JP2014077202A - Ferritic stainless steel - Google Patents

Ferritic stainless steel Download PDF

Info

Publication number
JP2014077202A
JP2014077202A JP2013268686A JP2013268686A JP2014077202A JP 2014077202 A JP2014077202 A JP 2014077202A JP 2013268686 A JP2013268686 A JP 2013268686A JP 2013268686 A JP2013268686 A JP 2013268686A JP 2014077202 A JP2014077202 A JP 2014077202A
Authority
JP
Japan
Prior art keywords
less
range
stainless steel
corrosion resistance
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013268686A
Other languages
Japanese (ja)
Other versions
JP5556951B2 (en
Inventor
Masataka Yoshino
正崇 吉野
Hiroki Ota
裕樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013268686A priority Critical patent/JP5556951B2/en
Publication of JP2014077202A publication Critical patent/JP2014077202A/en
Application granted granted Critical
Publication of JP5556951B2 publication Critical patent/JP5556951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel excellent in corrosion resistance at a weld zone.SOLUTION: A ferritic stainless steel contains, by mass%, C:0.003% to 0.014%, N:0.005% to 0.016%, C%+N%:0.023% or less, Si:0.01% to 0.90%, Mn:0.01% to 0.50%, P:0.020% to 0.040%, S:0.008% or less, Al:0.001% to 0.090%, Cr:14.5% to 23.0%, Ni:0.10% to 0.60%, V:0.010% to 0.040%, Mo:0.01% to 1.65%, further at least either of Ti and Nb in a range satisfying specific conditions and the balance Fe with inevitable impurities.

Description

本発明は、フェライト系ステンレス鋼、特に溶接部の耐食性に優れたフェライト系ステンレス鋼に関するものである。   The present invention relates to a ferritic stainless steel, and more particularly to a ferritic stainless steel excellent in corrosion resistance of a welded portion.

ステンレス鋼はSUS430に代表されるフェライト系ステンレス鋼とSUS304に代表されるオーステナイト系ステンレス鋼とに大別される。フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて、高価な元素であるNiの添加量が少ないため低コストで製造することができる。さらに、フェライト系ステンレス鋼は、熱膨張係数が小さく熱伝導率が高いため溶接時の変形が少ない利点や屋外環境での耐食性が優れることや応力腐食割れが起こりにくい等の優れた特性を持っている。そのため、フェライト系ステンレス鋼は各種建材、自動車部品、厨房機器類、家電製品、温水器等に広く適用されており、そのニーズは近年さらに高まっている。   Stainless steel is roughly classified into ferritic stainless steel represented by SUS430 and austenitic stainless steel represented by SUS304. Ferritic stainless steel can be manufactured at low cost because the amount of Ni, which is an expensive element, is small compared to austenitic stainless steel. In addition, ferritic stainless steel has excellent characteristics such as the advantage of low deformation during welding due to its low thermal expansion coefficient and high thermal conductivity, excellent corrosion resistance in outdoor environments, and resistance to stress corrosion cracking. Yes. Therefore, ferritic stainless steel has been widely applied to various building materials, automobile parts, kitchen equipment, home appliances, water heaters, and the like, and the needs thereof have been further increased in recent years.

フェライト系ステンレス鋼は、フェライト系ステンレス鋼同士あるいはオーステナイト系ステンレス鋼(例えばSUS304等)と溶接されて使用されることが多く、溶接部においても母材部と同様に良好な耐食性が求められる。しかし、C、N含有量がフェライト系鋼種よりも高いSUS304等のオーステナイト系ステンレス鋼とフェライト系ステンレス鋼とを溶接した場合、鋭敏化と呼ばれる現象により溶接部の耐食性が母材より低下する場合がある。鋭敏化とは、溶接部の熱履歴によって鋼中のC、NがCrと結合してCr炭化物(例えばCr23)、またはCr窒化物(CrN)として粒界に析出し、粒界およびその近傍のCr濃度が母材よりも低くなり、粒界での耐食性が低下する現象である。また、近年では、溶接部の構造が複雑化することに伴って、溶接時に十分なガスシールドが行えず、溶融池に空気中の窒素が侵入するような不完全な条件での溶接が増えている。溶融池に侵入した窒素は、上述と同じ機構により溶接部の鋭敏化を助長し、耐食性の低下を招く。そのため、このような用途に適用されるフェライト系ステンレス鋼は、溶接時にガスシールドが不十分でも溶接部の耐食性を十分に確保できることが求められる。 Ferritic stainless steel is often used by being welded with ferritic stainless steels or with austenitic stainless steel (for example, SUS304, etc.), and good corrosion resistance is required in the welded portion as well as the base material portion. However, when austenitic stainless steel such as SUS304 and ferritic stainless steel having higher C and N contents than ferritic steel types are welded, the corrosion resistance of the weld may be lower than that of the base metal due to a phenomenon called sensitization. is there. Sensitization means that C and N in steel are combined with Cr due to the thermal history of the welded portion, and precipitated as grain carbide as Cr carbide (eg Cr 23 C 6 ) or Cr nitride (Cr 2 N). This is a phenomenon in which the Cr concentration in the boundary and the vicinity thereof is lower than that of the base material, and the corrosion resistance at the grain boundary is lowered. In recent years, as the structure of the welded part has become complicated, sufficient gas shielding cannot be performed during welding, and welding under incomplete conditions in which nitrogen in the air enters the molten pool has increased. Yes. Nitrogen that has entered the molten pool promotes sensitization of the welded portion by the same mechanism as described above, and causes a decrease in corrosion resistance. Therefore, ferritic stainless steel applied for such applications is required to be able to sufficiently secure the corrosion resistance of the welded portion even when the gas shield is insufficient during welding.

このような課題に対し、特許文献1および2に開示されているように、Ti、Nbを添加し鋼中のC、Nを炭化物あるいは窒化物として固定し無害化する方法が提案されている。しかし、ガスシールドが不十分な場合に溶接部に鋭敏化が生じる場合があり、溶接部の耐食性は十分ではない。   In order to solve such problems, as disclosed in Patent Documents 1 and 2, a method of adding Ti and Nb to fix C and N in steel as carbides or nitrides and making them harmless has been proposed. However, when the gas shield is insufficient, sensitization may occur in the welded portion, and the corrosion resistance of the welded portion is not sufficient.

特開昭51−88413号公報JP 51-88413 A 特開2007−270290号公報JP 2007-270290 A

本発明は、上述の問題を解決するためになされたもので、溶接部の耐食性に優れたフェライト系ステンレス鋼を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a ferritic stainless steel excellent in corrosion resistance of a welded portion.

Ti、Nb添加によるC、Nの固定化機構は、Ti、Nbが溶接時に母材へ固溶した後、冷却中に再度Ti(C、N)あるいはNb(C、N)として析出し、鋼中のC、Nを固定するものであり、Ti、NbをTi%/(C%+N%)またはNb%/(C%+N%)で8以上に添加することが有効であると経験的に知られている。   The fixing mechanism of C and N by addition of Ti and Nb is that after Ti and Nb are dissolved in the base material during welding, they are precipitated again as Ti (C, N) or Nb (C, N) during cooling. C and N are fixed, and it is empirically found that it is effective to add Ti and Nb to 8 or more at Ti% / (C% + N%) or Nb% / (C% + N%). Are known.

しかし、Ti%/(C%+N%)またはNb%/(C%+N%)が8以上を満足する範囲でTi、Nbを添加しているにも関わらず十分な鋭敏化抑制効果が得られない場合があることが判り、発明者らはその原因を調査した。その結果、従来のTi、Nb添加フェライト系ステンレス鋼では、Ti(C、N)あるいはNb(C、N)(以下、Ti、Nb系炭窒化物と称す)の固溶温度および析出ピーク温度がともに高いために溶接後の冷却時にこれらが十分に析出することができず、固溶C、Nが残存してCr炭窒化物の析出による鋭敏化が生じている場合があることがわかった。そのため、溶接部の耐食性を向上させるためには、溶接後の冷却過程において、従来以上に固溶C、Nを固定化する手法が必要となる。   However, even if Ti and Nb are added in a range where Ti% / (C% + N%) or Nb% / (C% + N%) satisfies 8 or more, a sufficient sensitization suppressing effect can be obtained. The inventors found that there might not be, and the inventors investigated the cause. As a result, in conventional Ti and Nb-added ferritic stainless steels, the solution temperature and precipitation peak temperature of Ti (C, N) or Nb (C, N) (hereinafter referred to as Ti, Nb carbonitride) are low. Since both were high, they could not be sufficiently precipitated during cooling after welding, and it was found that solute C and N may remain and sensitization may occur due to precipitation of Cr carbonitride. Therefore, in order to improve the corrosion resistance of the welded portion, a technique for fixing solute C and N more than before is required in the cooling process after welding.

