JP2014074208A - HIGH STRENGTH Ni-BASED SUPERALLOY, AND GAS TURBINE USING THE SAME - Google Patents

HIGH STRENGTH Ni-BASED SUPERALLOY, AND GAS TURBINE USING THE SAME Download PDF

Info

Publication number
JP2014074208A
JP2014074208A JP2012222648A JP2012222648A JP2014074208A JP 2014074208 A JP2014074208 A JP 2014074208A JP 2012222648 A JP2012222648 A JP 2012222648A JP 2012222648 A JP2012222648 A JP 2012222648A JP 2014074208 A JP2014074208 A JP 2014074208A
Authority
JP
Japan
Prior art keywords
alloy
mass
strength
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012222648A
Other languages
Japanese (ja)
Other versions
JP6084802B2 (en
Inventor
Yuting Wang
玉艇 王
Akira Yoshinari
明 吉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012222648A priority Critical patent/JP6084802B2/en
Publication of JP2014074208A publication Critical patent/JP2014074208A/en
Application granted granted Critical
Publication of JP6084802B2 publication Critical patent/JP6084802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Ni-based superalloy having equal or higher corrosiveness compared with conventional alloys, improved creep strength at high temperature and oxidation resistance without adding Ta, Re in normal casting materials.SOLUTION: A Ni-based superalloy contains Cr:11.0% to 15.0%, Mo:0.1% to 0.5%, Ti:0.5% to 2.1%, Al:4.5% to 7.0%, Co:9.5% to 20.0%, W:10.1 to 15.0%, Hf:0.5% or less, Nb:0.005% to 0.60%, B:0.02% or less, C:0.2% or less and the balance Ni with inevitable impurities. The Ni-based superalloy does not contain Ta and Re.

Description

本発明は、高温強度を有するNi基超合金と、それを用いたガスタービンに関する。   The present invention relates to a Ni-base superalloy having high temperature strength and a gas turbine using the same.

近年、化石燃料の節約、二酸化炭素の排出量削減、地球温暖化防止等、環境意識の高まりから、内燃機関においては熱効率の向上が図られている。ガスタービンやジェットエンジン等の熱機関は、カルノーサイクルの高温側をより高温で運転することにより、熱効率を有効に高めることが知られている。タービン入口温度の高温化に伴い、ガスタービンの高温部品、すなわち、燃焼器やタービン動翼又は静翼に使用される材料の改良・開発の重要性が高まっている。   In recent years, due to increasing environmental awareness, such as saving fossil fuels, reducing carbon dioxide emissions, and preventing global warming, internal combustion engines have been improved in thermal efficiency. It is known that heat engines such as gas turbines and jet engines effectively increase thermal efficiency by operating the high temperature side of the Carnot cycle at higher temperatures. As the turbine inlet temperature increases, the importance of improving and developing materials used for high-temperature parts of gas turbines, that is, combustors, turbine rotor blades or stationary blades, is increasing.

この高温化に対処するために、材料面ではより高温強度に優れるNi基耐熱合金が適用されており、現在多くのNi基合金が使用されている。Ni基合金には、等軸晶からなる普通鋳造合金、柱状晶からなる一方向凝固合金及び一つの結晶からなる単結晶合金がある。Ni基合金を高強度化するためには、固溶強化元素であるW、Mo、Ta、Co等を多く添加するとともに、Al、Ti等を添加して強化相であるγ´Ni3(Al、Ti)相を多く析出させることが重要である。 In order to cope with this high temperature, a Ni-based heat-resistant alloy that is superior in high-temperature strength is applied in terms of material, and many Ni-based alloys are currently used. Ni-based alloys include normal cast alloys made of equiaxed crystals, unidirectionally solidified alloys made of columnar crystals, and single crystal alloys made of one crystal. In order to increase the strength of the Ni-based alloy, a large amount of solid solution strengthening elements such as W, Mo, Ta, and Co are added, and Al, Ti, and the like are added to form a strengthening phase γ′Ni 3 (Al , Ti) phase is important to be precipitated.

近年の効率向上に伴う燃焼温度(タービン入口温度)の上昇により、Co基合金よりも高温強度に優れるNi基合金を使用することが検討されている。Ni基合金を高強度化するためには、固溶強化元素であるW、Mo、Ta、Co等を多く添加するとともに、Al、Ti等を添加して強化相であるγ´Ni3(Al、Ti)相の析出強化を利用することで、優れた高温強度及び熱疲労特性を有する。 Due to the increase in combustion temperature (turbine inlet temperature) accompanying efficiency improvement in recent years, the use of Ni-based alloys that are superior in high-temperature strength to Co-based alloys has been studied. In order to increase the strength of the Ni-based alloy, a large amount of solid solution strengthening elements such as W, Mo, Ta, and Co are added, and Al, Ti, and the like are added to form a strengthening phase γ′Ni 3 (Al , Ti) By using precipitation strengthening of the phase, it has excellent high temperature strength and thermal fatigue characteristics.

一方、燃料価格の高騰により、産業用ガスタービンの燃料として腐食の原因となる不純物を多く含む低品質の燃料を使用する動きがあり、高温強度と耐食性を兼ね備えた材料の開発も必要とされている。このような材料では、保護性の皮膜を形成するCrを多く添加することが望ましい。耐食性を重視した合金として、例えば特許文献1に開示される普通鋳造合金が挙げられる。   On the other hand, due to soaring fuel prices, there is a movement to use low-quality fuel that contains many impurities that cause corrosion as fuel for industrial gas turbines, and the development of materials that combine high-temperature strength and corrosion resistance is also required. Yes. In such a material, it is desirable to add a large amount of Cr that forms a protective film. As an alloy that places importance on corrosion resistance, for example, a normal casting alloy disclosed in Patent Document 1 can be cited.

しかし、従来の合金では、高温強度を追求するために、固溶強化元素W、Taを多く含むほど材料組織の安定性が低下し、長時間の使用に際してσ相等の硬質で脆いTCP有害相が析出しやすい。すなわち、優れた高温クリープ強度と、耐酸化性及び耐食性とを併せ持つ合金材料を開発することは困難であった。 However, in the conventional alloy, in order to pursue high temperature strength, the more the solid solution strengthening elements W and Ta are contained, the lower the stability of the material structure, and the hard and brittle TCP harmful phase such as σ phase is used for a long time use. Easy to precipitate. That is, it has been difficult to develop an alloy material having both excellent high-temperature creep strength, oxidation resistance, and corrosion resistance.

