらの発明は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いる点を共通にするものである。このため、以下、各発明における白金族金属担持触媒以外の点について説明した上で、白金族金属担持触媒について、詳述するものとする。   The present invention relates to a method for producing hydrogen peroxide-decomposed treated water, an apparatus for producing hydrogen peroxide-decomposed treated water, a treatment tank, a method for producing ultrapure water, an apparatus for producing ultrapure water, a method for producing hydrogen-dissolved water, and hydrogen dissolving. A water production apparatus, a method for producing ozone-dissolved water, a production apparatus for ozone-dissolved water, and a method for cleaning electronic components. These inventions comprise a platinum group metal supported on a monolithic organic porous anion exchanger. The point which uses a platinum group metal carrying | support catalyst is made common. For this reason, after explaining points other than the platinum group metal supported catalyst in each invention, the platinum group metal supported catalyst will be described in detail.

<過酸化水素分解処理水の製造方法>
先ず、本発明の過酸化水素分解処理水の製造方法について説明する。
<Method for producing hydrogen peroxide decomposition treated water>
First, the manufacturing method of the hydrogen peroxide decomposition treatment water of this invention is demonstrated.

本発明の過酸化水素分解処理水の製造方法は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、過酸化水素含有水とを接触させることを特徴とするものである。   The method for producing hydrogen peroxide decomposition treated water of the present invention comprises contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water. It is what.

過酸化水素含有水としては、過酸化水素を含有するものであれば、特に制限されず、例えば、半導体用電子部品表面や半導体電子部品の製造器具を洗浄する超純水の製造過程における、種々の工程で生じる水が挙げられ、具体的には、水中の有機物を酸化、分解する紫外線酸化処理工程を経た後の水が挙げられる。また、過酸化水素含有水としては、他には、用廃水に過酸化水素を添加し、酸化、還元、殺菌、洗浄を行った処理液又は処理水やこれらの処理液又は処理水を用いて処理を行った後の廃液又は排水が挙げられる。例えば、半導体製造工程から排出される過酸化水素を含む洗浄排水、半導体製造工程から排出される有機物を含む洗浄排水を超純水として回収再利用するために、過酸化水素の存在下に紫外線を照射し有機物を酸化分解して得られる処理水、フェントン試薬を用いて有機物を分解して得られる処理水、逆浸透膜、限外ろ過膜等を過酸化水素で殺菌又は洗浄した後の排水、6価クロムを含有する排水を過酸化水素で還元処理して得られる処理水等が挙げられる。   The hydrogen peroxide-containing water is not particularly limited as long as it contains hydrogen peroxide. For example, various kinds of water in the manufacturing process of ultrapure water for cleaning semiconductor electronic component surfaces and semiconductor electronic component manufacturing equipment can be used. Water produced in this step can be mentioned, and specifically, water after undergoing an ultraviolet oxidation treatment step for oxidizing and decomposing organic substances in the water. In addition, as the hydrogen peroxide-containing water, other treatment liquid or treatment water obtained by adding hydrogen peroxide to the waste water for use, oxidation, reduction, sterilization, and washing, or these treatment liquid or treatment water is used. The waste liquid or waste water after processing is mentioned. For example, in order to collect and reuse cleaning wastewater containing hydrogen peroxide discharged from the semiconductor manufacturing process and cleaning wastewater containing organic matter discharged from the semiconductor manufacturing process as ultrapure water, ultraviolet rays are used in the presence of hydrogen peroxide. Treated water obtained by oxidative decomposition of organic matter by irradiation, treated water obtained by decomposing organic matter using Fenton reagent, reverse osmosis membrane, waste water after sterilizing or washing ultrafiltration membrane with hydrogen peroxide, Examples thereof include treated water obtained by reducing wastewater containing hexavalent chromium with hydrogen peroxide.

過酸化水素含有水中の過酸化水素濃度は、特に制限されないが、通常、0.01〜100mg/L(10ppb〜100ppm)である。過酸化水素濃度が100mg/L(100ppm)を超えると、母体である有機多孔質アニオン交換体の劣化が進み易くなる。なお、過酸化水素含有水の一種である、超純水の製造装置を構成するサブシステムの被処理水に含まれる過酸化水素の濃度は、通常、10〜50μg/L(10〜50ppb)程度である。   The hydrogen peroxide concentration in the hydrogen peroxide-containing water is not particularly limited, but is usually 0.01 to 100 mg / L (10 ppb to 100 ppm). When the hydrogen peroxide concentration exceeds 100 mg / L (100 ppm), the deterioration of the organic porous anion exchanger as the base material is likely to proceed. In addition, the density | concentration of the hydrogen peroxide contained in the to-be-processed water of the subsystem which comprises the manufacturing apparatus of ultrapure water which is a kind of hydrogen peroxide containing water is 10-50 microgram / L (10-50ppb) normally. It is.

白金族金属担持触媒に、過酸化水素を含有する被処理水を接触させる方法としては、特に制限されず、例えば、白金族金属担持触媒を層状に充填した触媒充填塔に、過酸化水素を含有する被処理水を供給し、通水する方法等が挙げられる。   The method for bringing the water to be treated containing hydrogen peroxide into contact with the platinum group metal supported catalyst is not particularly limited. For example, the catalyst packed tower packed with the platinum group metal supported catalyst in layers contains hydrogen peroxide. The method of supplying the to-be-processed water to supply and water-flowing is mentioned.

白金族金属担持触媒に対する過酸化水素含有水の通水速度は、特に制限されないが、好ましくはSV2000〜20000h−1、より好ましくはSV5000〜10000h−1である。なお、本発明の白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、あえて通水速度をSV2000h−1未満とする必要はないが、通水速度をSV2000h−1未満としてもよく、通水速度をSV2000h−1未満とした場合も、優れた過酸化水素分解性を発揮する。一方、SVが20000h−1を超えると、通水差圧が大きくなり過ぎる傾向にある。 The flow rate of the hydrogen peroxide-containing water with respect to the platinum group metal-supported catalyst is not particularly limited, but is preferably SV2000-20000h- 1 , more preferably SV5000-10000h- 1 . Incidentally, platinum group metal supported catalyst of the present invention has a remarkably high hydrogen peroxide decomposition ability, dares need not be a water flow rate of less than SV2000h -1, may be a water flow rate of less than SV2000h -1, Even when the water flow rate is less than SV2000h- 1 , excellent hydrogen peroxide decomposability is exhibited. On the other hand, when SV exceeds 20000 h −1 , the water flow differential pressure tends to be too large.

本発明の過酸化水素分解処理水の製造方法においては、白金族金属担持触媒を用いることにより、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、過酸化水素の分解除去が可能となり、粒子状アニオン交換樹脂に白金族金属ナノ粒子を担持した従来の担持触媒を用いた場合に比べ、卓越した効果を得ることができる。 In the method for producing hydrogen peroxide-decomposed treated water of the present invention, by using a platinum group metal-supported catalyst, even if the treated water is passed through with a large SV such that SV exceeds 2000h- 1 , hydrogen peroxide As compared with the case where a conventional supported catalyst in which platinum group metal nanoparticles are supported on the particulate anion exchange resin is used, an excellent effect can be obtained.

また、過酸化水素含有水を通水する、白金族金属担持触媒層の層高は、5〜100mmであることが適当であり、10〜50mmであることがより適当であり、10〜25mmであることがさらに適当である。白金族金属担持触媒の層高が5mm未満であると、触媒層の機械的強度が不足することに加え、過酸化水素がリークする場合がある。一方、白金族金属担持触媒の層高が100mmを超える場合、通水差圧が大きくなる。   The layer height of the platinum group metal supported catalyst layer through which hydrogen peroxide-containing water is passed is suitably 5 to 100 mm, more preferably 10 to 50 mm, and 10 to 25 mm. It is even more appropriate to be. If the layer height of the platinum group metal supported catalyst is less than 5 mm, the mechanical strength of the catalyst layer may be insufficient and hydrogen peroxide may leak. On the other hand, when the layer height of the platinum group metal supported catalyst exceeds 100 mm, the water flow differential pressure increases.

本発明の過酸化水素分解処理水の製造方法において、白金族金属担持触媒と過酸化水素含有水とを接触させる温度は、5〜60℃が好ましく、10〜50℃がより好ましく、20〜30℃がさらに好ましい。   In the method for producing hydrogen peroxide decomposition treated water of the present invention, the temperature at which the platinum group metal-supported catalyst and the hydrogen peroxide-containing water are brought into contact is preferably 5 to 60 ° C, more preferably 10 to 50 ° C, and 20 to 30. More preferably.

本発明の過酸化水素分解処理水の製造方法においては、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いていることから、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明の過酸化水素分解処理水の製造方法においては、上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去することができる。   In the method for producing hydrogen peroxide decomposition treated water of the present invention, since a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger is used, normal particulate anion exchange is performed. Compared with the case where resin is used, contact efficiency with to-be-processed water can be raised significantly. In the method for producing hydrogen peroxide decomposition treated water of the present invention, since the platinum group metal supported catalyst is used, the ability to decompose hydrogen peroxide can be remarkably increased, and the packed bed height of the catalyst can be reduced. However, hydrogen peroxide in the water to be treated can be sufficiently decomposed and removed.

上述したように、超純水の製造装置のサブシステムにおいて、紫外線酸化処理で発生する微量の過酸化水素の濃度は10〜50μg/L(10〜50ppb)の範囲にあり、15〜30μg/L(15〜30ppb)の範囲にあることが多いが、本発明の過酸化水素分解処理水の製造方法においては、得られる過酸化水素分解処理水中の過酸化水素を10μg/L(10ppb)以下、好ましくは1μg/L(1ppb)以下まで低減することができる。   As described above, in the subsystem of the ultrapure water production apparatus, the concentration of a trace amount of hydrogen peroxide generated by the ultraviolet oxidation treatment is in the range of 10 to 50 μg / L (10 to 50 ppb), and 15 to 30 μg / L. Although often in the range of (15-30 ppb), in the method for producing hydrogen peroxide decomposition treated water of the present invention, the hydrogen peroxide in the obtained hydrogen peroxide decomposition treated water is 10 μg / L (10 ppb) or less, Preferably, it can be reduced to 1 μg / L (1 ppb) or less.

過酸化水素を低減する程度は、上記白金族金属担持触媒層の層高や通水時のSVまたは触媒に担持される白金属金属の量を調整することにより調整することができる。   The degree to which hydrogen peroxide is reduced can be adjusted by adjusting the layer height of the platinum group metal-supported catalyst layer, the SV during water passage, or the amount of white metal metal supported on the catalyst.

<過酸化水素分解処理水の製造装置>
次に、本発明の過酸化水素分解処理水の製造装置について説明する。
<Production equipment for hydrogen peroxide decomposition treated water>
Next, the apparatus for producing hydrogen peroxide decomposition treated water of the present invention will be described.

本発明の過酸化水素分解処理水の製造装置は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を含み、該触媒と過酸化水素含有水との接触処理部を有することを特徴とするものである。   The apparatus for producing hydrogen peroxide decomposition treated water of the present invention includes a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and the contact of the catalyst with hydrogen peroxide-containing water. It has a processing part.

本発明の過酸化水素分解処理水の製造装置において、過酸化水素含有水や、通水時におけるSV等の接触条件や、得られる過酸化水素分解処理水は、上記本発明の過酸化水素分解処理水の製造方法の説明で述べた内容と同様である。   In the apparatus for producing hydrogen peroxide decomposition treated water of the present invention, the hydrogen peroxide-containing water, the contact conditions such as SV when water is passed, and the obtained hydrogen peroxide decomposition treated water are the hydrogen peroxide decomposition of the present invention. This is the same as described in the explanation of the method for producing treated water.

白金族金属担持触媒と過酸化水素含有水との接触処理部の形態としては、特に制限されないが、例えば、触媒充填塔に、白金族金属担持触媒を充填した白金族金属触媒層の形態を挙げることができる。   The form of the contact treatment portion between the platinum group metal supported catalyst and the hydrogen peroxide-containing water is not particularly limited. For example, a form of a platinum group metal catalyst layer in which a catalyst packed tower is packed with a platinum group metal supported catalyst is given. be able to.

触媒充填塔中における、白金族金属担持触媒の層高は、5〜100mmであることが適当であり、10〜50mmであることがより適当であり、10〜25mmであることがさらに適当である。白金族金属担持触媒の層高が5mm未満であると、触媒層の機械的強度が不足することに加え、過酸化水素がリークする場合がある。一方、白金族金属担持触媒の層高が100mmを超える場合、通水差圧が大きくなる。   The layer height of the platinum group metal supported catalyst in the catalyst packed tower is suitably 5 to 100 mm, more suitably 10 to 50 mm, and even more suitably 10 to 25 mm. . If the layer height of the platinum group metal supported catalyst is less than 5 mm, the mechanical strength of the catalyst layer may be insufficient and hydrogen peroxide may leak. On the other hand, when the layer height of the platinum group metal supported catalyst exceeds 100 mm, the water flow differential pressure increases.

本発明の過酸化水素分解処理水の製造装置においては、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いていることから、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、上記白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去することができる。   In the apparatus for producing hydrogen peroxide-decomposed treated water of the present invention, since a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger is used, normal particulate anion exchange is performed. Compared with the case where resin is used, contact efficiency with to-be-processed water can be raised significantly. And since the said platinum group metal carrying | support catalyst has a remarkably high hydrogen peroxide decomposition | disassembly capability, even if it makes the packed bed height of a catalyst thin, hydrogen peroxide in to-be-processed water can fully be decomposed | disassembled and removed.

触媒充填塔中における、白金族金属担持触媒層は、1段であっても、2段以上の多段であってもよく、また、触媒充填塔は1塔からなるものであっても、2塔以上の多塔からなるものであってもよい。触媒層を多段にした場合または触媒充填塔を多塔にした場合には、各触媒層の合計高さが上記範囲内にあればよい。   In the catalyst packed tower, the platinum group metal-supported catalyst layer may be a single stage or a multistage of two or more stages, and the catalyst packed tower may be composed of one tower. It may consist of the above multiple towers. When the catalyst layers are multi-staged or when the catalyst packed tower is multi-columned, the total height of the catalyst layers may be in the above range.

<処理槽>
次に、本発明の処理槽について説明する。
<Treatment tank>
Next, the treatment tank of the present invention will be described.

本発明の処理槽1は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とするものである。   The treatment tank 1 of the present invention comprises a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger. It arrange | positions in the same container so that to-be-processed water may contact in this order, It is characterized by the above-mentioned.

本発明の処理槽1において、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とを収容する容器としては、通水用の入口および出口を有するものであれば特に制限されず、カラム等の円筒状のものや、カートリッジ等を挙げることができる。   In the treatment tank 1 of the present invention, the container containing the platinum group metal supported catalyst and the non-regenerative ion exchange resin or the monolithic organic porous ion exchanger may have an inlet and an outlet for water flow. There is no particular limitation, and examples thereof include a cylindrical thing such as a column and a cartridge.

また、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体との、容器内における配置形態は、被処理水に対してこの順番で接触するように配置されてなるものであれば、特に制限されず、例えば、図1(a)〜図1(c)に示す形態を挙げることができる。   Further, the arrangement form of the platinum group metal supported catalyst and the non-regenerative ion exchange resin or the monolithic organic porous ion exchanger in the container is arranged so as to come into contact with the water to be treated in this order. If it becomes, it will not restrict | limit in particular, For example, the form shown to Fig.1 (a)-FIG.1 (c) can be mentioned.

図1(a)は、図の下から導入した被処理水を上方向に通水する通水用の入口と出口を有するカートリッジ状の概略円筒容器において、容器の下部に白金族金属担持触媒αを充填し、容器の上部に非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βとを充填して、容器中に、白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βとを積層充填する配置形態を示すものである。   FIG. 1 (a) shows a platinum group metal-supported catalyst α at the bottom of a container in a substantially cylindrical container having a water inlet and outlet for passing water to be treated introduced from below in the figure. The container is filled with non-regenerative ion exchange resin or monolithic organic porous ion exchanger β, and the platinum group metal-supported catalyst α and non-regenerative ion exchange resin or monolith are filled in the container. The arrangement | positioning form which carries out the lamination | stacking filling with the gaseous organic porous ion exchanger (beta) is shown.

図1(b)は、容器の外部側面から内部に被処理水を導入する通水用入口と内部に導入した被処理水を上部から排水する通水用出口を有するカートリッジ状の概略円筒容器において、容器の内側外周部に白金族金属担持触媒αからなる層を形成するとともに、容器の内側中心部に芯状に非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βからなる層を形成してなる配置形態を示すものである。   FIG. 1B shows a cartridge-like substantially cylindrical container having a water inlet for introducing the water to be treated into the interior from the outer side surface of the container and a water outlet for draining the water to be treated introduced into the interior from above. In addition, a layer made of a platinum group metal supported catalyst α is formed on the inner periphery of the container, and a layer made of a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger β is formed in the core at the inner center of the container. The arrangement form formed is shown.

図1(c)は、図の上から導入した被処理水を下方向に通水する通水用の上部入口と下部出口を有するとともに、通水用の入口側に、下方向に伸びる通水パイプにより容器中への通水量および通水方向を制御する調整室が設けられたカートリッジ状の円筒容器において、上記調整室中に白金族金属担持触媒αを充填し、調整室の外部全体に非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βを充填して、容器中に、白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βとを充填する配置形態を示すものである。   FIG. 1 (c) has an upper inlet and a lower outlet for passing water to be treated introduced from the top of the figure in the downward direction, and water flowing downward on the inlet side for passing water. In a cartridge-like cylindrical container provided with an adjustment chamber for controlling the amount and direction of water flow into the container by a pipe, the adjustment chamber is filled with a platinum group metal-supported catalyst α, and the entire outside of the adjustment chamber is not covered. A regenerative ion exchange resin or monolithic organic porous ion exchanger β is filled, and a platinum group metal-supported catalyst α and a non-regenerative ion exchange resin or monolithic organic porous ion exchanger β are placed in a container. The arrangement | positioning form to fill is shown.

図1(a)に示す態様において、容器中における白金族金属担持触媒の層高は、5〜100mmであることが適当であり、10〜50mmであることがより適当であり、10〜25mmであることがさらに適当である。白金族金属担持触媒の層高が5mm未満であると、触媒層の機械的強度が不足することに加え、過酸化水素がリークする場合がある。一方、白金族金属担持触媒の層高が100mmを超える場合、通水差圧が大きくなる。   In the embodiment shown in FIG. 1 (a), the layer height of the platinum group metal supported catalyst in the container is suitably 5 to 100 mm, more preferably 10 to 50 mm, and 10 to 25 mm. It is even more appropriate to be. If the layer height of the platinum group metal supported catalyst is less than 5 mm, the mechanical strength of the catalyst layer may be insufficient and hydrogen peroxide may leak. On the other hand, when the layer height of the platinum group metal supported catalyst exceeds 100 mm, the water flow differential pressure increases.

図1(a)に示す態様において、容器中に非再生型イオン交換樹脂を含む場合、その層高は、30〜1000mmが好ましく、50〜1000mmがより好ましい。また、図1(a)に示す態様において、容器中にモノリス状有機多孔質イオン交換体を含む場合、その層高は5〜100mmが好ましく、10〜50mmがより好ましく、10〜25mmがさらに好ましい。   In the embodiment shown in FIG. 1A, when the container contains a non-regenerative ion exchange resin, the layer height is preferably 30 to 1000 mm, more preferably 50 to 1000 mm. In the embodiment shown in FIG. 1A, when the monolithic organic porous ion exchanger is contained in the container, the layer height is preferably 5 to 100 mm, more preferably 10 to 50 mm, and further preferably 10 to 25 mm. .

本発明の処理槽1において、非再生型イオン交換樹脂としては、非再生型混床イオン交換樹脂が好ましく、例えば、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混合物や、強塩基性陰イオン交換樹脂の単床層を入口側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床層を出口側に設けて複層化したもの等を挙げることができる。   In the treatment tank 1 of the present invention, the non-regenerative ion exchange resin is preferably a non-regenerative mixed bed ion exchange resin. For example, a mixture of a strongly acidic cation exchange resin and a strongly basic anion exchange resin, Examples include a single bed layer of a basic anion exchange resin provided on the inlet side, and a mixed bed layer of a strongly acidic cation exchange resin and a strongly basic anion exchange resin provided on the outlet side to form a multilayer. .

本発明の処理槽1において、モノリス状有機多孔質イオン交換体としては、モノリス状有機多孔質アニオン交換体を含むものが好ましく、モノリス状有機多孔質アニオン交換体のみからなるものや、モノリス状有機多孔質アニオン交換体とモノリス状有機多孔質カチオン交換体とを含むものを挙げることができる。モノリス状有機多孔質アニオン交換体とモノリス状有機多孔質カチオン交換体とを含むものとしては、板状のモノリス状有機多孔質アニオン交換体と板状のモノリス状有機多孔質カチオン交換体とを接合したものを挙げることができる。   In the treatment tank 1 of the present invention, the monolithic organic porous ion exchanger preferably includes a monolithic organic porous anion exchanger, and is composed of only a monolithic organic porous anion exchanger or a monolithic organic anion exchanger. The thing containing a porous anion exchanger and a monolithic organic porous cation exchanger can be mentioned. A plate-like monolithic organic porous anion exchanger and a plate-like monolithic organic porous cation exchanger are joined as a monolithic organic porous anion exchanger and a monolithic organic porous cation exchanger. Can be mentioned.

モノリス状有機多孔質アニオン交換体としては、後述する白金族金属担持触媒の担体として用いられるものと同様のものを挙げることができる。   Examples of the monolithic organic porous anion exchanger include those similar to those used as a support for a platinum group metal-supported catalyst described later.

また、モノリス状有機多孔質カチオン交換体としては、後述する第1のモノリスアニオン交換体〜第4のモノリスアニオン交換体において、基材として用いたモノリスにカチオン交換基を導入したものを挙げることができる。モノリスに導入されるカチオン交換基としては、カルボン酸基、イミノジ酢酸基、スルホン酸ン基、リン酸基、リン酸エステル基等を挙げることができる。   Examples of the monolithic organic porous cation exchanger include those obtained by introducing a cation exchange group into the monolith used as the base material in the first to fourth monolith anion exchangers described later. it can. Examples of the cation exchange group introduced into the monolith include a carboxylic acid group, an iminodiacetic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphoric acid ester group.

モノリスに対してカチオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、スルホン酸基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であれば、クロロ硫酸や濃硫酸、発煙硫酸を用いてスルホン化する方法や、モノリスにラジカル開始基や連鎖移動基を導入しスチレンスルホン酸ナトリウムやアクリルアミド−2−メチルプロパンスルホン酸をグラフト重合する方法や、同様にグリシジルメタクリレートをグラフト重合した後、官能基変換によりスルホン酸基を導入する方法等が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing a cation exchange group with respect to monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a sulfonic acid group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of sulfonation using chlorosulfuric acid, concentrated sulfuric acid or fuming sulfuric acid, Examples include a method of introducing a mobile group and graft polymerization of sodium styrenesulfonate or acrylamide-2-methylpropanesulfonic acid, and a method of introducing a sulfonic acid group by functional group conversion after graft polymerization of glycidyl methacrylate in the same manner. .

本発明の処理槽1は、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体が同一容器に収納されてなるものであることから、後述する超純水の製造装置やオゾン溶解水の製造装置において、装置構成を単純化し、設置面積を低減することができる。特に処理槽をカートリッジ状にした場合、処理槽が寿命に達した場合であっても、通常ハウジング中に収納されるカートリッジ状の処理槽を配管等を外すことなく容易に交換することができるので、メンテナンスの手間を低減することができる。また、白金族金属担持触媒から白金族金属等が万一溶出した場合であっても、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体により吸着除去することができる。   The treatment tank 1 of the present invention comprises a platinum group metal supported catalyst and a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger housed in the same container. In the manufacturing apparatus and the ozone dissolved water manufacturing apparatus, the apparatus configuration can be simplified and the installation area can be reduced. Especially when the treatment tank is made into a cartridge shape, even if the treatment tank reaches the end of its life, the cartridge-like treatment tank normally stored in the housing can be easily replaced without disconnecting the piping. Maintenance work can be reduced. Even if platinum group metal or the like is eluted from the platinum group metal supported catalyst, it can be adsorbed and removed by a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger.

本発明の処理槽1を作製する方法としては、特に制限されず、例えば、所望の内部空間形状を有するカートリッジ等の容器に対して、公知の方法により、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とを充填する方法を挙げることができる。   The method for producing the treatment tank 1 of the present invention is not particularly limited. For example, a platinum group metal-supported catalyst and a non-regenerative type can be obtained by a known method on a container such as a cartridge having a desired internal space shape. Examples thereof include a method of filling an ion exchange resin or a monolithic organic porous ion exchanger.

本発明の処理槽2は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とするものである。   The treatment tank 2 of the present invention comprises a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger, The membrane is arranged in the same container so as to come into contact with the water to be treated in this order.

本発明の処理槽2は、容器内に分離膜を含むことを除けば本発明の処理槽1と同様のものであり、白金族金属担持触媒や、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体の具体例や充填時の層高も同様であることが好ましい。   The treatment tank 2 of the present invention is the same as the treatment tank 1 of the present invention except that a separation membrane is included in the container, and a platinum group metal-supported catalyst, a non-regenerative ion exchange resin, or a monolithic organic porous material. It is preferable that the specific examples of the solid ion exchanger and the layer height at the time of filling are the same.

また、本発明の処理槽2において、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜との、容器内における配置形態は、被処理水に対してこの順番で接触するように配置されてなるものであれば、特に制限されず、例えば、図1(d)および図1(e)に示す形態を挙げることができる。   Moreover, in the treatment tank 2 of the present invention, the arrangement form of the platinum group metal-supported catalyst, the non-regenerative ion exchange resin or monolithic organic porous ion exchanger, and the separation membrane in the vessel is treated water. If it arrange | positions so that it may contact with this order with respect to this, it will not restrict | limit in particular, For example, the form shown to FIG.1 (d) and FIG.1 (e) can be mentioned.

図1(d)は、図の下から導入した被処理水を上方向に通水する通水用の入口と出口を有するカートリッジ状の概略円筒容器において、容器の下部に白金族金属担持触媒αを充填し、その上部に非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βを充填し、さらにその上部に分離膜γを充填することにより、容器中に、白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βと、分離膜γとを積層充填した配置形態を示すものである。   FIG. 1 (d) shows a platinum group metal-supported catalyst α at the lower part of a cartridge-like substantially cylindrical container having an inlet and an outlet for passing water to be treated introduced upward from the bottom of the figure. Is filled with a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger β, and further filled with a separation membrane γ, whereby a platinum group metal supported catalyst α is filled in the container. And a non-regenerative ion exchange resin or monolithic organic porous ion exchanger β and a separation membrane γ are stacked and filled.

また、図1(e)は、外周部と中心部に区画されるとともに、外周部が上下2層に区画された内部構造を有する円筒容器であって、上記外周部下部に被処理水を導入する下部入口が設けられ、内部に導入した被処理水を一端外周部の上部まで通水した後、容器中心部の上部から下部方向に通水する導管を有する容器において、上記容器の外周部には、被処理水の流れ方向に白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βとをそれぞれ上下に積層充填し、上記容器の中央部には分離膜γを充填することにより、容器中に、白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βと、分離膜γとを充填した配置形態を示すものである。   FIG. 1 (e) shows a cylindrical container having an internal structure that is divided into an outer peripheral portion and a central portion, and the outer peripheral portion is divided into two layers, upper and lower, and water to be treated is introduced into the lower portion of the outer peripheral portion. A container having a conduit for passing water to be treated introduced into the upper part of the outer peripheral part of one end and then passing from the upper part of the central part of the container toward the lower part. Is packed with a platinum group metal-supported catalyst α and a non-regenerative ion exchange resin or monolithic organic porous ion exchanger β in the upper and lower directions in the flow direction of the water to be treated, and separated in the center of the container. An arrangement in which a container is filled with a platinum group metal-supported catalyst α, a non-regenerative ion exchange resin or monolithic organic porous ion exchanger β, and a separation membrane γ by filling the membrane γ It is.

本発明の処理槽2において、分離膜としては、精密濾過膜や限外濾過膜を挙げることができる。精密濾過膜には、孔径0.05〜1μm程度の細孔を有する有機膜が好ましく、限外濾過膜には、分画分子量3,000 〜10,000程度の細孔を有するポリスルホン膜、酢酸セルロース膜等を用いることが好ましい。精密濾過膜及び限外濾過膜の全体形状(モジュール形状)としては、ホローファイバー形、スパイラル形、チューブラー形及び平膜形等を挙げることができる。   In the treatment tank 2 of the present invention, examples of the separation membrane include a microfiltration membrane and an ultrafiltration membrane. The microfiltration membrane is preferably an organic membrane having pores with a pore diameter of about 0.05 to 1 μm, and the ultrafiltration membrane is a polysulfone membrane having pores with a fractional molecular weight of about 3,000 to 10,000, acetic acid It is preferable to use a cellulose membrane or the like. Examples of the overall shape (module shape) of the microfiltration membrane and the ultrafiltration membrane include a hollow fiber shape, a spiral shape, a tubular shape, and a flat membrane shape.

本発明の処理槽2は、本発明の処理槽1の後段部に分離膜をさらに設けることにより、上記処理槽1で得られる効果に加え、白金族金属担持触媒や非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体から白金族金属や微粒子が万一溶出した場合であっても、一層容易にろ過分離することができるという効果を発揮する。   The treatment tank 2 of the present invention is provided with a separation membrane at the rear stage of the treatment tank 1 of the present invention, so that in addition to the effects obtained in the treatment tank 1, a platinum group metal supported catalyst, a non-regenerative ion exchange resin or Even when platinum group metals and fine particles are eluted from the monolithic organic porous ion exchanger, the effect of being able to be separated and separated more easily is exhibited.

本発明の処理槽2を作製する方法としては、特に制限されず、例えば、所望の内部空間形状を有するカートリッジ等の容器に対して、公知の方法により、白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜を充填する方法を挙げることができる。   The method for producing the treatment tank 2 of the present invention is not particularly limited. For example, a platinum group metal supported catalyst and a non-regenerative type can be obtained by a known method on a container such as a cartridge having a desired internal space shape. Examples thereof include an ion exchange resin or a monolithic organic porous ion exchanger and a method of filling a separation membrane.

本発明の処理槽3は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とするものである。   In the treatment tank 3 of the present invention, a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a separation membrane are in contact with water to be treated in this order. It is arranged in the same container.

本発明の処理槽3は、非再生型イオン交換樹脂やモノリス状有機多孔質イオン交換体を含まないことを除けば本発明の処理槽2と同様のものであり、白金族金属担持触媒や、分離膜の具体例や、充填時の層高等も同様であることが好ましい。   The treatment tank 3 of the present invention is the same as the treatment tank 2 of the present invention except that it does not contain a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger, a platinum group metal supported catalyst, It is preferable that the specific examples of the separation membrane and the layer height at the time of filling are the same.

また、本発明の処理槽3において、白金族金属担持触媒と、分離膜との、容器内における配置形態は、被処理水に対してこの順番で接触するように配置されてなるものであれば、特に制限されず、例えば、図1(f)に示す形態を挙げることができる。   Further, in the treatment tank 3 of the present invention, the arrangement form of the platinum group metal supported catalyst and the separation membrane in the container may be arranged so as to come into contact with the water to be treated in this order. There is no particular limitation, and for example, the form shown in FIG.

図1(f)は、図の下から導入した被処理水を上方向に通水する通水用の入口と出口を有するカートリッジ状の概略円筒容器において、容器の下部に白金族金属担持触媒αを充填し、その上部に分離膜γを充填することにより、容器中に、白金族金属担持触媒αと、分離膜γとを積層充填した配置形態を示すものである。   FIG. 1 (f) shows a platinum group metal-supported catalyst α at the lower part of a cartridge-like substantially cylindrical container having an inlet and an outlet for passing water to be treated introduced upward from the bottom of the figure. And a separation membrane γ is filled in the upper portion of the container, whereby a platinum group metal supported catalyst α and a separation membrane γ are stacked and filled in a container.

本発明の処理槽3は、同一容器内に白金族金属担持触媒と分離膜とを設けることにより、本発明の処理槽1と同様の効果を得ることができるとともに、白金族金属担持触媒から白金族金属や微粒子が万一溶出した場合であっても、一層容易にろ過分離することができる。   The treatment tank 3 of the present invention can obtain the same effect as the treatment tank 1 of the present invention by providing a platinum group metal-supported catalyst and a separation membrane in the same container. Even when a group metal or fine particles are eluted, it can be separated by filtration more easily.

本発明の処理槽3を作製する方法としては、特に制限されず、例えば、所望の内部空間形状を有するカートリッジ等の容器に対して、公知の方法により、白金族金属担持触媒と、分離膜を充填する方法を挙げることができる。   The method for producing the treatment tank 3 of the present invention is not particularly limited. For example, a platinum group metal-supported catalyst and a separation membrane are formed on a container such as a cartridge having a desired internal space shape by a known method. A filling method can be mentioned.

本発明の処理槽1、処理槽2および処理槽3は、過酸化水素の分解処理を行う処理槽等として好適に使用することができる。   The treatment tank 1, the treatment tank 2 and the treatment tank 3 of the present invention can be suitably used as a treatment tank for performing a decomposition treatment of hydrogen peroxide.

<超純水の製造方法>
次に、本発明の超純水の製造方法について説明する。
<Method for producing ultrapure water>
Next, the manufacturing method of the ultrapure water of this invention is demonstrated.

本発明の超純水の製造方法は、被処理水に対し、紫外線酸化処理と、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と接触させる過酸化水素分解処理と、非再生型イオン交換樹脂と接触させるイオン交換処理と、分離膜によるろ過処理とを、この順番に施すことを特徴とするものである。   The method for producing ultrapure water according to the present invention comprises hydrogen peroxide that is subjected to ultraviolet oxidation treatment to a water to be treated and a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger. A decomposition treatment, an ion exchange treatment to be brought into contact with a non-regenerative ion exchange resin, and a filtration treatment with a separation membrane are performed in this order.

本発明の超純水の製造方法は、例えば、図2(a)または図2(b)に示す超純水の製造装置1により実施することができる。   The method for producing ultrapure water of the present invention can be carried out, for example, by the ultrapure water production apparatus 1 shown in FIG. 2 (a) or 2 (b).

すなわち、図2(a)および図2(b)に示す超純水の製造装置においては、先ず、原水を前処理システム2に通水することによって、原水中の懸濁物質やコロイド物質を除去し、次いで、得られた前処理水を、図示していない濾過水槽を経て一次純水システム3に供給し、例えば、水中の不純物イオンの除去を行う脱塩装置、水中の無機イオン、有機物、微粒子等の除去を行う逆浸透膜装置、水中の溶存酸素等の溶存ガスの除去を行う真空脱気装置、残存するイオン等を除去して高純度の純水を製造する再生型混床式脱塩装置に順次通水して、イオン成分、有機物成分および溶存酸素等の除去を行って、一次純水を得る。   That is, in the apparatus for producing ultrapure water shown in FIGS. 2 (a) and 2 (b), first, the raw water is passed through the pretreatment system 2 to remove suspended substances and colloidal substances in the raw water. Then, the obtained pretreated water is supplied to the primary pure water system 3 through a filtered water tank (not shown), for example, a desalting apparatus for removing impurity ions in water, inorganic ions in water, organic substances, Reverse osmosis membrane device that removes fine particles, vacuum deaeration device that removes dissolved gas such as dissolved oxygen in water, regenerative mixed bed type dewatering that produces high purity pure water by removing remaining ions Water is sequentially passed through the salt device to remove ionic components, organic components, dissolved oxygen, and the like to obtain primary pure water.

図2(a)および図2(b)に示すように、得られた一次純水は、サブシステム4を構成する純水貯槽に貯蔵された後、紫外線酸化装置、過酸化水素分解処理水製造装置、非再生型イオン交換装置、膜分離装置において、順次、紫外線酸化処理、白金族金属担持触媒と接触させる過酸化水素分解処理、非再生型イオン交換樹脂と接触させるイオン交換処理、分離膜によるろ過処理が行われ、超純水5が得られる。得られた超純水の残余分は、循環ライン6により純水貯槽に循環される。   As shown in FIGS. 2 (a) and 2 (b), the obtained primary pure water is stored in a pure water storage tank constituting the subsystem 4, and thereafter, an ultraviolet oxidation apparatus, hydrogen peroxide decomposition treated water production In apparatus, non-regenerative ion exchange device, and membrane separation device, in order, ultraviolet oxidation treatment, hydrogen peroxide decomposition treatment in contact with platinum group metal supported catalyst, ion exchange treatment in contact with non-regenerative ion exchange resin, and separation membrane Filtration is performed, and ultrapure water 5 is obtained. The obtained ultrapure water residue is circulated through the circulation line 6 to the pure water storage tank.

本発明の超純水の製造方法において、紫外線酸化処理する紫外線酸化装置としては、被処理水中の有機物を分解可能なものであれば特に制限されないが、被処理水に少なくとも185nm付近の波長を照射可能な紫外線ランプを備えたものが好ましい。紫外線酸化装置は、185nm付近の波長の紫外線に加えて、それより有機物分解能力が低い254nm付近の波長の紫外線も照射可能な装置であることがより好ましい。なお、254nm付近の波長は照射するが、185nm付近の波長はほとんど照射しない紫外線照射装置もあるが、これは主に殺菌目的に用いられ、一般に紫外線殺菌装置といわれており、上述した紫外線酸化装置とは区別して用いられている。本発明においては、185nm付近の波長及び254nm付近の波長を有する紫外線を共に強く照射できる紫外線酸化装置を用いることが、有機物を良好に分解できるため好ましい。また、紫外線酸化装置に用いる紫外線ランプとしては、特に制限されないが、低圧水銀ランプが好ましい。また、紫外線酸化装置としては、流通型及び浸漬型等が挙げられ、このうち、流通型が処理効率の点からも好ましい。   In the method for producing ultrapure water of the present invention, the ultraviolet oxidation apparatus for performing the ultraviolet oxidation treatment is not particularly limited as long as it can decompose organic substances in the water to be treated, but the water to be treated is irradiated with a wavelength of at least about 185 nm. Those equipped with possible ultraviolet lamps are preferred. The ultraviolet oxidation apparatus is more preferably an apparatus that can irradiate ultraviolet rays having a wavelength of around 254 nm, which has a lower ability to decompose organic substances, in addition to ultraviolet rays having a wavelength of around 185 nm. There is an ultraviolet irradiation apparatus that irradiates a wavelength near 254 nm but hardly irradiates a wavelength near 185 nm. This ultraviolet irradiation apparatus is mainly used for sterilization purposes and is generally called an ultraviolet sterilization apparatus. It is used in distinction. In the present invention, it is preferable to use an ultraviolet oxidizer that can strongly irradiate ultraviolet rays having a wavelength of around 185 nm and a wavelength of around 254 nm because organic substances can be decomposed satisfactorily. The ultraviolet lamp used in the ultraviolet oxidation apparatus is not particularly limited, but a low-pressure mercury lamp is preferable. In addition, examples of the ultraviolet oxidation apparatus include a distribution type and an immersion type, and among these, the distribution type is preferable from the viewpoint of processing efficiency.