そこで、本発明者らは、これらTi、Nb系炭窒化物の析出ピーク温度を低温化することにより、溶接後の冷却中におけるTi、Nb系炭窒化物の析出を促進させて、C、Nを十分に固定させる手法について検討した。その結果、Ti、Nb系炭窒化物に適量のVが含まれる場合、これらの析出物がそれぞれ(Ti、V)(C、N)あるいは(Nb、V)(C、N)といった複合炭窒化物となり、従来のTi、Nb系炭窒化物よりも析出温度が低温化するとともに、Vを含むこれら複合炭窒化物は、C、Nを従来のTi、Nb系炭窒化物よりも多く固定することができ、溶接部の耐食性が大幅に向上することを見出した。   Therefore, the present inventors promoted the precipitation of Ti and Nb carbonitride during cooling after welding by lowering the precipitation peak temperature of these Ti and Nb carbonitrides, so that C, N We examined a method to fix the stencil sufficiently. As a result, when Ti and Nb-based carbonitrides contain an appropriate amount of V, these precipitates are composite carbonitriding such as (Ti, V) (C, N) or (Nb, V) (C, N), respectively. The precipitation temperature is lower than that of conventional Ti and Nb-based carbonitrides, and these composite carbonitrides including V fix C and N more than conventional Ti and Nb-based carbonitrides. It was found that the corrosion resistance of the welded portion is greatly improved.

本発明は、以上の知見に基づいてなされたもので、その要旨は以下のとおりである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1) 質量%で、C:0.003%以上0.014%以下、N:0.005%以上0.016%以下、C%+N%:0.023%以下、Si:0.01%以上0.90%以下、Mn:0.01%以上0.50%以下、P:0.020%以上0.040%以下、S:0.008%以下、Al:0.001%以上0.090%以下、Cr:14.5%以上23.0%以下、Ni:0.10%以上0.60%以下、V:0.010%以上0.040%以下を含有し、更に、Ti:0.15%以上0.34%以下およびTi%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、又は、Nb:0.35%以上0.60%以下およびTi%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲でNbを含有又はNb及びTiを含有する場合の少なくとも一方を満足し、残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。なお、前記C%、前記N%、前記Ti%、前記Nb%、前記V%はそれぞれTi、Nb、Vの含有量(質量%)を表す。   (1) By mass%, C: 0.003% to 0.014%, N: 0.005% to 0.016%, C% + N%: 0.023% or less, Si: 0.01% 0.90% or less, Mn: 0.01% or more and 0.50% or less, P: 0.020% or more and 0.040% or less, S: 0.008% or less, Al: 0.001% or more. 090% or less, Cr: 14.5% to 23.0%, Ni: 0.10% to 0.60%, V: 0.010% to 0.040%, and Ti: 0.15% or more and 0.34% or less and Ti% + Nb% ≦ 0.70 and V% / (Ti% + 0.5 × Nb%): Ti is contained within a range satisfying 0.05 to 0.20. Or when Ti and Nb are contained, or Nb: 0.35% or more and 0.60% or less and Ti% + Nb% ≦ 0. 0 and V% / (Ti% + 0.5 × Nb%): Nb is contained in a range satisfying 0.05 to 0.20 or at least one of cases where Nb and Ti are contained, with the balance being Fe and Ferritic stainless steel characterized by inevitable impurities. The C%, the N%, the Ti%, the Nb%, and the V% represent the contents (mass%) of Ti, Nb, and V, respectively.

(2)質量%で、さらに、Cu:0.01%以上0.80%以下、Mo:0.01%以上1.65%以下の1種または2種を含有することを特徴とする(1)に記載のフェライト系ステンレス鋼。   (2) It is characterized by containing one or two of Cu: 0.01% to 0.80% and Mo: 0.01% to 1.65% (1% by mass) (1 ) Ferritic stainless steel.

(3)質量%で、さらに、Zr:0.01%以上0.20%以下、REM:0.001%以上0.100%以下、Co:0.01%以上0.20%以下、B:0.0002%以上0.0009%以下、Mg:0.0002%以上0.0010%以下、Ca:0.0005%以上0.0020%以下のうちから選ばれる1種または2種以上を含有することを特徴とする(1)または(2)に記載のフェライト系ステンレス鋼。   (3) By mass%, Zr: 0.01% to 0.20%, REM: 0.001% to 0.100%, Co: 0.01% to 0.20%, B: 0.0002% or more and 0.0009% or less, Mg: 0.0002% or more and 0.0010% or less, Ca: 0.0005% or more and 0.0020% or less The ferritic stainless steel according to (1) or (2), wherein

本発明によれば、溶接部の耐食性に優れたフェライト系ステンレス鋼が得られる。本発明のフェライト系ステンレス鋼は、溶接相手材から炭素や窒素が侵入するような溶接条件、あるいは空気から窒素が侵入するような溶接条件においても、鋭敏化が生じることなく優れた耐食性を有する。そのため、溶接によって構造体の作製が行われる用途、例えば、マフラー等の自動車排気系材料、建具や換気口、ダクト等の建築用材料、電気機器、厨房製品に好適に用いることができる。   According to the present invention, a ferritic stainless steel having excellent corrosion resistance of a welded portion can be obtained. The ferritic stainless steel of the present invention has excellent corrosion resistance without causing sensitization even under welding conditions in which carbon and nitrogen enter from a welding partner material or welding conditions in which nitrogen enters from air. Therefore, it can be suitably used for applications in which structures are produced by welding, for example, automobile exhaust system materials such as mufflers, building materials such as fittings, ventilation openings, and ducts, electrical equipment, and kitchen products.

以下に本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、特に断りのない限り、すべて質量%を意味する。   The reason why the composition of the steel of the present invention is specified will be described below. In addition, all the component% means the mass% unless there is particular notice.

C:0.003%以上0.014%以下
0.014%を超えてCを含有すると、加工性の低下および溶接部の耐食性低下が顕著になる。C量が低いほど耐食性および加工性の観点では好ましいが、C量を0.003%未満にするためには精錬に時間がかかり、製造上好ましくない。そのため、C量は0.003%以上0.014%以下の範囲とする。好ましくは0.004%以上0.011%以下の範囲である。
C: 0.003% or more and 0.014% or less When C is contained in excess of 0.014%, the workability and the corrosion resistance of the welded part are significantly lowered. A lower C content is preferable from the viewpoint of corrosion resistance and workability, but refining takes time to make the C content less than 0.003%, which is not preferable in production. Therefore, the C content is in the range of 0.003% to 0.014%. Preferably it is 0.004% or more and 0.011% or less of range.

N:0.005%以上0.016%以下
0.016%を超えてNを含有すると、加工性の低下および溶接部の耐食性低下が顕著になる。耐食性の観点からNの含有量は低いほど好ましいが、N量を0.005%未満にまで低減するには精錬時間を長くする必要があり、製造コストの上昇および生産性の低下を招くため好ましくない。よって、N量は0.005%以上0.016%以下の範囲とする。好ましくは0.005%以上0.011%以下の範囲である。
N: 0.005% or more and 0.016% or less When N is contained in excess of 0.016%, the workability and the corrosion resistance of the welded part are significantly reduced. From the viewpoint of corrosion resistance, the lower the N content, the better. However, in order to reduce the N content to less than 0.005%, it is necessary to lengthen the refining time, which increases the manufacturing cost and decreases the productivity. Absent. Therefore, the N content is set in a range of 0.005% to 0.016%. Preferably it is 0.005% or more and 0.011% or less of range.