特公昭51−10574号公報Japanese Patent Publication No. 51-10574

本発明の目的は、普通鋳造材おいて、高価な元素Ta、Reを添加せず、従来の合金と同等以上の腐食性を有し、高温でのクリープ強度及び耐酸化性を向上したNi基超合金を提供することにある。   The object of the present invention is to add a Ni-based alloy that has the same or better corrosiveness as a conventional alloy without adding the expensive elements Ta and Re in ordinary casting materials, and has improved creep strength and oxidation resistance at high temperatures. To provide a superalloy.

Ni基超合金は、質量で、Cr:11.0%〜15.0%、Mo:0.1%〜0.5%、Ti:0.5%〜2.1%、Al:4.5%〜7.0%、Co:9.5%〜20.0%、W:10.1〜15.0%、Hf:0.5%以下、Nb:0.005%〜0.60%、B:0.02%以下、C:0.2%以下を含み、Ta,Reを含まず、残部がNiと不可避不純物であることを特徴とする。 Ni-base superalloy is, by mass, Cr: 11.0% to 15.0%, Mo: 0.1% to 0.5%, Ti: 0.5% to 2.1%, Al: 4.5 % To 7.0%, Co: 9.5% to 20.0%, W: 10.1 to 15.0%, Hf: 0.5% or less, Nb: 0.005% to 0.60%, B: 0.02% or less, C: 0.2% or less, Ta and Re are not included, and the balance is Ni and inevitable impurities.

本発明によれば、従来の合金と同等以上の腐食性を有し、高温でのクリープ強度及び耐酸化性を向上した安価なNi基超合金を提供することができる。   According to the present invention, it is possible to provide an inexpensive Ni-base superalloy having a corrosivity equivalent to or higher than that of a conventional alloy and having improved creep strength and oxidation resistance at high temperatures.

合金試験片に対するクリープ破断時間を示すグラフ(1255K-137MPa)。The graph which shows the creep rupture time with respect to an alloy test piece (1255K-137MPa). 合金試験片に対する高温酸化試験での酸化減量を示すグラフ。The graph which shows the oxidation weight loss in the high temperature oxidation test with respect to an alloy test piece. 合金試験片に対する溶融塩浸漬腐食試験での腐食減量を示すグラフ。The graph which shows the corrosion weight loss in the molten salt immersion corrosion test with respect to an alloy test piece. ガスタービンの動翼形状の一例を示す図。The figure which shows an example of the moving blade shape of a gas turbine. ガスタービンを示す図。The figure which shows a gas turbine.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、図4に、産業用ガスタービン用のタービン動翼の一例を示す。   First, FIG. 4 shows an example of a turbine rotor blade for an industrial gas turbine.

タービン動翼1は、翼部110とシャンク部111とルート部(ダブティル部)112から構成され、大きさは10〜100cm、重量は1〜10kg程度である。また、プラットホーム部113と、ラジアルフィン114を備えている。タービン動翼は、内部に複雑な冷却構造を持つ回転部品であり、回転中の遠心力及び起動停止に伴う熱応力の負荷が繰り返し加わる厳しい環境に曝される。基本的な材料特性として、優れた高温クリープ強度、高温燃焼ガス雰囲気に対する耐酸化、耐食性が要求される。
本発明者らは、普通鋳造用合金であって、耐食性を維持しながら、従来材より更なる優れた高温クリープ強度及び耐酸化性を得る合金を検討した結果、本発明を見出すに至ったものである。
The turbine rotor blade 1 includes a blade portion 110, a shank portion 111, and a root portion (dovetil portion) 112, and has a size of 10 to 100 cm and a weight of about 1 to 10 kg. Moreover, the platform part 113 and the radial fin 114 are provided. The turbine rotor blade is a rotating part having a complicated cooling structure inside, and is exposed to a severe environment in which a centrifugal force during rotation and a load of thermal stress accompanying start and stop are repeatedly applied. As basic material properties, excellent high temperature creep strength, oxidation resistance to high temperature combustion gas atmosphere, and corrosion resistance are required.
The inventors of the present invention have found the present invention as a result of investigating an alloy that is an ordinary casting alloy and obtains a higher temperature creep strength and oxidation resistance than conventional materials while maintaining corrosion resistance. It is.

一般的なガスタービンの翼の作製手段としては、普通鋳造、一方向凝固鋳造及び単結晶鋳造による手法が挙げられる。一方向凝固合金や単結晶合金は、主に小型で軽量なジェットエンジン(航空用ガスタービン)の動翼に使用されている。しかし、一方向凝固合金や単結晶合金を用いた翼は、鋳造プロセスが複雑であるため、翼を鋳造した時の鋳造歩留りが悪くなる。特に、産業用ガスタービンの翼では形状が大きく、形も複雑であることから、鋳造歩留りが低く、そのため高価になりやすい。   General means for producing the blades of a gas turbine include a technique using ordinary casting, unidirectional solidification casting, and single crystal casting. Unidirectionally solidified alloys and single crystal alloys are mainly used in the moving blades of small and lightweight jet engines (aviation gas turbines). However, a wing using a unidirectionally solidified alloy or a single crystal alloy has a complicated casting process, so that the casting yield when the wing is cast deteriorates. In particular, the blades of industrial gas turbines are large in shape and complex in shape, so that the casting yield is low, and therefore they are likely to be expensive.

そこで、本発明者らは、各合金添加元素のバランスをとり、特に普通鋳造用の合金として、耐食性を維持しながら、従来材より高い高温強度及び耐酸化性を有する合金を検討した。
以下、本発明のNi基合金に含まれる各成分の働き、好ましい組成範囲について説明する。
Therefore, the present inventors have examined the alloys having higher high-temperature strength and oxidation resistance than conventional materials while maintaining the corrosion resistance by balancing each additive element of the alloy and maintaining the corrosion resistance.
Hereinafter, the function of each component contained in the Ni-based alloy of the present invention and the preferred composition range will be described.