本発明の超純水の製造方法において、過酸化水素分解処理を行う過酸化水素分解装置は、本発明の過酸化水素分解処理水の製造装置であることが好ましい。本発明の過酸化水素分解処理水の製造装置や該装置に対する通水条件等は、上述したとおりである。   In the method for producing ultrapure water of the present invention, the hydrogen peroxide decomposing apparatus that performs the hydrogen peroxide decomposing treatment is preferably the apparatus for producing hydrogen peroxide decomposing water of the present invention. The production apparatus for hydrogen peroxide-decomposed water of the present invention, the water flow conditions for the apparatus, and the like are as described above.

本発明の超純水の製造方法において、非再生型イオン交換樹脂と接触させるイオン交換処理に用いられる非再生型イオン交換装置(カートリッジポリッシャー)としては、非再生型混床イオン交換樹脂が好ましく、例えば、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床によるイオン交換装置(混床1塔式イオン交換装置)や、強塩基性陰イオン交換樹脂の単床層を入口側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床層を出口側に設けた複層式イオン交換装置(複層1塔式)、及び強塩基性陰イオン交換樹脂の単床による樹脂塔を前段側、強酸性陽イオン交換樹脂と強塩基性陰イオン交換樹脂との混床による樹脂塔を後段側に設けたイオン交換装置(2塔式)を挙げることができる。   In the method for producing ultrapure water of the present invention, as the non-regenerative ion exchange apparatus (cartridge polisher) used for the ion exchange treatment to be brought into contact with the non-regenerative ion exchange resin, a non-regenerative mixed bed ion exchange resin is preferable. For example, an ion exchange device (mixed-bed single-column ion exchange device) using a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin or a single bed layer of a strongly basic anion exchange resin on the inlet side , A multi-layer type ion exchange device (multi-layer single tower type) provided with a mixed bed layer of strong acidic cation exchange resin and strong basic anion exchange resin on the outlet side; There may be mentioned an ion exchange apparatus (two-column type) in which a resin tower with a bed is provided on the front stage side, and a resin tower with a mixed bed of a strongly acidic cation exchange resin and a strongly basic anion exchange resin is provided on the rear stage side.

これらのイオン交換装置のうち、混床1塔式イオン交換装置を用いた場合には、混床層内のいずれの位置においても水のpHの変化がないため、効率の良いイオン交換を行うことができる。   Among these ion exchange devices, when a mixed-bed single-column ion exchange device is used, since there is no change in the pH of water at any position in the mixed bed layer, efficient ion exchange is performed. Can do.

本発明の超純水の製造方法において、分離膜によるろ過処理を行う膜分離装置としては、精密濾過膜装置、限外濾過膜装置等の膜処理装置が挙げられる。精密濾過膜には、孔径0.05〜1μm程度の細孔を有する有機膜を用いることが好ましい。また、限外濾過膜には、分画分子量3,000 〜10,000程度の細孔を有するポリスルホン膜、酢酸セルロース膜等を用いることができる。精密濾過膜装置及び限外濾過膜装置におけるモジュール形状としては、ホローファイバー形、スパイラル形、チューブラー形及び平膜形等を使用できる。   In the method for producing ultrapure water of the present invention, examples of the membrane separation apparatus that performs filtration treatment with a separation membrane include membrane treatment apparatuses such as a microfiltration membrane apparatus and an ultrafiltration membrane apparatus. As the microfiltration membrane, it is preferable to use an organic membrane having pores having a pore diameter of about 0.05 to 1 μm. As the ultrafiltration membrane, a polysulfone membrane having a fractional molecular weight of about 3,000 to 10,000, a cellulose acetate membrane, or the like can be used. As a module shape in the microfiltration membrane device and the ultrafiltration membrane device, a hollow fiber shape, a spiral shape, a tubular shape, a flat membrane shape, or the like can be used.

本発明の超純水の製造方法においては、脱気処理を行ってもよく、脱気処理は、非再生型イオン交換装置の前工程または後工程として、行うことが好ましい。脱気処理は、脱気装置により行うことが好ましい。図2(a)および図2(b)に示すように、脱気装置としては、膜式脱気装置が好ましく、この膜式脱気装置は、気体分離膜で仕切られた一方の室に被処理水を流すとともに、他方の室を減圧することにより、被処理水中に含まれるガスを気体分離膜を通して他方の室に移行させて除去する装置である。気体分離膜としては、通常、テトラフルオロエチレン系、シリコーンゴム系等の疎水性の高分子膜を中空糸膜状等の適宜形状に形成したものが使用される。脱気装置として真空脱気塔や加熱脱気装置等の脱ガス装置を用いてもよいが、これらの装置を用いた場合には、装置が大型化してしまうため、膜式脱気装置を用いることが好ましい。   In the method for producing ultrapure water of the present invention, deaeration treatment may be performed, and the deaeration treatment is preferably performed as a pre-process or a post-process of the non-regenerative ion exchange apparatus. The deaeration treatment is preferably performed by a deaeration device. As shown in FIGS. 2 (a) and 2 (b), the deaeration device is preferably a membrane deaeration device, and this membrane deaeration device is placed in one chamber partitioned by a gas separation membrane. This is a device that removes the gas contained in the water to be treated by moving it into the other chamber through the gas separation membrane by flowing the treated water and depressurizing the other chamber. As the gas separation membrane, a membrane in which a hydrophobic polymer membrane such as tetrafluoroethylene or silicone rubber is formed into an appropriate shape such as a hollow fiber membrane is usually used. A degassing device such as a vacuum degassing tower or a heating degassing device may be used as the degassing device. However, when these devices are used, the size of the device is increased, so a membrane degassing device is used. It is preferable.

本発明の超純水の製造方法において、通水速度は、少なくとも過酸化水素分解処理時において、SV2000h−1〜20000h−1であることが好ましく、SV5000h−1〜10000h−1であることがより好ましい。本発明の超純水の製造方法は、被処理水中の過酸化水素をモノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いて分解するものであることから、SVが2000h−1を超えるような大きなSVで被処理水を通水しても、過酸化水素の分解除去が可能となり、更に、SVが10000h−1程度であっても、上記白金族金属担持触媒を用いることにより、過酸化水素の分解が可能となる。なお、本発明で用いる白金族金属担持触媒は、過酸化水素分解能力が著しく高いため、あえて通水速度をSV2000h−1未満とする必要はないが、通水速度をSV2000h−1未満としてもよく、通水速度をSV2000h−1未満とした場合も、優れた過酸化水素分解性を発揮する。一方、SVが20000h−1を超えると、通水差圧が大きくなり過ぎる傾向にある。 In the method for manufacturing ultra-pure water of the present invention, water flow rate, during at least the hydrogen peroxide decomposition treatment is preferably SV2000h -1 ~20000h -1, more to be SV5000h -1 ~10000h -1 preferable. The method for producing ultrapure water of the present invention is to decompose hydrogen peroxide in water to be treated using a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger. From the above, even if water to be treated is passed through with a large SV such that SV exceeds 2000h −1 , hydrogen peroxide can be decomposed and removed, and even if SV is about 10,000 h −1 , the platinum group By using a metal-supported catalyst, hydrogen peroxide can be decomposed. Incidentally, platinum group metal supported catalyst used in the present invention has high markedly hydrogen peroxide decomposition ability, dares need not be a water flow rate of less than SV2000h -1, may be a water flow rate of less than SV2000h -1 Even when the water flow rate is less than SV2000h- 1 , excellent hydrogen peroxide decomposability is exhibited. On the other hand, when SV exceeds 20000 h −1 , the water flow differential pressure tends to be too large.

本発明の超純水の製造方法において、被処理水に対して、過酸化水素分解処理以外の処理を施す際の通水速度等の処理条件は、従来公知の条件であってよく、例えば、非再生型イオン交換樹脂と接触させるイオン交換処理を、非再生型混床イオン交換装置により行う場合の通水速度は、SV30〜100h−1程度であることが好ましい。 In the method for producing ultrapure water of the present invention, treatment conditions such as a water flow rate when performing treatment other than hydrogen peroxide decomposition treatment on the water to be treated may be conventionally known conditions, for example, The water flow rate when the ion exchange treatment to be brought into contact with the non-regenerative ion exchange resin is performed by a non-regenerative mixed bed ion exchange apparatus is preferably about SV30 to 100 h- 1 .

このように、本発明の超純水の製造方法においては、過酸化水素の分解処理触媒としてモノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いていることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明の超純水の製造方法においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、超純水を製造することができる。   Thus, in the method for producing ultrapure water of the present invention, a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger is used as a hydrogen peroxide decomposition treatment catalyst. For this reason, the contact efficiency with the water to be treated can be remarkably increased in the decomposition treatment of hydrogen peroxide as compared with the case where a normal particulate anion exchange resin is used. In the method for producing ultrapure water according to the present invention, since the platinum group metal-supported catalyst is used as the hydrogen peroxide decomposition treatment catalyst, the hydrogen peroxide decomposition ability can be remarkably increased, and the catalyst packed bed Even if the height is reduced, ultrapure water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

<超純水の製造装置>
次に、本発明の超純水の製造装置について説明する。
<Ultrapure water production equipment>
Next, the apparatus for producing ultrapure water of the present invention will be described.

本発明の超純水の製造装置1は、紫外線酸化装置と、本発明の過酸化水素分解処理水の製造装置と、非再生型イオン交換樹脂を含む非再生型イオン交換装置と、膜分離装置とを、この順番に通水するように設置したことを特徴とするものである。   The ultrapure water production apparatus 1 of the present invention includes an ultraviolet oxidation apparatus, a hydrogen peroxide decomposition treated water production apparatus of the present invention, a non-regenerative ion exchange apparatus including a non-regenerative ion exchange resin, and a membrane separation apparatus. Are installed so as to pass water in this order.

本発明の超純水の製造装置1の好ましい態様や通水速度等の処理条件は、上記本発明の超純水の製造方法の説明で述べた内容と同様である。   The preferred embodiments of the ultrapure water production apparatus 1 of the present invention and the processing conditions such as the water flow rate are the same as those described in the description of the method for producing ultrapure water of the present invention.

本発明の超純水の製造装置1は、本発明の超純水の製造方法の発明を実施する際に好適に用いることができる。   The ultrapure water production apparatus 1 of the present invention can be suitably used when carrying out the invention of the ultrapure water production method of the present invention.

本発明の超純水の製造装置1においては、本発明の過酸化水素分解処理水の製造装置を用い、該装置において、過酸化水素の分解処理触媒としてモノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用いていることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明の超純水の製造装置1においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、超純水を製造することができる。   In the ultrapure water production apparatus 1 of the present invention, the hydrogen peroxide decomposition treated water production apparatus of the present invention is used. In this apparatus, platinum is used as a monolithic organic porous anion exchanger as a hydrogen peroxide decomposition treatment catalyst. Since the platinum group metal supported catalyst on which the group metal is supported is used, the contact efficiency with the water to be treated can be improved in the decomposition treatment of hydrogen peroxide compared with the case of using a normal particulate anion exchange resin. It can be significantly improved. In the ultrapure water production apparatus 1 of the present invention, since the platinum group metal-supported catalyst is used as the hydrogen peroxide decomposition treatment catalyst, the hydrogen peroxide decomposition ability can be remarkably increased, and the catalyst filling Even if the bed height is reduced, ultrapure water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

本発明の超純水の製造装置2は、紫外線酸化装置と、本発明の処理槽1と、膜分離装置とを、この順番に通水するように設置したことを特徴とするものであり、本発明の超純水の製造装置3は、紫外線酸化装置と、本発明の処理槽2または本発明の処理槽3とを、この順番に通水するように設置したことを特徴とするものである。   The ultrapure water production apparatus 2 of the present invention is characterized in that the ultraviolet oxidation apparatus, the treatment tank 1 of the present invention, and the membrane separation apparatus are installed so as to pass water in this order, The apparatus for producing ultrapure water 3 of the present invention is characterized in that the ultraviolet oxidation apparatus and the treatment tank 2 of the present invention or the treatment tank 3 of the present invention are installed so as to pass water in this order. is there.

本発明の超純水の製造装置2は、本発明の超純水の製造装置1において、過酸化水素分解処理水の製造装置および非再生型イオン交換装置に代えて本発明の処理槽1を設けた点が異なっており、本発明の超純水の製造装置3は、本発明の超純水の製造装置1において、過酸化水素分解処理水の製造装置、非再生型イオン交換装置および膜分離装置に代えて本発明の処理槽2または本発明の処理槽3を設けた点が異なっているが、上記以外の装置構成や通水速度等の使用条件は、本発明の超純水の製造装置1と同様である。   The ultrapure water production apparatus 2 of the present invention is the same as the ultrapure water production apparatus 1 of the present invention except that the hydrogen peroxide decomposition treated water production apparatus and the non-regenerative ion exchange apparatus are replaced with the treatment tank 1 of the present invention. The ultrapure water production apparatus 3 of the present invention is different from the ultrapure water production apparatus 1 of the present invention in that the hydrogen peroxide decomposition treated water production apparatus, non-regenerative ion exchange apparatus, and membrane The difference is that the treatment tank 2 of the present invention or the treatment tank 3 of the present invention is provided in place of the separation device, but the use conditions such as the apparatus configuration and water flow rate other than the above are the ultrapure water of the present invention. This is the same as the manufacturing apparatus 1.

本発明の超純水の製造装置2や本発明の超純水の製造装置3は、本発明の超純水の製造装置1で得られる効果に加え、白金族金属担持触媒や、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体や、分離膜が同一容器に収納されてなる本発明の処理槽1や処理槽2や処理槽3を用いるものであることから、超純水の製造装置の装置構成を単純化し、設置面積を低減することができるとともに、特に処理槽がカートリッジ状である場合には処理槽の交換処理を容易に行うことができるという効果を発揮する。また、白金族金属担持触媒等から万一白金族金属や微粒子が溶出した場合であっても、一層容易にろ過分離することができるという効果を発揮する。   The ultrapure water production apparatus 2 of the present invention and the ultrapure water production apparatus 3 of the present invention, in addition to the effects obtained by the ultrapure water production apparatus 1 of the present invention, include a platinum group metal supported catalyst, a non-regenerative type Since the treatment tank 1, treatment tank 2 or treatment tank 3 of the present invention in which the ion exchange resin or the monolithic organic porous ion exchanger or the separation membrane is housed in the same container is used, ultrapure water is used. The apparatus configuration of the manufacturing apparatus can be simplified, the installation area can be reduced, and particularly when the processing tank is in the form of a cartridge, the processing tank can be easily replaced. In addition, even if platinum group metal or fine particles are eluted from the platinum group metal supported catalyst or the like, it is possible to perform filtration and separation more easily.

<水素溶解水の製造方法>
次に、本発明の水素溶解水の製造方法について説明する。
<Method for producing hydrogen-dissolved water>
Next, the method for producing hydrogen-dissolved water of the present invention will be described.

本発明の水素溶解水の製造方法は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させる工程の前工程または後工程として、被処理水に対する水素溶解工程を含むことを特徴とするものである。   The method for producing hydrogen-dissolved water of the present invention comprises a step of contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water, and the platinum group metal. As a pre-process or a post-process of the step of bringing the supported catalyst and hydrogen peroxide-containing water into contact with each other, a hydrogen dissolution step for water to be treated is included.

本発明の水素溶解水の製造方法における、白金族金属担持触媒と過酸化水素含有水とを接触させる工程において、過酸化水素含有水や、白金族金属と過酸化水素含有水との接触方法や、通水時におけるSV等の接触条件等や、得られる過酸化水素分解処理水としては、上記本発明の過酸化水素分解処理水の製造方法の説明で述べた内容と同様である。   In the step of bringing the platinum group metal-supported catalyst into contact with the hydrogen peroxide-containing water in the method for producing hydrogen-dissolved water of the present invention, the hydrogen peroxide-containing water, the contact method between the platinum group metal and the hydrogen peroxide-containing water, The contact conditions such as SV during water flow and the hydrogen peroxide decomposition treated water obtained are the same as those described in the description of the method for producing hydrogen peroxide decomposition treated water of the present invention.

本発明の水素溶解水の製造方法において、水素溶解工程は、白金族金属担持触媒と過酸化水素含有水とを接触させる工程の前工程または後工程として施される。水素溶解工程は、図2(a)あるいは図2(b)に示すような超純水の製造装置を用いた超純水の製造工程を経た上で、所望の水素溶解装置により施されることが好ましいが、水素溶解工程は、一次純水や、それ以下の水質の水に施してもよいし、薬品添加した超純水に施してもよい。   In the method for producing hydrogen-dissolved water of the present invention, the hydrogen-dissolving step is performed as a pre-step or a post-step of the step of bringing the platinum group metal supported catalyst into contact with the hydrogen peroxide-containing water. The hydrogen dissolving step is performed by a desired hydrogen dissolving device after passing through a manufacturing step of ultra pure water using an ultra pure water manufacturing device as shown in FIG. 2 (a) or FIG. 2 (b). However, the hydrogen dissolution step may be performed on primary pure water or water of lower quality, or may be performed on ultrapure water added with chemicals.

水素溶解工程を施す際に用いられる水素溶解処理装置としては、例えば、図3(a)に示すように、被処理水の処理ライン8に図示しないガス透過膜を設け、該ガス透過膜を通して水素供給源10から配管11を通じて水素を供給し溶解する構造を有する水素溶解処理装置7が好適に用いられる。かかる構造を有する水素溶解処理装置7としては、上記ガス透過膜が中空糸膜からなるものが好ましく、特に該中空糸膜を多数並設してモジュール化したものが好ましい。また、水素溶解処理装置としては、被処理水中に水素ガスをバブリングして溶解させる装置、被処理水中にエジェクターを解して水素ガスを溶解させる装置、被処理水を供給するポンプの上流側に水素ガスを供給し、ポンプ内の攪拌によって溶解させる装置を挙げることができ、これ等の装置によって水素を溶解してもよい。   As a hydrogen dissolution treatment apparatus used when performing the hydrogen dissolution step, for example, as shown in FIG. 3A, a gas permeable film (not shown) is provided in the treatment line 8 of the water to be treated, and hydrogen is passed through the gas permeable film. A hydrogen dissolution treatment apparatus 7 having a structure in which hydrogen is supplied from the supply source 10 through the pipe 11 and dissolved is suitably used. As the hydrogen dissolution treatment apparatus 7 having such a structure, the gas permeable membrane is preferably made of a hollow fiber membrane, and a device in which a large number of the hollow fiber membranes are arranged in parallel is particularly preferred. In addition, as a hydrogen dissolution treatment apparatus, an apparatus for bubbling and dissolving hydrogen gas in the water to be treated, an apparatus for dissolving the hydrogen gas by dissolving the ejector in the water to be treated, and an upstream side of a pump for supplying the water to be treated An apparatus for supplying hydrogen gas and dissolving it by stirring in the pump can be given, and hydrogen may be dissolved by these apparatuses.

水素供給源10としては、水の電解装置、水素ガスボンベ等が挙げられる。水の電解装置を用いる場合、電解装置に超純水を供給し、電解装置内で電気分解して、電解装置の陰極室で発生した高純度水素ガスを配管11を通して水素溶解処理装置内に導くことが好ましい。   Examples of the hydrogen supply source 10 include a water electrolysis device and a hydrogen gas cylinder. When a water electrolyzer is used, ultrapure water is supplied to the electrolyzer, electrolyzed in the electrolyzer, and high-purity hydrogen gas generated in the cathode chamber of the electrolyzer is introduced into the hydrogen dissolution treatment apparatus through the pipe 11. It is preferable.

本発明の水素溶解水の製造方法においては、被処理体表面を酸化させる過酸化水素を白金族金属担持触媒により分解し、さらに処理水の酸化還元電位を還元電位側にして、洗浄液として使用したときに被処理体表面の酸化を一層抑制し得る水素溶解水を得ることができる。さらに、水素溶解工程を、白金族金属担持触媒と過酸化水素含有水とを接触させる工程の前工程として施した場合は、被処理水中の溶存酸素及び過酸化水素の分解(2H→2HO+O)によって生じる(溶存)酸素(O)を除去することができる。 In the method for producing hydrogen-dissolved water of the present invention, hydrogen peroxide that oxidizes the surface of the object to be treated is decomposed by a platinum group metal-supported catalyst, and the oxidation-reduction potential of the treated water is set to the reduction potential side and used as a cleaning liquid Sometimes, hydrogen-dissolved water that can further suppress the oxidation of the surface of the object to be processed can be obtained. Further, when the hydrogen dissolution step is performed as a pre-step of the step of bringing the platinum group metal-supported catalyst into contact with the hydrogen peroxide-containing water, decomposition of dissolved oxygen and hydrogen peroxide in the water to be treated (2H 2 O 2 → (Dissolved) oxygen (O 2 ) generated by (2H 2 O + O 2 ) can be removed.

本発明の水素溶解水の製造方法においては、水素溶解工程を施す際に用いられる水素溶解処理装置の上流側に、本発明の超純水の製造装置の説明で述べたような脱気装置を配置することにより、脱ガス処理を行ってもよい。脱ガス処理を行い予め溶存酸素を除去することで、被処理水中の溶存酸素量が減少し、白金属金属担持触媒による反応(O+2H→2HO)で消費される水素量が少なくなるため、水素溶解水を製造するにあたり、加えるべき水素量(溶存酸素を除去し、さらに後述する酸化還元電位を調整するために加える水素量)を低減することができる。 In the method for producing hydrogen-dissolved water of the present invention, a deaeration device as described in the explanation of the ultrapure water production device of the present invention is provided upstream of the hydrogen-dissolving treatment device used when performing the hydrogen-dissolving step. By disposing, degassing treatment may be performed. By removing the dissolved oxygen in advance by degassing, the amount of dissolved oxygen in the water to be treated is reduced, and the amount of hydrogen consumed in the reaction (O 2 + 2H 2 → 2H 2 O) with the white metal metal supported catalyst is small. Therefore, in producing hydrogen-dissolved water, the amount of hydrogen to be added (the amount of hydrogen added to remove dissolved oxygen and adjust the oxidation-reduction potential described later) can be reduced.

一方、水素溶解手段の上流側で脱ガス処理を行わなくても、白金族金属担持触媒で脱気処理することも可能であるため、敢えて上流側で脱ガス処理を行わなくてもよく、この場合、脱ガス処理がない分、装置構成を簡素化することができる。   On the other hand, since it is possible to perform degassing with a platinum group metal supported catalyst without performing degassing on the upstream side of the hydrogen dissolving means, it is not necessary to perform degassing on the upstream side. In this case, the apparatus configuration can be simplified because there is no degassing treatment.

水素溶解処理装置7において水素ガスを溶解して得られた水素溶解水は、通常負の酸化還元電位を有する。即ち、水素溶解水の酸化還元電位は、通常、還元電位側となり、例えば標準水素電極に対して−100mV〜−600mVの電位にすることができる。このため、本発明の方法で得られる水素溶解水は、被処理体表面を酸化させたくない場合や被処理体表面にCu等の酸化され易い膜が存在するときに洗浄液として使用したり、微粒子除去用の洗浄液として使用することができる。   Hydrogen-dissolved water obtained by dissolving hydrogen gas in the hydrogen dissolution treatment apparatus 7 usually has a negative redox potential. That is, the oxidation-reduction potential of hydrogen-dissolved water is usually on the reduction potential side, and can be set to a potential of −100 mV to −600 mV with respect to the standard hydrogen electrode, for example. For this reason, the hydrogen-dissolved water obtained by the method of the present invention can be used as a cleaning liquid when it is not desired to oxidize the surface of the object to be treated or when a film such as Cu is easily oxidized on the surface of the object to be treated. It can be used as a cleaning liquid for removal.

本発明の方法で得られる水素溶解水中の溶存水素濃度は、25℃、1気圧下で0.05ppm以上であることが好ましく、0.8〜1.6ppmであることがより好ましい。溶存水素濃度が0.05ppm未満であると、水素溶解水の酸化還元電位を充分な還元電位側とすることができず、その結果、水素溶解水を洗浄液として用いた場合に被処理体表面の酸化抑制効果が不十分であったり、被処理体表面の微粒子除去効率が低下する。   The dissolved hydrogen concentration in the hydrogen-dissolved water obtained by the method of the present invention is preferably 0.05 ppm or more at 25 ° C. and 1 atm, and more preferably 0.8 to 1.6 ppm. If the dissolved hydrogen concentration is less than 0.05 ppm, the redox potential of the hydrogen-dissolved water cannot be set to a sufficient reduction potential side. As a result, when the hydrogen-dissolved water is used as a cleaning liquid, The effect of suppressing oxidation is insufficient, and the particle removal efficiency on the surface of the object to be processed is lowered.

本発明の水素溶解水の製造方法は、白金族金属担持触媒と過酸化水素含有水とを接触させる工程を有し、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒により過酸化水素を分解処理していることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明の水素溶解水の製造方法においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、水素溶解水を製造することができる。   The method for producing hydrogen-dissolved water of the present invention comprises a step of bringing a platinum group metal-supported catalyst into contact with hydrogen peroxide-containing water, and a platinum group formed by supporting a platinum group metal on a monolithic organic porous anion exchanger. Since hydrogen peroxide is decomposed by the metal-supported catalyst, the contact efficiency with the water to be treated is greatly improved when hydrogen peroxide is decomposed compared to the case of using a normal particulate anion exchange resin. be able to. In the method for producing hydrogen-dissolved water of the present invention, the platinum group metal-supported catalyst is used as the hydrogen peroxide decomposition treatment catalyst. Even if the height is reduced, hydrogen-dissolved water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

<水素溶解水の製造装置>
次に、本発明の水素溶解水の製造装置について説明する。
<Production equipment for hydrogen-dissolved water>
Next, the apparatus for producing hydrogen-dissolved water of the present invention will be described.

本発明の水素溶解水の製造装置1は、本発明の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とするものである。   The apparatus 1 for producing hydrogen-dissolved water according to the present invention includes a device for producing hydrogen peroxide-decomposed treated water according to the present invention and a hydrogen-dissolving treatment for water to be treated upstream or downstream of the apparatus for producing hydrogen peroxide-decomposed treated water. And an apparatus.

本発明の水素溶解水の製造装置1において、本発明の過酸化水素分解処理水の製造装置の好ましい態様や過酸化水素分解処理水の製造条件等は、上述した内容と同様であり、また、水素溶解処理装置の態様や被処理水の種類や本装置により得られる水素溶解水等も、上記本発明の水素溶解水の製造方法についての説明で述べた内容と同様である。   In the hydrogen-dissolved water production apparatus 1 of the present invention, the preferred embodiment of the hydrogen peroxide decomposition-treated water production apparatus of the present invention, the production conditions of the hydrogen peroxide decomposition-treated water, etc. are the same as described above, The aspect of the hydrogen dissolution treatment apparatus, the type of water to be treated, the hydrogen dissolution water obtained by this apparatus, and the like are the same as those described in the description of the method for producing hydrogen dissolution water of the present invention.

本発明の水素溶解水の製造装置1において、水素溶解処理装置は、過酸化水素分解処理水の製造装置の上流側または下流側に設けられる。   In the hydrogen-dissolved water producing apparatus 1 of the present invention, the hydrogen-dissolving treatment apparatus is provided on the upstream side or the downstream side of the apparatus for producing hydrogen peroxide decomposition treated water.

本発明の水素溶解水の製造装置1においては、水素溶解処理装置を、図2(a)あるいは図2(b)に示すような超純水の製造装置のサブシステム4の直後に設けて超純水に水素を添加する態様が好ましいが、サブシステム4の直前(一次純水システム3の直後)に設けて一次純水に水素を添加する態様でもよいし、一次純水システムの直前(前処理システム2の直後)に設けて前処理水に水素を添加する態様でもよいし、前処理システムの直前に設けて原水に水素を添加する態様でもよい。また、サブシステム4の後段に設けられた図示していない薬品添加装置の直後に水素溶解処理装置を設けて薬品添加した超純水に水素を施す態様であってもよい。   In the hydrogen-dissolved water producing apparatus 1 of the present invention, the hydrogen-dissolving apparatus is provided immediately after the subsystem 4 of the ultra-pure water producing apparatus as shown in FIG. 2 (a) or 2 (b). A mode in which hydrogen is added to pure water is preferable, but a mode in which hydrogen is added to primary pure water by providing it immediately before the subsystem 4 (immediately after the primary pure water system 3) or just before the primary pure water system (before An embodiment may be provided immediately after the treatment system 2 to add hydrogen to the pretreatment water, or an embodiment may be provided immediately before the pretreatment system to add hydrogen to the raw water. Moreover, the aspect which provides hydrogen to the ultrapure water which added the chemical | medical agent by providing the hydrogen dissolution processing apparatus immediately after the chemical addition apparatus not shown provided in the back | latter stage of the subsystem 4 may be sufficient.

本発明の水素溶解水の製造装置1は、本発明の水素溶解水の製造方法の発明を実施する際に好適に使用することができる。   The apparatus 1 for producing hydrogen-dissolved water of the present invention can be suitably used when carrying out the invention of the method for producing hydrogen-dissolved water of the present invention.

本発明の水素溶解水の製造装置1は、本発明の過酸化水素分解処理水の製造装置を有し、該装置において、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒により過酸化水素を分解処理していることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明の水素溶解水の製造装置においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、水素溶解水を製造することができる。   An apparatus for producing hydrogen-dissolved water 1 of the present invention has the apparatus for producing hydrogen peroxide-decomposed water of the present invention, in which a platinum group metal is supported on a monolithic organic porous anion exchanger. Since the hydrogen peroxide is decomposed by the group-metal-supported catalyst, the contact efficiency with the water to be treated is markedly higher when hydrogen peroxide is decomposed than when a normal particulate anion exchange resin is used. Can be increased. In the apparatus for producing hydrogen-dissolved water of the present invention, since the platinum group metal-supported catalyst is used as the hydrogen peroxide decomposition treatment catalyst, the hydrogen peroxide decomposition ability can be remarkably increased, and the catalyst packed bed Even if the height is reduced, hydrogen-dissolved water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

本発明の水素溶解水の製造装置2は、本発明の処理槽1と、膜分離装置とをこの順番で通水するように設置するとともに、上記処理槽1の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とするものである。   The apparatus 2 for producing hydrogen-dissolved water of the present invention is installed so that the treatment tank 1 of the present invention and the membrane separation device are passed in this order, and is treated on the upstream side or the downstream side of the treatment tank 1. A hydrogen dissolution treatment apparatus for water is provided.

本発明の水素溶解水の製造装置2において、本発明の処理槽1や、水素溶解水の製造条件や、膜分離装置等の詳細な態様は、上述した内容と同様であり、また、水素溶解処理装置の態様や被処理水の種類や本装置により得られる水素溶解水等も、上記本発明の水素溶解水の製造方法についての説明で述べた内容と同様である。   In the hydrogen-dissolved water production apparatus 2 of the present invention, the details of the treatment tank 1 of the present invention, the production conditions of the hydrogen-dissolved water, the membrane separation apparatus, etc. are the same as described above, The aspect of the treatment apparatus, the type of water to be treated, the hydrogen-dissolved water obtained by this apparatus, and the like are the same as those described in the description of the method for producing hydrogen-dissolved water of the present invention.

本発明の水素溶解水の製造装置2において、処理槽1を設置する位置は、上述した過酸化水素分解処理水の製造装置の設置位置と同様であり、処理槽1の上流側または下流側に設けられる水素溶解処理装置の設置位置も、上述した設置位置と同様である。   In the hydrogen-dissolved water production apparatus 2 of the present invention, the position where the treatment tank 1 is installed is the same as the installation position of the hydrogen peroxide decomposition treated water production apparatus described above, on the upstream side or downstream side of the treatment tank 1. The installation position of the hydrogen dissolution treatment apparatus provided is also the same as the installation position described above.

本発明の水素溶解水の製造装置3は、本発明の水素溶解水の製造方法の発明を実施する際に好適に使用することができる。   The apparatus 3 for producing hydrogen-dissolved water of the present invention can be suitably used when carrying out the invention of the method for producing hydrogen-dissolved water of the present invention.

本発明の水素溶解水の製造装置3は、本発明の処理槽2または処理槽3と、該処理槽2または処理槽3の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とするものである。   The apparatus 3 for producing hydrogen-dissolved water according to the present invention includes the treatment tank 2 or the treatment tank 3 according to the present invention, and a hydrogen dissolution treatment apparatus for water to be treated on the upstream side or the downstream side of the treatment tank 2 or the treatment tank 3. It is characterized by.

本発明の水素溶解水の製造装置3において、本発明の処理槽2または処理槽3や、水素溶解水の製造条件は、上述した内容と同様であり、また、水素溶解処理装置の態様や被処理水の種類や本装置により得られる水素溶解水等も、上記本発明の水素溶解水の製造方法についての説明で述べた内容と同様である。   In the hydrogen-dissolved water production apparatus 3 of the present invention, the treatment tank 2 or the treatment tank 3 of the present invention and the production conditions of the hydrogen-dissolved water are the same as those described above. The kind of treated water, the hydrogen-dissolved water obtained by this apparatus, and the like are the same as those described in the description of the method for producing hydrogen-dissolved water of the present invention.

本発明の水素溶解水の製造装置3において、処理槽2または処理槽3を設置する位置は、本発明の水素溶解水の製造装置1において過酸化水素分解処理水の製造装置を設置する位置と同様であり、処理槽2または処理槽3の上流側または下流側に設けられる水素溶解処理装置の設置位置も、上述した設置位置と同様である。   In the hydrogen-dissolved water production apparatus 3 of the present invention, the position where the treatment tank 2 or the treatment tank 3 is installed is the position where the hydrogen-dissolved water production apparatus 1 is installed in the hydrogen-dissolved water production apparatus 1 of the present invention. Similarly, the installation position of the hydrogen dissolution treatment apparatus provided on the upstream side or the downstream side of the processing tank 2 or the processing tank 3 is the same as the above-described installation position.

本発明の水素溶解水の製造装置3は、本発明の水素溶解水の製造方法の発明を実施する際に好適に使用することができる。   The apparatus 3 for producing hydrogen-dissolved water of the present invention can be suitably used when carrying out the invention of the method for producing hydrogen-dissolved water of the present invention.

本発明の水素溶解水の製造装置2や水素溶解水の製造装置3は、本発明の水素溶解水の製造装置1で得られる効果に加え、白金族金属担持触媒や、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体や、分離膜が同一容器に収納されてなる本発明の処理槽1や処理槽2や処理槽3を用いるものであることから、水素溶解水の製造装置の装置構成を単純化し、設置面積を低減することができるとともに、特に処理槽がカートリッジ状である場合には処理槽の交換処理を容易に行うことができる。また、白金族金属担持触媒等から万一白金族金属や微粒子が溶出した場合であっても、容易にろ過分離、吸着除去することができる。   The hydrogen-dissolved water production apparatus 2 and the hydrogen-dissolved water production apparatus 3 of the present invention include a platinum group metal-supported catalyst and a non-regenerative ion exchange resin in addition to the effects obtained by the hydrogen-dissolved water production apparatus 1 of the present invention. Alternatively, since the monolithic organic porous ion exchanger or the treatment tank 1, the treatment tank 2 or the treatment tank 3 of the present invention in which the separation membrane is housed in the same container is used, The apparatus configuration can be simplified, the installation area can be reduced, and the processing tank can be easily replaced, particularly when the processing tank is in the form of a cartridge. Moreover, even if platinum group metals and fine particles are eluted from the platinum group metal supported catalyst, etc., they can be easily separated by filtration and removed by adsorption.

<オゾン溶解水の製造方法>
次に、本発明のオゾン溶解水の製造方法について説明する。
<Method for producing ozone-dissolved water>
Next, the method for producing ozone-dissolved water of the present invention will be described.

本発明のオゾン溶解水の製造方法は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させて得られた処理水に対してオゾンを溶解させる工程とを含むことを特徴とするものである。   The method for producing ozone-dissolved water of the present invention comprises a step of contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water, and the platinum group metal. And a step of dissolving ozone in the treated water obtained by bringing the supported catalyst and the hydrogen peroxide-containing water into contact with each other.

本発明のオゾン溶解水の製造方法における、白金族金属担持触媒と過酸化水素含有水とを接触させる工程において、過酸化水素含有水や、白金族金属と過酸化水素含有水との接触方法や、通水時におけるSV等の処理条件や、得られる過酸化水素分解処理水としては、上記本発明の過酸化水素分解処理水の製造方法の説明で述べた内容と同様である。   In the step of contacting the platinum group metal-supported catalyst and the hydrogen peroxide-containing water in the method for producing ozone-dissolved water of the present invention, the hydrogen peroxide-containing water, the method for contacting the platinum group metal and the hydrogen peroxide-containing water, The treatment conditions such as SV during water flow and the hydrogen peroxide decomposition treated water obtained are the same as those described in the description of the method for producing hydrogen peroxide decomposition treated water of the present invention.

オゾンを溶解させる工程は、白金族金属担持触媒と過酸化水素含有水とを接触させる工程の後工程として施される。オゾンを溶解させる工程は、図2(a)あるいは図2(b)に示すような超純水の製造装置1を用いた超純水の製造工程を経た上で、所望のオゾン溶解装置により施されることが好ましいが、オゾン溶解工程は、一次純水や、それ以下の水質の水に施してもよいし、薬品添加した超純水に施してもよい。   The step of dissolving ozone is performed as a subsequent step of the step of bringing the platinum group metal supported catalyst into contact with the hydrogen peroxide-containing water. The process of dissolving ozone is performed by a desired ozone dissolver after passing through the process of producing ultrapure water using the ultrapure water production apparatus 1 as shown in FIG. 2 (a) or 2 (b). However, the ozone dissolution step may be performed on primary pure water or water of lower quality, or may be performed on ultrapure water added with chemicals.

オゾン溶解工程を施すオゾン溶解処理装置としては、例えば、図3(b)に示すように、被処理水の処理ライン13に図示しないガス透過膜を設け、該ガス透過膜を通してオゾン供給源15からオゾンを供給し溶解する構造を有するオゾン溶解処理装置12が好適に用いられる。かかる構造を有するオゾン溶解処理装置12としては、上記ガス透過膜が、オゾンの強い酸化力に耐え得る、フッ素樹脂系の疎水性多孔質膜が好適である。また、オゾン溶解処理装置としては、被処理水中にオゾンガスをバブリングして溶解させる装置、被処理水中にエジェクターを解してオゾンガスを溶解させる装置、被処理水を供給するポンプの上流側にオゾンガスを供給し、ポンプ内の攪拌によって溶解させる装置を挙げることができ、これ等の装置によってオゾンを溶解してもよい。   As an ozone dissolution treatment apparatus that performs the ozone dissolution process, for example, as shown in FIG. 3B, a gas permeable film (not shown) is provided in the treatment line 13 of the water to be treated, and the ozone supply source 15 passes through the gas permeable film. An ozone dissolution treatment apparatus 12 having a structure for supplying and dissolving ozone is preferably used. As the ozone dissolution treatment apparatus 12 having such a structure, a fluororesin hydrophobic porous film in which the gas permeable film can withstand the strong oxidizing power of ozone is suitable. In addition, as an ozone dissolution treatment device, a device for bubbling and dissolving ozone gas in the water to be treated, a device for dissolving ozone gas by disassembling the ejector in the water to be treated, and an ozone gas upstream of a pump for supplying the water to be treated. An apparatus for supplying and dissolving by stirring in the pump can be mentioned, and ozone may be dissolved by these apparatuses.