C%+N%:0.023%以下
CおよびNは加工性の低下および溶接部の耐食性の低下をもたらす。その影響には相乗効果があり、C量とN量の合計(C%+N%)が0.023%超になると加工性の低下および溶接部の耐食性低下が顕著になる。そのため、(C%+N%)の範囲を0.023%以下とする。好ましくは0.020%未満である。
C% + N%: 0.023% or less C and N cause a decrease in workability and a decrease in corrosion resistance of the weld. The effect has a synergistic effect. When the total amount of C and N (C% + N%) exceeds 0.023%, the workability and the corrosion resistance of the welded portion become remarkable. Therefore, the range of (C% + N%) is set to 0.023% or less. Preferably it is less than 0.020%.

Si:0.01%以上0.90%以下
Siは溶接時に形成される酸化皮膜に濃縮して溶接部の耐食性を向上させる効果があるとともに、製鋼工程における脱酸元素としても有用な元素である。これらの効果は、Siを0.01%以上含有することで得られ、Siの含有量が多いほどその効果は大きくなる。しかし、0.90%を超えてSiを含有すると、熱間圧延工程における圧延荷重の増大と顕著なスケールの生成、焼鈍工程においては鋼板表層でのSi濃化層の形成による酸洗性の低下がそれぞれ生じ、表面欠陥の増加や製造コストの上昇を誘因するため好ましくない。そのため、Si量は0.01%以上0.90%以下とする。好ましくは0.05%以上0.60%以下の範囲である。さらに好ましくは0.05%以上0.15%以下の範囲である。特に0.25%以上のTiを含有する場合には、Siによる酸洗性の低下が顕著になるので、Siの含有量は0.05%以上0.20%以下の範囲が好ましい。
Si: 0.01% or more and 0.90% or less Si is an element that is effective as a deoxidizing element in the steelmaking process as well as being effective in improving the corrosion resistance of the welded part by concentrating on the oxide film formed during welding. . These effects are obtained by containing 0.01% or more of Si, and the effect increases as the Si content increases. However, if the Si content exceeds 0.90%, the rolling load increases in the hot rolling process and a significant scale is generated. In the annealing process, the pickling property decreases due to the formation of the Si concentrated layer on the steel sheet surface layer. Respectively, which causes an increase in surface defects and an increase in manufacturing cost. Therefore, the Si amount is set to 0.01% or more and 0.90% or less. Preferably it is 0.05 to 0.60% of range. More preferably, it is 0.05 to 0.15% of range. In particular, when Ti is contained in an amount of 0.25% or more, the pickling property is significantly reduced by Si. Therefore, the Si content is preferably in the range of 0.05% to 0.20%.

Mn:0.01%以上0.50%以下
Mnは鋼の強度を高める効果があり、また、脱酸剤としての作用もある。その効果を得るためには0.01%以上含有することが必要である。しかし、Mn量が0.50%を超えると、腐食の起点となるMnSの析出が促進され、耐食性が低下する。そのため、Mn量の範囲は0.01%以上0.50%以下とする。好ましくは0.05%以上0.40%以下の範囲である。さらに好ましくは0.10%以上0.30%以下の範囲である。
Mn: 0.01% or more and 0.50% or less Mn has the effect of increasing the strength of the steel and also acts as a deoxidizer. In order to acquire the effect, it is necessary to contain 0.01% or more. However, if the amount of Mn exceeds 0.50%, precipitation of MnS, which is a starting point of corrosion, is promoted, and the corrosion resistance is lowered. Therefore, the range of the amount of Mn is 0.01% or more and 0.50% or less. Preferably it is 0.05 to 0.40% of range. More preferably, it is 0.10% or more and 0.30% or less of range.

P:0.020%以上0.040%以下
Pは鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので可能な限り、その含有量を低減することが好ましい。特に0.040%を超えると固溶強化により加工性が顕著に低下する。しかし、0.020%未満にするためには精錬に時間がかかり、製造上好ましくない。よって、P量は0.020%以上0.040%以下とする。好ましくは、0.025%以上0.030%以下である。
P: 0.020% or more and 0.040% or less P is an element inevitably contained in steel, but it is an element harmful to corrosion resistance and workability, so the content should be reduced as much as possible. Is preferred. In particular, when it exceeds 0.040%, the workability is remarkably lowered due to solid solution strengthening. However, in order to make it less than 0.020%, it takes time for refining, which is not preferable in production. Therefore, the P content is 0.020% or more and 0.040% or less. Preferably, it is 0.025% or more and 0.030% or less.

S:0.008%以下
SもPと同様に鋼に不可避的に含まれる元素であるが、耐食性および加工性に対して有害な元素であるので、その含有量を可能な限り低減するのが好ましい。特に0.008%を超えると耐食性が顕著に低下する。よって、S量は0.008%以下とする。好ましくは0.006%以下である。より好ましくは0.003%以下である。
S: 0.008% or less S is an element inevitably contained in steel like P. However, since it is an element harmful to corrosion resistance and workability, its content should be reduced as much as possible. preferable. Particularly when it exceeds 0.008%, the corrosion resistance is remarkably lowered. Therefore, the S amount is 0.008% or less. Preferably it is 0.006% or less. More preferably, it is 0.003% or less.

Al:0.001%以上0.090%以下
Alは有効な脱酸剤である。さらに、Alは窒素との親和力がCrよりも強いため、溶接部に窒素が侵入した場合に、窒素をCr窒化物ではなくAl窒化物として析出させて、鋭敏化を抑制する効果がある。これらの効果は、Alを0.001%以上含有することで得られる。しかし、0.090%超えてAlを含有すると、溶接時の溶け込み性が低下して溶接作業性が低下するので好ましくない。そのため、Al量は0.001%以上0.090%以下の範囲とする。好ましくは0.001%以上0.060%以下の範囲である。さらに好ましくは0.001%以上0.040%以下の範囲である。
Al: 0.001% to 0.090% Al is an effective deoxidizer. Furthermore, since Al has a stronger affinity for nitrogen than Cr, when nitrogen penetrates into the weld zone, it has the effect of precipitating nitrogen by precipitating nitrogen as Al nitride instead of Cr nitride. These effects can be obtained by containing 0.001% or more of Al. However, if Al exceeds 0.090%, the penetration at the time of welding is lowered and the welding workability is lowered, which is not preferable. Therefore, the Al content is set to be in the range of 0.001% to 0.090%. Preferably it is 0.001% or more and 0.060% or less of range. More preferably, it is 0.001% or more and 0.040% or less of range.

Cr:14.5%以上23.0%以下
Crはステンレス鋼の耐食性を確保するために最も重要な元素である。その含有量が14.5%未満では、オーステナイト系ステンレス鋼との溶接部において、十分な耐食性が得られない。一方、23.0%を超えて含有すると、σ(シグマ)相の生成により熱延板の靭性が低下し、熱延板の連続焼鈍が困難となるため製造上好ましくない。そのため、Cr量は14.5%以上23.0%以下の範囲とする。好ましくは14.5%以上22.0%以下の範囲である。さらに好ましくは16.0%以上21.5%以下の範囲である。
Cr: 14.5% to 23.0% Cr is the most important element for securing the corrosion resistance of stainless steel. If the content is less than 14.5%, sufficient corrosion resistance cannot be obtained in the welded portion with the austenitic stainless steel. On the other hand, if the content exceeds 23.0%, the toughness of the hot-rolled sheet decreases due to the formation of the σ (sigma) phase, and continuous annealing of the hot-rolled sheet becomes difficult. Therefore, the Cr content is set in the range of 14.5% or more and 23.0% or less. Preferably it is 14.5% or more and 22.0% or less of range. More preferably, it is 16.0% or more and 21.5% or less of range.