Cr:11.00〜15.00質量%
Crは、固溶強化元素として働くと共に緻密な酸化皮膜を形成し高温における腐食雰囲気下で耐酸化、耐高温腐蝕性に寄与する。特に、溶融塩腐食に対する耐食性を向上させるためには、Cr含有量をより増加させるほど効果は大きくなる。そして、その効果がより著に現れるのは11.00質量%を超えてからである。しかし、本発明の合金では、固溶強化元素Wが多く添加されているため、Cr量が多くなりすぎると、脆いTCP相が析出して高温強度が低下する。そのため、他の合金元素とのバランスをとって、その上限を15.0質量%とすることが望ましい。この組成範囲に於いて、高強度と高耐食性が得られる。好ましくは11.50〜14.50質量%の範囲である。
Cr: 11.00 to 15.00 mass%
Cr acts as a solid solution strengthening element and forms a dense oxide film, contributing to oxidation resistance and high temperature corrosion resistance in a corrosive atmosphere at high temperatures. In particular, in order to improve the corrosion resistance against molten salt corrosion, the effect increases as the Cr content increases. And the effect appears more markedly after exceeding 11.00% by mass. However, in the alloy of the present invention, since a large amount of the solid solution strengthening element W is added, if the amount of Cr is excessively large, a brittle TCP phase is precipitated and the high temperature strength is lowered. Therefore, it is desirable to balance with other alloy elements and to set the upper limit to 15.0% by mass. In this composition range, high strength and high corrosion resistance can be obtained. Preferably it is the range of 11.50-14.50 mass%.

Co:9.50〜20.00質量%
Coはγ´相の固溶温度を低下させ、溶体化熱処理を容易にする効果があり、特に本発明合金のように、部分溶体化で使用される場合には低い熱処理温度でも溶体化率を大きくすることが可能となる。その効果を得るためには、9.50%以上の添加が必要である。
しかし、Coの過度の添加は、γ´相を不安定化し、強度低下につながる。従って、Coは最大でも20.00%にする必要がある。この組成範囲に於いて、高い高温強度が得られる。好ましくは10.00〜18.00質量%の範囲である。
Co: 9.50 to 20.00% by mass
Co has the effect of lowering the solid solution temperature of the γ ′ phase and facilitating solution heat treatment. Especially when used in partial solution formation, as in the case of the present invention alloy, the solution rate is reduced even at a low heat treatment temperature. It becomes possible to enlarge. In order to obtain the effect, it is necessary to add 9.50% or more.
However, excessive addition of Co destabilizes the γ ′ phase and leads to a decrease in strength. Therefore, Co needs to be 20.00% at the maximum. In this composition range, high high-temperature strength can be obtained. Preferably it is the range of 10.00 to 18.00 mass%.

Al:4.50〜7.00質量%
Alはγ´相(Ni3Al)を形成するために必須の元素であり、60%分率γ´を形成するために、最低でも4.50%以上の添加が必要である。AlはAl23保護皮膜を形成することで、耐酸化性及び耐食性を向上させる。しかし、過度に添加するとγ´相の固溶強化度が低下し、高温強度が低下することから、添加量は最大でも7.00%にする必要がある。この組成範囲において、高温における強度と耐酸化特性、耐食性のバランスを考慮した場合、好ましくは4.80〜6.50質量%の範囲である。
Al: 4.50 to 7.00 mass%
Al is an essential element for forming the γ ′ phase (Ni 3 Al), and in order to form the 60% fraction γ ′, it is necessary to add at least 4.50% or more. Al improves the oxidation resistance and corrosion resistance by forming an Al 2 O 3 protective film. However, if added excessively, the solid solution strengthening degree of the γ ′ phase is lowered and the high-temperature strength is lowered. Therefore, the addition amount needs to be 7.00% at the maximum. In this composition range, when considering the balance between strength at high temperature, oxidation resistance, and corrosion resistance, the range is preferably 4.80 to 6.50 mass%.

Ti:0.50〜2.10質量%
TiはCrとAlの複合酸化物の形成を防止し、合金の耐食性を向上させる効果がある。然し、Tiの添加ではγ´相の固相線温度を下げるから、高温強度を低下させるため、溶融塩腐食に対する耐食性を維持するためには、0.50質量%以上の含有量が必要である。しかし、2.10質量%を越えて添加すると、更に脆化相のη相が析出してくるため、また、γ´相の形成元素としてγ´相の析出量はTiの添加量とともに増加し、γ´相の析出量を制御するために、その上限を2.10質量%とする必要がある。本発明合金のようにCrを11.0〜15.0質量%含む合金において、高温における強度と耐食性、耐酸化特性のバランスを考慮した場合、好ましくは0.80〜1.70質量である。
Ti: 0.50 to 2.10% by mass
Ti has the effect of preventing the formation of a complex oxide of Cr and Al and improving the corrosion resistance of the alloy. However, the addition of Ti lowers the solidus temperature of the γ 'phase, so that the high-temperature strength is lowered. Therefore, in order to maintain the corrosion resistance against molten salt corrosion, a content of 0.50% by mass or more is necessary. . However, if added over 2.10% by mass, the η phase of the embrittlement phase is further precipitated, and the amount of precipitation of the γ ′ phase as the γ ′ phase forming element increases with the amount of Ti added. In order to control the precipitation amount of the γ ′ phase, the upper limit thereof needs to be 2.10% by mass. In an alloy containing 11.0 to 15.0% by mass of Cr as in the case of the present invention alloy, the balance between strength, corrosion resistance and oxidation resistance at high temperature is preferably 0.80 to 1.70 mass.