オゾン供給源15としては、無声放電や電解法等によるオゾン発生器を挙げることができ、発生したオゾンガスは、例えば配管16を通してオゾン溶解処理装置内に導かれる。   Examples of the ozone supply source 15 include an ozone generator by silent discharge, electrolysis, or the like, and the generated ozone gas is introduced into the ozone dissolution treatment apparatus through a pipe 16, for example.

本発明の方法で得られるオゾン溶解水中の溶存オゾン濃度は、0.05mg/L(0.05ppm)以上であることが好ましく、1mg/L(1ppm)〜150mg/L(150ppm)であることがより好ましい。溶存オゾン濃度が0.05ppm未満であると、オゾン溶解水の酸化還元電位を充分な酸化電位側とすることができず、その結果、オゾン溶解水を洗浄液として用いた場合に所望の洗浄効果を発揮することができなくなる。   The dissolved ozone concentration in the ozone-dissolved water obtained by the method of the present invention is preferably 0.05 mg / L (0.05 ppm) or more, and preferably 1 mg / L (1 ppm) to 150 mg / L (150 ppm). More preferred. If the dissolved ozone concentration is less than 0.05 ppm, the redox potential of the ozone-dissolved water cannot be brought to a sufficient oxidation potential side. As a result, when ozone-dissolved water is used as the cleaning liquid, the desired cleaning effect is obtained. It becomes impossible to demonstrate.

本発明の方法で得られるオゾン溶解水は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させて得られた処理水に対してオゾンを溶解させてなるものであることから、オゾン溶解水中の過酸化水素の濃度が低く、配管移送時におけるオゾン濃度の減少度を低減することができる。従って、本発明の方法で得られるオゾン溶解水中の溶存オゾン濃度の半減期を、例えば4分以上にすることができる。   The ozone-dissolved water obtained by the method of the present invention is treated water obtained by contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water. Therefore, the concentration of hydrogen peroxide in the ozone-dissolved water is low, and the degree of decrease in ozone concentration during pipe transfer can be reduced. Therefore, the half-life of the dissolved ozone concentration in the ozone-dissolved water obtained by the method of the present invention can be set to 4 minutes or more, for example.

本発明のオゾン溶解水の製造方法において、オゾンを溶解させる処理水のpHは酸性であることが好ましく、pH2〜6程度であることがより好ましい。酸性条件下では、得られるオゾン溶解水中のオゾン寿命を長くすることができるので、より安定したオゾン溶解水を得ることができる。超純水のpHを酸性にする方法としては、超純水製造時に処理水に二酸化炭素を溶解させる方法を挙げることができ、上記方法においては、二酸化炭素が残留性がなく、低コストであることから好ましい。   In the method for producing ozone-dissolved water of the present invention, the pH of the treated water for dissolving ozone is preferably acidic, and more preferably about pH 2-6. Under acidic conditions, the ozone life in the resulting ozone-dissolved water can be extended, so that more stable ozone-dissolved water can be obtained. Examples of the method for acidifying the pH of ultrapure water include a method of dissolving carbon dioxide in treated water during the production of ultrapure water. In the above method, carbon dioxide is not persistent and is low in cost. This is preferable.

本発明のオゾン溶解水の製造方法は、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程を有し、上記白金族金属担持触媒により過酸化水素を分解処理していることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明のオゾン溶解水の製造方法においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、オゾン溶解水を製造することができる。   The method for producing ozone-dissolved water of the present invention comprises a step of contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water. Since the hydrogen peroxide is decomposed by the group metal supported catalyst, the contact efficiency with the water to be treated is markedly higher when hydrogen peroxide is decomposed than when a normal particulate anion exchange resin is used. Can be increased. In the method for producing ozone-dissolved water according to the present invention, since the platinum group metal-supported catalyst is used as a hydrogen peroxide decomposition treatment catalyst, the hydrogen peroxide decomposition ability can be remarkably increased, and the catalyst packed bed Even if the height is reduced, ozone-dissolved water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

<オゾン溶解水の製造装置>
次に、本発明のオゾン溶解水の製造装置について説明する。
<Ozone-dissolved water production equipment>
Next, the ozone dissolved water manufacturing apparatus of the present invention will be described.

本発明のオゾン溶解水の製造装置1は、本発明の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の下流側に被処理水に対するオゾン溶解処理装置とを設けてなることを特徴とするものである。   An apparatus for producing ozone-dissolved water 1 according to the present invention includes an apparatus for producing hydrogen peroxide-decomposed treated water according to the present invention and an ozone-dissolving treatment apparatus for water to be treated on the downstream side of the apparatus for producing hydrogen peroxide-decomposed treated water. It is characterized by being provided.

本発明のオゾン溶解水の製造装置1において、本発明の過酸化水素分解処理水の製造装置の好ましい態様や過酸化水素分解処理水の製造条件等は、上述した内容と同様であり、また、オゾン溶解処理装置の態様や、被処理水の種類や、得られるオゾン溶解水等も、上記本発明のオゾン溶解水の製造方法の説明で述べた内容と同様である。   In the ozone-dissolved water production apparatus 1 of the present invention, the preferred embodiment of the hydrogen peroxide decomposition treated water production apparatus of the present invention, the production conditions of the hydrogen peroxide decomposition treated water, etc. are the same as described above, The aspect of the ozone dissolution treatment apparatus, the type of water to be treated, the ozone dissolution water to be obtained, and the like are the same as those described in the description of the method for producing ozone dissolution water of the present invention.

本発明のオゾン溶解水の製造装置1において、オゾン溶解処理装置は、過酸化水素分解処理水の製造装置の下流側に設けられる。   In the ozone-dissolved water producing apparatus 1 of the present invention, the ozone-dissolving treatment apparatus is provided on the downstream side of the apparatus for producing hydrogen peroxide decomposition treated water.

本発明のオゾン溶解水の製造装置においては、オゾン溶解処理装置を、図2(a)あるいは図2(b)に示すような超純水の製造装置のサブシステム4の直後に設けて超純水にオゾンを添加する態様が好ましい。また、サブシステム4の後段に設けられた図示していない薬品添加装置の直後にオゾン溶解処理装置を設けて薬品添加した超純水にオゾンを添加する態様であってもよい。   In the ozone-dissolved water producing apparatus of the present invention, an ozone-dissolving treatment apparatus is provided immediately after the subsystem 4 of the apparatus for producing ultrapure water as shown in FIG. 2 (a) or 2 (b). An embodiment in which ozone is added to water is preferable. Moreover, the aspect which adds ozone to the ultrapure water which provided the ozone melt | dissolution processing apparatus immediately after the chemical addition apparatus not shown provided in the back | latter stage of the subsystem 4 and added the chemical | drug | medicine may be sufficient.

本発明のオゾン溶解水の製造装置1は、本発明のオゾン溶解水の製造方法の発明を実施する際に好適に使用することができる。   The apparatus for producing ozone-dissolved water 1 of the present invention can be suitably used when carrying out the invention of the method for producing ozone-dissolved water of the present invention.

本発明のオゾン溶解水の製造装置1は、上記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに膜分離装置を設けてなるものであってもよいし、上記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体を含むイオン交換槽と、膜分離装置とをこの順番で設けてなるものであってもよい。   The ozone-dissolved water producing apparatus 1 of the present invention is a downstream side of the hydrogen peroxide-decomposed treated water producing apparatus, further comprising a membrane separation device on the upstream side of the ozone-dissolving treatment apparatus. Alternatively, the ion exchange may further include a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger on the downstream side of the hydrogen peroxide decomposition treatment water production apparatus and on the upstream side of the ozone dissolution treatment apparatus. A tank and a membrane separation device may be provided in this order.

膜分離装置としては、上述したものと同様のものを挙げることができる。また、イオン交換槽中に含まれる非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体も、上述したものと同様のものを挙げることができる。   Examples of the membrane separation device include the same ones as described above. Further, the non-regenerative ion exchange resin or monolithic organic porous ion exchanger contained in the ion exchange tank may be the same as described above.

本発明のオゾン溶解水の製造装置1が膜分離装置を有するものであることにより、白金族金属担持触媒や非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体から白金族金属や微粒子が万一溶出した場合であっても、容易にろ過分離することができる。   Since the ozone-dissolved water production apparatus 1 of the present invention has a membrane separation apparatus, platinum group metals and fine particles are obtained from a platinum group metal supported catalyst, a non-regenerative ion exchange resin, or a monolithic organic porous ion exchanger. Even in the case of elution, it can be easily separated by filtration.

本発明のオゾン溶解水の製造装置1は、本発明の過酸化水素分解処理水の製造装置を有し、該装置において、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒により過酸化水素を分解処理していることから、過酸化水素の分解処理時において、通常の粒子状アニオン交換樹脂を用いた場合に比べて被処理水との接触効率を格段に高めることができる。そして、本発明のオゾン溶解水の製造装置1においては、過酸化水素分解処理触媒として上記白金族金属担持触媒を用いていることから、過酸化水素分解能力を著しく高めることができ、触媒の充填層高を薄くしても被処理水中の過酸化水素を十分に分解除去しつつ、オゾン溶解水を製造することができる。   An apparatus for producing ozone-dissolved water 1 according to the present invention includes the apparatus for producing hydrogen peroxide decomposition treated water according to the present invention, wherein a platinum group metal is supported on a monolithic organic porous anion exchanger. Since the hydrogen peroxide is decomposed by the group metal supported catalyst, the contact efficiency with the water to be treated is markedly higher when hydrogen peroxide is decomposed than when a normal particulate anion exchange resin is used. Can be increased. In the ozone dissolved water production apparatus 1 of the present invention, since the platinum group metal-supported catalyst is used as the hydrogen peroxide decomposition treatment catalyst, the hydrogen peroxide decomposition ability can be remarkably increased, Even if the layer height is reduced, ozone-dissolved water can be produced while sufficiently decomposing and removing hydrogen peroxide in the water to be treated.

本発明のオゾン溶解水の製造装置2は、本発明の処理槽1と、膜分離装置とを、この順番に通水するように設置するとともに、前記膜分離装置の下流側にオゾン溶解処理装置を設けてなることを特徴とするものである。   An apparatus for producing ozone-dissolved water 2 according to the present invention installs the treatment tank 1 of the present invention and a membrane separator so as to pass water in this order, and an ozone-dissolve treatment apparatus downstream of the membrane separator. It is characterized by providing.

本発明のオゾン溶解水の製造装置2は、本発明の過酸化水素分解処理水の製造装置に代えて、処理槽1として、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とを同一容器内に配置してなるものを必須構成要素とするものであることを除けば、本発明のオゾン溶解水の製造装置1と同様のものである。また、処理槽1の詳細は、上述したとおりである。   An apparatus for producing ozone-dissolved water 2 according to the present invention is a treatment tank 1 in place of the apparatus for producing hydrogen peroxide-decomposed treated water according to the present invention, wherein a platinum group metal is supported on a monolithic organic porous anion exchanger. Except that the platinum group metal-supported catalyst and the non-regenerative ion exchange resin or monolithic organic porous ion exchanger are disposed in the same container as essential components. This is the same as the ozone dissolved water production apparatus 1. Moreover, the detail of the processing tank 1 is as having mentioned above.

本発明のオゾン溶解水の製造装置3は、本発明の処理槽2と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするものである。   The apparatus for producing ozone-dissolved water 3 of the present invention is characterized in that the treatment tank 2 of the present invention and an ozone dissolution treatment apparatus are provided on the downstream side of the treatment tank.

本発明のオゾン溶解水の製造装置3は、本発明の過酸化水素分解処理水の製造装置に代えて、処理槽2として、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜とを同一容器内に配置してなるものを必須構成用途するものであることを除けば、本発明のオゾン溶解水の製造装置1と同様のものである。また、処理槽2の詳細は、上述したとおりである。   The apparatus for producing ozone-dissolved water 3 according to the present invention is a treatment tank 2 in which a platinum group metal is supported on a monolithic organic porous anion exchanger, instead of the apparatus for producing hydrogen peroxide-decomposed treated water according to the present invention. Except that a platinum group metal supported catalyst, a non-regenerative ion exchange resin or monolithic organic porous ion exchanger, and a separation membrane arranged in the same container are essential constituent uses, This is the same as the ozone dissolved water production apparatus 1 of the present invention. Moreover, the detail of the processing tank 2 is as having mentioned above.

本発明のオゾン溶解水の製造装置3の具体的態様を図4に示す。   The specific aspect of the manufacturing apparatus 3 of the ozone dissolved water of this invention is shown in FIG.

図4の左図において、外部から供給される被処理水は処理槽に供給される(図4の右に処理槽の拡大図を示す)。図4に示すように、処理槽は、白金族金属担持触媒αと、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βと、分離膜γとが、被処理水に対してこの順番で接触するように同一容器内に配置されてなる。処理槽を通過した水は、オゾン溶解処理装置12において、オゾン供給源15から供給されたオゾンと混合され、オゾン溶解水が作製される。   In the left figure of FIG. 4, the to-be-processed water supplied from the outside is supplied to a processing tank (the enlarged view of a processing tank is shown on the right of FIG. 4). As shown in FIG. 4, the treatment tank comprises a platinum group metal supported catalyst α, a non-regenerative ion exchange resin or monolithic organic porous ion exchanger β, and a separation membrane γ with respect to the water to be treated. It arrange | positions in the same container so that it may contact in order. The water that has passed through the treatment tank is mixed with ozone supplied from the ozone supply source 15 in the ozone dissolution treatment device 12 to produce ozone-dissolved water.

本発明のオゾン溶解水の製造装置4は、本発明の処理槽3と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするものである。   The apparatus for producing ozone-dissolved water 4 of the present invention is characterized in that the treatment tank 3 of the present invention and an ozone dissolution treatment apparatus are provided on the downstream side of the treatment tank.

本発明のオゾン溶解水の製造装置4は、本発明の過酸化水素分解処理水の製造装置に代えて、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなる処理槽3を必須構成要素とする点を除けば、本発明のオゾン溶解水の製造装置1と同様のものである。本発明のオゾン溶解水の製造装置4で用いる分離膜も、上述したものと同様のものを挙げることができる。   The ozone-dissolved water production apparatus 4 of the present invention is a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, instead of the hydrogen peroxide decomposition-treated water production apparatus of the present invention. And the separation membrane and the treatment tank 3 arranged in the same container so as to come into contact with the water to be treated in this order, except that the essential component is the production of the ozone-dissolved water of the present invention. It is the same as the device 1. Examples of the separation membrane used in the ozone dissolved water production apparatus 4 of the present invention include the same ones as described above.

モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなる処理槽3の詳細は、上述したとおりであり、その形態としては、例えば図1(d)や図1(e)に示す処理槽において、白金族金属担持触媒αおよび非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体βの積層部が、全て白金族金属担持触媒αからなるものや、図1(f)に示されるものを挙げることができる。   A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a separation membrane are arranged in the same container so as to come into contact with the water to be treated in this order. The details of the treatment tank 3 are as described above. For example, in the treatment tank shown in FIG. 1 (d) or FIG. 1 (e), the platinum group metal-supported catalyst α and the non-regenerative ion exchange resin or Examples of the monolithic organic porous ion exchanger β may include those in which the laminated portion is entirely composed of a platinum group metal-supported catalyst α and those shown in FIG.

本発明のオゾン溶解水の製造装置2や本発明のオゾン溶解水の製造装置3や本発明のオゾン溶解水の製造装置4は、白金族金属担持触媒等が同一容器に収納されてなる処理槽を用いるものであることから、本発明のオゾン溶解水の製造装置1で得られる効果以外にも、オゾン溶解水の製造装置の装置構成を単純化し、設置面積を低減することができるとともに、特に処理槽がカートリッジ状である場合には交換の手間を低減することができるという効果を発揮する。また、本発明のオゾン溶解水の製造装置3や本発明のオゾン溶解水の製造装置4は、上記容器内に分離膜が収納されてなる本発明の処理槽2や処理槽3を用いるものであることから、上記効果に加え、白金族金属担持触媒や非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体から白金族金属や微粒子が万一溶出した場合であっても、容易にろ過分離することができるという効果を発揮する。   The ozone-dissolved water manufacturing apparatus 2 of the present invention, the ozone-dissolved water manufacturing apparatus 3 of the present invention, and the ozone-dissolved water manufacturing apparatus 4 of the present invention are a treatment tank in which a platinum group metal supported catalyst or the like is accommodated in the same container. In addition to the effects obtained with the ozone dissolved water manufacturing apparatus 1 of the present invention, the apparatus configuration of the ozone dissolved water manufacturing apparatus can be simplified, the installation area can be reduced, In the case where the treatment tank is in the form of a cartridge, the effect of reducing the labor for replacement can be achieved. The ozone-dissolved water production apparatus 3 of the present invention and the ozone-dissolved water production apparatus 4 of the present invention use the treatment tank 2 or the treatment tank 3 of the present invention in which a separation membrane is housed in the container. Therefore, in addition to the above effects, even if platinum group metals and fine particles elute from platinum group metal supported catalysts, non-regenerative ion exchange resins or monolithic organic porous ion exchangers, they can be filtered easily. The effect that it can be separated is exhibited.

<電子部品の洗浄方法>
次に、本発明の電子部品の洗浄方法について説明する。
<Cleaning method for electronic parts>
Next, the electronic component cleaning method of the present invention will be described.

本発明の電子部品の洗浄方法は、本発明の過酸化水素分解処理水の製造方法もしくは本発明の過酸化水素分解処理水の製造装置により得られる過酸化水素分解処理水を含む洗浄水、本発明の超純水の製造方法もしくは本発明の超純水の製造装置により得られる超純水を含む洗浄水、本発明の水素溶解水の製造方法もしくは本発明の水素溶解水の製造装置により得られる水素溶解水を含む洗浄水または本発明のオゾン溶解水の製造方法もしくは本発明のオゾン溶解水の製造装置により得られるオゾン溶解水を含む洗浄水から選ばれるいずれか一種以上の洗浄水により、表面洗浄することを特徴とするものである。   The electronic component cleaning method of the present invention includes a cleaning water containing a hydrogen peroxide decomposing water obtained by the method for producing hydrogen peroxide decomposing water of the present invention or the hydrogen peroxide decomposing water of the present invention, Obtained by the method for producing ultrapure water of the invention or the cleaning water containing ultrapure water obtained by the apparatus for producing ultrapure water of the present invention, the method for producing hydrogen-dissolved water of the present invention, or the apparatus for producing hydrogen-dissolved water of the present invention The cleaning water containing hydrogen-dissolved water or the ozone-dissolved water manufacturing method of the present invention or the ozone-dissolved water-containing cleaning water obtained by the ozone-dissolved water manufacturing apparatus of the present invention, The surface is washed.

本発明の過酸化水素分解処理水の製造方法もしくは本発明の過酸化水素分解処理水の製造装置により過酸化水素分解処理水を得る方法の詳細、本発明の超純水の製造方法または本発明の超純水の製造装置により超純水を得る方法の詳細、本発明の水素溶解水の製造方法もしくは本発明の水素溶解水の製造装置により水素溶解水を得る方法の詳細、本発明のオゾン溶解水の製造方法もしくは本発明のオゾン溶解水の製造装置によりオゾン溶解水を得る方法の詳細については、上述した内容と同様である。   Details of the method for producing hydrogen peroxide-decomposed treated water of the present invention or the method for obtaining hydrogen peroxide-decomposed treated water by the apparatus for producing hydrogen peroxide-decomposed treated water of the present invention, the method for producing ultrapure water of the present invention or the present invention Details of the method for obtaining ultrapure water by the apparatus for producing ultrapure water of the present invention, details of the method for producing hydrogen dissolved water of the present invention or the method for obtaining hydrogen dissolved water by the apparatus for producing hydrogen dissolved water of the present invention, ozone of the present invention About the detail of the method of obtaining ozone dissolved water with the manufacturing method of dissolved water or the manufacturing apparatus of ozone dissolved water of this invention, it is the same as that of the content mentioned above.

本発明の電子部品の洗浄方法の形態例について、図5及び図6を参照して説明する。図5は、本発明の電子部品の洗浄方法の第一の形態例の模式的なフロー図であり、図6は、本発明の電子部品の洗浄方法の第二の形態例の模式的なフロー図である。    An example of the electronic component cleaning method of the present invention will be described with reference to FIGS. FIG. 5 is a schematic flow diagram of the first embodiment of the electronic component cleaning method of the present invention, and FIG. 6 is a schematic flow of the second embodiment of the electronic component cleaning method of the present invention. FIG.

図5に示すように、本発明の電子部品の洗浄方法の第一の形態例は、オゾン溶解水に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程21と、水素溶解水に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第2工程22と、フッ化水素酸及び過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程23と、水素溶解水に被洗浄物を接触させて、500kHz以上の振動を与えながら被洗浄物を洗浄する第4工程24とを含むものである。   As shown in FIG. 5, the first embodiment of the electronic component cleaning method of the present invention includes a first step 21 for cleaning an object to be cleaned by contacting the object to be cleaned with ozone-dissolved water, and hydrogen. A second step 22 in which the object to be cleaned is brought into contact with dissolved water and the object to be cleaned is washed while applying vibration of 500 kHz or more, and the object to be cleaned is brought into contact with water containing hydrofluoric acid and hydrogen peroxide. The third step 23 for cleaning the object to be cleaned and the fourth step 24 for cleaning the object to be cleaned while bringing the object to be cleaned into contact with hydrogen-dissolved water and applying vibrations of 500 kHz or higher.

第1工程21に供給される洗浄水は、超純水32にオゾンを溶解させて調製されたオゾン溶解水である。そして、超純水は、その製造工程で、紫外線酸化処理等がされているので、過酸化水素を含有している。そこで、本発明の電子部品の洗浄方法の第一の形態例では、超純水32にオゾン33を溶解させる前に、超純水32を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程25を行い、得られた処理水にオゾン33を溶解させて、第1工程21の洗浄水として供給する。   The cleaning water supplied to the first step 21 is ozone-dissolved water prepared by dissolving ozone in the ultrapure water 32. And the ultrapure water contains hydrogen peroxide because it has been subjected to an ultraviolet oxidation process or the like in its manufacturing process. Therefore, in the first embodiment of the electronic component cleaning method of the present invention, before the ozone 33 is dissolved in the ultrapure water 32, the hydrogen peroxide decomposition treated water of the present invention is treated with the ultrapure water 32 as the water to be treated. A hydrogen peroxide removing step 25 for applying the manufacturing method is performed, and ozone 33 is dissolved in the obtained treated water and supplied as the cleaning water in the first step 21.

また、第2工程22に供給される洗浄水は、超純水32に水素を溶解させて調製された水素溶解水である。そこで、本発明の電子部品の洗浄方法の第一の形態例では、超純水32に水素34を溶解させる前に、超純水32を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程26を行い、得られた処理水に水素34を溶解させて、第2工程22の洗浄水として供給する。本発明の電子部品の洗浄方法の第一の形態例では、第4工程24も同様に、超純水32に水素36を溶解させる前に、超純水32を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程28を行い、得られた処理水に水素36を溶解させて、第4工程24の洗浄水として供給する。なお、水素34又は36を溶解させる時期は、過酸化水素除去工程26又は28の前段であってもよい。   The cleaning water supplied to the second step 22 is hydrogen-dissolved water prepared by dissolving hydrogen in the ultrapure water 32. Therefore, in the first embodiment of the electronic component cleaning method of the present invention, before the hydrogen 34 is dissolved in the ultrapure water 32, the hydrogen peroxide decomposition treated water of the present invention is treated with the ultrapure water 32 as the water to be treated. A hydrogen peroxide removal step 26 for applying the manufacturing method is performed, and hydrogen 34 is dissolved in the obtained treated water and supplied as cleaning water in the second step 22. In the first embodiment of the electronic component cleaning method of the present invention, in the fourth step 24, before the hydrogen 36 is dissolved in the ultrapure water 32, the ultrapure water 32 is used as the water to be treated. A hydrogen peroxide removal step 28 for applying a method for producing hydrogen oxide decomposition treated water is performed, hydrogen 36 is dissolved in the obtained treated water, and supplied as cleaning water in the fourth step 24. It should be noted that the hydrogen 34 or 36 may be dissolved before the hydrogen peroxide removing step 26 or 28.

また、本発明の電子部品の洗浄方法の第一の形態例では、超純水32を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程27を行い、得られた処理水にフッ化水素酸及び過酸化水素35を溶解させて、得られたフッ化水素酸及び過酸化水素を含有する水を、第3工程23の洗浄水として供給することもできる。   In the first embodiment of the electronic component cleaning method of the present invention, the hydrogen peroxide removal step 27 is performed in which the method for producing hydrogen peroxide decomposition treated water of the present invention is performed using ultrapure water 32 as the water to be treated. The hydrofluoric acid and hydrogen peroxide 35 are dissolved in the obtained treated water, and the water containing the obtained hydrofluoric acid and hydrogen peroxide can be supplied as cleaning water in the third step 23. .

そして、洗浄前の電子部品20aを被洗浄物として、第1工程21〜第4工程24を順に行い、洗浄後の電子部品30aを得る。   And the electronic component 20a before washing | cleaning is made into a to-be-cleaned object, the 1st process 21-the 4th process 24 are performed in order, and the electronic component 30a after washing | cleaning is obtained.

図6に示すように、本発明の電子部品の洗浄方法の第二の形態例は、硫酸および過酸化水素を含有する液に被洗浄物を接触させて、被洗浄物を洗浄するための第1工程41と、超純水でリンスする第2工程42と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第3工程43と、超純水でリンスする第4工程44と、アンモニアおよび過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第5工程45と、超純水でリンスする第6工程46と、加熱した超純水に被洗浄物を接触させて、被洗浄物を洗浄するための第7工程47と、超純水でリンスする第8工程48と、塩酸および過酸化水素を含有する水に被洗浄物を接触させて、被洗浄物を洗浄するための第9工程49と、超純水でリンスする第10工程50と、フッ化水素酸を含有する水(希フッ酸)に被洗浄物を接触させて、被洗浄物を洗浄するための第11工程51と、超純水でリンスする第12工程52と、を有する。   As shown in FIG. 6, the second embodiment of the electronic component cleaning method of the present invention is a first embodiment for cleaning an object to be cleaned by bringing the object to be cleaned into contact with a liquid containing sulfuric acid and hydrogen peroxide. A first step 41, a second step 42 for rinsing with ultrapure water, and a third step for cleaning the object to be cleaned by bringing the object to be cleaned into contact with water containing hydrofluoric acid (dilute hydrofluoric acid) 43, a fourth process 44 for rinsing with ultrapure water, a fifth process 45 for cleaning the object to be cleaned by bringing the object to be cleaned into contact with water containing ammonia and hydrogen peroxide, and ultrapure water A sixth process 46 for rinsing with water, a seventh process 47 for cleaning the object to be cleaned by bringing the object to be cleaned into contact with heated ultrapure water, an eighth process 48 for rinsing with ultrapure water, and hydrochloric acid. And a ninth step 49 for cleaning the cleaning object by bringing the cleaning object into contact with water containing hydrogen peroxide. A tenth step 50 for rinsing with ultrapure water, an eleventh step 51 for cleaning the object to be cleaned by bringing the object to be cleaned into contact with water containing hydrofluoric acid (dilute hydrofluoric acid), And a twelfth step 52 of rinsing with pure water.

図6中の第3工程43、第5工程45、第9工程49及び第11工程51に供給される洗浄水63、65、69及び71は、超純水に各工程で必要な薬剤を溶解させた水である。そこで、図6に示すような、本発明の電子部品の洗浄方法の第二の形態例では、図5に示すような、本発明の電子部品の洗浄方法の第一の形態例と同様に、超純水に各工程で必要な薬剤を溶解させる前に、超純水を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程を行い、得られた処理水に各工程で必要な薬剤を溶解させて、各工程の洗浄水(洗浄液)として供給することが好ましい。   The washing water 63, 65, 69, and 71 supplied to the third step 43, the fifth step 45, the ninth step 49, and the eleventh step 51 in FIG. 6 dissolves the chemicals required in each step in ultrapure water. Water. Therefore, in the second embodiment of the electronic component cleaning method of the present invention as shown in FIG. 6, as in the first embodiment of the electronic component cleaning method of the present invention as shown in FIG. Before dissolving the chemicals required in each process in ultrapure water, perform the hydrogen peroxide removal process in which the method for producing hydrogen peroxide decomposition treated water of the present invention is performed using ultrapure water as the water to be treated, and the resulting treatment It is preferable that chemicals required in each step are dissolved in water and supplied as cleaning water (cleaning liquid) in each step.

また、図6中の第2工程42、第4工程44、第6工程46、第7工程47、第8工程48、第10工程50及び第12工程52に供給される洗浄水62、64、66、67、68、70及び72は、超純水である。そこで、本発明の電子部品の洗浄方法の第二の形態例では、超純水を被処理水として本発明の過酸化水素分解処理水の製造方法を施す過酸化水素除去工程を行い、得られた処理水を、各工程の洗浄水として供給することが好ましい。   In addition, the cleaning water 62, 64 supplied to the second step 42, the fourth step 44, the sixth step 46, the seventh step 47, the eighth step 48, the tenth step 50, and the twelfth step 52 in FIG. 66, 67, 68, 70 and 72 are ultrapure water. Therefore, in the second embodiment of the electronic component cleaning method of the present invention, the hydrogen peroxide removing step is performed by applying the method for producing hydrogen peroxide decomposition treated water of the present invention using ultrapure water as water to be treated. It is preferable to supply the treated water as washing water for each step.

そして、洗浄前の電子部品20bを被洗浄物として、第1工程41〜第12工程52を順に行い、洗浄後の電子部品30bを得る。   Then, using the electronic component 20b before cleaning as an object to be cleaned, the first step 41 to the twelfth step 52 are sequentially performed to obtain the electronic component 30b after cleaning.

上記各態様において、本発明の超純水の製造方法を施して超純水を含む洗浄水(処理水)を得る場合には、本発明の超純水の製造装置を用いることが好ましい。   In each of the above-described embodiments, when the ultrapure water manufacturing method of the present invention is applied to obtain cleaning water (treated water) containing ultrapure water, it is preferable to use the ultrapure water manufacturing apparatus of the present invention.

洗浄水として、薬剤を添加した超純水を用いる場合、該薬剤としては、例えば、
フッ化水素酸、塩酸、炭酸、アンモニア、TMAH(水酸化テトラメチルアンモニウム)、コリン等を挙げることができる。
When using ultrapure water to which a chemical is added as the washing water,
Examples thereof include hydrofluoric acid, hydrochloric acid, carbonic acid, ammonia, TMAH (tetramethylammonium hydroxide), and choline.

<白金族金属担持触媒>
次に、本発明の過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法において共通に用いられる、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒について説明する。
<Platinum group metal supported catalyst>
Next, the method for producing hydrogen peroxide decomposition treated water of the present invention, the apparatus for producing hydrogen peroxide decomposition treated water, the method for producing ultrapure water, the apparatus for producing ultrapure water, the method for producing hydrogen dissolved water, the hydrogen dissolved water Commonly used in manufacturing apparatus, ozone-dissolved water manufacturing apparatus, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method, a platinum group metal supported on a monolithic organic porous anion exchanger The catalyst will be described.

上記白金族金属担持触媒としては、モノリス状有機多孔質アニオン交換体に白金族金属ナノ粒子が担持されてなるものを挙げることができる。   Examples of the platinum group metal supported catalyst include those in which platinum group metal nanoparticles are supported on a monolithic organic porous anion exchanger.

以下、白金族金属担持触媒の好ましい態様について説明するが、本出願書類中、適宜、「モノリス状有機多孔質体」を単に「モノリス」と、「モノリス状有機多孔質アニオン交換体」を単に「モノリスアニオン交換体」と、「モノリス状の有機多孔質中間体」を単に「モノリス中間体」と称する。   Hereinafter, a preferred embodiment of the platinum group metal supported catalyst will be described. In the present application documents, “monolithic organic porous material” is simply referred to as “monolith”, and “monolithic organic porous anion exchanger” is simply referred to as “ The “monolith anion exchanger” and the “monolithic organic porous intermediate” are simply referred to as “monolith intermediate”.

<モノリスアニオン交換体>
モノリスアニオン交換体に白金族金属が担持されてなる白金族金属担持触媒において、担体となるモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものである。
<Monolith anion exchanger>
In a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolith anion exchanger, the monolith anion exchanger serving as a carrier is obtained by introducing an anion exchange group into the monolith.

モノリスアニオン交換体としては、以下に詳述する第1のモノリスアニオン交換体〜第4のアニオン交換体を挙げることができる。   Examples of the monolith anion exchanger include a first monolith anion exchanger to a fourth anion exchanger described in detail below.

(第1のモノリスアニオン交換体)
第1のモノリスアニオン交換体は、気泡状のマクロポア同士が重なり合い、この重なる部分が乾燥状態で平均直径1〜1000μm、好ましくは10〜200μm、より好ましくは20〜100μmの共通の開口(メソポア)となる連続マクロポア構造体であり、その大部分がオープンポア構造のものである。オープンポア構造は、水を流せば上記マクロポアと上記メソポアで形成される気泡内が流路となる。マクロポアとマクロポアの重なりは、1個のマクロポアで1〜12個、多くのものは3〜10個である。第1のモノリスアニオン交換体のメソポアの平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスのメソポアの平均直径よりも大となる。メソポアの乾燥状態での平均直径が1μm未満であると、通水時の圧力損失が著しく大きくなってしまうため好ましくなく、メソポアの乾燥状態での平均直径が1000μmを越えると、被処理水と第1のモノリスアニオン交換体との接触が不十分となり、過酸化水素分解特性が低下してしまうため好ましくない。第1のモノリスアニオン交換体の構造が上記のような連続気泡構造となることにより、マクロポア群やメソポア群を均一に形成できると共に、特開平8−252579号公報等に記載されるような粒子凝集型多孔質体に比べて、細孔容積や比表面積を格段に大きくすることができる。なお、第1のモノリスアニオン交換体においては、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、水銀圧入法により測定される値である。また、水湿潤状態の第1のモノリスアニオン交換体の開口の平均直径は、乾燥状態の第1のモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の第1のモノリスアニオン交換体の直径がX(mm)であり、その水湿潤状態のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第1のモノリスアニオン交換体の直径がY(mm)であり、この乾燥状態の第1のモノリスアニオン交換体を水銀圧入法により測定したときの開口の平均直径がZ(μm)であったとすると、水湿潤状態の第1のモノリスアニオン交換体の開口の平均直径(μm)は、次式「水湿潤状態の第1のモノリスアニオン交換体の開口の平均直径(μm)=Z×(X/Y)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基を導入したときの乾燥状態のモノリスに対する水湿潤状態の第1のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態の第1のモノリスアニオン交換体の開口の平均直径を算出することもできる。
(First monolith anion exchanger)
In the first monolith anion exchanger, bubble-like macropores overlap each other, and the overlapping portion is in a dry state with a common opening (mesopore) having an average diameter of 1 to 1000 μm, preferably 10 to 200 μm, more preferably 20 to 100 μm. A continuous macropore structure, most of which has an open pore structure. In the open pore structure, when water is flowed, the inside of bubbles formed by the macropores and the mesopores becomes a flow path. The number of overlapping macropores is 1 to 12 for one macropore, and 3 to 10 for many. The mesopore average diameter of the first monolith anion exchanger is larger than the average diameter of the monolith mesopore because the whole monolith swells when an anion exchange group is introduced into the monolith. If the average diameter in the dry state of the mesopores is less than 1 μm, the pressure loss during water passage will be extremely large, which is not preferable. If the average diameter in the dry state of the mesopores exceeds 1000 μm, This is not preferable because contact with the monolith anion exchanger 1 is insufficient, and the hydrogen peroxide decomposition characteristics are deteriorated. When the structure of the first monolith anion exchanger is an open cell structure as described above, the macropore group and the mesopore group can be uniformly formed, and the particle aggregation as described in JP-A-8-252579 is also possible. The pore volume and specific surface area can be remarkably increased compared to the type porous body. In the first monolith anion exchanger, the average diameter of the opening of the monolith in the dry state and the average diameter of the opening of the monolith anion exchanger in the dry state are values measured by a mercury intrusion method. The average diameter of the opening of the first monolith anion exchanger water humid conditions, the average diameter of the opening of the first monolith anion exchanger in the dry state is a value calculated by multiplying the swelling ratio. Specifically, the water humid state first diameter of the monolith anion exchanger is X 1 (mm), the water humid state monolith anion exchanger is dried, first in the dry state obtained in When the diameter of the monolith anion exchanger is Y 1 (mm), and the average diameter of the opening when the dried first monolith anion exchanger is measured by the mercury intrusion method is Z 1 (μm), The average diameter (μm) of the opening of the first monolith anion exchanger in the water wet state is expressed by the following formula: “average diameter of the opening of the first monolith anion exchanger in the water wet state (μm) = Z 1 × (X 1 / Y 1 ) ”. The average diameter of the opening of the monolith a dry state prior introduction anion exchange group, and the first monolith anion exchanger water humid state for monolith dry state when introduced monolith anion exchange groups of the dry If swelling ratio can be known, can the average diameter of the opening in the monolith in a dry state, by multiplying the swelling ratio, also possible to calculate the average diameter of the opening of the first monolith anion exchanger water humid conditions.

第1のモノリスアニオン交換体の全細孔容積は、1〜50ml/g、好適には2〜30ml/gである。全細孔容積が1ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、機械的強度が低下して、特に高流速で通水した際に第1のモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水と第1のモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下するため、触媒効果も低下してしまうため好ましくない。全細孔容積は、従来の粒子状多孔質イオン交換樹脂では、せいぜい0.1〜0.9ml/gであるから、それを越える従来には無い1〜50ml/gの高細孔容積、高比表面積のものが使用できる。なお、上記モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により測定される値である。また、モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the first monolith anion exchanger is 1-50 ml / g, preferably 2-30 ml / g. If the total pore volume is less than 1 ml / g, it is not preferable because the pressure loss at the time of passing water increases, and further, the amount of permeated water per unit cross-sectional area decreases, and the treatment capacity decreases. Absent. On the other hand, if the total pore volume exceeds 50 ml / g, the mechanical strength is lowered, and the first monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Furthermore, since the contact efficiency between the water to be treated and the first monolith anion exchanger and the platinum group metal nanoparticles supported thereon decreases, the catalytic effect also decreases, which is not preferable. In the conventional particulate porous ion exchange resin, the total pore volume is 0.1 to 0.9 ml / g at the most. Those having a specific surface area can be used. The total pore volume of the monolith (monolith, monolith anion exchanger) is a value measured by a mercury intrusion method. Further, the total pore volume of the monolith (monolith, monolith anion exchanger) is the same both in the dry state and in the water wet state.