Ni:0.10%以上0.60%以下
Niはステンレス鋼の耐食性を向上させる元素であり、不動態皮膜が形成できず活性溶解が生じる腐食環境において腐食の進行を抑制する元素である。また、Niは強いオーステナイト生成元素であり、溶接部でのフェライト生成を抑制し、Cr炭窒化物の析出による鋭敏化を抑制する効果がある。この効果は、Niを0.10%以上含有することで得られ、Niの含有量が多いほど高くなる。しかし、含有量が0.60%を超えると、加工性が低下することに加えて、応力腐食割れが発生しやすくなる。さらには、Niは高価な元素であるため、Niの含有量の増大は製造コストの増大を招くため好ましくない。そのため、Ni量は0.10%以上0.60%以下とする。好ましくは0.10%以上0.50%以下の範囲である。さらに好ましくは0.10%以上0.40%以下の範囲である。
Ni: 0.10% to 0.60% Ni is an element that improves the corrosion resistance of stainless steel, and is an element that suppresses the progress of corrosion in a corrosive environment in which a passive film cannot be formed and active dissolution occurs. Ni is a strong austenite generating element, and has the effect of suppressing ferrite formation at the weld and suppressing sensitization due to precipitation of Cr carbonitride. This effect is obtained by containing 0.10% or more of Ni, and increases as the Ni content increases. However, when the content exceeds 0.60%, workability is lowered and stress corrosion cracking is likely to occur. Furthermore, since Ni is an expensive element, an increase in the content of Ni causes an increase in manufacturing cost, which is not preferable. Therefore, the Ni content is set to 0.10% or more and 0.60% or less. Preferably it is 0.10% or more and 0.50% or less of range. More preferably, it is 0.10% or more and 0.40% or less of range.

V:0.010%以上0.040%以下
Vは本発明において極めて重要な元素である。VはTi、Nbと複合炭窒化物を形成する。この複合炭窒化物は、溶接後の冷却過程において、従来のTi、Nb系炭窒化物より低い析出ピーク温度で、より多くのC、Nを含んで析出して、溶接部の鋭敏化を抑制する。この効果は、Vを0.010%以上含有することによって得られる。しかし、0.040%を超えて含有すると加工性が顕著に低下するため好ましくない。そのため、V量は0.010%以上0.040%以下の範囲とする。好ましくは0.010%以上0.030%以下の範囲である。
V: 0.010% to 0.040% V is an extremely important element in the present invention. V forms a composite carbonitride with Ti and Nb. This composite carbonitride precipitates with a higher precipitation peak temperature than conventional Ti and Nb carbonitrides and contains more C and N during the cooling process after welding, thereby suppressing sensitization of the weld zone. To do. This effect is acquired by containing V 0.010% or more. However, if the content exceeds 0.040%, workability is remarkably lowered, which is not preferable. Therefore, the V amount is in the range of 0.010% to 0.040%. Preferably it is 0.010% or more and 0.030% or less of range.

Ti:0.15%以上0.34%以下およびTi%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、又は、Nb:0.35%以上0.60%以下およびTi%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲でNbを含有又はNb及びTiを含有する場合
Ti、Nbは、C、Nと優先的に結合して、Cr炭窒化物の析出による鋭敏化に起因した耐食性の低下を抑制する元素である。この効果を得るため、Ti、Nbの1種または2種を、Tiを0.15%以上あるいはNbを0.35%以上含有する。好ましくは、Ti:0.20%以上を含有するか、Nb:0.40%以上を含有する場合である。さらに好ましくは、Ti:0.25%以上を含有するか、Nb:0.45%以上を含有する場合である。一方、Tiを0.34%を超えて含有すると、鋳造工程において粗大なTi炭窒化物が生成し、表面欠陥を引き起こすため製造上好ましくない。そのため、Ti量は0.34%以下とする。好ましくは、0.30%以下である。また、Nbは再結晶温度を上昇させる元素でもあり、0.60%を超えて含有すると、再結晶に必要な焼鈍温度が高温化するため、焼鈍コストの上昇を招くとともに不均一な金属組織に起因した延性の低下が生じる。さらに、Nbは熱間圧延荷重を増大させるため、過度に添加すると熱延板の製造が困難となる。そのため、Nb量は0.60%以下とする。好ましくは0.55%以下である。また、TiあるいはNbを含有すると、再結晶時の金属組織が不均一になり延性の低下が生じる。そのためTi%+Nb%は0.70%以下とする。好ましくは0.65以下である。上記の通り、Ti量、Nb量、Ti%+Nb%の全てが上限値以下でなければならない。
Ti: 0.15% or more and 0.34% or less and Ti% + Nb% ≦ 0.70 and V% / (Ti% + 0.5 × Nb%): within a range satisfying 0.05 to 0.20, Ti Or Ti and Nb, or Nb: 0.35% to 0.60% and Ti% + Nb% ≦ 0.70 and V% / (Ti% + 0.5 × Nb%): 0 When Nb is contained in a range satisfying 0.05 to 0.20 or Nb and Ti are contained Ti and Nb are preferentially bonded to C and N, and are attributed to sensitization by precipitation of Cr carbonitride. It is an element that suppresses the decrease in corrosion resistance. In order to obtain this effect, one or two of Ti and Nb are contained at 0.15% or more of Ti or 0.35% or more of Nb. Preferably, it contains Ti: 0.20% or more, or Nb: 0.40% or more. More preferably, it contains Ti: 0.25% or more, or Nb: 0.45% or more. On the other hand, if Ti is contained in excess of 0.34%, coarse Ti carbonitrides are produced in the casting process and cause surface defects, which is not preferable for production. Therefore, the Ti amount is set to 0.34% or less. Preferably, it is 0.30% or less. Nb is also an element that raises the recrystallization temperature. If it contains more than 0.60%, the annealing temperature required for recrystallization increases, resulting in an increase in annealing cost and an uneven metal structure. The resulting ductility is reduced. Furthermore, since Nb increases the hot rolling load, if it is added excessively, it becomes difficult to manufacture hot rolled sheets. Therefore, the Nb amount is set to 0.60% or less. Preferably it is 0.55% or less. Moreover, when Ti or Nb is contained, the metal structure at the time of recrystallization becomes non-uniform and ductility is lowered. Therefore, Ti% + Nb% is set to 0.70% or less. Preferably it is 0.65 or less. As described above, all of the Ti amount, the Nb amount, and Ti% + Nb% must be equal to or lower than the upper limit value.

TiおよびNbが上記範囲にあるだけでは鋭敏化の発生を完全には防止できない。さらに適量のVを含有するとともに、VとTiおよびNbの適切な比率を満たすことが鋭敏化を抑制するために必要である。VはTi、Nbと複合炭窒化物を形成し、鋭敏化を抑制して溶接部の耐食性を向上させる。この複合炭窒化物は、V%/(Ti%+0.5×Nb%)が0.05以上となるように、Ti、Nbの1種または2種、Vを含有した時に生成する。V%/(Ti%+0.5×Nb%)が0.05未満の場合には、複合炭窒化物を形成するために必要なVが不足し、複合炭窒化物の析出量が低下する。このため、溶接部の固溶C、Nを十分に固定することができず、所定の耐食性向上効果が得られない。一方、V%/(Ti%+0.5×Nb%)が0.20を超えると、TiやNbに対してVが過剰となり複合炭窒化物中のN濃度が高くなる。その結果、溶接部の固溶Cを析出物として十分に固定することができず、十分な鋭敏化抑制効果が得られない。そのため、V%/(Ti%+0.5×Nb%):0.05〜0.20の範囲とする。好ましくは0.10〜0.15の範囲である。なお、上記Ti%、上記Nb%、上記V%はそれぞれTi、Nb、Vの含有量(質量%)を表す。   The occurrence of sensitization cannot be completely prevented only when Ti and Nb are in the above range. Furthermore, it is necessary to contain an appropriate amount of V and satisfy an appropriate ratio of V, Ti, and Nb in order to suppress sensitization. V forms a composite carbonitride with Ti and Nb, suppresses sensitization and improves the corrosion resistance of the weld. This composite carbonitride is produced when one or two of Ti and Nb and V are contained so that V% / (Ti% + 0.5 × Nb%) is 0.05 or more. When V% / (Ti% + 0.5 × Nb%) is less than 0.05, V required for forming the composite carbonitride is insufficient, and the amount of precipitation of the composite carbonitride is reduced. For this reason, the solid solution C and N of a welding part cannot fully be fixed, but the predetermined | prescribed corrosion resistance improvement effect is not acquired. On the other hand, when V% / (Ti% + 0.5 × Nb%) exceeds 0.20, V becomes excessive with respect to Ti and Nb, and the N concentration in the composite carbonitride increases. As a result, the solid solution C in the welded portion cannot be sufficiently fixed as a precipitate, and a sufficient sensitization suppressing effect cannot be obtained. Therefore, V% / (Ti% + 0.5 × Nb%): 0.05 to 0.20. Preferably it is the range of 0.10-0.15. The Ti%, the Nb%, and the V% represent the contents (mass%) of Ti, Nb, and V, respectively.