W:10.10〜15.00質量%
Wは、高価元素Reを除いて、最も固溶強化の効果がある元素であり、主にγ相を固溶強化する。従って、優れた高温強度を求めるために、本発明には組織の安定性を維持する限り、Wを多めに添加する。なお、Wは、Moと同様固溶強化元素であって剛性率の向上と拡散係数の低減に寄与するが、Moと比較しμ相中への経年的な移行は少なく、長期間安定して強化に寄与する。γ相とγ´相の格子定数ミスマッチをより少なくすると、γとγ´の相の界面強度を向上させ、高温クリープ強度を向上させる。Wはγ相側に入る元素で、反対にTaは析出相であるγ´相側にお主に入る元素である。W量が多い合金はγ相側の格子定数が大きくなり、一般に(γ´相の格子定数−γ相の格子定数)/(両相の格子定数平均)で定義される格子定数ミスマッチが小さくなる。従って、γ相とγ´相の格子定数ミスマッチを小さくするためには、W量は最低10.10%以上である。しかし、Wの過度の添加は、合金の相安定を悪化させTCP相等の析出につながり、耐食性を低下させるため、最大でも15.00%にする必要がある。更に高温での長時間使用により、α−Crを析出させ、高温強度と延性が低下する。好ましくは10.50〜14.50質量%の範囲である。
W: 10.10-15.00 mass%
W is an element having the most solid solution strengthening effect except for the expensive element Re, and mainly strengthens the γ phase by solid solution strengthening. Therefore, in order to obtain an excellent high temperature strength, a large amount of W is added to the present invention as long as the stability of the structure is maintained. W is a solid solution strengthening element similar to Mo and contributes to the improvement of the rigidity and the reduction of the diffusion coefficient. Contributes to strengthening. If the lattice constant mismatch between the γ phase and the γ ′ phase is reduced, the interface strength between the γ and γ ′ phases is improved, and the high temperature creep strength is improved. W is an element that enters the γ phase side, and conversely Ta is an element that mainly enters the γ ′ phase side, which is a precipitated phase. An alloy having a large amount of W has a large lattice constant on the γ phase side, and generally has a small lattice constant mismatch defined by (lattice constant of γ ′ phase−lattice constant of γ phase) / (average of lattice constants of both phases). . Therefore, in order to reduce the lattice constant mismatch between the γ phase and the γ ′ phase, the amount of W is at least 10.10%. However, excessive addition of W deteriorates the phase stability of the alloy and leads to precipitation of the TCP phase and the like, and lowers the corrosion resistance. Therefore, it is necessary to make it at most 15.00%. Furthermore, α-Cr is precipitated by long-term use at a high temperature, and the high-temperature strength and ductility are reduced. Preferably it is the range of 10.50-14.50 mass%.

Mo:0.10〜0.50質量%
MoはWと同様の効果を有するため、必要に応じてWの一部と代替えすることが可能である。また、γ´相の固溶温度をあげるため、Wと同様にクリープ強度を向上させる効果がある。そして、このような効果を得るためには0.1質量%以上の含有量が必要であり、Moの含有量が増えるにつれてクリープ強度も向上する。
Mo: 0.10 to 0.50 mass%
Since Mo has the same effect as W, it can be replaced with a part of W if necessary. In addition, since the solid solution temperature of the γ ′ phase is increased, the effect of improving the creep strength as in the case of W is obtained. And in order to acquire such an effect, content of 0.1 mass% or more is required, and creep strength improves as Mo content increases.

一方、Moは合金の耐酸化特性および耐食性を低下させる。特にMoの含有量が増えるにつれて耐酸化特性が大幅に悪くなることから、その上限を0.50質量%とする必要がある。また、μ相析出によるマトリックス劣化の要因となっているMoを少なくし、その代りにマトリックス強化に役立つWを多く添加する。従って、耐食性や高温での耐酸化特性は従来合金とほぼ同等とし、クリープ強度を重要視する場合は、好ましくは0.10〜0.40質量%の範囲である   On the other hand, Mo reduces the oxidation resistance and corrosion resistance of the alloy. In particular, as the content of Mo increases, the oxidation resistance is greatly deteriorated, so the upper limit thereof needs to be 0.50% by mass. Further, Mo which is a factor of matrix deterioration due to μ phase precipitation is reduced, and instead, a large amount of W useful for matrix strengthening is added. Accordingly, the corrosion resistance and oxidation resistance at high temperature are almost the same as those of conventional alloys, and when the creep strength is important, it is preferably in the range of 0.10 to 0.40% by mass.

Nb:0.005〜0.60質量%
Nbは、CrとAlの複合酸化物の形成を防止し、合金の耐食性を改善する効果がある。γ´相を固溶強化する効果はTiより高い。従って、Nbは高温強度を落とさずに耐食性を改善できる有効な元素であり、0.005%以上添加する必要がある。しかしながら、γ´相の相安定性を保つためには、Nbの添加量は0.60%以下とする必要がある。
耐食性を特に重視する場合は、0.10%以上の添加が好ましい。高温における強度と耐食性、耐酸化特性のバランスを考慮した場合、好ましくは0.10〜0.60質量%の範囲である。
Nb: 0.005 to 0.60 mass%
Nb has the effect of preventing the formation of a complex oxide of Cr and Al and improving the corrosion resistance of the alloy. The effect of strengthening the γ ′ phase by solid solution is higher than Ti. Therefore, Nb is an effective element that can improve the corrosion resistance without decreasing the high temperature strength, and it is necessary to add 0.005% or more. However, in order to maintain the phase stability of the γ ′ phase, the amount of Nb added needs to be 0.60% or less.
When the corrosion resistance is particularly important, addition of 0.10% or more is preferable. In consideration of the balance between strength, corrosion resistance and oxidation resistance at high temperatures, the range is preferably from 0.10 to 0.60% by mass.