なお、第1のモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.5MPa/m・LVが好ましく、0.005〜0.05MPa/m・LVであることが特に好ましい。   In addition, the pressure loss at the time of making water permeate | transmit the 1st monolith anion exchanger is the pressure loss at the time of water-flowing at the water velocity (LV) of 1 m / h to the column packed with this 1m (henceforth, " The pressure differential coefficient is preferably 0.005 to 0.5 MPa / m · LV, and particularly preferably 0.005 to 0.05 MPa / m · LV.

第1のモノリスアニオン交換体の乾燥状態での重量当りのアニオン交換容量は、0.5〜5.0mg当量/gである。乾燥状態での重量当りのアニオン交換容量が0.5mg当量/g未満であると、白金族金属のナノ粒子担持量が低下してしまい、過酸化水素分解特性が低下してしまうため好ましくない。一方、乾燥状態での重量当りのアニオン交換容量が5.0mg当量/gを超えると、イオン形の変化による第1のモノリスアニオン交換体の膨潤及び収縮の体積変化が著しく大きくなり、場合によっては、第1のモノリスアニオン交換体にクラックや破砕が生じるため好ましくない。なお、第1のモノリスアニオン交換体の水湿潤状態における体積当りのアニオン交換容量は特に限定されないが、通常、0.05〜0.5mg当量/mlである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The anion exchange capacity per weight of the first monolith anion exchanger in the dry state is 0.5 to 5.0 mg equivalent / g. When the anion exchange capacity per weight in a dry state is less than 0.5 mg equivalent / g, the amount of platinum group metal nanoparticles supported is lowered, and the hydrogen peroxide decomposition property is lowered, which is not preferable. On the other hand, when the anion exchange capacity per weight in the dry state exceeds 5.0 mg equivalent / g, the volume change of the swelling and shrinkage of the first monolith anion exchanger due to the change of the ion form becomes remarkably large. Since the first monolith anion exchanger is cracked or crushed, it is not preferable. In addition, the anion exchange capacity per volume of the first monolith anion exchanger in a water-wet state is not particularly limited, but is usually 0.05 to 0.5 mg equivalent / ml. Note that the ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface cannot be determined unconditionally depending on the kind of the porous body or the ion exchange group, but is at most 500 μg equivalent / g.

第1のモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。上記ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the first monolith anion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group. There is no restriction | limiting in particular in the kind of said polymer material, For example, Polyvinyl, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene, Polypropylene Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalescence is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is easy due to the ease of forming a continuous macropore structure, the ease of introducing an anion exchange group and the high mechanical strength, and the high stability to acids or alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

第1のモノリスアニオン交換体のアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   Examples of the anion exchange group of the first monolith anion exchanger include a quaternary ammonium group such as a trimethylammonium group, a triethylammonium group, a tributylammonium group, a dimethylhydroxyethylammonium group, a dimethylhydroxypropylammonium group, and a methyldihydroxyethylammonium group. , Tertiary sulfonium group, phosphonium group and the like.

第1のモノリスアニオン交換体において、導入されたアニオン交換基は、多孔質体の表面のみならず、多孔質体の骨格内部にまで均一に分布している。ここで言う「アニオン交換基が均一に分布している」とは、アニオン交換基の分布が少なくともμmオーダーで表面および骨格内部に均一に分布していることを指す。アニオン交換基の分布状況は、対アニオンを塩化物イオン、臭化物イオンなどにイオン交換した後、EPMAを用いることで、比較的簡単に確認することができる。また、アニオン交換基が、モノリスの表面のみならず、多孔質体の骨格内部にまで均一に分布していると、表面と内部の物理的性質及び化学的性質を均一にできるため、膨潤及び収縮に対する耐久性が向上する。   In the first monolith anion exchanger, the introduced anion exchange groups are uniformly distributed not only on the surface of the porous body but also inside the skeleton of the porous body. Here, “anion exchange groups are uniformly distributed” means that the distribution of anion exchange groups is uniformly distributed on the surface and inside the skeleton in the order of at least μm. The distribution state of the anion exchange group can be confirmed relatively easily by using EPMA after ion exchange of the counter anion with chloride ion, bromide ion or the like. In addition, if the anion exchange groups are uniformly distributed not only on the surface of the monolith but also within the skeleton of the porous body, the physical and chemical properties of the surface and the interior can be made uniform, so that the swelling and shrinking The durability against is improved.

(第1のモノリスアニオン交換体の製造方法)
第1のモノリスアニオン交換体の製造方法としては、特に制限されず、アニオン交換基を含む成分を一段階でモノリスアニオン交換体にする方法、アニオン交換基を含まない成分によりモノリスを形成し、その後、アニオン交換基を導入する方法などが挙げられる。これらの方法のうち、アニオン交換基を含まない成分によりモノリスを形成し、その後、アニオン交換基を導入する方法は、得られるモノリスアニオン交換体の多孔構造の制御が容易であり、アニオン交換基の定量的導入も可能であるため好ましい。特開2002−306976号公報記載の方法に準じた、製造方法の一例を以下示す。すなわち、当該方法においては、アニオン交換基を含まない油溶性モノマー、界面活性剤、水及び必要に応じて重合開始剤とを混合し、油中水滴型エマルジョンを得、これを重合させて多孔質体を形成し、その後、アニオン交換基を導入する。
(Method for producing first monolith anion exchanger)
The production method of the first monolith anion exchanger is not particularly limited, and is a method in which a component containing an anion exchange group is converted into a monolith anion exchanger in one step, a monolith is formed by a component not containing an anion exchange group, and then And a method of introducing an anion exchange group. Among these methods, the method of forming a monolith with a component that does not contain an anion exchange group and then introducing the anion exchange group makes it easy to control the porous structure of the resulting monolith anion exchanger. Since quantitative introduction is also possible, it is preferable. An example of a production method according to the method described in JP-A-2002-306976 is shown below. That is, in this method, an oil-soluble monomer that does not contain an anion exchange group, a surfactant, water and, if necessary, a polymerization initiator are mixed to obtain a water-in-oil emulsion, which is polymerized to be porous. After forming the body, an anion exchange group is introduced.

アニオン交換基を含まない油溶性モノマーとしては、四級アンモニウム基等のアニオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーを指すものである。これらモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜10モル%、好適には0.3〜5モル%とすることが、後の工程でアニオン交換基を定量的に導入し、かつ、実用的に十分な機械的強度を確保できる点で好ましい。   The oil-soluble monomer that does not contain an anion exchange group refers to a lipophilic monomer that does not contain an anion exchange group such as a quaternary ammonium group and has low solubility in water. Specific examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, vinyl bromide, vinylidene chloride, tetrafluoroethylene. , Acrylonitrile, methacrylonitrile, vinyl acetate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, trimethylolpropane triacrylate, butanediol diacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate , Butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, glycidyl methacrylate, ethylene glycol dimethyl ester Acrylate, and the like. These monomers can be used singly or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 10 mol%, preferably 0.3 in the total oil-soluble monomer. It is preferable to set it to ˜5 mol% in that an anion exchange group can be quantitatively introduced in a later step and a practically sufficient mechanical strength can be secured.

界面活性剤は、アニオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。また、必ずしも必須ではないが、多孔質体の気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール;ステアリン酸等のカルボン酸;オクタン、ドデカン、トルエン等の炭化水素;テトラヒドロフラン、ジオキサン等の環状エーテルを系内に共存させることもできる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no anion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzene sulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyl dimethyl ammonium chloride; amphoteric surfactants such as lauryl dimethyl betaine can be used. That. These surfactants can be used singly or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%. Although not necessarily essential, in order to control the bubble shape and size of the porous material, alcohols such as methanol and stearyl alcohol; carboxylic acids such as stearic acid; hydrocarbons such as octane, dodecane and toluene; tetrahydrofuran, dioxane It is also possible to coexist cyclic ethers such as

また、多孔質体形成の際、必要に応じて用いられる重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。   Moreover, the compound which generate | occur | produces a radical by a heat | fever and light irradiation is used suitably for the polymerization initiator used as needed in the case of porous body formation. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, persulfate Examples include potassium, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide. However, in some cases, there is a system in which the polymerization proceeds only by heating or light irradiation without adding a polymerization initiator, and in such a system, the addition of the polymerization initiator is unnecessary.

アニオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサー、ホモジナイザー、高圧ホモジナイザーや、被処理物を混合容器に入れ、該混合容器を傾斜させた状態で公転軸の周りに公転させながら自転させることで、被処理物を攪拌混合する、所謂遊星式攪拌装置等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。これらの混合装置のうち、遊星式攪拌装置はW/Oエマルジョン中の水滴を均一に生成させることができ、その平均径を幅広い範囲で任意に設定できるため、好ましく用いられる。   The mixing method for mixing the oil-soluble monomer not containing an anion exchange group, a surfactant, water and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and ordinary mixers, homogenizers, high-pressure homogenizers, and objects to be treated are placed in a mixing container, and the mixing container is tilted and revolved around the revolution axis. While rotating, a so-called planetary stirring device that stirs and mixes the object to be processed can be used, and an appropriate device may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily. Among these mixing apparatuses, the planetary stirring apparatus is preferably used because it can uniformly generate water droplets in the W / O emulsion and can arbitrarily set the average diameter within a wide range.

このようにして得られた油中水滴型エマルジョンを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間、加熱重合させればよく、開始剤として過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0〜30℃で1〜48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去してモノリスを得る。   Various conditions can be selected as the polymerization conditions for polymerizing the water-in-oil emulsion thus obtained depending on the type of monomer and the initiator system. For example, when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate, or the like is used as a polymerization initiator, it can be heated and polymerized at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere. When hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, etc. are used as initiators, polymerization can be carried out at 0-30 ° C. for 1-48 hours in a sealed container under an inert atmosphere. That's fine. After completion of the polymerization, the contents are taken out and subjected to Soxhlet extraction with a solvent such as isopropanol to remove the unreacted monomer and the remaining surfactant to obtain a monolith.

このようにして得られたモノリスにアニオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、四級アンモニウム基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させ導入する方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させ導入する方法;モノリスにラジカル開始基や連鎖移動基を導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、四級アンモニウム基を導入する方法としては、スチレン-ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するアニオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing an anion exchange group into the monolith obtained in this way, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a chloromethyl group is introduced with chloromethyl methyl ether or the like and then reacted with a tertiary amine for introduction; Monolith is produced by copolymerization of chloromethylstyrene and divinylbenzene and introduced by reacting with a tertiary amine; radical initiation group or chain transfer group is introduced into monolith, and N, N, N-trimethylammonium ethyl acrylate or N , N, N-trimethylammonium propylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Among these methods, the method of introducing a quaternary ammonium group includes a method of introducing a chloromethyl group into a styrene-divinylbenzene copolymer with chloromethyl methyl ether and then reacting with a tertiary amine, or chloromethylstyrene. A method of producing a monolith by copolymerization with divinylbenzene and reacting with a tertiary amine is preferable in that the ion exchange groups can be introduced uniformly and quantitatively. Examples of anion exchange groups to be introduced include quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, and tertiary sulfonium. Group, phosphonium group and the like.

(第2のモノリスアニオン交換体)
第2のモノリスアニオン交換体は、粒子凝集型モノリスにアニオン交換基を導入することで得られるものである。第2のモノリスアニオン交換体の基本構造は、架橋構造単位を有する平均粒子径が水湿潤状態で1〜50μm、好ましくは1〜30μmの有機ポリマー粒子が凝集して三次元的に連続した骨格部分を形成し、その骨格間に平均直径が水湿潤状態で20〜100μm、好ましくは20〜90μmの三次元的に連続した空孔を有する粒子凝集型構造であり、当該三次元的に連続した空孔が液体や気体の流路となる。有機ポリマー粒子の平均粒子径が水湿潤状態で1μm未満であると、骨格間の連続した空孔の平均直径が水湿潤状態で20μm未満と小さくなってしまうため好ましくなく、50μmを超えると、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解効果が低下してしまうため好ましくない。また、骨格間に存在する三次元的に連続した空孔の平均直径が水湿潤状態で20μm未満であると、被処理水を透過させた際の圧力損失が大きくなってしまうため好ましくなく、一方、100μmを越えると、被処理水と第2のモノリスアニオン交換体との接触が不十分となり、過酸化水素分解効果が低下してしまうため好ましくない。
(Second monolith anion exchanger)
The second monolith anion exchanger is obtained by introducing an anion exchange group into the particle aggregation type monolith. The basic structure of the second monolith anion exchanger is a skeletal portion in which organic polymer particles having an average particle diameter of 1 to 50 μm, preferably 1 to 30 μm in a water-wet state, having a crosslinked structural unit are aggregated to be three-dimensionally continuous. And a particle aggregation type structure having three-dimensionally continuous pores having an average diameter of 20 to 100 μm, preferably 20 to 90 μm in a water-wet state between the skeletons. A hole becomes a flow path of liquid or gas. If the average particle diameter of the organic polymer particles is less than 1 μm in the water-wet state, the average diameter of the continuous pores between the skeletons will be less than 20 μm in the water-wet state, which is not preferable. The contact between the treated water and the monolith anion exchanger becomes insufficient, and as a result, the hydrogen peroxide decomposition effect is lowered, which is not preferable. Further, if the average diameter of the three-dimensionally continuous pores existing between the skeletons is less than 20 μm in the water-wet state, it is not preferable because the pressure loss when the treated water is permeated increases. If the thickness exceeds 100 μm, the contact between the water to be treated and the second monolith anion exchanger becomes insufficient, and the hydrogen peroxide decomposition effect decreases, which is not preferable.

なお、本発明では、上記有機ポリマー粒子の水湿潤状態での平均粒子径は、SEMを用いることで簡便に測定される。具体的には、先ず、乾燥状態の第2のモノリスアニオン交換体の断面の任意に抽出した部分のSEM写真を撮り、そのSEM写真中の全粒子の有機ポリマー粒子の直径を測定して、乾燥状態の第2のモノリスアニオン交換体中の有機ポリマー粒子の平均粒子径を測定する。次いで、得られた乾燥状態の有機ポリマー粒子の平均粒子径に、膨潤率を乗じて、水湿潤状態の第2のモノリスアニオン交換体中の有機ポリマー粒子の平均粒子径を算出する。例えば、水湿潤状態の第2のモノリスアニオン交換体の直径がX2a(mm)であり、その水湿潤状態の第2のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第2のモノリスアニオン交換体の直径がY2a(mm)であり、この乾燥状態の第2のモノリスアニオン交換体の断面のSEM写真を撮り、そのSEM写真中の全粒子の有機ポリマー粒子の直径を測定したときの平均粒子径がZ2a(μm)であったとすると、水湿潤状態の第2のモノリスアニオン交換体中の有機ポリマー粒子の平均粒子径(μm)は、次式「水湿潤状態の第2のモノリスアニオン交換体中の有機ポリマー粒子の平均粒子径(μm)=Z2a×(X2a/Y2a)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリス中の有機ポリマー粒子の平均粒子径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態の第2のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリス中の有機ポリマー粒子の平均粒子径に、膨潤率を乗じて、水湿潤状態の第2のモノリスアニオン交換体中の有機ポリマー粒子の平均粒子径を算出することもできる。 In the present invention, the average particle size of the organic polymer particles in a wet state with water is easily measured by using SEM. Specifically, first, an SEM photograph of an arbitrarily extracted portion of the cross section of the second monolith anion exchanger in the dry state is taken, and the diameters of the organic polymer particles of all the particles in the SEM photograph are measured and dried. The average particle size of the organic polymer particles in the second monolith anion exchanger in the state is measured. Next, the average particle size of the organic polymer particles in the second monolith anion exchanger in the wet state is calculated by multiplying the average particle size of the obtained organic polymer particles in the dry state by the swelling rate. For example, the diameter of the second monolith anion exchanger in the water wet state is X 2a (mm), the second monolith anion exchanger in the water wet state is dried, and the resulting second monolith anion in the dry state is obtained. When the diameter of the exchanger is Y 2a (mm), an SEM photograph of the cross section of the dried second monolith anion exchanger is taken, and the diameter of the organic polymer particles of all particles in the SEM photograph is measured. Assuming that the average particle size is Z 2a (μm), the average particle size (μm) of the organic polymer particles in the second monolith anion exchanger in the water wet state is expressed by the following formula “second monolith in the water wet state”. The average particle diameter of organic polymer particles in the anion exchanger (μm) = Z 2a × (X 2a / Y 2a ) ”is calculated. Further, the average particle diameter of the organic polymer particles in the dry monolith before the introduction of the anion exchange group, and the second monolith anion in the water wet state relative to the dry monolith when the anion exchange group is introduced into the monolith in the dry state If the swelling ratio of the exchanger is known, the average particle diameter of the organic polymer particles in the second monolith anion exchanger in the water wet state is obtained by multiplying the average particle diameter of the organic polymer particles in the dry monolith by the swelling ratio. The diameter can also be calculated.

乾燥状態のモノリスの骨格間に存在する三次元的に連続した空孔の平均直径及び乾燥状態の第2のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径は、水銀圧入法により求められ、水銀圧入法により得られた細孔分布曲線の極大値を指す。また、水湿潤状態の第2のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径は、乾燥状態の第2のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の第2のモノリスアニオン交換体の直径がX2b(mm)であり、その水湿潤状態の第2のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第2のモノリスアニオン交換体の直径がY2b(mm)であり、この乾燥状態の第2のモノリスアニオン交換体を水銀圧入法により測定したときの骨格間に存在する三次元的に連続した空孔の平均直径がZ2b(μm)であったとすると、水湿潤状態の第2のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径(μm)は、次式「水湿潤状態のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径(μm)=Z2b×(X2b/Y2b)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの骨格間に存在する三次元的に連続した空孔の平均直径、及びその乾燥状態のモノリスにアニオン交換基を導入したときの乾燥状態のモノリスに対する水湿潤状態の第2のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格間に存在する三次元的に連続した空孔の平均直径に、膨潤率を乗じて、水湿潤状態の第2のモノリスアニオン交換体の骨格間に存在する三次元的に連続した空孔の平均直径を算出することもできる。 The average diameter of the three-dimensional continuous pores existing between the skeletons of the dried monolith and the average diameter of the three-dimensional continuous pores existing between the skeletons of the second monolith anion exchanger in the dry state are It is obtained by the mercury intrusion method and indicates the maximum value of the pore distribution curve obtained by the mercury intrusion method. In addition, the average diameter of the three-dimensionally continuous pores existing between the skeletons of the second monolith anion exchanger in the water wet state is the three-dimensional dimension existing between the skeletons of the second monolith anion exchanger in the dry state. This is a value calculated by multiplying the average diameter of continuous pores by the swelling rate. Specifically, the diameter of the second monolith anion exchanger in the water wet state is X 2b (mm), the second monolith anion exchanger in the water wet state is dried, and the second in the dry state obtained is obtained. The diameter of the monolith anion exchanger is Y 2b (mm), and the second monolith anion exchanger in the dry state is measured by the mercury intrusion method, and the three-dimensional continuous pores existing between the skeletons are measured. Assuming that the average diameter is Z 2b (μm), the average diameter (μm) of three-dimensionally continuous pores existing between the skeletons of the second monolith anion exchanger in the water wet state is expressed by the following formula: “water The average diameter (μm) of three-dimensionally continuous pores existing between the skeletons of the monolith anion exchanger in a wet state is calculated by “Z 2b × (X 2b / Y 2b )”. In addition, the average diameter of three-dimensional continuous pores existing between the skeletons of the dried monolith before introduction of the anion exchange group, and the dry monolith when the anion exchange group is introduced into the dried monolith When the swelling ratio of the second monolith anion exchanger in the water wet state is known, the average diameter of three-dimensionally continuous pores existing between the skeletons of the monolith in the dry state is multiplied by the swelling ratio to It is also possible to calculate the average diameter of three-dimensionally continuous pores existing between the skeletons of the second monolith anion exchanger in the state.

第2のモノリスアニオン交換体の全細孔容積は、1〜5ml/gである。全細孔容積が1ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、第2のモノリスアニオン交換体の体積当りのイオン交換容量が低下し、体積当りの白金族金属担持量が低下してしまうため好ましくない。上記モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により求められる。また、モノリス(モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the second monolith anion exchanger is 1-5 ml / g. If the total pore volume is less than 1 ml / g, it is not preferable because the pressure loss at the time of passing water increases, and further, the amount of permeated water per unit cross-sectional area decreases, and the treatment capacity decreases. Absent. On the other hand, if the total pore volume exceeds 5 ml / g, the ion exchange capacity per volume of the second monolith anion exchanger decreases, and the amount of platinum group metal supported per volume decreases. The total pore volume of the monolith (monolith, monolith anion exchanger) is determined by a mercury intrusion method. Further, the total pore volume of the monolith (monolith, monolith anion exchanger) is the same both in the dry state and in the water wet state.

第2のモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.005〜0.1MPa/m・LVであることが好ましく、0.005〜0.05MPa/m・LVであることが特に好ましい。差圧係数及び全細孔容積が上記範囲にあれば、これを触媒として用いた場合、被処理水との接触面積が大きく、かつ被処理水の円滑な流通が可能となるため、優れた性能が発揮できる。   The pressure loss when water is permeated through the second monolith anion exchanger is the pressure loss (hereinafter referred to as “differential pressure”) when water is passed through a column packed with 1 m at a water flow velocity (LV) of 1 m / h. It is preferably 0.005 to 0.1 MPa / m · LV, and particularly preferably 0.005 to 0.05 MPa / m · LV. If the differential pressure coefficient and the total pore volume are in the above ranges, when this is used as a catalyst, the contact area with the water to be treated is large, and the water to be treated can be smoothly circulated. Can be demonstrated.

第2のモノリスアニオン交換体において、有機ポリマー粒子が凝集して三次元的に連続した骨格部分の材料は、架橋構造単位を有する有機ポリマー材料である。すなわち、該有機ポリマー材料は、ビニルモノマーからなる構成単位と、分子中に2個以上のビニル基を有する架橋剤構造単位とを有するものであり、該ポリマー材料は、ポリマー材料を構成する全構成単位に対して、1〜5モル%、好ましくは1〜4モル%の架橋構造単位を含んでいる。架橋構造単位が1モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、上記骨格間に三次元的に連続して存在する空孔径が小さくなってしまい、圧力損失が大きくなってしまうため好ましくない。   In the second monolith anion exchanger, the material of the skeleton part in which the organic polymer particles are aggregated and three-dimensionally continuous is an organic polymer material having a crosslinked structural unit. That is, the organic polymer material has a constitutional unit composed of a vinyl monomer and a cross-linking agent structural unit having two or more vinyl groups in the molecule, and the polymer material comprises all the constitutions constituting the polymer material. 1 to 5 mol%, preferably 1 to 4 mol% of a crosslinked structural unit is contained with respect to the unit. When the cross-linking structural unit is less than 1 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, when it exceeds 5 mol%, the pore diameter that exists three-dimensionally continuously between the skeletons is reduced. Therefore, the pressure loss increases, which is not preferable.

該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルベンジルクロライド等のスチレン系ポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー;スチレン−ジビニルベンゼン共重合体、ビニルベンジルクロライド−ジビニルベンゼン共重合体等が挙げられる。上記ポリマーは、単独のモノマーと架橋剤を共重合させて得られるポリマーでも、複数のモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、粒子凝集構造の形成の容易さ、イオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   The type of the polymer material is not particularly limited, and examples thereof include styrene-based polymers such as polystyrene, poly (α-methylstyrene), and polyvinylbenzyl chloride; polyolefins such as polyethylene and polypropylene; polymers such as polyvinyl chloride and polytetrafluoroethylene. (Halogenated polyolefin); nitrile polymers such as polyacrylonitrile; (meth) acrylic polymers such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate; styrene-divinylbenzene copolymer, vinylbenzyl chloride-divinyl A benzene copolymer etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single monomer and a crosslinking agent, or may be a polymer obtained by polymerizing a plurality of monomers and a crosslinking agent, and two or more kinds of polymers are blended. It may be a thing. Among these organic polymer materials, styrene-divinylbenzene copolymer is used because of its easy formation of particle aggregate structure, ease of ion exchange group introduction and high mechanical strength, and high stability against acid or alkali. Preferred materials include a polymer and a vinylbenzyl chloride-divinylbenzene copolymer.

第2のモノリスアニオン交換体のアニオン交換容量は、水湿潤状態での体積当り0.3〜1.0mg当量/mlである。特開2002−306976号に記載されているような連続気泡構造を有するモノリス状有機多孔質アニオン交換体では、実用的に要求される低い圧力損失を達成しようとすると体積当りのアニオン交換容量が低下したり、体積当りの交換容量を増加させていくと圧力損失が増加するといった欠点を有していたが、第2のモノリスアニオン交換体は、圧力損失を低く押さえたままで体積当りのアニオン交換容量を格段に大きくすることができる。体積当りのイオン交換容量が0.3mg当量/ml未満であると、体積当りの白金族金属ナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、イオン形の変化による第2のモノリスアニオン交換体の膨潤及び収縮の体積変化が著しく大きくなり、場合によっては、第2のモノリスアニオン交換体にクラックや破砕が生じるため好ましくない。なお、第2のモノリスアニオン交換体の乾燥重量当りのアニオン交換容量は特に限定されないが、アニオン交換基を多孔質体の表面及び骨格内部にまで均一に導入しているため、3〜5mg当量/gの値を示す。イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないもののせいぜい500μg当量/gである。 第2のモノリスアニオン交換体のアニオン交換基としては、第1のモノリスアニオン交換体の説明と挙げたものと同様のものを挙げることができる。   The anion exchange capacity of the second monolith anion exchanger is 0.3 to 1.0 mg equivalent / ml per volume in a water wet state. In the monolithic organic porous anion exchanger having an open cell structure as described in JP-A No. 2002-306976, the anion exchange capacity per volume is lowered when trying to achieve a practically required low pressure loss. However, when the exchange capacity per volume is increased, the pressure loss increases. However, the second monolith anion exchanger has an anion exchange capacity per volume while keeping the pressure loss low. Can be significantly increased. When the ion exchange capacity per volume is less than 0.3 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume decreases, which is not preferable. On the other hand, when the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the volume change of the swelling and shrinkage of the second monolith anion exchanger due to the change of the ionic form becomes remarkably large. Since the monolith anion exchanger is cracked or crushed, it is not preferable. The anion exchange capacity per dry weight of the second monolith anion exchanger is not particularly limited. However, since the anion exchange groups are uniformly introduced to the surface of the porous body and the inside of the skeleton, 3 to 5 mg equivalent / The value of g is shown. The ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface is 500 μg equivalent / g at most, although it cannot be generally determined depending on the kind of the porous body or the ion exchange group. Examples of the anion exchange group of the second monolith anion exchanger include the same ones as mentioned in the description of the first monolith anion exchanger.

また、アニオン交換基の分布状態や、「アニオン交換基が均一に分布している」ことの意味内容や、アニオン交換基分布状態の確認方法や、アニオン交換基がモノリスの表面のみならず多孔質体の骨格内部にまで均一に分布することの効果も第1のモノリスアニオン交換体と同様である。   In addition, the distribution of anion exchange groups, the meaning of “anion exchange groups are uniformly distributed”, the method for confirming the distribution of anion exchange groups, and the anion exchange groups are porous as well as the surface of the monolith. The effect of uniform distribution even inside the body skeleton is the same as that of the first monolith anion exchanger.

(第2のモノリスアニオン交換体の製造方法)
モノリスアニオン交換体の製造方法としては、ビニルモノマー、特定量の架橋剤、有機溶媒および重合開始剤とを混合し、静置状態でこれを重合させて得たモノリス(粒子凝集型モノリス状有機多孔質体)に、アニオン交換基を導入する方法が挙げられる。
(Method for producing second monolith anion exchanger)
A monolith anion exchanger is produced by mixing a vinyl monomer, a specific amount of a crosslinking agent, an organic solvent and a polymerization initiator and polymerizing the mixture in a stationary state (particle-aggregated monolithic organic porous material). The material) may be a method of introducing an anion exchange group.

上記ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のモノマーであれば、特に制限はない。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド等のスチレン系モノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用される。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等のスチレン系モノマーである。   The vinyl monomer is not particularly limited as long as it is a lipophilic monomer that contains a polymerizable vinyl group in the molecule and has high solubility in an organic solvent. Specific examples of these vinyl monomers include styrene monomers such as styrene, α-methylstyrene, vinyl toluene, and vinyl benzyl chloride; α-olefins such as ethylene, propylene, 1-butene, and isobutene; butadiene, isoprene, chloroprene, and the like. Diene monomers; Halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; Nitrile monomers such as acrylonitrile and methacrylonitrile; Vinyl esters such as vinyl acetate and vinyl propionate; Methyl acrylate and Acrylic Ethyl acetate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate And (meth) acrylic monomers such as benzyl methacrylate and glycidyl methacrylate. These monomers are used singly or in combination of two or more. The vinyl monomer suitably used in the present invention is a styrene monomer such as styrene or vinyl benzyl chloride.

上記架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好ましい。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用される。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。ビニルモノマーと架橋剤の合計量に対する架橋剤の使用量({架橋剤/(ビニルモノマー+架橋剤)}×100)は、1〜5モル%、好ましくは1〜4モル%である。架橋剤の使用量は得られるモノリスの多孔構造に大きな影響を与え、架橋剤の使用量が5モル%を超えると、骨格間に形成される連続空孔の大きさが小さくなってしまうため好ましくない。一方、架橋剤使用量が1モル%未満であると、多孔質体の機械的強度が不足し、通水時に大きく変形したり、多孔質体の破壊を招いたりするため好ましくない。 上記有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル等の鎖状エーテル類;ヘキサン、オクタン、デカン、ドデカン等の鎖状飽和炭化水素類等が挙げられる。これらのうち、アルコール類が、静置重合により粒子凝集構造が形成されやすくなると共に、三次元的に連続した空孔が大きくなるため好ましい。また、ベンゼンやトルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用される。   The cross-linking agent preferably contains at least two polymerizable vinyl groups in the molecule and has high solubility in an organic solvent. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents are used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of crosslinking agent used ({crosslinking agent / (vinyl monomer + crosslinking agent)} × 100) relative to the total amount of vinyl monomer and crosslinking agent is 1 to 5 mol%, preferably 1 to 4 mol%. The use amount of the crosslinking agent has a great influence on the porous structure of the resulting monolith, and if the use amount of the crosslinking agent exceeds 5 mol%, the size of the continuous pores formed between the skeletons is preferably reduced. Absent. On the other hand, when the amount of the crosslinking agent used is less than 1 mol%, the mechanical strength of the porous body is insufficient, and it is not preferable because it deforms greatly during water passage or causes the porous body to break. The organic solvent is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer, in other words, a poor solvent for the polymer formed by polymerization of the vinyl monomer. Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, alcohols such as ethylene glycol, tetramethylene glycol, glycerin; chain ethers such as diethyl ether, ethylene glycol dimethyl ether; hexane, octane, decane, dodecane, etc. And the like. Among these, alcohols are preferable because the particle aggregation structure is easily formed by stationary polymerization and the three-dimensional continuous pores are increased. Moreover, even if it is a good solvent of polystyrene like benzene and toluene, it is used with the said poor solvent, and when the usage-amount is small, it is used as an organic solvent.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好ましい。重合開始剤は油溶性であるほうが好ましい。重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対する重合開始剤の使用量({重合開始剤/(ビニルモノマー+架橋剤)}×100)は、約0.01〜5モル%である。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferable. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile). Nitrile), 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2'-azobisisobutyrate, 4,4'-azobis (4-cyanovaleric acid), 1,1 ' -Azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but the amount of polymerization initiator used relative to the total amount of vinyl monomer and crosslinking agent ({polymerization initiator / (vinyl monomer + crosslinking agent)} × 100) is about 0.01 to 5 mol%.

重合条件として、モノマーの種類、開始剤の種類により様々な条件を選択することができる。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出してモノリスを得る。   Various conditions can be selected as polymerization conditions depending on the type of monomer and the type of initiator. For example, when 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. After completion of the polymerization, the content is taken out and extracted with a solvent such as acetone to obtain a monolith for the purpose of removing unreacted vinyl monomer and organic solvent.

モノリスの製造において、有機溶媒に溶解したビニルモノマーの重合が早く進む条件で行なえば、平均粒子径1μmに近い有機ポリマー粒子が沈降し凝集して三次元的に連続した骨格部分を形成させることができる。ビニルモノマーの重合が早く進む条件とは、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、架橋剤を増やす、モノマー濃度を高くする、温度を高くするなどである。このような重合条件を加味して、平均粒子径1〜50μmの有機ポリマー粒子を凝集させる重合条件を適宜決定すればよい。また、その骨格間に平均直径が20〜100μmの三次元的に連続した空孔を形成するには、前述の如く、ビニルモノマーと架橋剤の合計量に対する架橋剤の使用量を特定量とすればよい。また、モノリスの全細孔容積を1〜5ml/gとするには、ビニルモノマー、架橋剤、重合開始剤及び重合温度などにより異なり一概には決定できないものの、概ね有機溶媒、モノマー及び架橋剤の合計使用量に対する有機溶媒使用量({有機溶媒/(有機溶媒+モノマー+架橋剤)}×100)が、30〜80重量%、好適には40〜70重量%のような条件で重合すればよい。 このようにして得られたモノリスにアニオン交換基を導入する方法としては、特に制限はなく、第1のモノリスアニオン交換体の製造方法の説明で説明した方法と同様の方法を挙げることができ、アニオン交換基の具体例は、上述したとおりである。   In the production of monolith, if the polymerization of the vinyl monomer dissolved in the organic solvent proceeds under a fast condition, the organic polymer particles having an average particle diameter of 1 μm settle and aggregate to form a three-dimensional continuous skeleton portion. it can. The conditions under which the polymerization of the vinyl monomer proceeds rapidly vary depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc., but cannot be determined unconditionally, but increase the crosslinking agent, increase the monomer concentration, increase the temperature, etc. is there. Taking such polymerization conditions into consideration, the polymerization conditions for aggregating organic polymer particles having an average particle diameter of 1 to 50 μm may be appropriately determined. In addition, in order to form three-dimensionally continuous pores having an average diameter of 20 to 100 μm between the skeletons, as described above, the amount of crosslinking agent used should be a specific amount with respect to the total amount of vinyl monomer and crosslinking agent. That's fine. Moreover, in order to set the total pore volume of the monolith to 1 to 5 ml / g, depending on the vinyl monomer, the crosslinking agent, the polymerization initiator, the polymerization temperature, etc. If the amount of organic solvent used relative to the total amount used ({organic solvent / (organic solvent + monomer + crosslinking agent)} × 100) is polymerized under conditions such as 30 to 80% by weight, preferably 40 to 70% by weight Good. The method for introducing an anion exchange group into the monolith thus obtained is not particularly limited, and examples thereof include the same method as described in the description of the method for producing the first monolith anion exchanger. Specific examples of the anion exchange group are as described above.

(第3のモノリスアニオン交換体)
第3のモノリスアニオン交換体は、モノリスにアニオン交換基を導入することで得られるものであり、気泡状のマクロポア同士が重なり合い、この重なる部分が水湿潤状態で平均直径30〜300μm、好ましくは30〜200μm、特に好ましくは40〜100μmの開口(メソポア)となる連続マクロポア構造体である。第3のモノリスアニオン交換体の開口の平均直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの開口の平均直径よりも大となる。水湿潤状態での開口の平均直径が30μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、水湿潤状態での開口の平均直径が大き過ぎると、被処理水と第3のモノリスアニオン交換体および担持された白金族金属ナノ粒子との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。なお、乾燥状態のモノリス中間体の開口の平均直径、乾燥状態のモノリスの開口の平均直径及び乾燥状態のモノリスアニオン交換体の開口の平均直径は、水銀圧入法により測定される値を意味する。また、水湿潤状態の第3のモノリスアニオン交換体の開口の平均直径は、乾燥状態の第3のモノリスアニオン交換体の開口の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の第3のモノリスアニオン交換体の直径がX(mm)であり、その水湿潤状態の第3のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第3のモノリスアニオン交換体の直径がY(mm)であり、この乾燥状態の第3のモノリスアニオン交換体を水銀圧入法により測定したときの開口の平均直径がZ(μm)であったとすると、水湿潤状態の第3のモノリスアニオン交換体の開口の平均直径(μm)は、次式「水湿潤状態のモノリスアニオン交換体の開口の平均直径(μm)=Z×(X/Y)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの開口の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態の第3のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの開口の平均直径に、膨潤率を乗じて、水湿潤状態の第3のモノリスアニオン交換体の開口の平均直径を算出することもできる。
(Third monolith anion exchanger)
The third monolith anion exchanger is obtained by introducing an anion exchange group into the monolith. The macroscopic pores overlap each other, and the overlapping portion has an average diameter of 30 to 300 μm, preferably 30 when wet. A continuous macropore structure having an opening (mesopore) of ˜200 μm, particularly preferably 40˜100 μm. The average diameter of the opening of the third monolith anion exchanger is larger than the average diameter of the opening of the monolith because the whole monolith swells when an anion exchange group is introduced into the monolith. It is not preferable that the average diameter of the openings in the water-wet state is less than 30 μm, because the pressure loss during water passage increases, and it is not preferable. 3 is not preferable because contact with the monolith anion exchanger 3 and the supported platinum group metal nanoparticles becomes insufficient, resulting in deterioration of hydrogen peroxide decomposition characteristics. The average diameter of the opening of the monolith intermediate in the dry state, the average diameter of the opening of the monolith in the dry state, and the average diameter of the opening of the monolith anion exchanger in the dry state mean values measured by the mercury intrusion method. In addition, the average diameter of the openings of the third monolith anion exchanger in the wet state is a value calculated by multiplying the average diameter of the openings of the third monolith anion exchanger in the dry state by the swelling rate. Specifically, the diameter of the third monolith anion exchanger in the water wet state is X 3 (mm), the third monolith anion exchanger in the water wet state is dried, and the third in the dry state obtained is obtained. The diameter of the monolith anion exchanger is Y 3 (mm), and the average diameter of the opening when the dried third monolith anion exchanger is measured by the mercury intrusion method is Z 3 (μm). The average diameter (μm) of the opening of the third monolith anion exchanger in the water wet state is expressed by the following formula: “average diameter of the opening of the monolith anion exchanger in the water wet state (μm) = Z 3 × (X 3 / Y 3 ) ”. Further, the average diameter of the opening of the dried monolith before the introduction of the anion exchange group, and the swelling of the third monolith anion exchanger in the wet state with respect to the dried monolith when the anion exchange group is introduced into the dried monolith When the ratio is known, the average diameter of the opening of the monolith in the dry state can be multiplied by the swelling ratio to calculate the average diameter of the opening of the third monolith anion exchanger in the water wet state.

第3のモノリスアニオン交換体において、連続マクロポア構造体の切断面のSEM画像において、断面に表れる骨格部面積が、画像領域中、25〜50%、好ましくは25〜45%である。断面に表れる骨格部面積が、画像領域中、25%未満であると、細い骨格となり、機械的強度が低下して、特に高流速で通水した際にモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水と第3のモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下し、触媒効果が低下するため好ましくなく、50%を超えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。   In the third monolith anion exchanger, in the SEM image of the cut surface of the continuous macropore structure, the skeleton part area appearing in the cross section is 25 to 50%, preferably 25 to 45% in the image region. When the area of the skeletal part appearing in the cross section is less than 25% in the image region, the skeleton becomes a thin skeleton, the mechanical strength is lowered, and the monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Therefore, it is not preferable. Furthermore, the contact efficiency between the water to be treated and the third monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, and the catalytic effect is lowered, which is not preferable. If it exceeds 50%, the skeleton becomes thick. This is not preferable because the pressure loss during water passage increases.