本発明は、上記必須成分を含有し残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼である。さらに、必要に応じて、CuおよびMoのうちから選ばれる1種または2種、あるいは、Zr、REM、W、Co、B、Mg、Caのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。   The present invention is a ferritic stainless steel characterized in that it contains the above essential components, and the balance consists of Fe and inevitable impurities. Furthermore, if necessary, one or more selected from Cu and Mo, or one or more selected from Zr, REM, W, Co, B, Mg, Ca, It can contain in the range of.

Cu:0.01%以上0.80%以下
Cuは耐食性を向上させる元素であり、水溶液中や弱酸性の水滴が付着した場合の母材および溶接部の耐食性を向上させるのに特に有効な元素である。また、CuはNiと同様に強いオーステナイト生成元素であり、溶接部でのフェライト生成を抑制し、Cr炭窒化物の析出による鋭敏化を抑制する効果がある。これらの効果は0.01%以上含有することにより得られ、その効果はCu含有量が多いほど高くなる。しかし、0.80%を超えてCuを含有すると、熱間加工性が低下して表面欠陥を誘引するため好ましくない。さらには焼鈍後の脱スケールが困難となるため製造上好ましくない。そのため、含有する場合、Cu量は0.01%以上0.80%以下の範囲とする。好ましくは、0.10%以上0.60%以下の範囲である。さらに好ましくは0.30%以上0.45%以下の範囲である。
Cu: 0.01% or more and 0.80% or less Cu is an element that improves the corrosion resistance, and is an element that is particularly effective for improving the corrosion resistance of the base material and the welded part when an aqueous solution or a weakly acidic water droplet adheres. It is. Moreover, Cu is a strong austenite-forming element like Ni, and has the effect of suppressing ferrite formation at the weld and suppressing sensitization due to precipitation of Cr carbonitride. These effects are obtained by containing 0.01% or more, and the effect becomes higher as the Cu content increases. However, if Cu is contained in excess of 0.80%, the hot workability is lowered and surface defects are induced, which is not preferable. Furthermore, since descaling after annealing becomes difficult, it is not preferable in production. Therefore, when contained, the Cu content is in the range of 0.01% to 0.80%. Preferably, it is 0.10% or more and 0.60% or less of range. More preferably, it is 0.30% or more and 0.45% or less of range.

Mo: 0.01%以上1.65%以下
Moはステンレス鋼の耐食性を顕著に向上させる元素である。この効果は0.01%以上の含有によって得られ、その効果は含有量が多いほど向上する。しかし、Mo含有量が1.65%を超えると、熱間圧延時の圧延負荷が大きくなり製造性が低下するとともに、鋼板強度の過度な上昇が生じる。また、Moは高価な元素であることから、多量の添加は製造コストを増大させる。そのため、含有する場合、Mo量は0.01%以上1.65%以下とする。好ましくは0.10%以上1.40%以下の範囲である。特に熱延板靭性が低下するTi含有鋼ではMo添加によりさらに靭性が低下して熱延板焼鈍が困難になるので、Tiを0.15%以上含有している場合にはMo量は0.30%以上1.40%以下にするのが好ましい。より好ましくは0.4%以上1.00%以下の範囲である。
Mo: 0.01% to 1.65% Mo is an element that significantly improves the corrosion resistance of stainless steel. This effect is obtained when the content is 0.01% or more, and the effect improves as the content increases. However, if the Mo content exceeds 1.65%, the rolling load at the time of hot rolling becomes large, the productivity is lowered, and the steel sheet strength is excessively increased. Moreover, since Mo is an expensive element, the addition of a large amount increases the manufacturing cost. Therefore, when contained, the Mo content is 0.01% or more and 1.65% or less. Preferably it is 0.10% or more and 1.40% or less of range. In particular, in Ti-containing steels whose hot-rolled sheet toughness is reduced, the addition of Mo further reduces the toughness and makes hot-rolled sheet annealing difficult. It is preferably 30% or more and 1.40% or less. More preferably, it is the range of 0.4% or more and 1.00% or less.

Zr:0.01%以上0.20%以下
ZrはC、Nと結合して鋭敏化を抑制する効果がある。この効果は0.01%以上の含有により得られる。一方、0.20%を超えて含有すると加工性が顕著に低下するため好ましくない。そのため、含有する場合、Zr量は0.01%以上0.20%以下の範囲とする。好ましくは、0.01%以上0.10%以下の範囲とする。
Zr: 0.01% or more and 0.20% or less Zr combines with C and N and has an effect of suppressing sensitization. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.20%, workability is remarkably lowered, which is not preferable. Therefore, when it contains, Zr content shall be 0.01% or more and 0.20% or less of range. Preferably, the range is 0.01% or more and 0.10% or less.

REM:0.001%以上0.100%以下
REMは耐酸化性を向上させる効果があり、溶接部の酸化皮膜(溶接テンパーカラー)形成を抑制して酸化皮膜直下におけるCr欠乏領域の形成を抑制する。この効果を得るためには、REMを0.001%以上含有することが必要である。一方、0.100%を超えて含有すると冷延焼鈍時の酸洗性などの製造性を低下させるため好ましくない。そのため、含有する場合、REM量は0.001%以上0.100%以下の範囲とする。好ましくは、0.001%以上0.050%以下の範囲とする。
REM: 0.001% or more and 0.100% or less REM has the effect of improving oxidation resistance, and suppresses the formation of a Cr-deficient region directly under the oxide film by suppressing the formation of an oxide film (weld temper color) in the weld zone. To do. In order to acquire this effect, it is necessary to contain REM 0.001% or more. On the other hand, if the content exceeds 0.100%, productivity such as pickling at the time of cold rolling annealing is lowered, which is not preferable. Therefore, when it contains, REM amount shall be 0.001% or more and 0.100% or less of range. Preferably, it is set as 0.001% or more and 0.050% or less of range.

Co:0.01%以上0.20%以下
Coは靭性を向上させる元素である。この効果は0.01%以上の含有によって得られる。一方、含有量が0.20%を超えると加工性が低下する。そのため、含有する場合、Co量は0.01%以上0.20%以下の範囲とする。
Co: 0.01% or more and 0.20% or less Co is an element that improves toughness. This effect is obtained when the content is 0.01% or more. On the other hand, if the content exceeds 0.20%, the workability decreases. Therefore, when it contains, Co amount shall be 0.01% or more and 0.20% or less.

B:0.0002%以上0.0009%以下
Bは深絞り成形後の耐二次加工脆性を改善するために有効な元素である。この効果はBの含有量を0.0002%以上にすることで得られる。一方、0.0009%を超えてBを含有すると加工性と靭性が低下するので好ましくない。そのため、含有する場合、B量は0.0002%以上0.0009%以下の範囲とする。好ましくは0.0003%以上0.0006%以下の範囲である。
B: 0.0002% or more and 0.0009% or less B is an element effective for improving secondary work embrittlement resistance after deep drawing. This effect is obtained by making the B content 0.0002% or more. On the other hand, if the B content exceeds 0.0009%, workability and toughness deteriorate, which is not preferable. Therefore, when it contains, B amount shall be 0.0002% or more and 0.0009% or less of range. Preferably it is 0.0003% or more and 0.0006% or less of range.