C:0.20質量%以下
Cは、Ti、Nb等とMC型炭化物、Cr、W、Mo等とM236及びM6C型炭化物を形成し、高温で結晶粒界が移動するのを阻止することで結晶粒界を強化する効果があり、本発明において特に重要な役割を果たす元素である。普通鋳造材で、この効果を発揮させるためには最低でも0.05%以上添加する必要がある。また、強度と延性をいずれも増大させたい場合には、0.10%以上添加することが好ましい。しかし、C量を多くしすぎると、γ相及びγ´相の固溶強化に有効な元素が炭化物にとられることで、かえって高温強度が低下するようになる。また、過剰の炭化物は疲労強度を低下させる。従って、Cの上限は0.20%に規制する必要がある。単結晶材では、粒界強化が不要となり、Cの添加が0または0.002以下である。
C: 0.20% by mass or less C forms MC type carbides with Ti, Nb, etc., and M 23 C 6 and M 6 C type carbides with Cr, W, Mo, etc., and the grain boundaries move at high temperatures. Is an element that plays an especially important role in the present invention. It is necessary to add 0.05% or more at least in order to exhibit this effect with ordinary cast material. Further, when it is desired to increase both strength and ductility, it is preferable to add 0.10% or more. However, if the amount of C is excessively increased, elements effective for solid solution strengthening of the γ phase and the γ ′ phase are taken into the carbide, so that the high temperature strength is lowered. Excess carbides also reduce fatigue strength. Therefore, the upper limit of C needs to be regulated to 0.20%. In the single crystal material, grain boundary strengthening is unnecessary, and the addition of C is 0 or 0.002 or less.

B:0.02質量%以下
Bは結晶粒界の非整合部を埋め、結晶粒界の結合力を増加させる効果がある。本発明の合金においては、最低でも0.005%のBの添加が必要である。普通鋳造材として、より高い粒界強度が要求される場合には0.010%以上添加することが望ましい。しかし、BはNi基超合金の融点を著しく低下させるため、最大でも0.02%とする必要がある。
B: 0.02 mass% or less B has an effect of filling non-matching portions of crystal grain boundaries and increasing the bonding strength of crystal grain boundaries. In the alloy of the present invention, at least 0.005% of B needs to be added. When higher grain boundary strength is required as a normal cast material, it is desirable to add 0.010% or more. However, since B significantly lowers the melting point of the Ni-base superalloy, it is necessary to be 0.02% at the maximum.

Hf:0〜2.00質量%、Zr:0〜0.05質量%
Hf、及びZrは、結晶粒界に偏析して結晶粒界の強度を若干向上させる。しかし、大部分はNiとの金属間化合物すなわちNi3Zr等を結晶粒界に形成する。この金属間化合物は合金の延性を低下させ、また低融点であるため、合金の溶融温度が低下し、溶体化処理温度範囲が狭くなる等、有効な作用が少ない。したがって、その上限はそれぞれ2.00質量%、0.50質量%、及び0.05質量%とした。好ましくは、Hfが0〜0.10質量%、Zrが0〜0.03質量%である。
Hf: 0 to 2.00% by mass, Zr: 0 to 0.05% by mass
Hf and Zr are segregated at the grain boundaries to slightly improve the strength of the grain boundaries. However, most of them form an intermetallic compound with Ni, that is, Ni 3 Zr or the like, at the grain boundaries. Since this intermetallic compound lowers the ductility of the alloy and has a low melting point, it has little effective action such as a reduction in the melting temperature of the alloy and a narrowing of the solution treatment temperature range. Therefore, the upper limit was made 2.00 mass%, 0.50 mass%, and 0.05 mass%, respectively. Preferably, Hf is 0 to 0.10% by mass and Zr is 0 to 0.03% by mass.

O:0〜0.005質量%、N:0〜0.005質量%
酸素と窒素は不純物であり、いずれも合金原料から持ち込まれることが多く、Oはるつぼからも入り、合金中には酸化物(Al23)や窒化物(TiNあるいはAlN)として塊状に存在する。鋳物中にこれらが存在すると、クリープ変形中のクラックの起点となり、クリープ破断寿命を低下させたり、疲労亀裂発生の起点となって疲労寿命が低下したりする。特に酸素は、鋳物表面に酸化物として現れることで、鋳物の表面欠陥となり、鋳造品の歩留まりを低下させる原因となる。そのため、これら元素の含有量は少ないほど良いが、実際のインゴットを製造する場合に、無酸素、無窒素にはできないことから、特性を大きく劣化させない範囲として、両元素はいずれも0.005質量%以下であることが望ましい。
O: 0 to 0.005 mass%, N: 0 to 0.005 mass%
Oxygen and nitrogen are impurities, both of which are often brought from alloy raw materials, O also enters from the crucible, and exists in the alloy as oxides (Al 2 O 3 ) and nitrides (TiN or AlN). To do. If these are present in the casting, it becomes the starting point of cracks during creep deformation, and the creep rupture life is reduced, or the fatigue life is reduced by starting fatigue crack generation. In particular, oxygen appears as an oxide on the surface of the casting, thereby causing a surface defect of the casting and reducing the yield of the casting. Therefore, the lower the content of these elements, the better. However, when manufacturing an actual ingot, it is impossible to make oxygen-free and nitrogen-free. % Or less is desirable.

Re,Taは添加しない。不純物として不可避にReは0.5質量%以下、Taは1.0質量%以下混入する場合はある。ReとTaによるマトリックスの固溶強化とγ´生成元素としてのγ´相強化の影響によるのもで、時効硬さの上昇と相関が認められる。しかし、延性についてはReとTaの添加の影響は劣化傾向が認められ、合金の加工性が低下しやすい。更に、ReとTaは高価な元素であるため、本発明は特性バランスとコストの面から、TaとReを添加しない。 Re and Ta are not added. As an impurity, Re is inevitably mixed by 0.5 mass% or less and Ta is mixed by 1.0 mass% or less. This is due to the effect of solid solution strengthening of the matrix by Re and Ta and the strengthening of the γ ′ phase as the γ′-forming element, and a correlation is observed with the increase in age hardness. However, with respect to ductility, the effects of the addition of Re and Ta tend to deteriorate, and the workability of the alloy tends to decrease. Furthermore, since Re and Ta are expensive elements, the present invention does not add Ta and Re from the viewpoint of the balance of characteristics and cost.

上記の各成分と、不可避不純物及び残部のNiよりなるNi基合金は、従来材より優れた高温強度と耐酸化・腐食性を得られる合金である。
The Ni-based alloy composed of the above components, inevitable impurities, and the balance Ni is an alloy capable of obtaining high-temperature strength and oxidation / corrosion resistance superior to those of conventional materials.