なお、特開2002−306976号公報記載のモノリスは、実際には水に対する油相部の配合比を多くして骨格部分を太くしても、共通の開口を確保するためには配合比に限界があり、断面に表れる骨格部面積の最大値は画像領域中、25%を超えることはできない。   In addition, the monolith described in JP-A-2002-306976 is actually limited to the blending ratio in order to ensure a common opening even if the blending ratio of the oil phase part with respect to water is increased and the skeleton portion is thickened. The maximum value of the skeleton part area appearing in the cross section cannot exceed 25% in the image region.

SEM画像を得るための条件は、切断面の断面に表れる骨格部が鮮明に表れる条件であればよく、例えば倍率100〜600倍、写真領域が約150mm×100mmである。SEM観察は、主観を排除したモノリスの任意の切断面の任意の箇所で撮影された切断箇所や撮影箇所が異なる3枚以上、好ましくは5枚以上の画像で行うのがよい。切断されるモノリスは、電子顕微鏡に供するため、乾燥状態のものである。SEM画像における切断面の骨格部を図13(a)に示すとともに、図13(a)を図13(b)を参照して説明する。図13(b)は、図13(a)のSEM写真の断面として表れる骨格部を転写したものである。図13(a)及び図13(b)中、概ね不定形状で且つ断面で表れるものは本発明の「断面に表れる骨格部(符号82)」であり、図13(a)に表れる円形の孔は開口(メソポア)であり、また、比較的大きな曲率や曲面のものはマクロポア(図13(b)中の符号83)である。図13(b)の断面に表れる骨格部面積は、矩形状画像領域81中、28%である。このように、骨格部は明確に判断できる。   The conditions for obtaining the SEM image may be any conditions as long as the skeletal portion appearing in the cross section of the cut surface appears clearly. For example, the magnification is 100 to 600 times, and the photographic area is about 150 mm × 100 mm. The SEM observation is preferably performed on three or more images, preferably five or more images, taken at arbitrary locations on an arbitrary cut surface of the monolith excluding subjectivity and at different locations. The monolith to be cut is in a dry state for use in an electron microscope. FIG. 13A shows a skeleton portion of a cut surface in an SEM image, and FIG. 13A is described with reference to FIG. FIG. 13B is a transcribed skeleton that appears as a cross section of the SEM photograph of FIG. In FIG. 13A and FIG. 13B, what is substantially indeterminate in shape and shown in cross section is the “skeleton part (reference numeral 82)” in the present invention, and circular holes appearing in FIG. 13A. Is an opening (mesopore), and a relatively large curvature or curved surface is a macropore (reference numeral 83 in FIG. 13B). The area of the skeleton part that appears in the cross section of FIG. 13B is 28% in the rectangular image region 81. Thus, the skeleton can be clearly determined.

SEM画像において、切断面の断面に表れる骨格部の面積の測定方法としては、特に制限されず、当該骨格部を公知のコンピューター処理などを行い特定した後、コンピューターなどによる自動計算又は手動計算による算出方法が挙げられる。手動計算としては、不定形状物を、四角形、三角形、円形又は台形などの集合物に置き換え、それらを積層して面積を求める方法が挙げられる。   In the SEM image, the method for measuring the area of the skeletal part appearing in the cross section of the cut surface is not particularly limited, and after specifying the skeleton part by performing known computer processing, etc., calculation by automatic calculation or manual calculation by a computer or the like A method is mentioned. The manual calculation includes a method in which an indefinite shape is replaced with an aggregate such as a quadrangle, a triangle, a circle, or a trapezoid, and the areas are obtained by stacking them.

また、第3のモノリスアニオン交換体の全細孔容積は、0.5〜5ml/g、好ましくは0.8〜4ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過流体量が小さくなり、処理能力が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、機械的強度が低下して、特に高流速で通水した際に第3のモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水と第3のモノリスアニオン交換体およびそれに担持された白金族金属ナノ粒子との接触効率が低下するため、触媒効果も低下してしまうため好ましくない。なお、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、水銀圧入法により測定される値を意味する。また、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the third monolith anion exchanger is 0.5 to 5 ml / g, preferably 0.8 to 4 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss during water flow will increase, which is not preferable. Further, the amount of permeated fluid per unit cross-sectional area decreases, and the processing capacity decreases. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the mechanical strength decreases, and the third monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate. Furthermore, since the contact efficiency between the water to be treated, the third monolith anion exchanger and the platinum group metal nanoparticles supported thereon is lowered, the catalytic effect is also lowered, which is not preferable. The total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) means a value measured by mercury porosimetry. In addition, the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same both in the dry state and in the water wet state.

なお、第3のモノリスアニオン交換体に水を透過させた際の圧力損失は、これを1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.1MPa/m・LVの範囲、特に0.005〜0.05MPa/m・LVであることが好ましい。   The pressure loss when water is permeated through the third monolith anion exchanger is the pressure loss when water is passed through a column packed with 1 m at a water flow velocity (LV) of 1 m / h (hereinafter referred to as “ In this case, it is preferably in the range of 0.001 to 0.1 MPa / m · LV, particularly 0.005 to 0.05 MPa / m · LV.

第3のモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.4〜1.0mg当量/mlである。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質アニオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのアニオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、第3のモノリスアニオン交換体は、開口径を更に大きくすると共に、連続マクロポア構造体の骨格を太くする(骨格の壁部を厚くする)ことができるため、圧力損失を低く押さえたままで体積当りのアニオン交換容量を飛躍的に大きくすることができる。体積当りのアニオン交換容量が0.4mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、第3のモノリスアニオン交換体の重量当りのアニオン交換容量は特に限定されないが、アニオン交換基が多孔質体の表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。なお、イオン交換基が表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The third monolith anion exchanger has an anion exchange capacity per volume of 0.4 to 1.0 mg equivalent / ml in a water-wet state. In the conventional monolithic organic porous anion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume also increases accordingly, so the anion exchange capacity per volume decreases, and the total pore volume is decreased to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the third monolith anion exchanger can further increase the opening diameter and thicken the skeleton of the continuous macropore structure (thicken the skeleton wall), so that the pressure loss can be kept low. The anion exchange capacity per volume can be dramatically increased. If the anion exchange capacity per volume is less than 0.4 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. The anion exchange capacity per weight of the third monolith anion exchanger is not particularly limited. However, since the anion exchange group is uniformly introduced to the surface of the porous body and the inside of the skeleton, the anion exchange capacity is 3.5-4. 5 mg equivalent / g. Note that the ion exchange capacity of the porous body in which the ion exchange group is introduced only on the surface cannot be determined unconditionally depending on the kind of the porous body or the ion exchange group, but is at most 500 μg equivalent / g.

第3のモノリスアニオン交換体において、連続マクロポア構造体の骨格を構成する材料は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好適には0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。該ポリマー材料の種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等の芳香族ビニルポリマー;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリ塩化ビニル、ポリテトラフルオロエチレン等のポリ(ハロゲン化ポリオレフィン);ポリアクリロニトリル等のニトリル系ポリマー;ポリメタクリル酸メチル、ポリメタクリル酸グリシジル、ポリアクリル酸エチル等の(メタ)アクリル系ポリマー等の架橋重合体が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、連続マクロポア構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、芳香族ビニルポリマーの架橋重合体が好ましく、特に、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい材料として挙げられる。   In the third monolith anion exchanger, the material constituting the skeleton of the continuous macropore structure is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. It is preferable. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group. The type of the polymer material is not particularly limited, and examples thereof include aromatic vinyl polymers such as polystyrene, poly (α-methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, and polyvinyl naphthalene; polyolefins such as polyethylene and polypropylene; Poly (halogenated polyolefin) such as vinyl chloride and polytetrafluoroethylene; Nitrile-based polymer such as polyacrylonitrile; Cross-linking weight of (meth) acrylic polymer such as polymethyl methacrylate, polyglycidyl methacrylate, and polyethyl acrylate Coalescence is mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, the cross-linking weight of the aromatic vinyl polymer is easy due to the ease of forming a continuous macropore structure, the ease of introducing an anion exchange group and the high mechanical strength, and the high stability to acids or alkalis. A styrene-divinylbenzene copolymer and a vinylbenzyl chloride-divinylbenzene copolymer are particularly preferable materials.

第3のモノリスアニオン交換体のアニオン交換基としては、第1のモノリスアニオン交換体の説明で挙げたものと同様のものを挙げることができる。   Examples of the anion exchange group of the third monolith anion exchanger include the same as those mentioned in the description of the first monolith anion exchanger.

また、アニオン交換基の分布状態や、「アニオン交換基が均一に分布している」ことの意味内容や、アニオン交換基分布状態の確認方法や、アニオン交換基がモノリスの表面のみならず多孔質体の骨格内部にまで均一に分布することの効果も第1のモノリスアニオン交換体と同様である。   In addition, the distribution of anion exchange groups, the meaning of “anion exchange groups are uniformly distributed”, the method for confirming the distribution of anion exchange groups, and the anion exchange groups are porous as well as the surface of the monolith. The effect of uniform distribution even inside the body skeleton is the same as that of the first monolith anion exchanger.

(第3のモノリスアニオン交換体の製造方法)
第3のモノリスアニオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が5〜16ml/gの連続マクロポア構造のモノリス状の有機多孔質中間体(モノリス中間体)を得るI工程、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、モノリス中間体の骨格より太い骨格を有する骨太有機多孔質体を得るIII工程、該III工程で得られた骨太有機多孔質体にアニオン交換基を導入するIV工程、を行うことにより得られる。
(Method for producing third monolith anion exchanger)
The third monolith anion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I for obtaining a monolithic organic porous intermediate (monolith intermediate) having a continuous macropore structure with a total pore volume of 5 to 16 ml / g, a vinyl monomer, a cross-link having at least two vinyl groups in one molecule Agent, the vinyl monomer and the crosslinking agent dissolve, but the polymer produced by polymerization of the vinyl monomer does not dissolve the organic solvent and the polymerization initiator II step II, the mixture obtained in step II is left standing, And polymerizing in the presence of the monolith intermediate obtained in the step I to obtain a thick organic porous body having a skeleton thicker than the skeleton of the monolith intermediate II Step IV the step of introducing an anion exchange group boned organic porous body obtained in the step III, obtained by performing.

第3のモノリスアニオン交換体の製造方法において、I工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   In the third method for producing a monolith anion exchanger, the step I may be performed according to the method described in JP-A-2002-306976.

I工程のモノリス中間体の製造において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの好適なものとしては、スチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン、エチレン、プロピレン、イソブテン、ブタジエン、エチレングリコールジメタクリレート等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜10モル%、好ましくは0.3〜5モル%とすることが、後の工程でアニオン交換基量を定量的に導入できるため好ましい。   In the production of the monolith intermediate of step I, the oil-soluble monomer that does not contain an ion exchange group includes, for example, an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, and is soluble in water. Low and lipophilic monomers may be mentioned. Preferable examples of these monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene, ethylene, propylene, isobutene, butadiene, ethylene glycol dimethacrylate, and the like. These monomers can be used singly or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and the content thereof is 0.3 to 10 mol% in the total oil-soluble monomer, preferably 0.3 to 5 mol% is preferable because the amount of anion exchange groups can be quantitatively introduced in the subsequent step.

界面活性剤は、イオン交換基を含まない油溶性モノマーと水とを混合した際に、油中水滴型(W/O)エマルジョンを形成できるものであれば特に制限はなく、ソルビタンモノオレエート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンソルビタンモノオレエート等の非イオン界面活性剤;オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤;ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤;ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用することができる。なお、油中水滴型エマルジョンとは、油相が連続相となり、その中に水滴が分散しているエマルジョンを言う。上記界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルジョン粒子(マクロポア)の大きさによって大幅に変動するため一概には言えないが、油溶性モノマーと界面活性剤の合計量に対して約2〜70%の範囲で選択することができる。   The surfactant is not particularly limited as long as it can form a water-in-oil (W / O) emulsion when an oil-soluble monomer containing no ion exchange group and water are mixed, and sorbitan monooleate, Nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene nonylphenyl ether, polyoxyethylene stearyl ether, polyoxyethylene sorbitan monooleate; potassium oleate Anionic surfactants such as sodium dodecylbenzenesulfonate and dioctyl sodium sulfosuccinate; cationic surfactants such as distearyldimethylammonium chloride; amphoteric surfactants such as lauryldimethylbetaine can be used . These surfactants can be used singly or in combination of two or more. The water-in-oil emulsion refers to an emulsion in which an oil phase is a continuous phase and water droplets are dispersed therein. The amount of the surfactant added may vary depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores), but it cannot be generally stated, but the total amount of oil-soluble monomer and surfactant Can be selected within a range of about 2 to 70%.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexanecarbonitrile, benzoyl peroxide, persulfate Examples include potassium, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, and tetramethylthiuram disulfide.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、特に制限はなく、各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法などが使用できる。エマルジョンを形成させるための混合装置についても特に制限はなく、通常のミキサーやホモジナイザー、高圧ホモジナイザー等を用いることができ、目的のエマルジョン粒径を得るのに適切な装置を選択すればよい。また、混合条件についても特に制限はなく、目的のエマルジョン粒径を得ることができる攪拌回転数や攪拌時間を、任意に設定することができる。   The mixing method for mixing the oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator to form a water-in-oil emulsion is not particularly limited. Method of mixing at once, oil-soluble monomer, surfactant and oil-soluble polymerization initiator oil-soluble component and water or water-soluble polymerization initiator water-soluble component separately and uniformly dissolved, A method of mixing the components can be used. There is no particular limitation on the mixing apparatus for forming the emulsion, and a normal mixer, homogenizer, high-pressure homogenizer, or the like can be used, and an appropriate apparatus may be selected to obtain the desired emulsion particle size. Moreover, there is no restriction | limiting in particular about mixing conditions, The stirring rotation speed and stirring time which can obtain the target emulsion particle size can be set arbitrarily.

I工程で得られるモノリス中間体は、連続マクロポア構造を有する。これを重合系に共存させると、モノリス中間体の構造を型として骨太の骨格を有する多孔構造が形成される。また、モノリス中間体は、架橋構造を有する有機ポリマー材料である。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜10モル%、好ましくは0.3〜5モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。特に、全細孔容積が10〜16ml/gと大きい場合には、連続マクロポア構造を維持するため、架橋構造単位を2モル%以上含有していることが好ましい。一方、10モル%を越えると、アニオン交換基の導入が困難になる場合があるため好ましくない。   The monolith intermediate obtained in Step I has a continuous macropore structure. When this coexists in the polymerization system, a porous structure having a thick skeleton with the structure of the monolith intermediate as a mold is formed. The monolith intermediate is an organic polymer material having a crosslinked structure. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 10 mol%, preferably 0.3 to 5 mol% of crosslinked structural units with respect to all the structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. In particular, when the total pore volume is as large as 10 to 16 ml / g, in order to maintain a continuous macropore structure, it is preferable to contain 2 mol% or more of cross-linked structural units. On the other hand, if it exceeds 10 mol%, it may be difficult to introduce an anion exchange group, which is not preferable.

モノリス中間体のポリマー材料の種類としては、特に制限はなく、前述のモノリスのポリマー材料と同じものが挙げられる。これにより、モノリス中間体の骨格に同様のポリマーを形成して、骨格を太らせ均一な骨格構造のモノリスを得ることができる。   The type of the polymer material of the monolith intermediate is not particularly limited, and examples thereof include the same materials as the monolith polymer material described above. Thereby, the same polymer can be formed in the skeleton of the monolith intermediate, and the skeleton can be thickened to obtain a monolith having a uniform skeleton structure.

モノリス中間体の全細孔容積は、5〜16ml/g、好適には6〜16ml/gである。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの全細孔容積が小さくなりすぎ、流体透過時の圧力損失が大きくなるため好ましくない。一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が連続マクロポア構造から逸脱するため好ましくない。モノリス中間体の全細孔容積を上記数値範囲とするには、モノマーと水の比を、概ね1:5〜1:20とすればよい。   The total pore volume of the monolith intermediate is 5 to 16 ml / g, preferably 6 to 16 ml / g. If the total pore volume is too small, the total pore volume of the monolith obtained after polymerizing the vinyl monomer becomes too small, and the pressure loss during fluid permeation increases, which is not preferable. On the other hand, if the total pore volume is too large, the structure of the monolith obtained after polymerizing the vinyl monomer deviates from the continuous macropore structure, which is not preferable. In order to make the total pore volume of the monolith intermediate within the above numerical range, the ratio of the monomer and water may be about 1: 5 to 1:20.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で20〜200μmである。乾燥状態での開口の平均直径が20μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。一方、200μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is 20-200 micrometers in a monolith intermediate body in a dry state. If the average diameter of the openings in the dry state is less than 20 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer is reduced, and the pressure loss during water passage is increased, which is not preferable. On the other hand, if it exceeds 200 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith anion exchanger becomes insufficient. Is unfavorable because it decreases. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

II工程は、ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する架橋剤、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   Step II consists of a vinyl monomer, a crosslinking agent having at least two vinyl groups in one molecule, an organic solvent and a polymerization initiator that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. A step of preparing a mixture of In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

II工程で用いられるビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性のビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。本発明で好適に用いられるビニルモノマーは、スチレン、ビニルベンジルクロライド等の芳香族ビニルモノマーである。   The vinyl monomer used in step II is not particularly limited as long as it is a lipophilic vinyl monomer containing a polymerizable vinyl group in the molecule and having high solubility in an organic solvent, but is allowed to coexist in the polymerization system. It is preferred to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate. Specific examples of these vinyl monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; Diene monomers such as butadiene, isoprene and chloroprene; halogenated olefins such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl such as vinyl acetate and vinyl propionate Esters: methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-methacrylic acid 2- Hexyl, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. These monomers can be used singly or in combination of two or more. The vinyl monomer suitably used in the present invention is an aromatic vinyl monomer such as styrene or vinyl benzyl chloride.

これらビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で3〜50倍、好ましくは4〜40倍である。ビニルモノマー添加量が多孔質体に対して3倍未満であると、生成したモノリスの骨格(モノリス骨格の壁部の厚み)を太くできず、アニオン交換基導入後の体積当りのアニオン交換容量が小さくなってしまうため好ましくない。一方、ビニルモノマー添加量が50倍を超えると、開口径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。   The added amount of these vinyl monomers is 3 to 50 times, preferably 4 to 40 times, by weight with respect to the monolith intermediate coexisting at the time of polymerization. If the amount of vinyl monomer added is less than 3 times that of the porous material, the resulting monolith skeleton (the thickness of the monolith skeleton wall) cannot be increased, and the anion exchange capacity per volume after the introduction of anion exchange groups is reduced. Since it becomes small, it is not preferable. On the other hand, if the amount of vinyl monomer added exceeds 50 times, the opening diameter becomes small, and the pressure loss during water passage becomes large, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量に対して0.3〜10モル%、特に0.3〜5モル%であることが好ましい。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくない。一方、10モル%を越えると、アニオン交換基の導入量が減少してしまう場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、アニオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is preferably from 0.3 to 10 mol%, particularly preferably from 0.3 to 5 mol%, based on the total amount of the vinyl monomer and the crosslinking agent. When the amount of the crosslinking agent used is less than 0.3 mol%, the mechanical strength of the monolith is insufficient, which is not preferable. On the other hand, if it exceeds 10 mol%, the amount of introduced anion exchange groups may decrease, which is not preferable. In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution will be biased in the produced monolith, and cracks are likely to occur during the anion exchange group introduction reaction.

II工程で用いられる有機溶媒は、ビニルモノマーや架橋剤は溶解するがビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、エチレングリコール、プロピレングリコール、テトラメチレングリコール、グリセリン等のアルコール類;ジエチルエーテル、エチレングリコールジメチルエーテル、セロソルブ、メチルセロソルブ、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱してビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in Step II is an organic solvent that dissolves the vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the vinyl monomer. In other words, it is a poor solvent for the polymer formed by polymerization of the vinyl monomer. . Since the organic solvent varies greatly depending on the type of vinyl monomer, it is difficult to list general specific examples. For example, when the vinyl monomer is styrene, the organic solvent includes methanol, ethanol, propanol, butanol, Alcohols such as hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, ethylene glycol, propylene glycol, tetramethylene glycol, glycerin; diethyl ether, ethylene glycol dimethyl ether, cellosolve, methyl cellosolve, butyl cellosolve, polyethylene glycol, polypropylene Chain (poly) ethers such as glycol and polytetramethylene glycol; hexane, heptane, octane, isooctane, decane, dode Chain saturated hydrocarbons such as down, ethyl acetate, isopropyl acetate, cellosolve acetate, esters such as ethyl propionate. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the vinyl monomer concentration is less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the range of the present invention. On the other hand, if the vinyl monomer concentration exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は油溶性であるほうが好ましい。本発明で用いられる重合開始剤の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド等が挙げられる。重合開始剤の使用量は、モノマーの種類や重合温度等によって大きく変動するが、ビニルモノマーと架橋剤の合計量に対して、約0.01〜5%の範囲で使用することができる。   As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator is preferably oil-soluble. Specific examples of the polymerization initiator used in the present invention include 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis ( 2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid) 1,1′-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide and the like. The amount of the polymerization initiator used varies greatly depending on the type of monomer, polymerization temperature, etc., but can be used in a range of about 0.01 to 5% with respect to the total amount of vinyl monomer and crosslinking agent.

III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の骨格より太い骨格を有する骨太のモノリスを得る工程である。III工程で用いるモノリス中間体は、本発明の斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明のように上記重合系に連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の骨太のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体(中間体)の骨格部に吸着又は分配され、多孔質体(中間体)中で重合が進行して骨太骨格のモノリスが得られると考えられる。なお、開口径は重合の進行により狭められるが、モノリス中間体の全細孔容積が大きいため、例え骨格が骨太になっても適度な大きさの開口径が得られる。   In step III, the mixture obtained in step II is allowed to stand and polymerize in the presence of the monolith intermediate obtained in step I to obtain a thick monolith having a skeleton thicker than the skeleton of the monolith intermediate. It is a process to obtain. The monolith intermediate used in the step III plays a very important role in creating the monolith having the novel structure of the present invention. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a continuous macropore structure is present in the polymerization system as in the present invention, the structure of the monolith after polymerization changes dramatically, the particle aggregation structure disappears, and the above-mentioned thick monolith is lost. Is obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body (intermediate), and polymerization proceeds in the porous body (intermediate). Thus, it is considered that a monolith having a thick bone skeleton can be obtained. Although the opening diameter is narrowed by the progress of the polymerization, since the total pore volume of the monolith intermediate is large, an appropriate opening diameter can be obtained even if the skeleton becomes thick.

反応容器の内容積は、モノリス中間体を反応容器中に存在させる大きさのものであれば特に制限されず、反応容器内にモノリス中間体を載置した際、平面視でモノリスの周りに隙間ができるもの、反応容器内にモノリス中間体が隙間無く入るもののいずれであってもよい。このうち、重合後の骨太のモノリスが容器内壁から押圧を受けることなく、反応容器内に隙間無く入るものが、モノリスに歪が生じることもなく、反応原料などの無駄がなく効率的である。なお、反応容器の内容積が大きく、重合後のモノリスの周りに隙間が存在する場合であっても、ビニルモノマーや架橋剤は、モノリス中間体に吸着、分配されるため、反応容器内の隙間部分に粒子凝集構造物が生成することはない。   The internal volume of the reaction vessel is not particularly limited as long as it is large enough to allow the monolith intermediate to exist in the reaction vessel. When the monolith intermediate is placed in the reaction vessel, there is a gap around the monolith in plan view. Or a monolith intermediate in the reaction vessel with no gap. Of these, the thick monolith after polymerization is not pressed from the inner wall of the container and enters the reaction container without any gap, and the monolith is not distorted, and the reaction raw materials are not wasted and efficient. Even when the internal volume of the reaction vessel is large and there are gaps around the monolith after polymerization, the vinyl monomer and the crosslinking agent are adsorbed and distributed on the monolith intermediate, so the gaps in the reaction vessel A particle aggregate structure is not generated in the portion.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、ビニルモノマーの添加量が重量で3〜50倍、好ましくは4〜40倍となるように配合するのが好適である。これにより、適度な開口径を有しつつ、骨太の骨格を有するモノリスを得ることができる。反応容器中、混合物中のビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 3 to 50 times by weight, preferably 4 to 40 times by weight, relative to the monolith intermediate. It is suitable to mix. Thereby, it is possible to obtain a monolith having a thick skeleton while having an appropriate opening diameter. In the reaction vessel, the vinyl monomer and the crosslinking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that has been allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

重合条件は、モノマーの種類、開始剤の種類により様々な条件が選択される。例えば、開始剤として2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30〜100℃で1〜48時間加熱重合させればよい。加熱重合により、モノリス中間体の骨格に吸着、分配したビニルモノマーと架橋剤が該骨格内で重合し、該骨格を太らせる。重合終了後、内容物を取り出し、未反応ビニルモノマーと有機溶媒の除去を目的に、アセトン等の溶剤で抽出して骨太のモノリスを得る。   Various polymerization conditions are selected depending on the type of monomer and the type of initiator. For example, when 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, etc. are used as initiators In a sealed container under an inert atmosphere, heat polymerization may be performed at 30 to 100 ° C. for 1 to 48 hours. By heat polymerization, the vinyl monomer adsorbed and distributed on the skeleton of the monolith intermediate and the cross-linking agent are polymerized in the skeleton to thicken the skeleton. After completion of the polymerization, the contents are taken out and extracted with a solvent such as acetone for the purpose of removing unreacted vinyl monomer and organic solvent to obtain a thick monolith.

次に、上記の方法によりモノリスを製造した後、アニオン交換基を導入する方法が、得られるモノリスアニオン交換体の多孔構造を厳密にコントロールできる点で好ましい。   Next, after producing a monolith by the above method, a method of introducing an anion exchange group is preferred in that the porous structure of the resulting monolith anion exchanger can be strictly controlled.

上記モノリスにアニオン交換基を導入する方法としては、特に制限はなく、高分子反応やグラフト重合等の公知の方法を用いることができる。例えば、四級アンモニウム基を導入する方法としては、モノリスがスチレン−ジビニルベンゼン共重合体等であればクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法;モノリスをクロロメチルスチレンとジビニルベンゼンの共重合により製造し、三級アミンと反応させる方法;モノリスに、均一にラジカル開始基や連鎖移動基を骨格表面及び骨格内部導入し、N,N,N−トリメチルアンモニウムエチルアクリレートやN,N,N−トリメチルアンモニウムプロピルアクリルアミドをグラフト重合する方法;同様にグリシジルメタクリレートをグラフト重合した後、官能基変換により四級アンモニウム基を導入する方法等が挙げられる。これらの方法のうち、四級アンモニウム基を導入する方法としては、スチレン−ジビニルベンゼン共重合体にクロロメチルメチルエーテル等によりクロロメチル基を導入した後、三級アミンと反応させる方法やクロロメチルスチレンとジビニルベンゼンの共重合によりモノリスを製造し、三級アミンと反応させる方法が、イオン交換基を均一かつ定量的に導入できる点で好ましい。なお、導入するイオン交換基としては、トリメチルアンモニウム基、トリエチルアンモニウム基、トリブチルアンモニウム基、ジメチルヒドロキシエチルアンモニウム基、ジメチルヒドロキシプロピルアンモニウム基、メチルジヒドロキシエチルアンモニウム基等の四級アンモニウム基や、第三スルホニウム基、ホスホニウム基等が挙げられる。   There is no restriction | limiting in particular as a method of introduce | transducing an anion exchange group into the said monolith, Well-known methods, such as a polymer reaction and graft polymerization, can be used. For example, as a method of introducing a quaternary ammonium group, if the monolith is a styrene-divinylbenzene copolymer or the like, a method of introducing a chloromethyl group with chloromethyl methyl ether or the like and then reacting with a tertiary amine; A method in which chloromethylstyrene and divinylbenzene are produced by copolymerization and reacted with a tertiary amine; N, N, N-trimethylammonium is introduced into the monolith by introducing radical initiation groups and chain transfer groups uniformly into the skeleton surface and inside the skeleton. Examples include a method of graft polymerization of ethyl acrylate and N, N, N-trimethylammoniumpropylacrylamide; a method of grafting glycidyl methacrylate in the same manner and then introducing a quaternary ammonium group by functional group conversion. Among these methods, as a method for introducing a quaternary ammonium group, a method in which a chloromethyl group is introduced into a styrene-divinylbenzene copolymer with chloromethyl methyl ether and then reacted with a tertiary amine, or chloromethyl styrene. A method of producing a monolith by copolymerization with divinylbenzene and reacting with a tertiary amine is preferable in that the ion exchange groups can be introduced uniformly and quantitatively. Examples of ion exchange groups to be introduced include quaternary ammonium groups such as trimethylammonium group, triethylammonium group, tributylammonium group, dimethylhydroxyethylammonium group, dimethylhydroxypropylammonium group, methyldihydroxyethylammonium group, and tertiary sulfonium. Group, phosphonium group and the like.

第3のモノリスアニオン交換体は、骨太のモノリスにアニオン交換基が導入されるため、例えば骨太モノリスの1.4〜1.9倍のように大きく膨潤する。すなわち、特開2002−306976記載の従来のモノリスにイオン交換基が導入されたものよりも膨潤度が遥かに大きい。このため、骨太モノリスの開口径が小さいものであっても、モノリスイオン交換体の開口径は概ね、上記倍率で大きくなる。また、開口径が膨潤で大きくなっても全細孔容積は変化しない。従って、第3のモノリスイオン交換体は、開口径が格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。   The third monolith anion exchanger swells greatly, for example, 1.4 to 1.9 times that of the thick monolith because an anion exchange group is introduced into the thick monolith. That is, the degree of swelling is much greater than that obtained by introducing an ion exchange group into a conventional monolith described in JP-A-2002-306976. For this reason, even if the opening diameter of the thick monolith is small, the opening diameter of the monolith ion exchanger generally increases at the above magnification. In addition, the total pore volume does not change even when the opening diameter increases due to swelling. Therefore, the third monolith ion exchanger has a high mechanical strength because it has a thick bone skeleton despite the remarkably large opening diameter.

(第4のモノリスアニオン交換体)
第4のモノリスアニオン交換体は、アニオン交換基が導入された全構成単位中、架橋構造単位を0.3〜5.0モル%含有する芳香族ビニルポリマーからなる平均太さが水湿潤状態で1〜60μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μmの三次元的に連続した空孔とからなる共連続構造体であって、全細孔容積が0.5〜5ml/gであり、水湿潤状態での体積当りのイオン交換容量が0.3〜1.0mg当量/mlであり、アニオン交換基が該多孔質イオン交換体中に均一に分布している。
(Fourth monolith anion exchanger)
The fourth monolith anion exchanger has an average thickness of an aromatic vinyl polymer containing 0.3 to 5.0 mol% of a cross-linking structural unit in all the structural units into which an anion exchange group has been introduced. A co-continuous structure comprising a three-dimensionally continuous skeleton of 1 to 60 μm and three-dimensionally continuous pores having an average diameter of 10 to 100 μm in a wet state between the skeletons. The volume is 0.5 to 5 ml / g, the ion exchange capacity per volume under water wet condition is 0.3 to 1.0 mg equivalent / ml, and the anion exchange group is uniform in the porous ion exchanger. Is distributed.

第4のモノリスアニオン交換体は、アニオン交換基が導入された平均太さが水湿潤状態で1〜60μm、好ましくは3〜58μmの三次元的に連続した骨格と、その骨格間に平均直径が水湿潤状態で10〜100μm、好ましくは15〜90μm、特に好ましくは20〜80μmの三次元的に連続した空孔とからなる共連続構造体である。すなわち、共連続構造は図22の模式図に示すように、連続する骨格相91と連続する空孔相92とが絡み合ってそれぞれが共に3次元的に連続する構造90である。この連続した空孔92は、従来の連続気泡型モノリスや粒子凝集型モノリスに比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なイオンの吸着挙動を達成できる。また、骨格が太いため機械的強度が高い。   The fourth monolith anion exchanger has a three-dimensional continuous skeleton having an average thickness of 1 to 60 μm, preferably 3 to 58 μm, in an wet state in which an anion exchange group is introduced, and an average diameter between the skeletons. A co-continuous structure composed of three-dimensionally continuous pores of 10 to 100 μm, preferably 15 to 90 μm, particularly preferably 20 to 80 μm in a wet state. That is, as shown in the schematic diagram of FIG. 22, the co-continuous structure is a structure 90 in which a continuous skeleton phase 91 and a continuous vacancy phase 92 are intertwined and each of them is three-dimensionally continuous. The continuous vacancies 92 have higher continuity of vacancies and are not biased in size compared to conventional open cell monoliths and particle agglomeration monoliths, so that extremely uniform ion adsorption behavior can be achieved. Moreover, since the skeleton is thick, the mechanical strength is high.

第4のモノリスアニオン交換体の骨格の太さ及び空孔の直径は、モノリスにアニオン交換基を導入する際、モノリス全体が膨潤するため、モノリスの骨格の太さ及び空孔の直径よりも大となる。この連続した空孔は、従来の連続気泡型モノリス状有機多孔質アニオン交換体や粒子凝集型モノリス状有機多孔質アニオン交換体に比べて空孔の連続性が高くてその大きさに偏りがないため、極めて均一なアニオンの吸着挙動を達成できる。三次元的に連続した空孔の平均直径が水湿潤状態で10μm未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、100μmを超えると、被処理水と有機多孔質アニオン交換体との接触が不十分となり、その結果、被処理水中の過酸化水素の分解が不十分となるため好ましくない。また、骨格の平均太さが水湿潤状態で1μm未満であると、体積当りのアニオン交換容量が低下するといった欠点のほか、機械的強度が低下して、特に高流速で通水した際に第4のモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水と第4のモノリスアニオン交換体との接触効率が低下し、触媒効果が低下するため好ましくない。一方、骨格の太さが60μmを越えると、骨格が太くなり過ぎ、通水時の圧力損失が増大するため好ましくない。   The skeleton thickness and pore diameter of the fourth monolith anion exchanger are larger than the monolith skeleton thickness and pore diameter because the entire monolith swells when an anion exchange group is introduced into the monolith. It becomes. These continuous pores have higher continuity of the pores than the conventional open-cell type monolithic organic porous anion exchanger and particle aggregation type monolithic organic porous anion exchanger, and the size thereof is not biased. Therefore, an extremely uniform anion adsorption behavior can be achieved. If the average diameter of the three-dimensionally continuous pores is less than 10 μm in the water-wet state, it is not preferable because the pressure loss at the time of water flow increases, and if it exceeds 100 μm, the water to be treated and the organic porous anion The contact with the exchanger becomes insufficient, and as a result, the decomposition of hydrogen peroxide in the water to be treated becomes insufficient. In addition, when the average thickness of the skeleton is less than 1 μm in a wet state of water, the anion exchange capacity per volume decreases, and the mechanical strength decreases. This is not preferable because the monolith anion exchanger 4 is greatly deformed. Furthermore, the contact efficiency between the water to be treated and the fourth monolith anion exchanger decreases, and the catalytic effect decreases, which is not preferable. On the other hand, if the thickness of the skeleton exceeds 60 μm, the skeleton becomes too thick and pressure loss during water passage increases, which is not preferable.

上記連続構造体の空孔の水湿潤状態での平均直径は、水銀圧入法で測定した乾燥状態のモノリスアニオン交換体の空孔の平均直径に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の第4のモノリスアニオン交換体の直径がX4a(mm)であり、その水湿潤状態の第4のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第4のモノリスアニオン交換体の直径がY4a(mm)であり、この乾燥状態の第4のモノリスアニオン交換体を水銀圧入法により測定したときの空孔の平均直径がZ4a(μm)であったとすると、第4のモノリスアニオン交換体の空孔の水湿潤状態での平均直径(μm)は、次式「水湿潤状態の第4のモノリスアニオン交換体の空孔の平均直径(μm)=Z4a×(X4a/Y4a)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの空孔の平均直径、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態の第4のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの空孔の平均直径に、膨潤率を乗じて、水湿潤状態の第4のモノリスアニオン交換体の空孔の平均直径を算出することもできる。また、上記連続構造体の骨格の水湿潤状態での平均太さは、乾燥状態の第4のモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値に、膨潤率を乗じて算出される値である。具体的には、水湿潤状態の第4のモノリスアニオン交換体の直径がX4b(mm)であり、その水湿潤状態の第4のモノリスアニオン交換体を乾燥させ、得られる乾燥状態の第4のモノリスアニオン交換体の直径がY4b(mm)であり、この乾燥状態の第4のモノリスアニオン交換体のSEM観察を少なくとも3回行い、得られた画像中の骨格の太さを測定し、その平均値がZ4b(μm)であったとすると、水湿潤状態の第4のモノリスアニオン交換体の連続構造体の骨格の平均太さ(μm)は、次式「水湿潤状態の第4のモノリスアニオン交換体の連続構造体の骨格の平均太さ(μm)=Z4b×(X4b/Y4b)」で算出される。また、アニオン交換基導入前の乾燥状態のモノリスの骨格の平均太さ、及びその乾燥状態のモノリスにアニオン交換基導入したときの乾燥状態のモノリスに対する水湿潤状態の第4のモノリスアニオン交換体の膨潤率がわかる場合は、乾燥状態のモノリスの骨格の平均太さに、膨潤率を乗じて、水湿潤状態の第4のモノリスアニオン交換体の骨格の平均太さを算出することもできる。なお、骨格は棒状であり円形断面形状であるが、楕円断面形状等異径断面のものが含まれていてもよい。この場合の太さは短径と長径の平均である。 The average diameter of the pores of the continuous structure in the water-wet state is a value calculated by multiplying the average diameter of the pores of the monolith anion exchanger in the dry state measured by the mercury intrusion method and the swelling ratio. Specifically, the diameter of the fourth monolith anion exchanger water wet state is X 4a (mm), drying the fourth monolith anion exchanger of the water-wet state, in the dry state obtained 4 The diameter of the monolith anion exchanger was Y 4a (mm), and the average diameter of the pores was Z 4a (μm) when the dried fourth monolith anion exchanger was measured by the mercury intrusion method. Then, the average diameter (μm) of the pores of the fourth monolith anion exchanger in the water wet state is expressed by the following formula: “average diameter of the pores (μm) of the fourth monolith anion exchanger in the water wet state” = Z 4a × (X 4a / Y 4a ) ”. Further, the average diameter of the pores of the dried monolith before the introduction of the anion exchange group, and the fourth monolith anion exchanger in the water wet state with respect to the dried monolith when the anion exchange group is introduced into the dried monolith. When the swelling ratio is known, the average diameter of the pores of the fourth monolith anion exchanger in the wet state can be calculated by multiplying the average diameter of the pores of the monolith in the dry state by the swelling ratio. The average thickness of the skeleton of the continuous structure in the water-wet state is determined by performing SEM observation of the fourth monolith anion exchanger in the dry state at least three times and measuring the thickness of the skeleton in the obtained image. The average value is calculated by multiplying the swelling ratio. Specifically, the diameter of the fourth monolith anion exchanger in the water wet state is X 4b (mm), and the fourth monolith anion exchanger in the water wet state is dried, and the resulting fourth in the dry state is obtained. The diameter of the monolith anion exchanger is Y 4b (mm), and SEM observation of the dried fourth monolith anion exchanger is performed at least three times, and the thickness of the skeleton in the obtained image is measured. When the average value is Z 4b (μm), the average thickness (μm) of the skeleton of the continuous structure of the fourth monolith anion exchanger in the water wet state is expressed by the following formula: The average thickness (μm) of the skeleton of the continuous structure of the monolith anion exchanger = Z 4b × (X 4b / Y 4b ) ”. Further, the average thickness of the skeleton of the dried monolith before the introduction of the anion exchange group, and the fourth monolith anion exchanger in the water wet state relative to the dried monolith when the anion exchange group is introduced into the dried monolith. When the swelling ratio is known, the average thickness of the skeleton of the monolith in the dry state can be multiplied by the swelling ratio to calculate the average thickness of the skeleton of the fourth monolith anion exchanger in the water wet state. The skeleton has a rod-like shape and a circular cross-sectional shape, but may have a cross-section with a different diameter such as an elliptical cross-sectional shape. The thickness in this case is the average of the minor axis and the major axis.