Mg:0.0002%以上0.0010%以下
Mgはスラブの等軸晶率を向上させ、加工性や靭性の向上に有効な元素である。さらに、本発明のようにTiを含有している鋼においては、Ti炭窒化物が粗大化すると靭性が低下するが、MgはTi炭窒化物の粗大化を抑制する効果も有する。これらの効果は、0.0002%以上のMgを含有することで現れる。一方で、Mg量が0.0010%を超えると、鋼の表面性状を悪化させてしまう。したがって、含有する場合、Mg量は0.0002%以上0.0010%以下の範囲とする。好ましくは0.0002%以上0.0004%以下の範囲である。
Mg: 0.0002% or more and 0.0010% or less Mg is an element that improves the equiaxed crystal ratio of the slab and is effective for improving workability and toughness. Furthermore, in the steel containing Ti as in the present invention, when Ti carbonitride is coarsened, the toughness is lowered, but Mg also has an effect of suppressing the coarsening of Ti carbonitride. These effects appear by containing 0.0002% or more of Mg. On the other hand, when the amount of Mg exceeds 0.0010%, the surface properties of steel are deteriorated. Therefore, when it contains, Mg amount shall be 0.0002% or more and 0.0010% or less of range. Preferably it is 0.0002% or more and 0.0004% or less of range.

Ca:0.0005%以上0.0020%以下
Caは、連続鋳造の際に発生しやすいTi系介在物の晶出によるノズルの閉塞を防止するのに有効な成分である。その効果は0.0005%以上のCaを含有することで得られる。しかし、0.0020%を超えて含有するとCaSの生成により耐食性が低下する。従って、含有する場合、Ca量は0.0005%以上0.0020%以下の範囲とする。好ましくは0.0005%以上0.0015%以下の範囲である。さらに好ましくは0.0005%以上0.0010%以下の範囲である。
Ca: 0.0005% or more and 0.0020% or less Ca is an effective component for preventing nozzle clogging due to crystallization of Ti-based inclusions that are likely to occur during continuous casting. The effect is acquired by containing 0.0005% or more of Ca. However, when it contains exceeding 0.0020%, corrosion resistance falls by the production | generation of CaS. Therefore, when contained, the Ca content is in the range of 0.0005% to 0.0020%. Preferably it is 0.0005% or more and 0.0015% or less of range. More preferably, it is 0.0005% or more and 0.0010% or less of range.

次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。   Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.

本発明のフェライト系ステンレス鋼は、上記成分組成からなる溶鋼を転炉、電気炉、真空溶解炉等の公知の方法で溶製し、連続鋳造法あるいは造塊−分塊法により鋼素材(スラブ)とする。このスラブを、1100〜1250℃で1〜24時間加熱するか、あるいは加熱することなく鋳造まま直接、熱間圧延して熱延板とする。   The ferritic stainless steel of the present invention is obtained by melting a molten steel having the above composition by a known method such as a converter, an electric furnace, a vacuum melting furnace, and the like, and a steel material (slab slab by a continuous casting method or an ingot-bundling method. ). This slab is heated at 1100 to 1250 ° C. for 1 to 24 hours, or directly hot-rolled as cast without heating to obtain a hot-rolled sheet.

通常、熱延板は800〜1100℃での連続焼鈍や600〜900℃のバッチ焼鈍の熱延板焼鈍が施されるが、用途によっては熱延板焼鈍を省略しても良い。次いで、熱延板酸洗後、冷間圧延により冷延板とした後、焼鈍・酸洗を施して製品とする。   Usually, the hot-rolled sheet is subjected to continuous annealing at 800 to 1100 ° C. or batch annealing at 600 to 900 ° C., but depending on the application, the hot-rolled sheet annealing may be omitted. Next, after hot-rolled sheet pickling, it is cold-rolled by cold rolling, and then annealed and pickled to obtain a product.

冷間圧延は伸び性、曲げ性、プレス成形性および形状矯正の観点から50%以上の圧下率で行うことが好ましい。   Cold rolling is preferably performed at a rolling reduction of 50% or more from the viewpoints of extensibility, bendability, press formability, and shape correction.

冷延板の再結晶焼鈍は、一般的にはJIS G 0203の表面仕上げ、No.2B仕上げ品の場合、良好な機械的性質を得ること、および酸洗性の面から800〜1100℃で行うことが好ましい。また、より光沢を求めるためにBA焼鈍(光輝焼鈍)を行っても良い。   In general, the recrystallization annealing of a cold-rolled sheet is performed according to JIS G 0203 surface finish, No. In the case of a 2B finished product, it is preferable to carry out at 800 to 1100 ° C. from the viewpoint of obtaining good mechanical properties and pickling. Further, BA annealing (bright annealing) may be performed in order to obtain more gloss.

なお、冷間圧延後および加工後にさらに表面性状を向上させるために、研削や研磨等を施してもよい。   In addition, in order to further improve the surface properties after cold rolling and after processing, grinding or polishing may be performed.

以下、実施例に基づいて本発明をさらに詳しく説明する。   Hereinafter, the present invention will be described in more detail based on examples.

表1に示す化学組成を有するステンレス鋼を50kg、小型真空溶解炉にて溶製した。これらの鋼塊を、1150℃に加熱後、熱間圧延を施して3.5mm厚の熱延板とした。得られた熱延板に対して、圧延方向を長手として試験片(JIS B 7722 Vノッチ)を採取し、シャルピー衝撃試験を行った。次いで、上記により得られた熱延板は900〜1100℃で10分間焼鈍した後酸洗し、冷間圧延により板厚0.8mmの冷延板とした。得られた冷延板に対して、大気雰囲気下において850〜1100℃で仕上げ焼鈍を行った後、フッ酸と硝酸の混合酸で酸洗した。   50 kg of stainless steel having the chemical composition shown in Table 1 was melted in a small vacuum melting furnace. These steel ingots were heated to 1150 ° C. and then hot-rolled to obtain 3.5 mm thick hot rolled sheets. A test piece (JIS B 7722 V notch) was sampled with the rolling direction as the longitudinal direction, and a Charpy impact test was performed on the obtained hot-rolled sheet. Next, the hot-rolled sheet obtained as described above was annealed at 900 to 1100 ° C. for 10 minutes and then pickled, and cold-rolled to a cold-rolled sheet having a thickness of 0.8 mm by cold rolling. The obtained cold-rolled sheet was subjected to finish annealing at 850 to 1100 ° C. in an air atmosphere, and then pickled with a mixed acid of hydrofluoric acid and nitric acid.

以上により得られた冷延焼鈍酸洗板に対して、目視観察により表面を判定、引張試験および孔食電位測定を行った。引張試験は、圧延方向と平行にJIS 13B号引張試験片を採取し、引張試験をJIS Z2201に準拠して、伸び(El)(破断延性)を測定した。孔食電位測定は、20mm×20mmの試験片を採取し表面を600番の研磨紙で研磨した後、10mm×10mmの測定面を残してシール材で被覆し、30℃の3.5質量%NaCl溶液中で孔食電位を測定した。試験片の不動態化処理は行わなかったが、それ以外の測定方法はJIS G 0577(2005)に準拠した。   The surface of the cold-rolled annealed pickling plate obtained as described above was determined by visual observation, a tensile test and a pitting potential measurement. In the tensile test, a JIS No. 13B tensile test piece was taken in parallel with the rolling direction, and the elongation (El) (breaking ductility) was measured based on the tensile test according to JIS Z2201. For pitting corrosion potential measurement, a 20 mm × 20 mm test piece was sampled and the surface was polished with No. 600 polishing paper, and then covered with a sealing material leaving a 10 mm × 10 mm measurement surface, and 3.5% by mass at 30 ° C. Pitting potential was measured in NaCl solution. The test piece was not passivated, but other measurement methods were based on JIS G 0577 (2005).

また、上記により作製した各鋼種の冷延焼鈍酸洗板と0.8mm厚のSUS304(C:0.07質量%、N:0.05質量%、日本工業規格、JIS G 4305)を突合せてTIG溶接した。溶接条件は、溶接速度:600mm/min、溶接電圧:10〜12V、溶接電流:70〜120Aである。なお、表側は15L/minのアルゴンガスを流してシールしたが、不十分なガスシールドにより溶融池に窒素が侵入する状況とするために、裏面はガスシールドを行わなかった。   In addition, the cold-rolled annealed pickled steel plate of each steel type prepared above and SUS304 (C: 0.07 mass%, N: 0.05 mass%, Japanese Industrial Standard, JIS G 4305) with a thickness of 0.8 mm TIG welded. The welding conditions are welding speed: 600 mm / min, welding voltage: 10 to 12 V, welding current: 70 to 120 A. Although the front side was sealed by flowing 15 L / min of argon gas, the back side was not gas shielded in order to make nitrogen enter the molten pool due to insufficient gas shielding.