以下に、本実施例で試験に供したNi基合金を示す。Ni基合金の組成(質量%)を表1に示す。   The Ni-based alloy used for the test in this example is shown below. Table 1 shows the composition (% by mass) of the Ni-based alloy.

合金No.A1〜A5が、本発明を示す合金組成であり、合金No.B1〜B2が従来材を示す合金組成である。試験片は、マスターインゴットと秤量した合金元素とをアルミナ坩堝で溶解し、厚さ14mmの平板に鋳造した。鋳造後、試験片は溶体化熱処理及び時効熱処理を行った。   Alloys No. A1 to A5 are alloy compositions showing the present invention, and alloys No. B1 to B2 are alloy compositions showing conventional materials. For the test piece, the master ingot and the weighed alloy element were melted in an alumina crucible and cast into a flat plate having a thickness of 14 mm. After casting, the test piece was subjected to solution heat treatment and aging heat treatment.

表2に、合金試験片に対して行った熱処理の条件を示す。   Table 2 shows the conditions of the heat treatment performed on the alloy specimen.

合金組成を均一化するために1505Kで2h溶体化熱処理を行った。溶体化熱処理後は空冷とし、これに続く時効熱処理の条件は、全ての合金で1394K/4時間/空冷+1352K/4時間/空冷+1148K/16時間/空冷とした。その後、試験片加工を行い、クリープ破断試験、腐食、及び酸化試験を実施した。 In order to make the alloy composition uniform, solution heat treatment was performed at 1505 K for 2 h. After the solution heat treatment, air cooling was performed, and the subsequent aging heat treatment conditions were 1394 K / 4 hours / air cooling + 1352 K / 4 hours / air cooling + 1148 K / 16 hours / air cooling for all alloys. Thereafter, test piece processing was performed, and a creep rupture test, corrosion, and oxidation test were performed.

熱処理した試験片から、機械加工により、平行部直径6.0mm、平行部長さ30mmのクリープ試験片と、長さ25mm、幅10mm、厚さ1.5mmの高温酸化試験片、及び15mm×15mm×15mmの立方体形状の高温腐食試験片を切り出すとともに、走査型電子顕微鏡でミクロ組織を調査し、合金の組織安定性を評価した。   From the heat-treated test piece, a creep test piece having a parallel part diameter of 6.0 mm and a parallel part length of 30 mm, a high temperature oxidation test piece having a length of 25 mm, a width of 10 mm, and a thickness of 1.5 mm, and 15 mm × 15 mm × by machining. A 15 mm cube-shaped hot corrosion test piece was cut out and the microstructure was examined with a scanning electron microscope to evaluate the structural stability of the alloy.

表3に、合金試験片に対して行った特性評価試験の条件を示す。   Table 3 shows the conditions of the characteristic evaluation test performed on the alloy specimen.

クリープ破断試験は、1255K−137MPa/1123K−314MPaの条件で行った。高温酸化試験は、1313K−20時間保持の酸化試験を15回繰返し、それぞれ質量の変化を測定した。また、高温腐食試験は、1123Kの溶融塩(組成は、Na2SO4:75%、NaCl:25%)中に25時間浸漬する試験を4回(計100時間)行い、質量の変化を測定した。 The creep rupture test was conducted under the conditions of 1255K-137MPa / 1123K-314MPa. In the high-temperature oxidation test, the oxidation test held at 1313 K-20 hours was repeated 15 times, and the change in mass was measured. The high temperature corrosion test was conducted by immersing in a molten salt of 1123K (composition: Na 2 SO 4 : 75%, NaCl: 25%) for 25 hours 4 times (100 hours in total), and measuring the change in mass. did.

これらの試験結果を表4にまとめて示す。   These test results are summarized in Table 4.

図1〜図3に、各合金の特性評価試験結果を示す。図1は1255K−137MPaでのクリープ破断時間、図2は高温酸化試験での酸化減量、図3は溶融塩浸漬腐食試験での腐食減量の測定結果を示している。   1 to 3 show the results of property evaluation tests of the respective alloys. FIG. 1 shows the creep rupture time at 1255K-137 MPa, FIG. 2 shows the results of measurement of the weight loss in the high temperature oxidation test, and FIG. 3 shows the results of the measurement of the corrosion weight loss in the molten salt immersion corrosion test.

表4に示す結果から明らかなように、本実施例の合金A1〜A5では、既存合金B1(IN738LC)と比較すると、耐食性は少し低下しているが、耐酸化性とクリープ破断時間は約3倍以上になっている。本実施例の合金では、B1に対して、W、Alの添加量を多くすることで高温でのクリープ強度向上を図っている。   As is apparent from the results shown in Table 4, in the alloys A1 to A5 of this example, the corrosion resistance is slightly lowered as compared with the existing alloy B1 (IN738LC), but the oxidation resistance and creep rupture time are about 3 It is more than doubled. In the alloy of this example, the creep strength is improved at a high temperature by increasing the amount of W and Al added to B1.

別の既存合金B2(GTD111)と比較すると、耐酸化性と高温クリープ破断強度が大幅に改善され、耐食性も改善されていることが分かる。特にクリープ破断強度は向上が著しい。従来材B2に対して、WとAl量を大幅に増加して、組織安定性の確保のために、他の添加元素のバランスを重視し、高温強度の向上を図っている。 When compared with another existing alloy B2 (GTD111), it can be seen that the oxidation resistance and the high temperature creep rupture strength are greatly improved and the corrosion resistance is also improved. In particular, the creep rupture strength is significantly improved. Compared to the conventional material B2, the amount of W and Al is significantly increased, and in order to ensure the structural stability, the balance of other additive elements is emphasized and the high temperature strength is improved.

すなわち、本発明により、高温での耐食性を維持しつつ、耐酸化特性とクリープ破断寿命を大幅に向上し、優れた高温強度を有するNi基超合金が得られることが認められた。   That is, according to the present invention, it was confirmed that a Ni-base superalloy having excellent high-temperature strength can be obtained while maintaining the corrosion resistance at high temperatures while greatly improving the oxidation resistance and creep rupture life.