また、第4のモノリスアニオン交換体の全細孔容積は、0.5〜5ml/gである。全細孔容積が0.5ml/g未満であると、通水時の圧力損失が大きくなってしまうため好ましくなく、更に、単位断面積当りの透過水量が小さくなり、処理水量が低下してしまうため好ましくない。一方、全細孔容積が5ml/gを超えると、体積当りのアニオン交換容量が低下し、白金族金属ナノ粒子の担持量も低下し触媒効果が低下するため好ましくない。また、機械的強度が低下して、特に高流速で通水した際に第4のモノリスアニオン交換体が大きく変形してしまうため好ましくない。更に、被処理水と第4のモノリスアニオン交換体との接触効率が低下して、過酸化水素分解効果も低下してしまうため好ましくない。三次元的に連続した空孔の大きさ及び全細孔容積が上記範囲にあれば、被処理水との接触が極めて均一で接触面積も大きく、かつ低圧力損失下での通水が可能となる。なお、モノリス(モノリス中間体、モノリス、モノリスアニオン交換体)の全細孔容積は、乾燥状態でも、水湿潤状態でも、同じである。   The total pore volume of the fourth monolith anion exchanger is 0.5 to 5 ml / g. If the total pore volume is less than 0.5 ml / g, the pressure loss at the time of water flow is increased, which is not preferable. Further, the amount of permeated water per unit cross-sectional area is decreased, and the amount of treated water is decreased. Therefore, it is not preferable. On the other hand, if the total pore volume exceeds 5 ml / g, the anion exchange capacity per volume decreases, the amount of platinum group metal nanoparticles supported decreases, and the catalytic effect decreases. In addition, the mechanical strength is lowered, and the fourth monolith anion exchanger is greatly deformed particularly when water is passed at a high flow rate, which is not preferable. Furthermore, the contact efficiency between the water to be treated and the fourth monolith anion exchanger is lowered, and the hydrogen peroxide decomposition effect is also lowered. If the three-dimensional continuous pore size and total pore volume are within the above ranges, the contact with the water to be treated is extremely uniform, the contact area is large, and water can flow through under low pressure loss. Become. Note that the total pore volume of the monolith (monolith intermediate, monolith, monolith anion exchanger) is the same in both the dry state and the water wet state.

なお、第4のモノリスアニオン交換体に水を透過させた際の圧力損失は、多孔質体を1m充填したカラムに通水線速度(LV)1m/hで通水した際の圧力損失(以下、「差圧係数」と言う。)で示すと、0.001〜0.5MPa/m・LVの範囲、特に0.005〜0.1MPa/m・LVである。   The pressure loss when water is permeated through the fourth monolith anion exchanger is the pressure loss when water is passed through a column filled with 1 m of a porous body at a water flow rate (LV) of 1 m / h (hereinafter referred to as “pressure loss”). , “Differential pressure coefficient”), the range is 0.001 to 0.5 MPa / m · LV, particularly 0.005 to 0.1 MPa / m · LV.

第4のモノリスアニオン交換体において、共連続構造体の骨格を構成する材料は、全構成単位中、0.3〜5モル%、好ましくは0.5〜3.0モル%の架橋構造単位を含んでいる芳香族ビニルポリマーであり疎水性である。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくなく、一方、5モル%を越えると、多孔質体の構造が共連続構造から逸脱しやすくなる。該芳香族ビニルポリマーの種類に特に制限はなく、例えば、ポリスチレン、ポリ(α-メチルスチレン)、ポリビニルトルエン、ポリビニルベンジルクロライド、ポリビニルビフェニル、ポリビニルナフタレン等が挙げられる。上記ポリマーは、単独のビニルモノマーと架橋剤を共重合させて得られるポリマーでも、複数のビニルモノマーと架橋剤を重合させて得られるポリマーであってもよく、また、二種類以上のポリマーがブレンドされたものであってもよい。これら有機ポリマー材料の中で、共連続構造形成の容易さ、アニオン交換基導入の容易性と機械的強度の高さ、および酸又はアルカリに対する安定性の高さから、スチレン−ジビニルベンゼン共重合体やビニルベンジルクロライド−ジビニルベンゼン共重合体が好ましい。   In the fourth monolith anion exchanger, the material constituting the skeleton of the co-continuous structure is 0.3 to 5 mol%, preferably 0.5 to 3.0 mol% of the crosslinked structural unit in all the structural units. It is an aromatic vinyl polymer containing and is hydrophobic. If the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the porous body tends to deviate from the bicontinuous structure. There is no restriction | limiting in particular in the kind of this aromatic vinyl polymer, For example, a polystyrene, poly ((alpha) -methylstyrene), polyvinyl toluene, polyvinyl benzyl chloride, polyvinyl biphenyl, polyvinyl naphthalene etc. are mentioned. The polymer may be a polymer obtained by copolymerizing a single vinyl monomer and a crosslinking agent, a polymer obtained by polymerizing a plurality of vinyl monomers and a crosslinking agent, or a blend of two or more types of polymers. It may be what was done. Among these organic polymer materials, a styrene-divinylbenzene copolymer is obtained because of the ease of forming a co-continuous structure, the ease of introducing an anion exchange group, the high mechanical strength, and the high stability to acids or alkalis. And vinylbenzyl chloride-divinylbenzene copolymer is preferred.

第4のモノリスアニオン交換体は、水湿潤状態での体積当りのアニオン交換容量が0.3〜1.0mg当量/mlのイオン交換容量を有する。特開2002−306976号に記載されているような本発明とは異なる連続マクロポア構造を有する従来型のモノリス状有機多孔質イオン交換体では、実用的に要求される低い圧力損失を達成するために、開口径を大きくすると、全細孔容積もそれに伴って大きくなってしまうため、体積当りのイオン交換容量が低下する、体積当りの交換容量を増加させるために全細孔容積を小さくしていくと、開口径が小さくなってしまうため圧力損失が増加するといった欠点を有していた。それに対して、本発明の第4のモノリスアニオン交換体は、三次元的に連続した空孔の連続性や均一性が高いため、全細孔容積を低下させても圧力損失はさほど増加しない。そのため、圧力損失を低く押さえたままで体積当りのアニオン交換容量を飛躍的に大きくすることができる。体積当りのアニオン交換容量が0.3mg当量/ml未満であると、体積当りの白金族金属のナノ粒子担持量が低下してしまうため好ましくない。一方、体積当りのアニオン交換容量が1.0mg当量/mlを超えると、通水時の圧力損失が増大してしまうため好ましくない。なお、第4のモノリスアニオン交換体の乾燥状態における重量当りのアニオン交換容量は特に限定されないが、イオン交換基が多孔質体の骨格表面及び骨格内部にまで均一に導入しているため、3.5〜4.5mg当量/gである。なお、イオン交換基が骨格表面のみに導入された多孔質体のイオン交換容量は、多孔質体やイオン交換基の種類により一概には決定できないものの、せいぜい500μg当量/gである。   The fourth monolith anion exchanger has an ion exchange capacity of 0.3 to 1.0 mg equivalent / ml per anion volume in a water wet state. In the conventional monolithic organic porous ion exchanger having a continuous macropore structure different from the present invention as described in JP-A-2002-306976, in order to achieve a low pressure loss that is practically required, When the opening diameter is increased, the total pore volume is increased accordingly, so that the ion exchange capacity per volume is decreased, and the total pore volume is decreased in order to increase the exchange capacity per volume. In addition, since the opening diameter is reduced, the pressure loss increases. On the other hand, the fourth monolith anion exchanger of the present invention has high continuity and uniformity of three-dimensionally continuous pores, so that the pressure loss does not increase so much even if the total pore volume is reduced. Therefore, the anion exchange capacity per volume can be dramatically increased while keeping the pressure loss low. If the anion exchange capacity per volume is less than 0.3 mg equivalent / ml, the amount of platinum group metal nanoparticles supported per volume will be unfavorable. On the other hand, if the anion exchange capacity per volume exceeds 1.0 mg equivalent / ml, the pressure loss at the time of passing water increases, which is not preferable. In addition, the anion exchange capacity per weight in the dry state of the fourth monolith anion exchanger is not particularly limited, but the ion exchange groups are uniformly introduced to the skeleton surface and the skeleton inside the porous body. 5-4.5 mg equivalent / g. The ion exchange capacity of a porous body in which ion exchange groups are introduced only on the surface of the skeleton cannot be determined unconditionally depending on the kind of the porous body or ion exchange groups, but is at most 500 μg equivalent / g.

第4のモノリスアニオン交換体のアニオン交換基としては、第1のモノリスアニオン交換体の説明で挙げたものと同様のものを挙げることができる。   Examples of the anion exchange group of the fourth monolith anion exchanger include the same as those mentioned in the description of the first monolith anion exchanger.

また、アニオン交換基の分布状態や、「アニオン交換基が均一に分布している」ことの意味内容や、アニオン交換基分布状態の確認方法や、アニオン交換基がモノリスの表面のみならず多孔質体の骨格内部にまで均一に分布することの効果も第1のモノリスアニオン交換体と同様である。   In addition, the distribution of anion exchange groups, the meaning of “anion exchange groups are uniformly distributed”, the method for confirming the distribution of anion exchange groups, and the anion exchange groups are porous as well as the surface of the monolith. The effect of uniform distribution even inside the body skeleton is the same as that of the first monolith anion exchanger.

(第4のモノリスアニオン交換体の製造方法)
第4のモノリスアニオン交換体は、イオン交換基を含まない油溶性モノマー、界面活性剤及び水の混合物を撹拌することにより油中水滴型エマルジョンを調製し、次いで油中水滴型エマルジョンを重合させて全細孔容積が16ml/gを超え、30ml/g以下の連続マクロポア構造のモノリス状の有機多孔質中間体を得るI工程、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製するII工程、II工程で得られた混合物を静置下、且つI工程で得られたモノリス状の有機多孔質中間体の存在下に重合を行い、共連続構造体を得るIII工程、該III工程で得られた共連続構造体にアニオン交換基を導入するIV工程を行うことで得られる。
(Method for producing fourth monolith anion exchanger)
The fourth monolith anion exchanger prepares a water-in-oil emulsion by stirring a mixture of oil-soluble monomer, surfactant and water that does not contain ion-exchange groups, and then polymerizes the water-in-oil emulsion. Step I to obtain a monolithic organic porous intermediate having a continuous macropore structure having a total pore volume of more than 16 ml / g and 30 ml / g or less, an aromatic vinyl monomer, and at least two or more vinyl groups in one molecule From an organic solvent and a polymerization initiator in which 0.3 to 5 mol% of the cross-linking agent, aromatic vinyl monomer and cross-linking agent dissolve but the polymer formed by polymerization of the aromatic vinyl monomer does not dissolve in the total oil-soluble monomer having Polymerization is carried out in the presence of the monolithic organic porous intermediate obtained in Step I, while allowing the mixture obtained in Step II and Step II to stand. Obtained by performing a co-continuous structure III to obtain a, IV introducing an anion exchange group to the resulting co-continuous structure in the step III.

第4のモノリスアニオン交換体におけるモノリス中間体を得るI工程は、特開2002−306976号公報記載の方法に準拠して行なえばよい。   What is necessary is just to perform the I process of obtaining the monolith intermediate body in a 4th monolith anion exchanger based on the method of Unexamined-Japanese-Patent No. 2002-306976.

すなわち、I工程において、イオン交換基を含まない油溶性モノマーとしては、例えば、カルボン酸基、スルホン酸基、四級アンモニウム基等のイオン交換基を含まず、水に対する溶解性が低く、親油性のモノマーが挙げられる。これらモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等の芳香族ビニルモノマー;エチレン、プロピレン、1-ブテン、イソブテン等のα-オレフィン;ブタジエン、イソプレン、クロロプレン等のジエン系モノマー;塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン等のハロゲン化オレフィン;アクリロニトリル、メタクリロニトリル等のニトリル系モノマー;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸グリシジル等の(メタ)アクリル系モノマーが挙げられる。これらモノマーの中で、好適なものとしては、芳香族ビニルモノマーであり、例えばスチレン、α−メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ジビニルベンゼン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。ただし、ジビニルベンゼン、エチレングリコールジメタクリレート等の架橋性モノマーを少なくとも油溶性モノマーの一成分として選択し、その含有量を全油溶性モノマー中、0.3〜5モル%、好ましくは0.3〜3モル%とすることが、共連続構造の形成に有利となるため好ましい。   That is, in the step I, as the oil-soluble monomer not containing an ion exchange group, for example, it does not contain an ion exchange group such as a carboxylic acid group, a sulfonic acid group, and a quaternary ammonium group, has low solubility in water, and is lipophilic. These monomers are mentioned. Specific examples of these monomers include aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl and vinyl naphthalene; α-olefins such as ethylene, propylene, 1-butene and isobutene; butadiene Diene monomers such as vinyl chloride, vinyl bromide, vinylidene chloride and tetrafluoroethylene; nitrile monomers such as acrylonitrile and methacrylonitrile; vinyl esters such as vinyl acetate and vinyl propionate Methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethyl methacrylate Sill, cyclohexyl methacrylate, benzyl methacrylate, and (meth) acrylic monomer of glycidyl methacrylate. Among these monomers, preferred are aromatic vinyl monomers such as styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, divinyl benzene and the like. These monomers can be used singly or in combination of two or more. However, a crosslinkable monomer such as divinylbenzene or ethylene glycol dimethacrylate is selected as at least one component of the oil-soluble monomer, and its content is 0.3 to 5 mol%, preferably 0.3 to the total oil-soluble monomer. 3 mol% is preferable because it is advantageous for forming a co-continuous structure.

界面活性剤は、第3のモノリスアニオン交換体のI工程で使用する界面活性剤と同様であり、その説明を省略する。   The surfactant is the same as the surfactant used in Step I of the third monolith anion exchanger, and the description thereof is omitted.

また、I工程では、油中水滴型エマルジョン形成の際、必要に応じて重合開始剤を使用してもよい。重合開始剤は、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性であっても油溶性であってもよく、例えば、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2−メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノ吉草酸)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、過酸化ベンゾイル、過酸化ラウロイル、過硫酸カリウム、過硫酸アンモニウム、テトラメチルチウラムジスルフィド、過酸化水素−塩化第一鉄、過硫酸ナトリウム−酸性亜硫酸ナトリウム等が挙げられる。   In Step I, a polymerization initiator may be used as necessary when forming a water-in-oil emulsion. As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble. For example, 2,2′-azobis (isobutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2 , 2′-azobis (2-methylbutyronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis ( 4-cyanovaleric acid), 1,1'-azobis (cyclohexane-1-carbonitrile), benzoyl peroxide, lauroyl peroxide, potassium persulfate, ammonium persulfate, tetramethylthiuram disulfide, hydrogen peroxide-ferrous chloride Sodium persulfate-sodium acid sodium sulfite and the like.

イオン交換基を含まない油溶性モノマー、界面活性剤、水及び重合開始剤とを混合し、油中水滴型エマルジョンを形成させる際の混合方法としては、第1のモノリスアニオン交換体のI工程における混合方法と同様であり、その説明を省略する。   As a mixing method when an oil-soluble monomer not containing an ion exchange group, a surfactant, water, and a polymerization initiator are mixed to form a water-in-oil emulsion, the first monolith anion exchanger in Step I is used. This is the same as the mixing method, and the description thereof is omitted.

第4のモノリスアニオン交換体の製造方法において、I工程で得られるモノリス中間体は、架橋構造を有する有機ポリマー材料、好適には芳香族ビニルポリマーである。該ポリマー材料の架橋密度は特に限定されないが、ポリマー材料を構成する全構成単位に対して、0.3〜5モル%、好ましくは0.3〜3モル%の架橋構造単位を含んでいることが好ましい。架橋構造単位が0.3モル%未満であると、機械的強度が不足するため好ましくない。一方、5モル%を超えると、モノリスの構造が共連続構造を逸脱し易くなるため好ましくない。特に、全細孔容積が16〜20ml/gと本発明の中では小さい場合には、共連続構造を形成させるため、架橋構造単位は3モル%未満とすることが好ましい。   In the fourth method for producing a monolith anion exchanger, the monolith intermediate obtained in the step I is an organic polymer material having a crosslinked structure, preferably an aromatic vinyl polymer. Although the crosslinking density of the polymer material is not particularly limited, it contains 0.3 to 5 mol%, preferably 0.3 to 3 mol% of crosslinked structural units with respect to all structural units constituting the polymer material. Is preferred. When the cross-linking structural unit is less than 0.3 mol%, the mechanical strength is insufficient, which is not preferable. On the other hand, if it exceeds 5 mol%, the structure of the monolith tends to deviate from the co-continuous structure, which is not preferable. In particular, when the total pore volume is as small as 16 to 20 ml / g in the present invention, in order to form a co-continuous structure, the cross-linking structural unit is preferably less than 3 mol%.

モノリス中間体のポリマー材料の種類は、第3のモノリスアニオン交換体のモノリス中間体のポリマー材料の種類と同様であり、その説明を省略する。   The type of the polymer material of the monolith intermediate is the same as the type of the polymer material of the monolith intermediate of the third monolith anion exchanger, and the description thereof is omitted.

モノリス中間体の全細孔容積は、16ml/gを超え、30ml/g以下、好適には16ml/gを超え、25ml/g以下である。すなわち、このモノリス中間体は、基本的には連続マクロポア構造ではあるが、マクロポアとマクロポアの重なり部分である開口(メソポア)が格段に大きいため、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に限りなく近い構造を有している。これを重合系に共存させると、モノリス中間体の構造を型として共連続構造の多孔質体が形成される。全細孔容積が小さ過ぎると、ビニルモノマーを重合させた後で得られるモノリスの構造が共連続構造から連続マクロポア構造に変化してしまうため好ましくなく、一方、全細孔容積が大き過ぎると、ビニルモノマーを重合させた後で得られるモノリスの機械的強度が低下したり、体積当たりのアニオン交換容量が低下してしまうため好ましくない。モノリス中間体の全細孔容積を第4のモノリスアニオン交換体の特定の範囲とするには、モノマーと水の比を、概ね1:20〜1:40とすればよい。   The total pore volume of the monolith intermediate is greater than 16 ml / g and not greater than 30 ml / g, preferably greater than 16 ml / g and not greater than 25 ml / g. In other words, this monolith intermediate basically has a continuous macropore structure, but the opening (mesopore) that is the overlapping part of the macropore and the macropore is remarkably large, so that the skeleton constituting the monolith structure is primary from the two-dimensional wall surface. It has a structure as close as possible to the original rod-like skeleton. When this coexists in the polymerization system, a porous body having a co-continuous structure is formed using the structure of the monolith intermediate as a mold. If the total pore volume is too small, the structure of the monolith obtained after polymerizing the vinyl monomer is not preferable because it changes from a co-continuous structure to a continuous macropore structure. On the other hand, if the total pore volume is too large, This is not preferable because the mechanical strength of the monolith obtained after polymerizing the vinyl monomer is lowered and the anion exchange capacity per volume is lowered. In order to make the total pore volume of the monolith intermediate within a specific range of the fourth monolith anion exchanger, the ratio of monomer to water may be about 1:20 to 1:40.

また、モノリス中間体は、マクロポアとマクロポアの重なり部分である開口(メソポア)の平均直径が乾燥状態で5〜100μmである。開口の平均直径が乾燥状態で5μm未満であると、ビニルモノマーを重合させた後で得られるモノリスの開口径が小さくなり、流体透過時の圧力損失が大きくなってしまうため好ましくない。一方、100μmを超えると、ビニルモノマーを重合させた後で得られるモノリスの開口径が大きくなりすぎ、被処理水とモノリスアニオン交換体との接触が不十分となり、その結果、過酸化水素分解特性が低下してしまうため好ましくない。モノリス中間体は、マクロポアの大きさや開口の径が揃った均一構造のものが好適であるが、これに限定されず、均一構造中、均一なマクロポアの大きさよりも大きな不均一なマクロポアが点在するものであってもよい。   Moreover, the average diameter of the opening (mesopore) which is an overlap part of a macropore and a macropore is a monolith intermediate body is 5-100 micrometers in a dry state. When the average diameter of the openings is less than 5 μm in the dry state, the opening diameter of the monolith obtained after polymerizing the vinyl monomer is reduced, and the pressure loss during fluid permeation is increased, which is not preferable. On the other hand, if it exceeds 100 μm, the opening diameter of the monolith obtained after polymerizing the vinyl monomer becomes too large, and the contact between the water to be treated and the monolith anion exchanger becomes insufficient. Is unfavorable because it decreases. Monolith intermediates preferably have a uniform structure with uniform macropore size and aperture diameter, but are not limited to this, and the uniform structure is dotted with nonuniform macropores larger than the size of the uniform macropore. You may do.

第4のモノリスアニオン交換体の製造方法において、II工程は、芳香族ビニルモノマー、一分子中に少なくとも2個以上のビニル基を有する全油溶性モノマー中、0.3〜5モル%の架橋剤、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒及び重合開始剤からなる混合物を調製する工程である。なお、I工程とII工程の順序はなく、I工程後にII工程を行ってもよく、II工程後にI工程を行ってもよい。   In the fourth method for producing a monolith anion exchanger, the step II includes 0.3 to 5 mol% of a crosslinking agent in the aromatic vinyl monomer and the total oil-soluble monomer having at least two or more vinyl groups in one molecule. In this step, a mixture comprising an organic solvent and a polymerization initiator that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer. In addition, there is no order of I process and II process, II process may be performed after I process, and I process may be performed after II process.

第4のモノリスアニオン交換体の製造方法において、II工程で用いられる芳香族ビニルモノマーとしては、分子中に重合可能なビニル基を含有し、有機溶媒に対する溶解性が高い親油性の芳香族ビニルモノマーであれば、特に制限はないが、上記重合系に共存させるモノリス中間体と同種類もしくは類似のポリマー材料を生成するビニルモノマーを選定することが好ましい。これらビニルモノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、ビニルビフェニル、ビニルナフタレン等が挙げられる。これらモノマーは、一種単独又は二種以上を組み合わせて使用することができる。本発明で好適に用いられる芳香族ビニルモノマーは、スチレン、ビニルベンジルクロライド等である。   In the fourth method for producing a monolith anion exchanger, the aromatic vinyl monomer used in the step II includes a lipophilic aromatic vinyl monomer having a polymerizable vinyl group in the molecule and having high solubility in an organic solvent. If it is, there is no particular limitation, but it is preferable to select a vinyl monomer that produces the same or similar polymer material as the monolith intermediate coexisting in the polymerization system. Specific examples of these vinyl monomers include styrene, α-methylstyrene, vinyl toluene, vinyl benzyl chloride, vinyl biphenyl, vinyl naphthalene and the like. These monomers can be used singly or in combination of two or more. Aromatic vinyl monomers preferably used in the present invention are styrene, vinyl benzyl chloride and the like.

これら芳香族ビニルモノマーの添加量は、重合時に共存させるモノリス中間体に対して、重量で5〜50倍、好ましくは5〜40倍である。芳香族ビニルモノマー添加量がモノリス中間体に対して5倍未満であると、棒状骨格を太くできずアニオン交換基導入後の体積当りのアニオン交換容量が小さくなってしまうため好ましくない。一方、芳香族ビニルモノマー添加量が50倍を超えると、連続空孔の径が小さくなり、通水時の圧力損失が大きくなってしまうため好ましくない。   The amount of these aromatic vinyl monomers added is 5 to 50 times, preferably 5 to 40 times, by weight with respect to the monolith intermediate coexisting during polymerization. If the amount of the aromatic vinyl monomer added is less than 5 times that of the monolith intermediate, the rod-like skeleton cannot be made thick, and the anion exchange capacity per volume after the introduction of the anion exchange group becomes small. On the other hand, if the amount of the aromatic vinyl monomer added exceeds 50 times, the diameter of the continuous pores becomes small and the pressure loss during water passage becomes large, which is not preferable.

II工程で用いられる架橋剤は、分子中に少なくとも2個の重合可能なビニル基を含有し、有機溶媒への溶解性が高いものが好適に用いられる。架橋剤の具体例としては、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート、ブタンジオールジアクリレート等が挙げられる。これら架橋剤は、一種単独又は二種以上を組み合わせて使用することができる。好ましい架橋剤は、機械的強度の高さと加水分解に対する安定性から、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等の芳香族ポリビニル化合物である。架橋剤使用量は、ビニルモノマーと架橋剤の合計量(全油溶性モノマー)に対して0.3〜5モル%、特に0.3〜3モル%である。架橋剤使用量が0.3モル%未満であると、モノリスの機械的強度が不足するため好ましくなく、一方、多過ぎると、アニオン交換基の定量的導入が困難になる場合があるため好ましくない。なお、上記架橋剤使用量は、ビニルモノマー/架橋剤重合時に共存させるモノリス中間体の架橋密度とほぼ等しくなるように用いることが好ましい。両者の使用量があまりに大きくかけ離れると、生成したモノリス中で架橋密度分布の偏りが生じ、アニオン交換基導入反応時にクラックが生じやすくなる。   As the crosslinking agent used in step II, a crosslinking agent containing at least two polymerizable vinyl groups in the molecule and having high solubility in an organic solvent is preferably used. Specific examples of the crosslinking agent include divinylbenzene, divinylnaphthalene, divinylbiphenyl, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, butanediol diacrylate, and the like. These crosslinking agents can be used singly or in combination of two or more. Preferred cross-linking agents are aromatic polyvinyl compounds such as divinylbenzene, divinylnaphthalene and divinylbiphenyl because of their high mechanical strength and stability to hydrolysis. The amount of the crosslinking agent used is 0.3 to 5 mol%, particularly 0.3 to 3 mol%, based on the total amount of vinyl monomer and crosslinking agent (total oil-soluble monomer). When the amount of the crosslinking agent used is less than 0.3 mol%, it is not preferable because the mechanical strength of the monolith is insufficient. On the other hand, when the amount is too large, it may be difficult to quantitatively introduce the anion exchange group. . In addition, it is preferable to use the said crosslinking agent usage-amount so that it may become substantially equal to the crosslinking density of the monolith intermediate body coexisted at the time of vinyl monomer / crosslinking agent polymerization. If the amounts used of both are too large, the crosslink density distribution will be biased in the produced monolith, and cracks are likely to occur during the anion exchange group introduction reaction.

II工程で用いられる有機溶媒は、芳香族ビニルモノマーや架橋剤は溶解するが芳香族ビニルモノマーが重合して生成するポリマーは溶解しない有機溶媒、言い換えると、芳香族ビニルモノマーが重合して生成するポリマーに対する貧溶媒である。該有機溶媒は、芳香族ビニルモノマーの種類によって大きく異なるため一般的な具体例を列挙することは困難であるが、例えば、芳香族ビニルモノマーがスチレンの場合、有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、オクタノール、2-エチルヘキサノール、デカノール、ドデカノール、プロピレングリコール、テトラメチレングリコール等のアルコール類;ジエチルエーテル、ブチルセロソルブ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等の鎖状(ポリ)エーテル類;ヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ドデカン等の鎖状飽和炭化水素類;酢酸エチル、酢酸イソプロピル、酢酸セロソルブ、プロピオン酸エチル等のエステル類が挙げられる。また、ジオキサンやTHF、トルエンのようにポリスチレンの良溶媒であっても、上記貧溶媒と共に用いられ、その使用量が少ない場合には、有機溶媒として使用することができる。これら有機溶媒の使用量は、上記芳香族ビニルモノマーの濃度が30〜80重量%となるように用いることが好ましい。有機溶媒使用量が上記範囲から逸脱して芳香族ビニルモノマー濃度が30重量%未満となると、重合速度が低下したり、重合後のモノリス構造が本発明の範囲から逸脱してしまうため好ましくない。一方、芳香族ビニルモノマー濃度が80重量%を超えると、重合が暴走する恐れがあるため好ましくない。   The organic solvent used in step II is an organic solvent that dissolves the aromatic vinyl monomer and the crosslinking agent but does not dissolve the polymer formed by polymerization of the aromatic vinyl monomer, in other words, is formed by polymerization of the aromatic vinyl monomer. It is a poor solvent for polymers. Since the organic solvent varies greatly depending on the type of the aromatic vinyl monomer, it is difficult to list general specific examples. For example, when the aromatic vinyl monomer is styrene, the organic solvent includes methanol, ethanol, Alcohols such as propanol, butanol, hexanol, cyclohexanol, octanol, 2-ethylhexanol, decanol, dodecanol, propylene glycol, tetramethylene glycol; chain structures such as diethyl ether, butyl cellosolve, polyethylene glycol, polypropylene glycol, polytetramethylene glycol (Poly) ethers; chain saturated hydrocarbons such as hexane, heptane, octane, isooctane, decane, dodecane; ethyl acetate, isopropyl acetate, cellosolve acetate, propionic acid Examples include esters such as ethyl. Moreover, even if it is a good solvent of polystyrene like a dioxane, THF, and toluene, when it is used with the said poor solvent and the usage-amount is small, it can be used as an organic solvent. These organic solvents are preferably used so that the concentration of the aromatic vinyl monomer is 30 to 80% by weight. If the amount of the organic solvent used deviates from the above range and the aromatic vinyl monomer concentration becomes less than 30% by weight, the polymerization rate is lowered, or the monolith structure after polymerization deviates from the scope of the present invention, which is not preferable. On the other hand, if the concentration of the aromatic vinyl monomer exceeds 80% by weight, the polymerization may run away, which is not preferable.

重合開始剤は、第3のモノリスアニオン交換体のII工程で用いる重合開始剤と同様であり、その説明を省略する。   The polymerization initiator is the same as the polymerization initiator used in Step II of the third monolith anion exchanger, and the description thereof is omitted.

第4のモノリスアニオン交換体の製造方法において、III工程は、II工程で得られた混合物を静置下、且つ該I工程で得られたモノリス中間体の存在下に重合を行い、該モノリス中間体の連続マクロポア構造を共連続構造に変化させ、共連続構造のモノリスを得る工程である。III工程で用いるモノリス中間体は、斬新な構造を有するモノリスを創出する上で、極めて重要な役割を担っている。特表平7−501140号等に開示されているように、モノリス中間体不存在下でビニルモノマーと架橋剤を特定の有機溶媒中で静置重合させると、粒子凝集型のモノリス状有機多孔質体が得られる。それに対して、本発明の第4のモノリスのように上記重合系に特定の連続マクロポア構造のモノリス中間体を存在させると、重合後のモノリスの構造は劇的に変化し、粒子凝集構造は消失し、上述の共連続構造のモノリスが得られる。その理由は詳細には解明されていないが、モノリス中間体が存在しない場合は、重合により生じた架橋重合体が粒子状に析出・沈殿することで粒子凝集構造が形成されるのに対し、重合系に全細孔容積が大きな多孔質体(中間体)が存在すると、ビニルモノマー及び架橋剤が液相から多孔質体の骨格部に吸着又は分配され、多孔質体中で重合が進行し、モノリス構造を構成する骨格が二次元の壁面から一次元の棒状骨格に変化して共連続構造を有するモノリス状有機多孔質体が形成されると考えられる。   In the fourth method for producing a monolith anion exchanger, in the step III, the mixture obtained in the step II is allowed to stand, and polymerization is performed in the presence of the monolith intermediate obtained in the step I. This is a process of obtaining a monolith having a co-continuous structure by changing the continuous macropore structure of the body into a co-continuous structure. The monolith intermediate used in the step III plays a very important role in creating a monolith having a novel structure. As disclosed in JP-A-7-501140 and the like, when a vinyl monomer and a crosslinking agent are allowed to stand in a specific organic solvent in the absence of a monolith intermediate, a particle aggregation type monolithic organic porous material is obtained. The body is obtained. On the other hand, when a monolith intermediate having a specific continuous macropore structure is present in the polymerization system as in the fourth monolith of the present invention, the structure of the monolith after the polymerization changes dramatically and the particle aggregation structure disappears. Thus, a monolith having the above-described bicontinuous structure can be obtained. The reason for this has not been elucidated in detail, but in the absence of a monolith intermediate, the cross-linked polymer produced by polymerization precipitates and precipitates in the form of particles, while a particle aggregate structure is formed. When a porous body (intermediate) having a large total pore volume is present in the system, the vinyl monomer and the crosslinking agent are adsorbed or distributed from the liquid phase to the skeleton of the porous body, and polymerization proceeds in the porous body. It is considered that the skeleton constituting the monolith structure is changed from a two-dimensional wall surface to a one-dimensional rod-like skeleton to form a monolithic organic porous body having a co-continuous structure.

反応容器の内容積は、第3のモノリスアニオン交換体の反応容器の内容積の説明と同様であり、その説明を省略する。   The internal volume of the reaction vessel is the same as the description of the internal volume of the reaction vessel of the third monolith anion exchanger, and the description thereof is omitted.

III工程において、反応容器中、モノリス中間体は混合物(溶液)で含浸された状態に置かれる。II工程で得られた混合物とモノリス中間体の配合比は、前述の如く、モノリス中間体に対して、芳香族ビニルモノマーの添加量が重量で5〜50倍、好ましくは5〜40倍となるように配合するのが好適である。これにより、適度な大きさの空孔が三次元的に連続し、且つ骨太の骨格が3次元的に連続する共連続構造のモノリスを得ることができる。反応容器中、混合物中の芳香族ビニルモノマーと架橋剤は、静置されたモノリス中間体の骨格に吸着、分配され、モノリス中間体の骨格内で重合が進行する。   In step III, the monolith intermediate is placed in a reaction vessel impregnated with the mixture (solution). As described above, the blending ratio of the mixture obtained in Step II and the monolith intermediate is 5 to 50 times, preferably 5 to 40 times the weight of the aromatic vinyl monomer added to the monolith intermediate. It is preferable to blend them as described above. Thereby, it is possible to obtain a monolith having a co-continuous structure in which pores of an appropriate size are three-dimensionally continuous and a thick skeleton is three-dimensionally continuous. In the reaction vessel, the aromatic vinyl monomer and the cross-linking agent in the mixture are adsorbed and distributed on the skeleton of the monolith intermediate that is allowed to stand, and polymerization proceeds in the skeleton of the monolith intermediate.

共連続構造を有するモノリスの基本構造は、平均太さが乾燥状態で0.8〜40μmの三次元的に連続した骨格と、その骨格間に平均直径が乾燥状態で8〜80μmの三次元的に連続した空孔が配置された構造である。上記三次元的に連続した空孔の乾燥状態の平均直径は、水銀圧入法により細孔分布曲線を測定し、細孔分布曲線の極大値として得ることができる。乾燥状態のモノリスの骨格の太さは、SEM観察を少なくとも3回行い、得られた画像中の骨格の平均太さを測定して算出すればよい。また、共連続構造を有するモノリスは、0.5〜5ml/gの全細孔容積を有する。   The basic structure of the monolith having a co-continuous structure is a three-dimensional structure in which the average thickness is 0.8 to 40 μm in a dry state and an average diameter between the skeletons is 8 to 80 μm in a dry state. In this structure, continuous holes are arranged. The average diameter of the three-dimensionally continuous pores in the dry state can be obtained as a maximum value of the pore distribution curve by measuring the pore distribution curve by a mercury intrusion method. The thickness of the skeleton of the dried monolith may be calculated by performing SEM observation at least three times and measuring the average thickness of the skeleton in the obtained image. A monolith having a co-continuous structure has a total pore volume of 0.5 to 5 ml / g.

重合条件は、第3のモノリスアニオン交換体のIII工程の重合条件の説明と同様であり、その説明を省略する。   The polymerization conditions are the same as the description of the polymerization conditions in the third step of the third monolith anion exchanger, and the description thereof is omitted.

IV工程において、共連続構造を有するモノリスにアニオン交換基を導入する方法は、第3のモノリスアニオン交換体における、モノリスにアニオン交換基を導入する方法と同様であり、その説明を省略する。   In the IV step, the method for introducing an anion exchange group into the monolith having a co-continuous structure is the same as the method for introducing an anion exchange group into the monolith in the third monolith anion exchanger, and the description thereof is omitted.

第4のモノリスアニオン交換体は、共連続構造のモノリスにアニオン交換基が導入されるため、例えばモノリスの1.4〜1.9倍に大きく膨潤する。また、空孔径が膨潤で大きくなっても全細孔容積は変化しない。従って、第4のモノリスアニオン交換体は、3次元的に連続する空孔の大きさが格段に大きいにもかかわらず、骨太骨格を有するため機械的強度が高い。また、骨格が太いため、水湿潤状態での体積当りのアニオン交換容量を大きくでき、更に、被処理水を低圧、大流量で長期間通水することが可能である。   The fourth monolith anion exchanger swells greatly to 1.4 to 1.9 times that of the monolith, for example, because an anion exchange group is introduced into the monolith having a co-continuous structure. Further, the total pore volume does not change even if the pore diameter becomes larger due to swelling. Therefore, the fourth monolith anion exchanger has a high mechanical strength because it has a thick bone skeleton even though the size of three-dimensionally continuous pores is remarkably large. Further, since the skeleton is thick, the anion exchange capacity per volume in a water-wet state can be increased, and furthermore, the water to be treated can be passed for a long time at a low pressure and a large flow rate.

(白金族金属担持触媒)
白金族金属担持触媒は、モノリスアニオン交換体に白金族金属が担持されてなるものであり、モノリスアニオン交換体に、白金族金属のナノ粒子が担持されている白金族金属担持触媒であることが好ましい。
(Platinum group metal supported catalyst)
The platinum group metal supported catalyst is a platinum group metal supported catalyst in which a platinum group metal is supported on a monolith anion exchanger, and platinum group metal nanoparticles are supported on the monolith anion exchanger. preferable.

モノリスアニオン交換体としては、上述した第1〜第4のモノリスアニオン交換体が好ましい。   As the monolith anion exchanger, the above-described first to fourth monolith anion exchangers are preferable.