次いで、溶接ビードが長手中心線上に通るように60mm×90mmの試験片を採取し、表面を600番の研磨紙で研磨して端面を防水テープでシールして、塩水噴霧サイクル試験による耐食性試験を行った。塩水噴霧サイクル試験は、塩水噴霧(5%NaCl、35℃、噴霧2h)→乾燥(60℃、4h、相対湿度40%)→湿潤(50℃、2h、相対湿度≧95%)を1サイクルとして、5サイクル行った。   Next, a test piece of 60 mm × 90 mm is taken so that the weld bead passes on the longitudinal center line, the surface is polished with No. 600 abrasive paper, the end surface is sealed with waterproof tape, and the corrosion resistance test by the salt spray cycle test is performed. went. In the salt spray cycle test, salt spray (5% NaCl, 35 ° C., spray 2 h) → dry (60 ° C., 4 h, relative humidity 40%) → wet (50 ° C., 2 h, relative humidity ≧ 95%) is one cycle. Five cycles were performed.

以上の評価を行い、それぞれの評価結果について以下のように判定した。   The above evaluation was performed and each evaluation result was determined as follows.

熱延板シャルピー試験
熱延板の25℃におけるシャルピー衝撃値が50J/cm以上が合格、50J/cm未満が不合格と判定した。
Hot-rolled sheet Charpy test The Charpy impact value at 25 ° C of the hot-rolled sheet was determined to be 50 J / cm 2 or more, and less than 50 J / cm 2 was determined to be unacceptable.

孔食電位
母材の孔食電位が120mV以上が合格、120mV未満が不合格と判定した。
Pitting corrosion potential The pitting corrosion potential of the base material was determined to be 120 mV or higher, and less than 120 mV was determined to be unacceptable.

塩水噴霧試験
錆が生じた面積が20%以下が合格、20%超えが不合格と判定した。
Salt spray test The area where rust occurred was 20% or less, and 20% or more was judged to be unacceptable.

破断延性
引張試験における破断伸びが25%以上が合格、25%未満が不合格と判定した。
Breaking ductility The elongation at break in the tensile test was determined to be 25% or more, and less than 25% was determined to be unacceptable.

表面判定
20cm×40cmの冷延焼鈍酸洗板の表面を目視観察して、長さあるいは幅が5mm以上の表面欠陥(線状疵、白筋模様等)が3個以下の場合を合格、4個以上ある場合を不合格と判定した。
Surface determination: The surface of a cold-rolled annealed pickling plate of 20 cm × 40 cm is visually observed, and if the length or width is 5 mm or more and there are 3 or less surface defects (linear wrinkles, white streaks, etc.), 4 The case where there were more than one was judged as unacceptable.

以上により得られた結果を表2に示す。   The results obtained as described above are shown in Table 2.

Figure 2014077202
Figure 2014077202

Figure 2014077202
Figure 2014077202

表2より、本発明の範囲を満たすA1〜A14では、120mV以上の孔食電位を示すとともに、溶接部の鋭敏化および発錆はなく、母材・溶接部ともに所定の耐食性が得られたとともに、25%以上の破断延性が得られ、表面欠陥も認められなかった。   From Table 2, A1 to A14 satisfying the scope of the present invention showed a pitting corrosion potential of 120 mV or more, and there was no sensitization and rusting of the welded part, and a predetermined corrosion resistance was obtained for both the base material and the welded part. 25% or more of fracture ductility was obtained, and no surface defects were observed.

Cr量を本発明の範囲を超えて含有したB1は、熱延板において所定のシャルピー衝撃値を得ることができなかったため、以降の工程・試験は実施しなかった。また、Cr量が13.8%で本発明の範囲を下回るB2では、孔食電位が108mVと低いことに加え、塩水噴霧サイクル試験において溶接部から腐食が生じ、所定の溶接部耐食性を得ることができなかった。Nb量が本発明の範囲を上回るB3では、焼鈍後に未再結晶粒を含んだ不均一な金属組織となった結果、所定の破断延性が得られなかった。Ti量が本発明の範囲を上回るB4では粗大なTi炭窒化物に起因した表面欠陥(スジ状疵)が発生した。   Since B1 containing the Cr amount exceeding the range of the present invention could not obtain a predetermined Charpy impact value in the hot-rolled sheet, the subsequent steps and tests were not performed. Moreover, in B2 which is less than the range of the present invention with the Cr amount of 13.8%, in addition to the pitting corrosion potential being as low as 108 mV, corrosion occurs from the welded part in the salt spray cycle test, and a predetermined welded part corrosion resistance is obtained. I could not. In B3 in which the amount of Nb exceeds the range of the present invention, a predetermined fracture ductility could not be obtained as a result of an uneven metal structure including non-recrystallized grains after annealing. In B4 where the amount of Ti exceeds the range of the present invention, surface defects (streak-like defects) due to coarse Ti carbonitrides occurred.

一方、Ti、Nbのいずれかが本発明の範囲を下回るB5、B6では、所定量のVは含有しているがTiあるいはNbが不足したために(Ti、V)(C、N)および(Nb、V)(C、N)の析出量が不十分となり、所定の溶接部耐食性が得られなかった。V量が本発明の範囲を下回るB7では、Vの不足により(Ti、V)(C、N)および(Nb、V)(C、N)がほとんど析出せず、固溶C、Nを固定化しきれずに鋭敏化が生じ、所定の溶接部耐食性が得られなかった。   On the other hand, in B5 and B6 where either Ti or Nb is below the range of the present invention, a predetermined amount of V is contained but Ti or Nb is insufficient, so (Ti, V) (C, N) and (Nb V) The precipitation amount of (C, N) became insufficient, and the predetermined welded portion corrosion resistance could not be obtained. In B7 where the amount of V is below the range of the present invention, (Ti, V) (C, N) and (Nb, V) (C, N) are hardly precipitated due to the lack of V, and solid solutions C and N are fixed. Sensitization occurred without complete conversion, and the predetermined corrosion resistance of the weld could not be obtained.

同様に、V%/(Ti%+0.5×Nb%)が本発明の範囲外であるB9〜B10は、良好な母材耐食性は得られたものの、(Ti、V)(C、N)および(Nb、V)(C、N)の析出量の不足、あるいは複合炭窒化物中のV濃度が過度に高くなった結果、固溶C、Nを析出物として十分に固定できずに鋭敏化が生じ、所定の溶接部耐食性が得られなかった。   Similarly, B9 to B10 in which V% / (Ti% + 0.5 × Nb%) is outside the range of the present invention can be obtained with (Ti, V) (C, N) although good base metal corrosion resistance is obtained. And (Nb, V) (C, N) precipitation amount is insufficient, or V concentration in the composite carbonitride is excessively high. As a result, solid solution C and N cannot be sufficiently fixed as precipitates and are sensitive. As a result, the predetermined weld corrosion resistance could not be obtained.

以上の結果から、本発明が提供する所定の溶接部耐食性を、優れた機械的性質ならびに表面美麗性を有しつつ得るためには、各元素の含有量、V%/(Ti%+0.5×Nb%)が本発明の範囲内に適切に調整されている必要があることが確認された。   From the above results, in order to obtain the predetermined weld corrosion resistance provided by the present invention while having excellent mechanical properties and surface aesthetics, the content of each element, V% / (Ti% + 0.5 It was confirmed that (Nb%) must be appropriately adjusted within the scope of the present invention.

本発明で得られるフェライト系ステンレス鋼は、溶接によって構造体の作製が行われる用途、例えば、マフラー等の自動車排気系材料、建具や換気口、ダクト等の建築用材料、電気機器、厨房製品等への適用に好適である。   Ferritic stainless steel obtained in the present invention is used for the production of structures by welding, for example, automobile exhaust materials such as mufflers, building materials such as fittings, ventilation openings, ducts, electrical equipment, kitchen products, etc. It is suitable for application to.