以上の実施例においては、普通鋳造材としての効果を説明した。さらに本発明の合金を一方向凝固させた一方向凝固翼として使用することも有効である。一方向凝固させることにより、耐食性、耐酸化特性を維持しながら、クリープ破断強度を大幅に向上できることは周知の事実である。特に、本発明の合金は結晶粒界強化に効果のあるC、Bを含み、さらに必要に応じて、鋳造時の結晶粒界割れの抑制に効果のあるHfを添加することが可能であることから、一方向凝固材として使用する場合も適した合金組成となっている。更に、単結晶合金も適用可能である。   In the above embodiment, the effect as a normal casting material has been described. It is also effective to use the unidirectionally solidified blade obtained by unidirectionally solidifying the alloy of the present invention. It is a well-known fact that the creep rupture strength can be greatly improved by maintaining the corrosion resistance and the oxidation resistance by unidirectional solidification. In particular, the alloy of the present invention contains C and B effective for strengthening grain boundaries, and it is possible to add Hf effective for suppressing grain boundary cracking during casting if necessary. Therefore, the alloy composition is also suitable for use as a unidirectionally solidified material. Furthermore, a single crystal alloy is also applicable.

以上述べたように、本発明によれば、優れた高温強度と耐酸化・腐食性を併せ持つ、普通鋳造可能なNi基超合金を得ることができる。   As described above, according to the present invention, it is possible to obtain a Ni-based superalloy capable of ordinary casting having both excellent high temperature strength and oxidation / corrosion resistance.

図5はガスタービンを示す図である。
本実施例におけるガスタービンは、クリープ破断強度の高い、高温強度に優れたNi基超合金をガスタービンブレード3と、ガスタービンノズル20に適用することにより、タービン入口の燃焼ガス温度を従来のものに比べて高くでき、熱効率が高い高温発電用ガスタービンを提供することができる。
本発明におけるNi基超合金は、高いクリープ強度と耐酸化・腐食を併せもつため、普通鋳造材としてガスタービンの3又は4段動翼3に用いることが望ましい。また、本発明の合金は、結晶粒界の強化に効果のあるC、B、鋳造時の結晶粒界割れの抑制に効果のあるHfを含むため、一方向鋳造材又は単結晶材としてガスタービンの1、2段タービンブレード動翼3にも用いることができる。たま、本発明合金の一方向鋳造材又は単結晶材はTa、Reなど高価な合金元素を含まない為、材料単価は従来材並みの安価である。しかもその耐用温度は従来以上に優れているので、寿命を従来より大きく向上させることができる。尚、本発明には、特にガスタービンに限定されるものではない、他の高温熱機関の高温部品も対応可能である。
FIG. 5 is a diagram showing a gas turbine.
The gas turbine in the present embodiment applies a Ni-base superalloy having a high creep rupture strength and an excellent high-temperature strength to the gas turbine blade 3 and the gas turbine nozzle 20 so that the combustion gas temperature at the turbine inlet is the conventional one. It is possible to provide a gas turbine for high-temperature power generation that can be made higher than the above and has high thermal efficiency.
Since the Ni-base superalloy according to the present invention has both high creep strength and oxidation / corrosion resistance, it is desirable to use it as a normal casting material for the 3- or 4-stage rotor blade 3 of a gas turbine. Further, since the alloy of the present invention contains C and B which are effective in strengthening grain boundaries, and Hf which is effective in suppressing grain boundary cracking at the time of casting, the gas turbine is used as a unidirectional cast material or a single crystal material. Can be used for the first and second stage turbine blades 3. Occasionally, the unidirectional cast material or single crystal material of the alloy of the present invention does not contain expensive alloy elements such as Ta and Re, so the material unit price is as low as that of conventional materials. In addition, since the service temperature is superior to that of the prior art, the lifetime can be greatly improved. It should be noted that the present invention is not limited to gas turbines, and can be applied to high-temperature parts of other high-temperature heat engines.

3…タービンブレード、4…タービンディスク、6…コンプレッサディスク、7…コンプレッサブレード、8…コンプレッサスタッキングボルド、9…コンプレッサスタブシャフト、10…タービンスタブシャフト、11…穴、13…タービンスタッキングボルト、15…燃焼器、16…コンプレッサノズル、18…タービンスペーサ、19…デイスタントピース、20…初段ノズル、110…翼部、111…シャンク部、112…ルート部(ダブティル部)、113…プラットホーム部、114…ラジアルフィン。 3 ... turbine blade, 4 ... turbine disk, 6 ... compressor disk, 7 ... compressor blade, 8 ... compressor stacking bould, 9 ... compressor stub shaft, 10 ... turbine stub shaft, 11 ... hole, 13 ... turbine stacking bolt, 15 ... Combustor, 16 ... Compressor nozzle, 18 ... Turbine spacer, 19 ... Distant piece, 20 ... First stage nozzle, 110 ... Wing part, 111 ... Shank part, 112 ... Root part (Dubtil part), 113 ... Platform part, 114 ... Radial fin.

Claims (5)

質量で、Cr:11.0%〜15.0%、Mo:0.1%〜0.5%、Ti:0.5%〜2.1%、Al:4.5%〜7.0%、Co:9.5%〜20.0%、W:10.1〜15.0%、Hf:0.5%以下、Nb:0.005%〜0.60%、B:0.02%以下、C:0.2%以下、残部がNiと不可避不純物であることを特徴とするNi基超合金。   By mass, Cr: 11.0% to 15.0%, Mo: 0.1% to 0.5%, Ti: 0.5% to 2.1%, Al: 4.5% to 7.0% Co: 9.5% to 20.0%, W: 10.1 to 15.0%, Hf: 0.5% or less, Nb: 0.005% to 0.60%, B: 0.02% Hereinafter, a Ni-base superalloy characterized in that C: 0.2% or less, the balance being Ni and inevitable impurities. 請求項1において、Ta、Reを含まないことを特徴とするNi基超合金。   The Ni-base superalloy according to claim 1, which does not contain Ta or Re. 請求項1において、質量で、Cr:11.50〜14.50%、Mo:0.15〜0.40%、Ti:0.80〜1.70%、Al:4.80〜6.50%、Co:10.0〜18.00%、W:10.50〜14.50%、Nb:0.10〜0.60%、B:0.02%以下、C:0.20%以下、残部がNiと不可避不純物であることを特徴とするNi基超合金。 In Claim 1, by mass: Cr: 11.50-14.50%, Mo: 0.15-0.40%, Ti: 0.80-1.70%, Al: 4.80-6.50 %, Co: 10.0 to 18.00%, W: 10.50 to 14.50%, Nb: 0.10 to 0.60%, B: 0.02% or less, C: 0.20% or less A Ni-base superalloy characterized in that the balance is Ni and inevitable impurities. 請求項1乃至3のいずれかに記載のNi基超合金よりなることを特徴とするガスタービン用タービン翼。   A turbine blade for a gas turbine comprising the Ni-base superalloy according to any one of claims 1 to 3. 請求項4に記載のタービン翼を具備することを特徴とするガスタービン。   A gas turbine comprising the turbine blade according to claim 4.
JP2012222648A 2012-10-05 2012-10-05 High-strength Ni-base superalloy and gas turbine using the same Active JP6084802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222648A JP6084802B2 (en) 2012-10-05 2012-10-05 High-strength Ni-base superalloy and gas turbine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222648A JP6084802B2 (en) 2012-10-05 2012-10-05 High-strength Ni-base superalloy and gas turbine using the same