白金族金属とは、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金である。これらの白金族金属は、一種類を単独で用いても、二種類以上の金属を組み合わせて用いてもよく、更に、二種類以上の金属を合金として用いてもよい。これらの中で、白金、パラジウム、白金/パラジウム合金は触媒活性が高く、好適に用いられる。   The platinum group metal is ruthenium, rhodium, palladium, osmium, iridium, or platinum. These platinum group metals may be used individually by 1 type, may be used in combination of 2 or more types of metals, and may also use 2 or more types of metals as an alloy. Among these, platinum, palladium, and platinum / palladium alloys have high catalytic activity and are preferably used.

白金族金属のナノ粒子の平均粒子径は、1〜100nmであり、好ましくは1〜50nm、更に好ましくは1〜20nmである。平均粒子径が1nm未満であると、ナノ粒子が担体から脱離する可能性が高くなるため好ましくなく、一方、平均粒子径が100nmを超えると、金属の単位質量当たりの表面積が少なくなり触媒効果が効率的に得られなくなるため好ましくない。なお、ナノ粒子の平均粒子径が上記範囲内の場合、表面プラズモン共鳴によりナノ粒子は強く着色するため、目視によっても確認可能である。   The average particle diameter of the platinum group metal nanoparticles is 1 to 100 nm, preferably 1 to 50 nm, and more preferably 1 to 20 nm. If the average particle size is less than 1 nm, the possibility that the nanoparticles are detached from the carrier increases, which is not preferable. On the other hand, if the average particle size exceeds 100 nm, the surface area per unit mass of the metal is reduced and the catalytic effect is reduced. Is not preferred because it cannot be obtained efficiently. When the average particle diameter of the nanoparticles is within the above range, the nanoparticles are strongly colored by surface plasmon resonance and can be confirmed by visual observation.

乾燥状態の白金族金属担持触媒中の白金族金属ナノ粒子の担持量((白金族金属ナノ粒子/乾燥状態の白金族金属担持触媒)×100)は、0.004〜20重量%、好ましくは0.005〜15重量%である。白金族金属ナノ粒子の担持量が0.004重量%未満であると、過酸化水素分解効果が不十分になるため好ましくない。一方、白金族金属ナノ粒子の担時量が20重量%を超えると、水中への金属溶出が認められるようになるため好ましくない。   The supported amount of platinum group metal nanoparticles in the platinum group metal supported catalyst in the dry state ((platinum group metal nanoparticles / dried platinum group metal supported catalyst) × 100) is preferably 0.004 to 20% by weight, preferably 0.005 to 15% by weight. If the supported amount of platinum group metal nanoparticles is less than 0.004% by weight, the effect of decomposing hydrogen peroxide is insufficient, which is not preferable. On the other hand, when the amount of platinum group metal nanoparticles is more than 20% by weight, metal elution into water is observed, which is not preferable.

白金族金属担持触媒の製造方法には特に制約はなく、公知の方法により、モノリスアニオン交換体に白金族金属のナノ粒子を担持させることにより得ることができる。例えば、乾燥状態のモノリスアニオン交換体を塩化パラジウムの塩酸水溶液に浸漬し、塩化パラジウム酸アニオンをイオン交換によりモノリスアニオン交換体に吸着させ、次いで、還元剤と接触させてパラジウム金属ナノ粒子をモノリスアニオン交換体に担持する方法や、モノリスアニオン交換体をカラムに充填し、塩化パラジウムの塩酸水溶液を通液して塩化パラジウム酸アニオンをイオン交換によりモノリスアニオン交換体に吸着させ、次いで、還元剤を通液してパラジウム金属ナノ粒子をモノリスアニオン交換体に担持する方法等が挙げられる。用いられる還元剤にも特に制約はなく、メタノール、エタノール、イソプロパノール等のアルコールや、ギ酸、シュウ酸、クエン酸、アスコルビン酸等のカルボン酸、アセトン、メチルエチルケトン等のケトン、ホルムアルデヒドやアセトアルデヒド等のアルデヒド、水素化ホウ素ナトリウム、ヒドラジン等が挙げられる。   The method for producing the platinum group metal-supported catalyst is not particularly limited, and can be obtained by supporting platinum group metal nanoparticles on a monolith anion exchanger by a known method. For example, a dried monolith anion exchanger is immersed in an aqueous solution of palladium chloride in hydrochloric acid, the chloropalladate anion is adsorbed on the monolith anion exchanger by ion exchange, and then contacted with a reducing agent to bring the palladium metal nanoparticles into the monolith anion. The column is packed with a monolith anion exchanger or a monolith anion exchanger, and an aqueous hydrochloric acid solution of palladium chloride is passed through the column to adsorb the chloropalladate anion to the monolith anion exchanger by ion exchange, and then a reducing agent is passed through. And a method in which palladium metal nanoparticles are supported on a monolith anion exchanger. There are no particular restrictions on the reducing agent used, alcohols such as methanol, ethanol and isopropanol, carboxylic acids such as formic acid, oxalic acid, citric acid and ascorbic acid, ketones such as acetone and methyl ethyl ketone, aldehydes such as formaldehyde and acetaldehyde, Examples thereof include sodium borohydride and hydrazine.

白金族金属担持触媒において、白金族金属ナノ粒子の担体であるモノリスアニオン交換体のイオン形は、白金族金属ナノ粒子を担持した後は、通常、塩化物形のような塩形となる。また、白金族金属担持触媒は、モノリスアニオン交換体のイオン形を、OH形に再生したものであってもよい。そして、これらのうち、モノリスアニオン交換体のイオン形がOH形であることが、高い触媒効果が得られるため好ましい。白金族金属ナノ粒子を担持した後のモノリスアニオン交換体のOH形への再生方法には特に制限はなく、水酸化ナトリウム水溶液を通液する等の公知の方法を用いればよい。   In the platinum group metal-supported catalyst, the ionic form of the monolith anion exchanger, which is the carrier of the platinum group metal nanoparticles, usually becomes a salt form such as a chloride form after the platinum group metal nanoparticles are supported. The platinum group metal-supported catalyst may be one obtained by regenerating the ionic form of the monolith anion exchanger into the OH form. Of these, the ionic form of the monolith anion exchanger is preferably the OH form because a high catalytic effect is obtained. The method for regenerating the monolith anion exchanger after supporting the platinum group metal nanoparticles to the OH form is not particularly limited, and a known method such as passing a sodium hydroxide aqueous solution may be used.

次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.

実施例1
<パラジウムナノ粒子担持触媒1の製造>
(モノリスの製造)
スチレン19.2g、ジビニルベンゼン1.0g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に,当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、モノリスを得た。該モノリスは、架橋成分を3.3モル%含有するスチレン/ジビニルベンゼン共重合体であり、電子顕微鏡(SEM)観察により、連続マクロポア構造を有することを確認した。SEM画像を図7に示す。水銀圧入法により求めた該モノリスのマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は29μm、全細孔容積は8.6ml/gであった。
Example 1
<Production of palladium nanoparticle-supported catalyst 1>
(Manufacture of monoliths)
19.2 g of styrene, 1.0 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Corp.) which is a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to obtain a monolith. The monolith was a styrene / divinylbenzene copolymer containing 3.3 mol% of a crosslinking component, and was confirmed to have a continuous macropore structure by electron microscope (SEM) observation. The SEM image is shown in FIG. The average diameter of the opening (mesopore) where the macropores of the monolith overlapped with the macropores determined by the mercury intrusion method was 29 μm, and the total pore volume was 8.6 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄し単離してモノリスアニオン交換体1を得た。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated to obtain a monolith anion exchanger 1.

得られたモノリスアニオン交換体1の反応前後の膨潤率は1.5倍であり、乾燥状態における重量当りのアニオン交換容量は、4.3mg当量/gであった。水湿潤状態でのモノリスアニオン交換体1の開口の平均直径を、モノリスの値と水湿潤状態のモノリスアニオン交換体の膨潤率から見積もったところ44μmであり、全細孔容積は、8.6ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.014MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、線速度LV20m/hにおけるイオン交換帯長さは84mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて、半分程度であり、短い値を示した。   The swelling ratio of the obtained monolith anion exchanger 1 before and after the reaction was 1.5 times, and the anion exchange capacity per weight in the dry state was 4.3 mg equivalent / g. The average diameter of the openings of the monolith anion exchanger 1 in the water wet state was estimated from the value of the monolith and the swelling ratio of the monolith anion exchanger in the water wet state, and was 44 μm, and the total pore volume was 8.6 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.014 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at a linear velocity LV of 20 m / h was 84 mm, and amberlite which is a commercially available strong basic anion exchange resin. Compared to the value (165 mm) of IRA402BL (Rohm and Haas), it was about half, indicating a short value.

次に、モノリスアニオン交換体1中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。その結果、塩化物イオンはアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger 1, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . As a result, it was confirmed that chloride ions were uniformly distributed not only on the skeleton surface of the anion exchanger but also inside the skeleton, and the quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. .

(白金族金属担持触媒の調製)
モノリスアニオン交換体1をCl形にイオン交換した後、水湿潤状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム140mgを溶解した希塩酸に24時間浸漬し、パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。パラジウム酸形モノリスアニオン交換体が白色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。このようにして得られたパラジウムナノ粒子担持触媒1を数回純水で洗浄し、乾燥した。
(Preparation of platinum group metal supported catalyst)
The monolith anion exchanger 1 was ion-exchanged into Cl form, cut into a columnar shape in a wet state, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed for 24 hours in dilute hydrochloric acid in which 140 mg of palladium chloride was dissolved, and ion-exchanged to the palladium acid form. After completion of the immersion, the monolith anion exchanger was washed several times with pure water, and immersed in an aqueous hydrazine solution for 24 hours for reduction treatment. The palladium acid form monolith anion exchanger was white, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium nanoparticles. The palladium nanoparticle-supported catalyst 1 thus obtained was washed several times with pure water and dried.

乾燥状態のパラジウムナノ粒子担持触媒1に担持されたパラジウム量は、5.5重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図8に示す。パラジウムナノ粒子の平均粒子径は、3nmであった。   The amount of palladium supported on the dried palladium nanoparticle supported catalyst 1 was 5.5% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 3 nm.

<過酸化水素分解処理水の製造>
乾燥状態の上記パラジウムナノ粒子担持触媒1を切り出して内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。このとき、パラジウムナノ粒子担持触媒1の充填層高は13mmであった。また、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対するパラジウムナノ粒子担持量は、2.0gであった。
<Manufacture of hydrogen peroxide decomposition treated water>
The palladium nanoparticle-supported catalyst 1 in a dry state is cut out and packed into a column having an inner diameter of 10 mm, and an aqueous sodium hydroxide solution is passed through to form a monolith anion exchanger as a carrier in the OH form to evaluate hydrogen peroxide decomposition characteristics. Using. At this time, the packed bed height of the palladium nanoparticle-supported catalyst 1 was 13 mm. Moreover, the palladium nanoparticle carrying amount with respect to 1 L of palladium nanoparticle carrying | support catalyst of a water wet state was 2.0g.

上記パラジウムナノ粒子担持触媒1の充填物に対し、過酸化水素を15〜30μg/L(15〜30ppb)を含む超純水をSV=5000h−1にて27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は、SVが10000h−1と非常に速く、担持触媒の充填層高が13mmと薄いにもかかわらず、1μg/L未満であり、過酸化水素は分解除去されていた。 Ultrapure water containing 15 to 30 μg / L (15 to 30 ppb) of hydrogen peroxide was passed through the packing of the palladium nanoparticle-supported catalyst 1 at SV = 5000 h −1 for 27 hours in a downward flow, Sample water was collected at the column outlet and the hydrogen peroxide concentration was measured. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. Hydrogen peroxide concentration of the sample water and water sampling in the column outlet, SV is very fast and 10000h -1, even though packed bed height of the supported catalyst 13mm and thin, less than 1 [mu] g / L, hydrogen peroxide Was decomposed and removed.

比較例1
水分保有能力がOH形基準において60〜70%であり、ゲル形である粒子状の強塩基アニオン交換樹脂(I型)に公知の方法でパラジウムナノ粒子を担持して、パラジウムナノ粒子担持粒状イオン交換樹脂触媒を得た。Cl形の粒子状アニオン交換樹脂を塩化パラジウムの塩酸水溶液に浸漬し、水洗後に、ヒドラジン水溶液で還元処理を行った。水酸化ナトリウム水溶液を通液して粒子状のアニオン交換樹脂をOH形とし、過酸化水素分解特性の評価に用いた。このとき、パラジウムナノ粒子担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、60mgであった。
Comparative Example 1
Moisture retention capacity is 60 to 70% on the basis of OH form, and palladium nanoparticle is supported on a particulate strong base anion exchange resin (type I) in a gel form by a known method, and the palladium nanoparticle supported granular ion An exchange resin catalyst was obtained. The Cl-type particulate anion exchange resin was immersed in an aqueous hydrochloric acid solution of palladium chloride, washed with water, and then reduced with an aqueous hydrazine solution. An aqueous sodium hydroxide solution was passed through to convert the particulate anion exchange resin into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. At this time, the supported amount of palladium nanoparticles was 60 mg with respect to 1 L of the palladium nanoparticle-supported catalyst in a wet state.

このパラジウムを担持したOH形の粒子状イオン交換樹脂を内径25mmのカラムに40mL(層高80mm)充填して実施例1と同じ方法で過酸化水素低減の実験を行った。   An OH-type particulate ion exchange resin carrying palladium was packed in a column with an inner diameter of 25 mm in 40 mL (layer height 80 mm), and an experiment for reducing hydrogen peroxide was conducted in the same manner as in Example 1.

<過酸化水素分解処理水の製造>
触媒として、上記パラジウムナノ粒子担持粒状イオン交換樹脂触媒を用いたこと、及び、超純水をSV=1000h−1で通水したことを除いて、実施例1と同様の方法でパラジウムナノ粒子担持粒状イオン交換樹脂触媒の過酸化水素分解効果を評価した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1.5μg/Lであり、過酸化水素は処理水中にリークしていた。このように、従来技術である粒子状アニオン交換樹脂にパラジウムナノ粒子を担持した触媒では、実施例よりも遅いSV、厚い触媒充填層高といった過酸化水素を分解しやすい条件を設定しても、過酸化水素のリークがあった。
<Manufacture of hydrogen peroxide decomposition treated water>
Palladium nanoparticles supported by the same method as in Example 1 except that the above-described palladium nanoparticle-supported granular ion exchange resin catalyst was used as a catalyst and ultrapure water was passed at SV = 1000 h −1. The hydrogen peroxide decomposition effect of the granular ion exchange resin catalyst was evaluated. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was 1.5 μg / L, and hydrogen peroxide leaked into the treated water. In this way, in the catalyst in which palladium nanoparticles are supported on the particulate anion exchange resin which is the prior art, even if the conditions for easily decomposing hydrogen peroxide such as SV slower than the example and the high catalyst packed bed height are set, There was a leak of hydrogen peroxide.

比較例2
水分保有能力がOH形基準において60〜70%であり、ゲル形である粒子状の強塩基アニオン交換樹脂(I型)に公知の方法でパラジウムナノ粒子を担持し、パラジウムナノ粒子担持粒状イオン交換樹脂触媒を得た。Cl形の粒子状アニオン交換樹脂を塩化パラジウムの塩酸水溶液に浸漬し、水洗後に、ヒドラジン水溶液で還元処理を行った。水酸化ナトリウム水溶液を通液して粒子状のアニオン交換樹脂をOH形とし、過酸化水素分解特性の評価に用いた。このとき、パラジウムナノ粒子担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、970mgであった。このパラジウムを担持したOH形の粒子状イオン交換樹脂を内径25mmのカラムに40mL(層高80mm)充填して実施例1と同じ方法で過酸化水素低減の実験を行った。
Comparative Example 2
Moisture retention capacity is 60 to 70% on the basis of OH form, and palladium nanoparticle is supported by a known method on particulate strong base anion exchange resin (type I) in gel form, and palladium ion supported particulate ion exchange A resin catalyst was obtained. The Cl-type particulate anion exchange resin was immersed in an aqueous hydrochloric acid solution of palladium chloride, washed with water, and then reduced with an aqueous hydrazine solution. An aqueous sodium hydroxide solution was passed through to convert the particulate anion exchange resin into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. At this time, the supported amount of palladium nanoparticles was 970 mg with respect to 1 L of the palladium nanoparticle-supported catalyst in a wet state. An OH-type particulate ion exchange resin carrying palladium was packed in a column with an inner diameter of 25 mm in 40 mL (layer height 80 mm), and an experiment for reducing hydrogen peroxide was conducted in the same manner as in Example 1.

<過酸化水素分解処理水の製造>
触媒として、上記パラジウムナノ粒子担持粒状イオン交換樹脂触媒を用いたこと、及び、超純水をSV=1500h−1および2500h−1で通水したことを除いて、実施例1と同様の方法でパラジウムナノ粒子担持粒状イオン交換樹脂触媒の過酸化水素分解効果を評価した。その結果、カラム出口で採水した試料水中の過酸化水素濃度はそれぞれ1μg/L未満、1.6μg/Lであった。SV=1500h−1においては過酸化水素は1μg/L未満となったが、SVを2500h−1に上げると、過酸化水素は処理水中にリークした。このように、従来技術である粒子状アニオン交換樹脂にパラジウムナノ粒子を担持した触媒では、実施例よりも遅いSV、厚い触媒充填層高といった過酸化水素を分解しやすい条件を設定しても、SV=2500h−1では過酸化水素がリークした。
<Manufacture of hydrogen peroxide decomposition treated water>
As a catalyst, the same method as in Example 1 except that the palladium nanoparticle-supported granular ion exchange resin catalyst was used and that ultrapure water was passed through at SV = 1500 h −1 and 2500 h −1. The hydrogen peroxide decomposition effect of the palladium nanoparticle-supported granular ion exchange resin catalyst was evaluated. As a result, the hydrogen peroxide concentrations in the sample water collected at the column outlet were less than 1 μg / L and 1.6 μg / L, respectively. At SV = 1500 h −1 , hydrogen peroxide was less than 1 μg / L, but when SV was increased to 2500 h −1 , hydrogen peroxide leaked into the treated water. In this way, in the catalyst in which palladium nanoparticles are supported on the particulate anion exchange resin which is the prior art, even if the conditions for easily decomposing hydrogen peroxide such as SV slower than the example and the high catalyst packed bed height are set, At SV = 2500 h −1 , hydrogen peroxide leaked.

比較例3
パラジウムナノ粒子を担持させず、モノリスアニオン交換体1のみを用いて、実施例1と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解効果は認められなかった。
Comparative Example 3
The hydrogen peroxide decomposition effect at SV = 10000 h −1 was evaluated in the same manner as in Example 1 using only the monolith anion exchanger 1 without supporting palladium nanoparticles. As a result, the decomposition effect of hydrogen peroxide was not recognized.

実施例2
<パラジウムナノ粒子担持触媒2の製造>
(粒子凝集型モノリス状有機多孔質体の製造)
ビニルベンジルクロライド38.8g、ジビニルベンゼン1.2g、1−ブタノール60gおよび2,2’−アゾビス(2,4-ジメチルバレロニトリル)0.4gを混合し、均一に溶解させた。ビニルベンジルクロライドとジビニルベンゼンの合計量に対して、ジビニルベンゼンは2.8モル%であった。次に当該ビニルベンジルクロライド/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物をポリエチレン製円筒容器に入れ、窒素で3回パージした後密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンで10時間ソックスレー抽出し、未反応モノマー、1-ブタノールを除去した後、85℃で一夜減圧乾燥した。得られた円筒型モノリス状多孔質体(モノリス)の直径は76mmであった。
Example 2
<Production of palladium nanoparticle-supported catalyst 2>
(Production of particle agglomerated monolithic organic porous material)
38.8 g of vinylbenzyl chloride, 1.2 g of divinylbenzene, 60 g of 1-butanol and 0.4 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly. Divinylbenzene was 2.8 mol% with respect to the total amount of vinylbenzyl chloride and divinylbenzene. Next, the vinylbenzyl chloride / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture was placed in a polyethylene cylinder, purged with nitrogen three times, sealed, and allowed to stand. The polymerization was carried out at 60 ° C. for 24 hours. After completion of the polymerization, the monolithic contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone for 10 hours to remove unreacted monomers and 1-butanol, and then dried under reduced pressure at 85 ° C. overnight. The diameter of the obtained cylindrical monolithic porous body (monolith) was 76 mm.

このようにして得られたビニルベンジルクロライド/ジビニルベンゼン共重合体よりなる架橋成分を2.8モル%含有したモノリスの内部構造を、SEMにより観察した結果を図9に示す。図9から明らかなように、当該モノリスは直径が約15μmの架橋ポリビニルベンジルクロライド粒子が凝集して三次元的に連続した骨格部分を形成していることがわかる。また、水銀圧入法により測定した当該モノリスの細孔分布曲線の極大値(直径)は、60μmであった。なお、当該モノリスの全細孔容積は、1.4ml/gであった。   FIG. 9 shows the result of observing the internal structure of the monolith containing 2.8 mol% of the crosslinking component composed of the vinylbenzyl chloride / divinylbenzene copolymer obtained by SEM. As is apparent from FIG. 9, it can be seen that the monolith is formed by agglomerating crosslinked polyvinylbenzyl chloride particles having a diameter of about 15 μm to form a three-dimensionally continuous skeleton portion. The maximum value (diameter) of the pore distribution curve of the monolith measured by mercury porosimetry was 60 μm. The total pore volume of the monolith was 1.4 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、厚み約15mmの円盤状に切断した。これにテトラヒドロフラン1500mlを加え、40℃で1時間加熱した後、10℃以下まで冷却し、トリメチルアミン30%水溶液140gを徐々に加え、昇温して40℃で24時間反応させた。反応終了後、生成物を取り出し、メタノール、純水の順で洗浄し、モノリスアニオン交換体2を得た。得られたモノリスアニオン交換体2の直径は111mm、体積当りのアニオン交換容量は、水湿潤状態で0.65mg当量/mlであった。水湿潤状態のモノリスアニオン交換体2の細孔径を、アニオン交換基導入前後の直径の変化(膨潤率)から見積もったところ、88μmであった。なお、全細孔容積は1.4ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.010MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a thickness of about 15 mm. To this was added 1500 ml of tetrahydrofuran, heated at 40 ° C. for 1 hour, then cooled to 10 ° C. or less, 140 g of a 30% trimethylamine aqueous solution was gradually added, and the temperature was raised and reacted at 40 ° C. for 24 hours. After completion of the reaction, the product was taken out and washed with methanol and pure water in this order to obtain a monolith anion exchanger 2. The resulting monolith anion exchanger 2 had a diameter of 111 mm and an anion exchange capacity per volume of 0.65 mg equivalent / ml in a wet state. When the pore diameter of the monolith anion exchanger 2 in a wet state with water was estimated from the change in diameter (swelling ratio) before and after introduction of the anion exchange group, it was 88 μm. The total pore volume was 1.4 ml / g. In addition, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.010 MPa / m · LV, which is a low pressure loss lower than that required for practical use. It was.

次に、モノリスアニオン交換体2中の四級アンモニウム基の分布状態を確認するため、EPMAにより塩化物イオンの分布状態を観察した。結果を図10及び図11に示す。図10は、塩化物イオンのモノリスアニオン交換体2表面における分布状態を示している。図10より、四級アンモニウム基がモノリスアニオン交換体2表面に均一に導入されていることがわかる。また、図11は塩化物イオンのモノリスアニオン交換体2の断面(厚み)方向における分布状態を示しているが、断面方向においても、四級アンモニウム基が均一に導入されていることがわかる。このことから、得られたモノリスアニオン交換体2には、四級アンモニウム基が多孔質体の表面と骨格内部に均一に導入されていることがわかる。更に、該モノリスアニオン交換体2のフッ化物イオンに関するイオン交換帯長さを測定したところ、線速度20m/hにおけるイオン交換帯長さは17mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて、圧倒的に短い値を示した。   Next, in order to confirm the distribution state of the quaternary ammonium group in the monolith anion exchanger 2, the distribution state of chloride ions was observed by EPMA. The results are shown in FIGS. FIG. 10 shows a distribution state of chloride ions on the surface of the monolith anion exchanger 2. FIG. 10 shows that quaternary ammonium groups are uniformly introduced on the surface of the monolith anion exchanger 2. FIG. 11 shows a distribution state of chloride ions in the cross-section (thickness) direction of the monolith anion exchanger 2, but it can be seen that quaternary ammonium groups are uniformly introduced also in the cross-section direction. From this, it can be seen that in the obtained monolith anion exchanger 2, quaternary ammonium groups are uniformly introduced into the surface of the porous body and inside the skeleton. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger 2 was measured, the ion exchange zone length at a linear velocity of 20 m / h was 17 mm, which is a commercially available strong basic anion exchange resin. Compared with the value (165 mm) of Light IRA402BL (made by Rohm and Haas), the value was overwhelmingly short.

(白金族金属担持触媒の調製)
モノリスアニオン交換体2をCl形にイオン交換した後、水湿潤状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム270mgを溶解した希塩酸に24時間浸漬し、パラジウム酸形にイオン交換した。浸漬終了後、イオン交換したモノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。パラジウム酸形モノリスアニオン交換体が白色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。このようにして得られたパラジウムナノ粒子担持触媒2を数回純水で洗浄し、乾燥した。
(Preparation of platinum group metal supported catalyst)
The monolith anion exchanger 2 was ion-exchanged into Cl form, then cut into a cylindrical shape in a wet state of water, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed in dilute hydrochloric acid in which 270 mg of palladium chloride was dissolved, and ion exchanged to the palladium acid form. After completion of the immersion, the ion-exchanged monolith anion exchanger was washed several times with pure water and immersed in a hydrazine aqueous solution for 24 hours for reduction treatment. The palladium acid form monolith anion exchanger was white, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium nanoparticles. The palladium nanoparticle-supported catalyst 2 thus obtained was washed several times with pure water and dried.

乾燥状態のパラジウムナノ粒子担持触媒2に担持されたパラジウム量は、10.2重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図12に示す。パラジウムナノ粒子の平均粒子径は、5nmであった。   The amount of palladium supported on the dried palladium nanoparticle-supported catalyst 2 was 10.2% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 5 nm.

<過酸化水素分解処理水の製造>
乾燥状態のパラジウムナノ粒子担持触媒2を内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。パラジウムナノ粒子担持触媒2の充填層高は12mmであった。このとき、パラジウムナノ粒子の担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、9.1gであった。
<Manufacture of hydrogen peroxide decomposition treated water>
The dried palladium nanoparticle-supported catalyst 2 was packed in a column having an inner diameter of 10 mm, and a sodium hydroxide aqueous solution was passed through to convert the monolith anion exchanger as a carrier into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. The packed bed height of the palladium nanoparticle-supported catalyst 2 was 12 mm. At this time, the supported amount of the palladium nanoparticles was 9.1 g with respect to 1 L of the palladium nanoparticle-supported catalyst in a water wet state.

上記パラジウムナノ粒子担持触媒2に、過酸化水素を15〜30μg/L含む超純水をSV5000h−1にて27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は、SVが10000h−1と非常に速く、パラジウムナノ粒子担持触媒の充填層高が12mmと薄いにもかかわらず、1μg/L未満であり、過酸化水素は分解除去されていた。 Ultrapure water containing 15-30 μg / L of hydrogen peroxide was passed through the palladium nanoparticle-supported catalyst 2 at SV5000h -1 for 27 hours, and sample water was collected at the column outlet to collect hydrogen peroxide. Concentration was measured. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. Hydrogen peroxide concentration of the sample water and water sampling in the column outlet, SV is very fast and 10000h -1, even though packed bed height of palladium nanoparticles supported catalyst 12mm and thin, less than 1 [mu] g / L, Hydrogen peroxide was decomposed and removed.

比較例4
パラジウムナノ粒子を担持させず、モノリスアニオン交換体2のみを用いて、実施例2と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解効果は認められなかった。
Comparative Example 4
The hydrogen peroxide decomposition effect at SV = 10000 h −1 was evaluated in the same manner as in Example 2 using only the monolith anion exchanger 2 without supporting palladium nanoparticles. As a result, the decomposition effect of hydrogen peroxide was not recognized.

実施例3
<パラジウムナノ粒子担持触媒3の製造>
(モノリス中間体の製造)
スチレン19.9g、ジビニルベンゼン0.4g、ソルビタンモノオレエート(以下SMOと略す)1.0gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物をTHF1.8mlを含有する180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを反応容器に速やかに移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、イソプロパノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。該モノリス中間体のマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は56μm、全細孔容積は7.5ml/gであった。
Example 3
<Production of palladium nanoparticle-supported catalyst 3>
(Manufacture of monolith intermediates)
19.9 g of styrene, 0.4 g of divinylbenzene, 1.0 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture is added to 180 g of pure water containing 1.8 ml of THF, and a vacuum stirring defoaming mixer which is a planetary stirring device. (EM Co., Ltd.) was used and stirred under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. The emulsion was immediately transferred to a reaction vessel, and after sealing, it was allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the content was taken out, extracted with isopropanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. The average diameter of the opening (mesopore) where the macropores and macropores of the monolith intermediate overlap was 56 μm, and the total pore volume was 7.5 ml / g.

(モノリスの製造)
次いで、スチレン49.0g、ジビニルベンゼン1.0g、1−デカノール50g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.5gを混合し、均一に溶解させた(II工程)。次に上記モノリス中間体を外径70mm、厚さ約20mmの円盤状に切断して、7.6g分取した。分取したモノリス中間体を内径90mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約30mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した。
(Manufacture of monoliths)
Subsequently, 49.0 g of styrene, 1.0 g of divinylbenzene, 50 g of 1-decanol, 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly (step II). Next, the monolith intermediate was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 20 mm, and 7.6 g was collected. The separated monolith intermediate is put in a reaction vessel having an inner diameter of 90 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 30 mm were taken out, subjected to Soxhlet extraction with acetone, and dried under reduced pressure at 85 ° C. overnight.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図13(a)に示す。図13(a)のSEM画像は、モノリスを任意の位置で切断して得た切断面の任意の位置における画像である。図13(a)から明らかなように、当該モノリスは連続マクロポア構造を有しており、連続マクロポア構造体を構成する骨格が、公知品と比べて遥かに太く、また、骨格を構成する壁部の厚みが厚いものであった。   FIG. 13 (a) shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. The SEM image in FIG. 13A is an image at an arbitrary position on a cut surface obtained by cutting a monolith at an arbitrary position. As is clear from FIG. 13 (a), the monolith has a continuous macropore structure, and the skeleton constituting the continuous macropore structure is much thicker than known products, and the wall portion constituting the skeleton The thickness of was thick.

次に、得られたモノリスを主観を排除して上記位置とは異なる位置で切断して得たSEM画像2点、都合3点から壁部の厚みと断面に表れる骨格部面積を測定した。壁部の厚みは1つのSEM写真から得た8点の平均であり、骨格部面積は画像解析により求めた。なお、壁部は前述の定義のものである。また、骨格部面積は3つのSEM画像の平均で示した。この結果、壁部の平均厚みは30μm、断面で表れる骨格部面積はSEM画像中28%であった。また、水銀圧入法により測定した当該モノリスの開口の平均直径は31μm、全細孔容積は2.2ml/gであった。   Next, the thickness of the wall part and the area of the skeleton part appearing in the cross section were measured from two SEM images obtained by cutting the obtained monolith at a position different from the above position, excluding subjectivity, and three convenient points. The wall thickness was an average of 8 points obtained from one SEM photograph, and the skeleton area was determined by image analysis. The wall portion has the above definition. Moreover, the skeleton part area was shown by the average of three SEM images. As a result, the average thickness of the wall portion was 30 μm, and the area of the skeleton portion represented by the cross section was 28% in the SEM image. Moreover, the average diameter of the opening of the monolith measured by mercury porosimetry was 31 μm, and the total pore volume was 2.2 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、外径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃、5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離してモノリスアニオン交換体3を得た。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having an outer diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropwise addition, the temperature was raised and reacted at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated to obtain a monolith anion exchanger 3.

得られたモノリスアニオン交換体3の反応前後の膨潤率は1.7倍であり、体積当りのイオン交換容量は、水湿潤状態で0.60mg当量/mlであった。水湿潤状態での有機多孔質イオン交換体の開口の平均直径を、有機多孔質体の値と水湿潤状態のアニオン交換体の膨潤率から見積もったところ54μmであり、モノリスと同様の方法で求めた骨格を構成する壁部の平均厚みは50μm、骨格部面積はSEM写真の写真領域中28%、全細孔容積は、2.2ml/gであった。また、水を透過させた際の圧力損失の指標である差圧係数は、0.017MPa/m・LVであり、実用上要求される圧力損失と比較して、それを下回る低い圧力損失であった。更に、該モノリスアニオン交換体のフッ化物イオンに関するイオン交換帯長さを測定したところ、線速度20m/hにおけるイオン交換帯長さは25mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて、圧倒的に短かった。   The swelling ratio of the obtained monolith anion exchanger 3 before and after the reaction was 1.7 times, and the ion exchange capacity per volume was 0.60 mg equivalent / ml in a wet state with water. The average diameter of the opening of the organic porous ion exchanger in the water-wet state was estimated to be 54 μm from the value of the organic porous body and the swelling ratio of the anion exchanger in the water-wet state. The average thickness of the wall part constituting the skeleton was 50 μm, the skeleton part area was 28% in the photographic region of the SEM photograph, and the total pore volume was 2.2 ml / g. The differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.017 MPa / m · LV, which is a lower pressure loss than that required for practical use. It was. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger was measured, the ion exchange zone length at a linear velocity of 20 m / h was 25 mm. Amberlite which is a commercially available strongly basic anion exchange resin Compared with the value (165 mm) of IRA402BL (Rohm and Haas), it was overwhelmingly short.

次に、モノリスアニオン交換体3中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。モノリスアニオン交換体の表面における塩化物イオンの分布状態を図14に、骨格断面における塩化物イオンの分布状態を図15に示すが、塩化物イオンはアニオン交換体3の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体3中に均一に導入されていることが確認できた。なお、図15において、骨格下部の塩化物イオン濃度が骨格上部のそれに比べて、見かけ上高くなっているが、これは切断時に断面の平面性が十分ではなく、骨格下部が骨格上部より盛り上がった状態で切断されたためであり、塩化物イオンの分布は、実質的には均一である。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger 3, the anion exchanger was treated with a hydrochloric acid aqueous solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . FIG. 14 shows the distribution state of chloride ions on the surface of the monolith anion exchanger, and FIG. 15 shows the distribution state of chloride ions on the skeleton cross section. It was also distributed uniformly inside, and it was confirmed that the quaternary ammonium group was uniformly introduced into the monolith anion exchanger 3. In FIG. 15, the chloride ion concentration in the lower part of the skeleton is apparently higher than that in the upper part of the skeleton, but this is not sufficient in cross-sectional flatness at the time of cutting, and the lower part of the skeleton is raised from the upper part of the skeleton. This is because the distribution of chloride ions is substantially uniform.

(白金族金属担持触媒の調製)
モノリスアニオン交換体3をCl形にイオン交換した後、水湿潤状態で円柱状に切り出し、減圧乾燥した。乾燥後のモノリスアニオン交換体の重量は、1.2gであった。この乾燥状態のモノリスアニオン交換体を、塩化パラジウム270mgを溶解した希塩酸に24時間浸漬し、パラジウム酸形にイオン交換した。浸漬終了後、モノリスアニオン交換体を純水で数回洗浄し、ヒドラジン水溶液中に24時間浸漬して還元処理を行った。パラジウム酸形モノリスアニオン交換体が白色であったのに対し、還元処理終了後のモノリスアニオン交換体は黒色に着色しており、パラジウムナノ粒子の生成が示唆された。このようにして得られたパラジウムナノ粒子担持触媒3を数回純水で洗浄し、乾燥した。
(Preparation of platinum group metal supported catalyst)
The monolith anion exchanger 3 was ion-exchanged into Cl form, then cut into a cylindrical shape in a wet state of water, and dried under reduced pressure. The weight of the monolith anion exchanger after drying was 1.2 g. This dried monolith anion exchanger was immersed in dilute hydrochloric acid in which 270 mg of palladium chloride was dissolved, and ion exchanged to the palladium acid form. After completion of the immersion, the monolith anion exchanger was washed several times with pure water, and immersed in an aqueous hydrazine solution for 24 hours for reduction treatment. The palladium acid form monolith anion exchanger was white, whereas the monolith anion exchanger after the reduction treatment was colored black, suggesting the formation of palladium nanoparticles. The palladium nanoparticle-supported catalyst 3 thus obtained was washed several times with pure water and dried.

乾燥状態のパラジウムナノ粒子担持触媒3に担持されたパラジウムナノ粒子の担持量は、10.3重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図16に示す。パラジウムナノ粒子の平均粒子径は、5nmであった。乾燥状態のパラジウムナノ粒子担持触媒を内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。パラジウムナノ粒子担持触媒3の充填層高は11mmであった。このとき、パラジウムナノ粒子担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、14.7gであった。   The amount of palladium nanoparticles supported on the dried palladium nanoparticle-supported catalyst 3 was 10.3% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 5 nm. A palladium nanoparticle-supported catalyst in a dry state was packed in a column having an inner diameter of 10 mm, and an aqueous sodium hydroxide solution was passed through to convert the monolith anion exchanger as a carrier into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. The packed bed height of the palladium nanoparticle-supported catalyst 3 was 11 mm. At this time, the supported amount of palladium nanoparticles was 14.7 g with respect to 1 L of the palladium nanoparticle-supported catalyst in a wet state.

<過酸化水素分解処理水の製造>
内径10mmのカラムに充填した上記パラジウムナノ粒子担持触媒3に、過酸化水素15〜30μg/Lを含む超純水をSV=5000h−1にて27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は、SVが10000h−1と非常に速く、触媒の充填層高が11mmと薄いにもかかわらず、1μg/L未満であり、過酸化水素は分解除去されていた。
<Manufacture of hydrogen peroxide decomposition treated water>
Ultrapure water containing 15 to 30 μg / L of hydrogen peroxide was passed through the palladium nanoparticle-supported catalyst 3 packed in a column with an inner diameter of 10 mm for 27 hours at SV = 5000 h −1 at the column outlet. Sample water was collected and the hydrogen peroxide concentration was measured. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. The hydrogen peroxide concentration in the sample water sampled at the column outlet is very fast as SV is 10000 h −1 and the packed bed height of the catalyst is as thin as 11 mm, which is less than 1 μg / L. It was disassembled and removed.

実施例4
<パラジウムナノ粒子担持触媒4の製造>
乾燥後のモノリスアニオン交換体の重量を1.7gとし、塩化パラジウム2.5mgを溶解した希塩酸に24時間浸漬したことを除いて、実施例3と同様の方法で乾燥状態のパラジウムナノ粒子担持触媒4を作製した。乾燥状態のパラジウムナノ粒子担持触媒4に担持されたパラジウムナノ粒子の担持量は、0.05重量%であった。
Example 4
<Production of palladium nanoparticle-supported catalyst 4>
The dried palladium nanoparticle-supported catalyst was prepared in the same manner as in Example 3 except that the weight of the dried monolith anion exchanger was 1.7 g and the monolith anion exchanger was immersed in dilute hydrochloric acid in which 2.5 mg of palladium chloride was dissolved for 24 hours. 4 was produced. The amount of palladium nanoparticles supported on the dried palladium nanoparticle-supported catalyst 4 was 0.05% by weight.