Claims (2)

質量%で、C:0.003%以上0.014%以下、N:0.005%以上0.016%以下、C%+N%:0.023%以下、Si:0.01%以上0.90%以下、Mn:0.01%以上0.50%以下、P:0.020%以上0.040%以下、S:0.008%以下、Al:0.001%以上0.090%以下、Cr:14.5%以上23.0%以下、Ni:0.10%以上0.60%以下、V:0.010%以上0.040%以下、Mo:0.01%以上1.65%以下を含有し、
更に、Ti:0.15%以上0.34%以下、Ti%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲で、Tiを含有又はTi及びNbを含有する場合、およびNb:0.35%以上0.60%以下、Ti%+Nb%≦0.70およびV%/(Ti%+0.5×Nb%):0.05〜0.20を満足する範囲でNbを含有又はNb及びTiを含有する場合の少なくとも一方を満足し、
残部がFeおよび不可避的不純物からなることを特徴とするフェライト系ステンレス鋼。なお、前記C%、前記N%、前記Ti%、前記Nb%、前記V%はそれぞれTi、Nb、Vの含有量(質量%)を表す。
C: 0.003% or more and 0.014% or less, N: 0.005% or more and 0.016% or less, C% + N%: 0.023% or less, Si: 0.01% or more. 90% or less, Mn: 0.01% or more and 0.50% or less, P: 0.020% or more and 0.040% or less, S: 0.008% or less, Al: 0.001% or more and 0.090% or less Cr: 14.5% to 23.0%, Ni: 0.10% to 0.60%, V: 0.010% to 0.040%, Mo: 0.01% to 1.65 % Or less,
Further, within a range satisfying Ti: 0.15% or more and 0.34% or less, Ti% + Nb% ≦ 0.70, and V% / (Ti% + 0.5 × Nb%): 0.05 to 0.20. In the case of containing Ti or containing Ti and Nb, and Nb: 0.35% or more and 0.60% or less, Ti% + Nb% ≦ 0.70 and V% / (Ti% + 0.5 × Nb%): Nb is contained in a range satisfying 0.05 to 0.20 or at least one of cases containing Nb and Ti is satisfied,
A ferritic stainless steel characterized in that the balance consists of Fe and inevitable impurities. The C%, the N%, the Ti%, the Nb%, and the V% represent the contents (mass%) of Ti, Nb, and V, respectively.
質量%で、さらに、Zr:0.01%以上0.20%以下、REM:0.001%以上0.100%以下、Co:0.01%以上0.20%以下、Mg:0.0002%以上0.0010%以下、Ca:0.0005%以上0.0020%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。   Further, Zr: 0.01% to 0.20%, REM: 0.001% to 0.100%, Co: 0.01% to 0.20%, Mg: 0.0002 2. The ferritic stainless steel according to claim 1, wherein the ferritic stainless steel contains at least one selected from the group consisting of% or more and 0.0010% or less and Ca: 0.0005% or more and 0.0020% or less.
JP2013268686A 2012-09-24 2013-12-26 Ferritic stainless steel Active JP5556951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013268686A JP5556951B2 (en) 2012-09-24 2013-12-26 Ferritic stainless steel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012209170 2012-09-24
JP2012209170 2012-09-24
JP2013268686A JP5556951B2 (en) 2012-09-24 2013-12-26 Ferritic stainless steel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013553687A Division JP5590255B1 (en) 2012-09-24 2013-03-18 Ferritic stainless steel

Publications (2)

Publication Number Publication Date
JP2014077202A true JP2014077202A (en) 2014-05-01
JP5556951B2 JP5556951B2 (en) 2014-07-23

Family

ID=50340819

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013553687A Active JP5590255B1 (en) 2012-09-24 2013-03-18 Ferritic stainless steel
JP2013268686A Active JP5556951B2 (en) 2012-09-24 2013-12-26 Ferritic stainless steel

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013553687A Active JP5590255B1 (en) 2012-09-24 2013-03-18 Ferritic stainless steel

Country Status (6)

Country Link
JP (2) JP5590255B1 (en)
KR (1) KR101673218B1 (en)
CN (1) CN104508168B (en)
IN (1) IN2015DN00368A (en)
MY (1) MY195207A (en)
WO (1) WO2014045476A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104109820A (en) * 2014-07-29 2014-10-22 山东雅百特金属结构系统有限公司 Novel metal roofing board material
JP6749808B2 (en) * 2016-07-29 2020-09-02 日鉄ステンレス株式会社 Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213376A (en) * 2002-01-15 2003-07-30 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP2009035756A (en) * 2007-07-31 2009-02-19 Nisshin Steel Co Ltd Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND THE GAS PASSAGE WAY MEMBER USING THE STEEL SHEET
WO2011122513A1 (en) * 2010-03-29 2011-10-06 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
JP2011214060A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Ferritic stainless steel sheet and method for manufacturing the same
JP2012140688A (en) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188413A (en) 1975-02-01 1976-08-03 Kotaishokuseifueraitosutenresuko
JPH02270942A (en) * 1983-03-08 1990-11-06 Nippon Steel Corp High-purity and high-cleanliness stainless steel excellent in crevice corrosion resistance and rust resistance and its production
JP3210255B2 (en) * 1995-10-25 2001-09-17 川崎製鉄株式会社 Ferritic stainless steel with excellent corrosion resistance and manufacturability
JP5119605B2 (en) 2006-03-31 2013-01-16 Jfeスチール株式会社 Ferritic stainless steel with excellent corrosion resistance of welds
JP5205952B2 (en) * 2006-12-26 2013-06-05 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent corrosion resistance of dissimilar welds with austenitic stainless steel and method for producing the same
JP5205953B2 (en) * 2006-12-26 2013-06-05 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent corrosion resistance of dissimilar welds with austenitic stainless steel and method for producing the same
US8383034B2 (en) * 2007-01-12 2013-02-26 Jfe Steel Corporation Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
WO2010010916A1 (en) * 2008-07-23 2010-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel for use in producing urea water tank
JP2010100877A (en) * 2008-10-22 2010-05-06 Jfe Steel Corp Method for manufacturing hot-rolled ferritic stainless steel sheet excellent in toughness
JP5401915B2 (en) * 2008-10-24 2014-01-29 Jfeスチール株式会社 High corrosion resistance ferritic stainless steel sheet with excellent joint strength for resistance spot welding and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213376A (en) * 2002-01-15 2003-07-30 Nisshin Steel Co Ltd Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP2009035756A (en) * 2007-07-31 2009-02-19 Nisshin Steel Co Ltd Al-PLATED STEEL SHEET FOR EXHAUST GAS PASSAGEWAY MEMBER OF MOTORCYCLE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND THE GAS PASSAGE WAY MEMBER USING THE STEEL SHEET
WO2011122513A1 (en) * 2010-03-29 2011-10-06 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
JP2011214060A (en) * 2010-03-31 2011-10-27 Jfe Steel Corp Ferritic stainless steel sheet and method for manufacturing the same
JP2012140688A (en) * 2011-01-05 2012-07-26 Nisshin Steel Co Ltd Nb CONTAINING FERRITIC STAINLESS STEEL HOT ROLLED COIL AND MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP5556951B2 (en) 2014-07-23
IN2015DN00368A (en) 2015-06-12
JPWO2014045476A1 (en) 2016-08-18
CN104508168A (en) 2015-04-08
MY195207A (en) 2023-01-11
JP5590255B1 (en) 2014-09-17
KR101673218B1 (en) 2016-11-07
CN104508168B (en) 2017-09-26
WO2014045476A1 (en) 2014-03-27
KR20150029729A (en) 2015-03-18

Similar Documents

Publication Publication Date Title
EP2166120B1 (en) Ferritic stainless steel having excellent heat resistance
JP5534119B1 (en) Ferritic stainless steel
US9487849B2 (en) Ferritic stainless steel
JP5713118B2 (en) Ferritic stainless steel
JP5664826B2 (en) Ferritic stainless steel sheet
JP5435179B2 (en) Ferritic stainless steel
EP3556880A1 (en) Ferrite stainless hot-rolled steel sheet and production method therefor
JP5903881B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP5556951B2 (en) Ferritic stainless steel
JP5700182B1 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP6354772B2 (en) Ferritic stainless steel
JP5838929B2 (en) Ferritic stainless steel with excellent corrosion resistance at welds with austenitic stainless steel
WO2018116792A1 (en) Ferritic stainless steel

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5556951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250