Publications (2)

Publication Number Publication Date
JP2014074208A true JP2014074208A (en) 2014-04-24
JP6084802B2 JP6084802B2 (en) 2017-02-22

Family

ID=50748561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222648A Active JP6084802B2 (en) 2012-10-05 2012-10-05 High-strength Ni-base superalloy and gas turbine using the same

Country Status (1)

Country Link
JP (1) JP6084802B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114561563A (en) * 2022-02-28 2022-05-31 兰州大学 Method for improving structure stability by optimizing high-temperature alloy structure
CN114934211A (en) * 2022-07-21 2022-08-23 北京钢研高纳科技股份有限公司 Nickel-base superalloy, nickel-base superalloy powder, and nickel-base superalloy component
CN115198144A (en) * 2021-04-06 2022-10-18 大同特殊钢株式会社 Heat-resistant alloy member, material used therefor, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235450A (en) * 1986-04-03 1987-10-15 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Monocrystal nickel base superalloy and reduction of anisotropy thereof
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH09170402A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Nozzle for gas turbine and manufacture thereof, and gas turbine using same
JP2003136202A (en) * 2001-11-06 2003-05-14 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Ni-BASE SUPPERALLOY INGOT COMPOSED OF LITTLE COMPONENT-SEGREGATION AND UNIFORMLY FINE CRYSTAL GRAIN
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT
JP2010275635A (en) * 2009-05-14 2010-12-09 General Electric Co <Ge> Cobalt-nickel superalloy and related article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235450A (en) * 1986-04-03 1987-10-15 ユナイテツド・テクノロジ−ズ・コ−ポレイシヨン Monocrystal nickel base superalloy and reduction of anisotropy thereof
JPH07145703A (en) * 1993-08-06 1995-06-06 Hitachi Ltd Moving blade for gas turbine, manufacture thereof, and gas turbine using same
JPH09170402A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Nozzle for gas turbine and manufacture thereof, and gas turbine using same
JP2003136202A (en) * 2001-11-06 2003-05-14 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Ni-BASE SUPPERALLOY INGOT COMPOSED OF LITTLE COMPONENT-SEGREGATION AND UNIFORMLY FINE CRYSTAL GRAIN
JP2004332061A (en) * 2003-05-09 2004-11-25 Hitachi Ltd HIGHLY OXIDATION RESISTANT Ni BASED SUPERALLOY, AND GAS TURBINE COMPONENT
JP2010275635A (en) * 2009-05-14 2010-12-09 General Electric Co <Ge> Cobalt-nickel superalloy and related article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115198144A (en) * 2021-04-06 2022-10-18 大同特殊钢株式会社 Heat-resistant alloy member, material used therefor, and method for producing same
CN115198144B (en) * 2021-04-06 2023-10-03 大同特殊钢株式会社 Heat-resistant alloy member, material used therefor, and method for producing same
CN114561563A (en) * 2022-02-28 2022-05-31 兰州大学 Method for improving structure stability by optimizing high-temperature alloy structure
CN114934211A (en) * 2022-07-21 2022-08-23 北京钢研高纳科技股份有限公司 Nickel-base superalloy, nickel-base superalloy powder, and nickel-base superalloy component

Also Published As

Publication number Publication date
JP6084802B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5296046B2 (en) Ni-based alloy and turbine moving / stator blade of gas turbine using the same
JP4036091B2 (en) Nickel-base heat-resistant alloy and gas turbine blade
JP5526223B2 (en) Ni-based alloy, gas turbine rotor blade and stator blade using the same
JPWO2007037277A1 (en) Ni-base superalloy with excellent oxidation resistance
JP2007162041A (en) Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER
JP5186215B2 (en) Nickel-based superalloy
JP5597598B2 (en) Ni-base superalloy and gas turbine using it
JP5626920B2 (en) Nickel-base alloy castings, gas turbine blades and gas turbines
JP5226846B2 (en) High heat resistance, high strength Rh-based alloy and method for producing the same
JP5063550B2 (en) Nickel-based alloy and gas turbine blade using the same
JP6084802B2 (en) High-strength Ni-base superalloy and gas turbine using the same
JP5427642B2 (en) Nickel-based alloy and land gas turbine parts using the same
JP6045857B2 (en) High-strength Ni-base superalloy and gas turbine turbine blade using the same
JP4230970B2 (en) Ni-base superalloys for unidirectional solidification with excellent solidification direction strength and grain boundary strength, castings and high-temperature parts for gas turbines
KR102197355B1 (en) Ni base single crystal superalloy
JP5396445B2 (en) gas turbine
KR102340057B1 (en) Ni base single crystal superalloy and Method of manufacturing thereof
JP2013185210A (en) Nickel-based alloy and gas turbine blade using the same
WO2017154809A1 (en) Ni-BASED UNIDIRECTIONALLY SOLIDIFIED ALLOY
JP2005113251A (en) High ductility chromium alloy containing silver

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6084802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250