乾燥状態のパラジウムナノ粒子担持触媒4を内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。パラジウムナノ粒子担持触媒4の充填層高は19mmであった。このとき、パラジウムナノ粒子担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、0.07gであった。   The palladium nanoparticle-supported catalyst 4 in a dry state was packed in a column having an inner diameter of 10 mm, and a sodium hydroxide aqueous solution was passed through to convert the monolith anion exchanger as a carrier into OH form, which was used for evaluation of hydrogen peroxide decomposition characteristics. The packed bed height of the palladium nanoparticle-supported catalyst 4 was 19 mm. At this time, the supported amount of palladium nanoparticles was 0.07 g with respect to 1 L of the palladium nanoparticle-supported catalyst in a wet state.

<過酸化水素分解処理水の製造>
内径10mmのカラムに充填した上記パラジウムナノ粒子担持触媒に、過酸化水素15〜30μg/Lを含む超純水をSV=5000h−1で27時間下向流で通水し、カラム出口で試料水を採水し過酸化水素濃度を測定した。その結果、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。次に、SVを10000h−1とし、同様の処理を行った。カラム出口で採水した試料水中の過酸化水素濃度は1.7μg/Lであり、パラジウムナノ粒子担持触媒1Lに対するパラジウムナノ粒子担持量が、0.07gと非常に低いのにもかかわらず、過酸化水素分解効果の高い結果が得られた。
<Manufacture of hydrogen peroxide decomposition treated water>
Ultrapure water containing 15 to 30 μg / L of hydrogen peroxide was passed through the palladium nanoparticle-supported catalyst packed in a column with an inner diameter of 10 mm at SV = 5000 h −1 for 27 hours, and sample water was discharged at the column outlet. Was collected and the hydrogen peroxide concentration was measured. As a result, the hydrogen peroxide concentration in the sample water collected at the column outlet was less than 1 μg / L, and the hydrogen peroxide was decomposed and removed. Next, the SV was set to 10,000 h −1 and the same processing was performed. The hydrogen peroxide concentration in the sample water sampled at the column outlet is 1.7 μg / L, and the amount of palladium nanoparticles supported on 1 L of the palladium nanoparticle-supported catalyst is very low at 0.07 g. The result with high hydrogen oxide decomposition effect was obtained.

比較例5
パラジウムナノ粒子を担持させず、モノリスアニオン交換体3のみを用いて、実施例3と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解効果は認められなかった。
Comparative Example 5
The hydrogen peroxide decomposition effect at SV = 10000 h −1 was evaluated in the same manner as in Example 3 using only the monolith anion exchanger 3 without supporting palladium nanoparticles. As a result, the decomposition effect of hydrogen peroxide was not recognized.

実施例5
<パラジウムナノ粒子担持触媒5の製造>
(モノリス中間体の製造)
スチレン5.29g、ジビニルベンゼン0.28g、ソルビタンモノオレエート(以下SMOと略す)1.39gおよび2,2’-アゾビス(イソブチロニトリル)0.26gを混合し、均一に溶解させた。次に、当該スチレン/ジビニルベンゼン/SMO/2,2’-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて5〜20℃の温度範囲において減圧下撹拌して、油中水滴型エマルションを得た。このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させた。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリス中間体を製造した。このようにして得られたモノリス中間体(乾燥体)の内部構造をSEM画像(図21)により観察したところ、隣接する2つのマクロポアを区画する壁部は極めて細く棒状であるものの、連続気泡構造を有しており、水銀圧入法により測定したマクロポアとマクロポアが重なる部分の開口(メソポア)の平均直径は70μm、全細孔容積は17.8ml/gであった。
Example 5
<Production of palladium nanoparticle-supported catalyst 5>
(Manufacture of monolith intermediates)
5.29 g of styrene, 0.28 g of divinylbenzene, 1.39 g of sorbitan monooleate (hereinafter abbreviated as SMO) and 0.26 g of 2,2′-azobis (isobutyronitrile) were mixed and dissolved uniformly. Next, the styrene / divinylbenzene / SMO / 2,2′-azobis (isobutyronitrile) mixture was added to 180 g of pure water, and a vacuum stirring defoaming mixer (manufactured by EM Co.) as a planetary stirring device. Was used under reduced pressure in a temperature range of 5 to 20 ° C. to obtain a water-in-oil emulsion. This emulsion was quickly transferred to a reaction vessel and allowed to polymerize at 60 ° C. for 24 hours in a static state after sealing. After completion of the polymerization, the content was taken out, extracted with methanol, and then dried under reduced pressure to produce a monolith intermediate having a continuous macropore structure. When the internal structure of the monolith intermediate (dry body) thus obtained was observed with an SEM image (FIG. 21), the wall portion separating two adjacent macropores was extremely thin and rod-shaped, but the open cell structure The average diameter of the openings (mesopores) where the macropores overlap with each other as measured by the mercury intrusion method was 70 μm, and the total pore volume was 17.8 ml / g.

(モノリスの製造)
次いで、スチレン39.2g、ジビニルベンゼン0.8g、1-デカノール60g、2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.8gを混合し、均一に溶解させた。次に上記モノリス中間体を直径70mm、厚さ約30mmの円盤状に切断して2.4gを分取した。分取したモノリス中間体を内径75mmの反応容器に入れ、当該スチレン/ジビニルベンゼン/1-デカノール/2,2’-アゾビス(2,4-ジメチルバレロニトリル)混合物に浸漬させ、減圧チャンバー中で脱泡した後、反応容器を密封し、静置下60℃で24時間重合させた。重合終了後、厚さ約60mmのモノリス状の内容物を取り出し、アセトンでソックスレー抽出した後、85℃で一夜減圧乾燥した。
(Manufacture of monoliths)
Subsequently, 39.2 g of styrene, 0.8 g of divinylbenzene, 60 g of 1-decanol, and 0.8 g of 2,2′-azobis (2,4-dimethylvaleronitrile) were mixed and dissolved uniformly. Next, the monolith intermediate was cut into a disk shape having a diameter of 70 mm and a thickness of about 30 mm to obtain 2.4 g. The separated monolith intermediate is placed in a reaction vessel having an inner diameter of 75 mm, immersed in the styrene / divinylbenzene / 1-decanol / 2,2′-azobis (2,4-dimethylvaleronitrile) mixture, and removed in a vacuum chamber. After bubbling, the reaction vessel was sealed and allowed to polymerize at 60 ° C. for 24 hours. After completion of the polymerization, the monolith-like contents having a thickness of about 60 mm were taken out, subjected to Soxhlet extraction with acetone, and dried under reduced pressure at 85 ° C. overnight.

このようにして得られたスチレン/ジビニルベンゼン共重合体よりなる架橋成分を1.3モル%含有したモノリス(乾燥体)の内部構造を、SEMにより観察した結果を図17に示す。図17から明らかなように、当該モノリスは骨格及び空孔はそれぞれ3次元的に連続し、両相が絡み合った共連続構造であった。また、SEM画像から測定した骨格の太さは8μmであった。また、水銀圧入法により測定した当該モノリスの三次元的に連続した空孔の大きさは18μm、全細孔容積は2.0ml/gであった。   FIG. 17 shows the result of observing the internal structure of the monolith (dry body) containing 1.3 mol% of the crosslinking component composed of the styrene / divinylbenzene copolymer obtained by SEM as described above. As is clear from FIG. 17, the monolith has a co-continuous structure in which the skeleton and the vacancies are three-dimensionally continuous, and both phases are intertwined. Moreover, the thickness of the skeleton measured from the SEM image was 8 μm. Further, the size of the three-dimensionally continuous pores of the monolith measured by mercury porosimetry was 18 μm, and the total pore volume was 2.0 ml / g.

(モノリスアニオン交換体の製造)
上記の方法で製造したモノリスを、直径70mm、厚み約15mmの円盤状に切断した。これにジメトキシメタン1400ml、四塩化スズ20mlを加え、氷冷下クロロ硫酸560mlを滴下した。滴下終了後、昇温して35℃で5時間反応させ、クロロメチル基を導入した。反応終了後、母液をサイフォンで抜き出し、THF/水=2/1の混合溶媒で洗浄した後、更にTHFで洗浄した。このクロロメチル化モノリス状有機多孔質体にTHF1000mlとトリメチルアミン30%水溶液600mlを加え、60℃、6時間反応させた。反応終了後、生成物をメタノール/水混合溶媒で洗浄し、次いで純水で洗浄して単離してモノリスアニオン交換体5を得た。
(Production of monolith anion exchanger)
The monolith produced by the above method was cut into a disk shape having a diameter of 70 mm and a thickness of about 15 mm. To this, 1400 ml of dimethoxymethane and 20 ml of tin tetrachloride were added, and 560 ml of chlorosulfuric acid was added dropwise under ice cooling. After completion of the dropping, the temperature was raised and the reaction was carried out at 35 ° C. for 5 hours to introduce a chloromethyl group. After completion of the reaction, the mother liquor was extracted with a siphon, washed with a mixed solvent of THF / water = 2/1, and further washed with THF. To this chloromethylated monolithic organic porous material, 1000 ml of THF and 600 ml of a 30% trimethylamine aqueous solution were added and reacted at 60 ° C. for 6 hours. After completion of the reaction, the product was washed with a methanol / water mixed solvent, then washed with pure water and isolated to obtain a monolith anion exchanger 5.

得られたモノリスアニオン交換体5の反応前後の膨潤率は1.6倍であり、体積当りのイオン交換容量は水湿潤状態で0.44mg当量/mlであった。水湿潤状態でのモノリスイオン交換体5の連続空孔の直径を、モノリスの値と水湿潤状態のアニオン交換体の膨潤率から見積もったところ29μmであり、骨格の太さは13μm、全細孔容積は、2.0ml/gであった。   The swelling ratio of the obtained monolith anion exchanger 5 before and after the reaction was 1.6 times, and the ion exchange capacity per volume was 0.44 mg equivalent / ml in a water wet state. The diameter of the continuous pores of the monolith ion exchanger 5 in the water wet state was estimated from the value of the monolith and the swelling ratio of the anion exchanger in the water wet state to be 29 μm, the thickness of the skeleton was 13 μm, and the total pores The volume was 2.0 ml / g.

また、水を透過させた際の圧力損失の指標である差圧係数は0.040MPa/m・LVであり、実用上支障のない低い圧力損失であった。更に、該モノリスアニオン交換体4のフッ化物イオンに関するイオン交換帯長さを測定したところ、LV=20m/hにおけるイオン交換帯長さは22mmであり、市販の強塩基性アニオン交換樹脂であるアンバーライトIRA402BL(ロームアンドハース社製)の値(165mm)に比べて圧倒的に短かった。   Further, the differential pressure coefficient, which is an index of pressure loss when water is permeated, is 0.040 MPa / m · LV, which is a low pressure loss that does not cause any practical problems. Furthermore, when the ion exchange zone length regarding the fluoride ion of the monolith anion exchanger 4 was measured, the ion exchange zone length at LV = 20 m / h was 22 mm, which is a commercially available strong basic anion exchange resin. It was overwhelmingly shorter than the value (165 mm) of Light IRA402BL (Rohm and Haas).

次に、モノリスアニオン交換体5中の四級アンモニウム基の分布状態を確認するため、アニオン交換体を塩酸水溶液で処理して塩化物型とした後、EPMAにより塩化物イオンの分布状態を観察した。モノリスアニオン交換体5の表面における塩化物イオンの分布状態を図18に、骨格断面における塩化物イオンの分布状態を図19に示すが、塩化物イオンはアニオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、四級アンモニウム基がモノリスアニオン交換体中に均一に導入されていることが確認できた。なお、図19において、骨格周辺部の塩化物イオン濃度が骨格中心部のそれに比べて、見かけ上高くなっているが、これは切断時に断面の平面性が十分ではなく、骨格周辺部が内部より盛り上がった状態で切断されたためであり、塩化物イオンの分布は、実質的には均一である。   Next, in order to confirm the distribution state of the quaternary ammonium groups in the monolith anion exchanger 5, the anion exchanger was treated with an aqueous hydrochloric acid solution to form a chloride form, and then the distribution state of chloride ions was observed by EPMA. . The distribution state of chloride ions on the surface of the monolith anion exchanger 5 is shown in FIG. 18, and the distribution state of chloride ions in the skeleton cross section is shown in FIG. 19, but the chloride ions are not limited to the skeleton surface of the anion exchanger. It was uniformly distributed inside, and it was confirmed that quaternary ammonium groups were uniformly introduced into the monolith anion exchanger. In FIG. 19, the chloride ion concentration in the peripheral part of the skeleton is apparently higher than that in the central part of the skeleton. It is because it cut | disconnected in the raised state, and the distribution of a chloride ion is substantially uniform.

(白金族金属担持触媒の調製)
触媒担体として、モノリスアニオン交換体5を用いたこと、及び、切り出したモノリスアニオン交換体5の乾燥時重量が1.4gであったことを除いて、実施例3と同様の方法でモノリスアニオン交換体5にパラジウムナノ粒子を担持し、パラジウムナノ粒子担持触媒5を得た。
(Preparation of platinum group metal supported catalyst)
Monolith anion exchange was carried out in the same manner as in Example 3 except that monolith anion exchanger 5 was used as the catalyst carrier and that the weight of dried monolith anion exchanger 5 was 1.4 g. The palladium nanoparticle was supported on the body 5 to obtain a palladium nanoparticle-supported catalyst 5.

得られた乾燥状態のパラジウムナノ粒子担持触媒5に担持されたパラジウムナノ粒子の担持量は、9.8重量%であった。担持されたパラジウムナノ粒子の平均粒子径を測定するため、透過型電子顕微鏡(TEM)観察を行った。得られたTEM画像を図20に示す。パラジウムナノ粒子の平均粒子径は、3nmであった。乾燥状態の第2のパラジウムナノ粒子担持触媒を内径10mmのカラムに充填し、水酸化ナトリウム水溶液を通液して担体であるモノリスアニオン交換体をOH形とし、過酸化水素分解特性の評価に用いた。触媒の充填層高は13mmであった。なお、このとき、パラジウムナノ粒子の担持量は、水湿潤状態のパラジウムナノ粒子担持触媒1Lに対して、8.7gであった。   The supported amount of palladium nanoparticles supported on the dried palladium nanoparticle-supported catalyst 5 was 9.8% by weight. In order to measure the average particle diameter of the supported palladium nanoparticles, observation with a transmission electron microscope (TEM) was performed. The obtained TEM image is shown in FIG. The average particle diameter of the palladium nanoparticles was 3 nm. A column with a diameter of 10 mm is packed with a second palladium nanoparticle-supported catalyst in a dry state, and an aqueous sodium hydroxide solution is passed through to convert the monolith anion exchanger as a carrier into OH form, which is used for evaluation of hydrogen peroxide decomposition characteristics. It was. The packed bed height of the catalyst was 13 mm. At this time, the supported amount of palladium nanoparticles was 8.7 g based on 1 L of the palladium nanoparticle-supported catalyst in a wet state.

<過酸化水素分解処理水の製造>
触媒として、上記パラジウムナノ粒子担持触媒5を用いたことを除いて、実施例3と同様の方法でパラジウムナノ粒子担持触媒の過酸化水素分解効果を評価した。その結果、SV=5000h−1および10000h−1で超純水を通水したいずれの場合でも、カラム出口で採水した試料水中の過酸化水素濃度は1μg/L未満であり、過酸化水素は分解除去されていた。
<Manufacture of hydrogen peroxide decomposition treated water>
The hydrogen peroxide decomposition effect of the palladium nanoparticle-supported catalyst was evaluated in the same manner as in Example 3 except that the palladium nanoparticle-supported catalyst 5 was used as a catalyst. As a result, in either case that passed through the ultra-pure water at SV = 5000h -1 and 10000h -1, the hydrogen peroxide concentration of the sample water and water sampling in the column outlet is less than 1 [mu] g / L, hydrogen peroxide It was disassembled and removed.

比較例6
パラジウムナノ粒子を担持させず、モノリスアニオン交換体4のみを用いて、実施例4と同様の方法でSV=10000h−1における過酸化水素分解効果を評価した。その結果、過酸化水素の分解効果は認められなかった。
Comparative Example 6
The hydrogen peroxide decomposition effect at SV = 10000 h −1 was evaluated in the same manner as in Example 4 using only the monolith anion exchanger 4 without supporting palladium nanoparticles. As a result, the decomposition effect of hydrogen peroxide was not recognized.

本発明によれば、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を用い、被処理水中の過酸化水素を分解することにより、SVが2000h−1を超えるようなSVで通水したり触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して、過酸化水素分解処理水を製造する方法と製造装置を提供することができる。また、本発明によれば、SVが2000h−1を超えるような大きなSVで通水したり、触媒の充填層高を薄くしても、過酸化水素を高効率に分解除去して、超純水を製造する方法と製造装置、水素溶解水の製造方法と製造装置、オゾン溶解水の製造方法と製造装置を提供することができる。さらに、本発明によれば、上記超純水の製造装置、水素溶解水の製造装置、オゾン溶解水の製造装置等を小型化し、容易に維持管理し得る処理槽を提供することができる。そして、本発明によれば、上記過酸化水素分解処理水を含む洗浄水、超純水を含む洗浄水、水素溶解水を含む洗浄水またはオゾン溶解水を含む洗浄水を用いた電子部品の洗浄方法を提供することができる。 According to the present invention, by using a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, by decomposing hydrogen peroxide in water to be treated, SV is reduced to 2000 h −1 . To provide a method and a production apparatus for producing hydrogen peroxide decomposition treated water by decomposing and removing hydrogen peroxide with high efficiency even if water is passed through an SV exceeding the above or the packed bed height of the catalyst is reduced. it can. Further, according to the present invention, SV is or passed through in large SV exceeding 2000h -1, even by reducing the packed bed height of the catalyst, and decomposing and removing hydrogen peroxide with high efficiency, ultra-pure A method and apparatus for producing water, a method and apparatus for producing hydrogen-dissolved water, a method and apparatus for producing ozone-dissolved water can be provided. Furthermore, according to the present invention, it is possible to provide a treatment tank capable of downsizing and easily maintaining and managing the ultrapure water production apparatus, the hydrogen dissolved water production apparatus, the ozone dissolved water production apparatus, and the like. According to the present invention, cleaning of electronic components using the cleaning water containing the hydrogen peroxide decomposition treated water, the cleaning water containing ultrapure water, the cleaning water containing hydrogen-dissolved water, or the cleaning water containing ozone-dissolved water is performed. A method can be provided.

1 超純水の製造装置
2 前処理システム
3 一次純水システム
4 サブシステム
5 超純水
6 循環ライン
7 水素溶解処理装置
8 処理ライン
10 水素供給源
11 配管
12 オゾン溶解処理装置
13 処理ライン
15 オゾン供給源
16 配管
DESCRIPTION OF SYMBOLS 1 Ultrapure water production device 2 Pretreatment system 3 Primary pure water system 4 Subsystem 5 Ultrapure water 6 Circulation line 7 Hydrogen dissolution treatment device 8 Treatment line 10 Hydrogen supply source 11 Piping 12 Ozone dissolution treatment device 13 Treatment line 15 Ozone Supply source 16 Piping

Claims (24)

モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、過酸化水素含有水とを接触させることを特徴とする過酸化水素分解処理水の製造方法。   A method for producing hydrogen peroxide decomposition treated water, comprising contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water. 前記白金族金属の担持量が、前記白金族金属担持触媒1Lあたり10〜30000mgである請求項1に記載の過酸化水素分解処理水の製造方法。   The method for producing hydrogen peroxide decomposition treated water according to claim 1, wherein the amount of the platinum group metal supported is 10 to 30000 mg per liter of the platinum group metal supported catalyst. 前記モノリス状有機多孔質アニオン交換体が、OH形である請求項1または請求項2に記載の過酸化水素分解処理水の製造方法。   The method for producing hydrogen peroxide-decomposed water according to claim 1 or 2, wherein the monolithic organic porous anion exchanger is in an OH form. 前記白金族金属担持触媒に、前記過酸化水素含有水を、空間速度2000h−1〜20000h−1で接触させる請求項1〜請求項3のいずれかに記載の過酸化水素分解処理水の製造方法。 The method for producing hydrogen peroxide decomposition treated water according to any one of claims 1 to 3, wherein the hydrogen peroxide-containing water is brought into contact with the platinum group metal-supported catalyst at a space velocity of 2000 h -1 to 20000 h -1. . モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒を含み、該触媒と過酸化水素含有水との接触処理部を有することを特徴とする過酸化水素分解処理水の製造装置。   A hydrogen peroxide decomposition treatment comprising a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and having a contact treatment section between the catalyst and hydrogen peroxide-containing water Water production equipment. モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽。   A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger in this order with respect to the water to be treated. It is arrange | positioned in the same container so that it may contact, and the processing tank characterized by the above-mentioned. モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽。   A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, a non-regenerative ion exchange resin or monolithic organic porous ion exchanger, and a separation membrane are added to the water to be treated. It arrange | positions in the same container so that it may contact with this order with respect to this, The processing tank characterized by the above-mentioned. モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と、分離膜とが、被処理水に対してこの順番で接触するように同一容器内に配置されてなることを特徴とする処理槽。   A platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and a separation membrane are arranged in the same container so as to come into contact with the water to be treated in this order. A treatment tank characterized by that. 被処理水に対し、紫外線酸化処理と、モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と接触させる過酸化水素分解処理と、非再生型イオン交換樹脂と接触させるイオン交換処理と、分離膜によるろ過処理とを、この順番に施すことを特徴とする超純水の製造方法。   UV oxidation treatment of water to be treated, hydrogen peroxide decomposition treatment in which a platinum group metal supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger, and a non-regenerative ion exchange resin A method for producing ultrapure water, characterized in that an ion exchange treatment to be contacted and a filtration treatment with a separation membrane are performed in this order. 紫外線酸化装置と、請求項5に記載の過酸化水素分解処理水の製造装置と、非再生型イオン交換樹脂を含む非再生型イオン交換装置と、膜分離装置とを、この順番に通水するように設置したことを特徴とする超純水の製造装置。   The ultraviolet oxidation apparatus, the hydrogen peroxide decomposition treated water production apparatus according to claim 5, the non-regenerative ion exchange apparatus including the non-regenerative ion exchange resin, and the membrane separation apparatus are passed in this order. A device for producing ultrapure water, characterized in that it is installed as described above. 紫外線酸化装置と、請求項6に記載の処理槽と、膜分離装置とを、この順番に通水するように設置したことを特徴とする超純水の製造装置。   An apparatus for producing ultrapure water, wherein the ultraviolet oxidation apparatus, the treatment tank according to claim 6 and the membrane separation apparatus are installed so as to pass water in this order. 紫外線酸化装置と、請求項7または請求項8に記載の処理槽とを、この順番に通水するように設置したことを特徴とする超純水の製造装置。   An apparatus for producing ultrapure water, wherein an ultraviolet oxidation apparatus and the treatment tank according to claim 7 or 8 are installed so as to pass water in this order. モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させる工程の前工程または後工程として、被処理水に対する水素溶解工程を含むことを特徴とする水素溶解水の製造方法。   Contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water; and contacting the platinum group metal-supported catalyst and hydrogen peroxide-containing water. A method for producing hydrogen-dissolved water, comprising a hydrogen-dissolving step for water to be treated as a pre-process or a post-process of the step to be performed. 請求項5に記載の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とする水素溶解水の製造装置。   6. The apparatus for producing hydrogen peroxide decomposition treated water according to claim 5, and a hydrogen dissolution treatment apparatus for water to be treated on the upstream side or downstream side of the apparatus for producing hydrogen peroxide decomposition treated water. An apparatus for producing hydrogen-dissolved water. 請求項6に記載の処理槽と、膜分離装置とを、この順番に通水するように設置するとともに、前記処理槽の上流側または下流側に被処理水に対する水素溶解処理装置を設けてなることを特徴とする水素溶解水の製造装置。   The treatment tank according to claim 6 and the membrane separation apparatus are installed so as to pass water in this order, and a hydrogen dissolution treatment apparatus for water to be treated is provided upstream or downstream of the treatment tank. An apparatus for producing hydrogen-dissolved water. 請求項7または請求項8に記載の処理槽と、該処理槽の上流側または下流側に被処理水に対する水素溶解処理装置とを設けてなることを特徴とする水素溶解水の製造装置。   An apparatus for producing hydrogen-dissolved water, comprising: the treatment tank according to claim 7 or 8; and a hydrogen dissolution treatment apparatus for water to be treated on an upstream side or a downstream side of the treatment tank. モノリス状有機多孔質アニオン交換体に白金族金属が担持されてなる白金族金属担持触媒と過酸化水素含有水とを接触させる工程と、該白金族金属担持触媒と過酸化水素含有水とを接触させて得られた処理水に対してオゾンを溶解させる工程とを含むことを特徴とするオゾン溶解水の製造方法。   Contacting a platinum group metal-supported catalyst in which a platinum group metal is supported on a monolithic organic porous anion exchanger and hydrogen peroxide-containing water; and contacting the platinum group metal-supported catalyst and hydrogen peroxide-containing water. And a step of dissolving ozone in the treated water obtained by the method. 請求項5に記載の過酸化水素分解処理水の製造装置と、該過酸化水素分解処理水の製造装置の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置。   An apparatus for producing ozone-dissolved water, comprising the apparatus for producing hydrogen peroxide-decomposed treated water according to claim 5 and an ozone-dissolving treatment apparatus on the downstream side of the apparatus for producing hydrogen peroxide-decomposed treated water. apparatus. 前記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに膜分離装置を設けてなる請求項18に記載のオゾン溶解水の製造装置。   The apparatus for producing ozone-dissolved water according to claim 18, further comprising a membrane separation device on the downstream side of the apparatus for producing hydrogen peroxide-decomposed water and upstream of the ozone-dissolving treatment apparatus. 前記過酸化水素分解処理水の製造装置の下流側であって、オゾン溶解処理装置の上流側に、さらに非再生型イオン交換樹脂またはモノリス状有機多孔質イオン交換体を含むイオン交換槽と、膜分離装置とをこの順番で設けてなる請求項18に記載のオゾン溶解水の製造装置。   An ion exchange tank further comprising a non-regenerative ion exchange resin or a monolithic organic porous ion exchanger on the downstream side of the apparatus for producing hydrogen peroxide decomposition treated water and upstream of the ozone dissolution treatment apparatus, and a membrane The apparatus for producing ozone-dissolved water according to claim 18, wherein the separator is provided in this order. 請求項6に記載の処理槽と、膜分離装置とを、この順番に通水するように設置するとともに、前記膜分離装置の下流側にオゾン溶解処理装置を設けてなることを特徴とするオゾン溶解水の製造装置。   The treatment tank according to claim 6 and a membrane separation device are installed so as to pass water in this order, and an ozone dissolution treatment device is provided on the downstream side of the membrane separation device. Dissolved water production equipment. 請求項7に記載の処理槽と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置。   An apparatus for producing ozone-dissolved water, comprising: the treatment tank according to claim 7; and an ozone dissolution treatment apparatus on a downstream side of the treatment tank. 請求項8に記載の処理槽と、該処理槽の下流側にオゾン溶解処理装置とを設けてなることを特徴とするオゾン溶解水の製造装置。   An apparatus for producing ozone-dissolved water, comprising: the treatment tank according to claim 8; and an ozone dissolution treatment apparatus on a downstream side of the treatment tank. 請求項1〜請求項4のいずれかに記載の方法もしくは請求項5に記載の装置により得られる過酸化水素分解処理水を含む洗浄水、請求項9に記載の方法もしくは請求項10〜請求項12のいずれかに記載の装置により得られる超純水を含む洗浄水、請求項13に記載の方法もしくは請求項14〜請求項16のいずれかに記載の装置により得られる水素溶解水を含む洗浄水または請求項17に記載の方法もしくは請求項18〜請求項23のいずれかに記載の装置により得られるオゾン溶解水を含む洗浄水から選ばれるいずれか一種以上の洗浄水により、表面洗浄することを特徴とする電子部品の洗浄方法。   Washing water containing hydrogen peroxide decomposition treated water obtained by the method according to any one of claims 1 to 4 or the apparatus according to claim 5, the method according to claim 9, or the claims 10 to 10. Washing water containing ultrapure water obtained by the apparatus according to any one of claims 12 to 13, Washing containing hydrogen-dissolved water obtained by the method according to claim 13 or the apparatus according to any one of claims 14 to 16. Washing the surface with water or at least one kind of washing water selected from washing water containing ozone-dissolved water obtained by the method according to claim 17 or the apparatus according to any one of claims 18 to 23. A method for cleaning electronic components.
JP2010057392A 2009-03-18 2010-03-15 Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method Active JP5329463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010057392A JP5329463B2 (en) 2009-03-18 2010-03-15 Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009065874 2009-03-18
JP2009065874 2009-03-18
JP2010057392A JP5329463B2 (en) 2009-03-18 2010-03-15 Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method

Publications (2)

Publication Number Publication Date
JP2010240641A true JP2010240641A (en) 2010-10-28
JP5329463B2 JP5329463B2 (en) 2013-10-30

Family

ID=43094309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010057392A Active JP5329463B2 (en) 2009-03-18 2010-03-15 Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method

Country Status (1)

Country Link
JP (1) JP5329463B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2012063303A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
EP2447821A2 (en) 2010-10-27 2012-05-02 Sony Corporation Image processing device, image processing system, image processing method and program
JP2012154634A (en) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd Breakthrough time prediction method of non-regenerative ion-exchange resin device and maintenance method
JP2014079722A (en) * 2012-10-18 2014-05-08 Japan Organo Co Ltd Ozone water manufacturing method
WO2014178289A1 (en) * 2013-04-30 2014-11-06 オルガノ株式会社 Cleaning method for exposed copper substrate and cleaning system
JP2016097390A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactant storage body, reactor and water treatment apparatus
JP2016097389A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactor storage body, reactor and water treatment device
JP2016172206A (en) * 2015-03-16 2016-09-29 オルガノ株式会社 Method and apparatus for processing liquid to be processed
JPWO2014083772A1 (en) * 2012-11-30 2017-01-05 国立大学法人広島大学 Method for producing metal nanoparticle composite and metal nanoparticle composite produced by the method
KR20180028397A (en) 2015-07-10 2018-03-16 가부시키가이샤 무사시노카가쿠겡큐쇼 Method for producing organic acid ester-based liquid, and method for producing resist solvent for manufacturing electronic components or rinse agent for manufacturing electronic components
JP6299913B1 (en) * 2017-03-30 2018-03-28 栗田工業株式会社 pH / redox potential adjustment water production equipment
JP2018094531A (en) * 2016-12-16 2018-06-21 栗田工業株式会社 Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus
JP2018171610A (en) * 2018-02-14 2018-11-08 栗田工業株式会社 MANUFACTURING APPARATUS OF ADJUSTMENT WATER FOR pH AND OXIDATION REDUCTION POTENTIAL
US11004674B2 (en) 2013-09-25 2021-05-11 Organo Corporation Substrate treatment method and substrate treatment equipment
WO2022219870A1 (en) * 2021-04-14 2022-10-20 オルガノ株式会社 Platinum group metal supported catalyst column and method for forming carbon-carbon bond

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477771B2 (en) 2017-04-14 2019-03-06 栗田工業株式会社 Washing water supply device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042852A (en) * 1996-05-10 1998-02-17 Pharmacia Biotech Ab Stabilization of beverage
JP2003156589A (en) * 2001-11-26 2003-05-30 Tokyo Electric Power Co Inc:The Water treatment device of boiling water reactor power plant
WO2007081054A1 (en) * 2006-01-12 2007-07-19 Kurita Water Industries Ltd. Method and apparatus for removing hydrogen peroxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1042852A (en) * 1996-05-10 1998-02-17 Pharmacia Biotech Ab Stabilization of beverage
JP2003156589A (en) * 2001-11-26 2003-05-30 Tokyo Electric Power Co Inc:The Water treatment device of boiling water reactor power plant
WO2007081054A1 (en) * 2006-01-12 2007-07-19 Kurita Water Industries Ltd. Method and apparatus for removing hydrogen peroxide

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240642A (en) * 2009-03-18 2010-10-28 Japan Organo Co Ltd Method of manufacturing dissolved oxygen-removed water, apparatus for manufacturing dissolved oxygen-removed water, dissolved oxygen treatment tank, method of manufacturing ultrapure water, method of manufacturing hydrogen dissolved water, apparatus for manufacturing hydrogen dissolved water, and method of cleaning electronic components
JP2012063303A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Device and method for measuring hydrogen peroxide concentration
JP2012061455A (en) * 2010-09-17 2012-03-29 Japan Organo Co Ltd Platinum group metal-supported catalyst, method for producing the same, method for producing hydrogen peroxide-decomposed water, and method for producing dissolved oxygen-removed water
EP2447821A2 (en) 2010-10-27 2012-05-02 Sony Corporation Image processing device, image processing system, image processing method and program
JP2012154634A (en) * 2011-01-21 2012-08-16 Kurita Water Ind Ltd Breakthrough time prediction method of non-regenerative ion-exchange resin device and maintenance method
JP2014079722A (en) * 2012-10-18 2014-05-08 Japan Organo Co Ltd Ozone water manufacturing method
JPWO2014083772A1 (en) * 2012-11-30 2017-01-05 国立大学法人広島大学 Method for producing metal nanoparticle composite and metal nanoparticle composite produced by the method
US9931623B2 (en) 2012-11-30 2018-04-03 Hiroshima University Method for producing metal nanoparticle complex, and metal nanoparticle complex produced by said method
KR101824785B1 (en) * 2013-04-30 2018-02-01 오르가노 코포레이션 Cleaning method for exposed copper substrate and cleaning system
WO2014178289A1 (en) * 2013-04-30 2014-11-06 オルガノ株式会社 Cleaning method for exposed copper substrate and cleaning system
US11491517B2 (en) 2013-04-30 2022-11-08 Organo Corporation Method and system for cleaning copper-exposed substrate
US10434546B2 (en) 2013-04-30 2019-10-08 Organo Corporation Method and system for cleaning copper-exposed substrate
CN105340067A (en) * 2013-04-30 2016-02-17 奥加诺株式会社 Cleaning method for exposed copper substrate and cleaning system
JPWO2014178289A1 (en) * 2013-04-30 2017-02-23 オルガノ株式会社 Method and system for cleaning copper exposed substrate
KR20150142036A (en) 2013-04-30 2015-12-21 오르가노 코포레이션 Cleaning method for exposed copper substrate and cleaning system
US11004674B2 (en) 2013-09-25 2021-05-11 Organo Corporation Substrate treatment method and substrate treatment equipment
US11901174B2 (en) 2013-09-25 2024-02-13 Organo Corporation Substrate treatment method and substrate treatment equipment
JP2016097389A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactor storage body, reactor and water treatment device
JP2016097390A (en) * 2014-11-26 2016-05-30 オルガノ株式会社 Reactant storage body, reactor and water treatment apparatus
JP2016172206A (en) * 2015-03-16 2016-09-29 オルガノ株式会社 Method and apparatus for processing liquid to be processed
US10632456B2 (en) 2015-07-10 2020-04-28 Musashino Chemical Laboratory, Ltd. Process for producing organic acid ester-type liquid, and process for producing solvent of resist for producing electronic part or rinsing liquid for producing electronic parts
KR20180028397A (en) 2015-07-10 2018-03-16 가부시키가이샤 무사시노카가쿠겡큐쇼 Method for producing organic acid ester-based liquid, and method for producing resist solvent for manufacturing electronic components or rinse agent for manufacturing electronic components
JP2018094531A (en) * 2016-12-16 2018-06-21 栗田工業株式会社 Ultra pure water manufacturing apparatus and operation method of ultra pure water manufacturing apparatus
WO2018179493A1 (en) * 2017-03-30 2018-10-04 栗田工業株式会社 APPARATUS FOR PRODUCING AQUEOUS pH- AND REDOX POTENTIAL-ADJUSTING SOLUTION
US11339065B2 (en) 2017-03-30 2022-05-24 Kurita Water Industries Ltd. Apparatus for producing aqueous pH- and redox potential-adjusting solution
JP2018167245A (en) * 2017-03-30 2018-11-01 栗田工業株式会社 MANUFACTURING DEVICE OF pH AND OXIDATION-REDUCTION POTENTIAL ADJUSTED WATER
JP6299913B1 (en) * 2017-03-30 2018-03-28 栗田工業株式会社 pH / redox potential adjustment water production equipment
JP2018171610A (en) * 2018-02-14 2018-11-08 栗田工業株式会社 MANUFACTURING APPARATUS OF ADJUSTMENT WATER FOR pH AND OXIDATION REDUCTION POTENTIAL
WO2022219870A1 (en) * 2021-04-14 2022-10-20 オルガノ株式会社 Platinum group metal supported catalyst column and method for forming carbon-carbon bond

Also Published As

Publication number Publication date
JP5329463B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5329463B2 (en) Production method for hydrogen peroxide decomposition treated water, production apparatus for hydrogen peroxide decomposition treated water, treatment tank, production method for ultra pure water, production apparatus for ultra pure water, production method for hydrogen dissolved water, production apparatus for hydrogen dissolved water , Ozone-dissolved water manufacturing method, ozone-dissolved water manufacturing apparatus, and electronic component cleaning method
JP5430983B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5604143B2 (en) Dissolved oxygen-removed water production method, dissolved oxygen-removed water production device, dissolved oxygen treatment tank, ultrapure water production method, hydrogen-dissolved water production method, hydrogen-dissolved water production device, and electronic component cleaning method
JP5231300B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5698813B2 (en) Ultrapure water production equipment
TWI228495B (en) High-purity water producing apparatus and treating module
JP5231299B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5116724B2 (en) Ultrapure water production equipment
TWI758266B (en) Method of refining organic solvent
TWI583631B (en) Cleaning method and cleaning system for copper-exposed substrate
JP5525754B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP5421689B2 (en) Platinum group metal supported catalyst, method for producing hydrogen peroxide decomposition treatment water, method for producing dissolved oxygen removal treatment water, and method for cleaning electronic components
JP6042278B2 (en) Platinum group metal supported catalytic hydrogenation reduction catalyst and catalytic hydrogenation reduction method
JP5431196B2 (en) Electric deionized water production apparatus and operation method thereof
KR102542839B1 (en) Ultrapure water production method, ultrapure water production system, and ion exchanger charging module
JP5567958B2 (en) Method for producing platinum group metal supported catalyst
JP7081974B2 (en) Liquid purification cartridge and liquid purification method
JP2014079722A (en) Ozone water manufacturing method
JP2010234361A (en) Electric deionized water production apparatus
JP6433577B2 (en) Manufacturing method of organic acid ester liquid, and manufacturing method of resist solvent for electronic component manufacturing or rinsing liquid for electronic component manufacturing
JP2010284639A (en) Electric apparatus for producing deionized water and method for operating the apparatus
TW202208061A (en) Method for changing ionic form of anion exchanger, and method for producing anion exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250