JP2014070547A - Intake system for internal combustion engine - Google Patents

Intake system for internal combustion engine Download PDF

Info

Publication number
JP2014070547A
JP2014070547A JP2012216411A JP2012216411A JP2014070547A JP 2014070547 A JP2014070547 A JP 2014070547A JP 2012216411 A JP2012216411 A JP 2012216411A JP 2012216411 A JP2012216411 A JP 2012216411A JP 2014070547 A JP2014070547 A JP 2014070547A
Authority
JP
Japan
Prior art keywords
intake
partition plate
inlet pipe
valve
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012216411A
Other languages
Japanese (ja)
Other versions
JP6005465B2 (en
Inventor
Tomoji Iishima
智司 飯嶌
Takamori Shirasuna
貴盛 白砂
Masaya Asada
雅也 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012216411A priority Critical patent/JP6005465B2/en
Priority to CN201320597595.4U priority patent/CN203702323U/en
Priority to BR102013024776-6A priority patent/BR102013024776B1/en
Publication of JP2014070547A publication Critical patent/JP2014070547A/en
Application granted granted Critical
Publication of JP6005465B2 publication Critical patent/JP6005465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an intake system for an internal combustion engine that can easily secure rigidity even when a partition plate in an intake passage is formed to be long within an intake port and can generate tumbles of strong vortex flows.SOLUTION: In an intake system for an internal combustion engine, an intake passage (P) is partially partitioned into an upper intake passage (Up) and a lower intake passage (Lp) by a partition plate (60), and intake air flowing in the upper intake passage (Up) and the lower intake passage (Lp) is controlled by an intake director valve (65) installed upstream of the partition plate (60) on the downstream side of a throttle valve (22). The partition plate (60) comprises: an inlet pipe side partition plate (61) formed in an inlet pipe (20); and an intake port side partition plate (62) formed within an intake port (44). A downstream end (61b) of the inlet pipe side partition plate (61) and an upstream end (62a) of the intake port side partition plate (62) are connected to each other in a vertically overlapping state.

Description

本発明は、車両に搭載される内燃機関の吸気装置に関する。   The present invention relates to an intake device for an internal combustion engine mounted on a vehicle.

内燃機関の低負荷領域において、燃費の向上を図るために、燃焼室内で吸入された吸気がタンブルを発生し、燃焼室上部の点火プラグの周りに燃料を送り成層化して燃焼効率の向上を図る吸気装置を構成したものがある。   In order to improve fuel efficiency in the low load region of an internal combustion engine, intake air taken in the combustion chamber generates tumble, and fuel is sent around the spark plug at the upper portion of the combustion chamber to stratify the combustion efficiency. There is what constituted the intake device.

シリンダヘッドの燃焼室の天井面の吸気弁口と排気弁口から吸気ポートと排気ポートが互いに離れる方向に湾曲しながら延出しており、この吸気ポートが燃焼室に案内する吸気のうちで吸気弁口のシリンダ軸(シリンダボアの中心軸)に近い内側縁側から燃焼室の中央部に吸入される吸気が、排気側に向け流入しながらシリンダボアの排気側を下降した後にピストン頂面に沿って流れを曲げて吸気側を上昇することで縦渦いわゆるタンブルを形成する。   The intake port and the exhaust port extend from the intake valve port and the exhaust valve port on the ceiling surface of the combustion chamber of the cylinder head while curving in a direction away from each other. Of the intake air that is guided to the combustion chamber, the intake valve The intake air sucked into the center of the combustion chamber from the inner edge near the cylinder shaft (center axis of the cylinder bore) flows down the exhaust side of the cylinder bore while flowing toward the exhaust side, and then flows along the piston top surface. A vertical vortex, so-called tumble, is formed by bending and raising the intake side.

そこで、吸気弁口のシリンダ軸に近い内側縁側から吸入される吸気の割合を大きくするために、吸気ポートの内部を仕切壁により上下の通路に仕切り、仕切壁の上流側に下方の通路の開閉を行う吸気制御弁を設け、機関始動直後に下方の通路を閉じることで、吸気ポートの上方の通路を流れる吸気が上方の通路の延長である吸気弁口の内側縁側から吸入されることになり、強い渦流のタンブルを発生するようにした吸気装置の例がある(特許文献1参照)。   Therefore, in order to increase the proportion of the intake air from the inner edge near the cylinder shaft of the intake valve port, the inside of the intake port is partitioned into upper and lower passages by a partition wall, and the lower passage is opened and closed upstream of the partition wall. By providing an intake control valve that closes the lower passage immediately after engine startup, intake air flowing through the passage above the intake port is drawn from the inner edge of the intake valve port, which is an extension of the upper passage. There is an example of an intake device that generates a strong vortex tumble (see Patent Document 1).

特開2008−151078号公報JP 2008-151078 A

特許文献1の吸気装置では、吸気ポートの上流側にポートライナの筒状の通路部を挿入または一体に形成し、同ポートライナの通路部に仕切壁を一体に形成している。
仕切壁は、通路部から吸気ポートの下流側に大きく突出している。
In the intake device of Patent Document 1, a cylindrical passage portion of the port liner is inserted or integrally formed on the upstream side of the intake port, and a partition wall is integrally formed in the passage portion of the port liner.
The partition wall protrudes greatly from the passage portion to the downstream side of the intake port.

仕切壁は、通路部から大きく突出しているので、剛性の確保が難しいことから、突出量に制限があり、特許文献1の図面の図1に示されるように仕切壁の下流端は吸気ポートの吸気弁よりかなり手前に位置している。
そのため、タンブルを発生させる吸気ポートの仕切壁の上側の通路を流れる吸気が、仕切壁の下流端を過ぎて燃焼室に入る手前で下方に拡散してしまい吸気弁口の内側縁側からの燃焼室への吸気が減少して強い渦流のタンブルを発生することが難しい。
Since the partition wall largely protrudes from the passage portion, it is difficult to ensure rigidity. Therefore, the amount of protrusion is limited, and the downstream end of the partition wall is the intake port as shown in FIG. It is located in front of the intake valve.
Therefore, the intake air flowing through the passage on the upper side of the partition wall of the intake port that generates the tumble diffuses downward just before entering the combustion chamber past the downstream end of the partition wall, and the combustion chamber from the inner edge side of the intake valve port It is difficult to generate a strong vortex tumble due to a decrease in air intake.

本発明は、かかる点に鑑みなされたもので、その目的とする処は、吸気通路内の仕切板を吸気ポート内に長尺に形成しても容易に剛性を確保でき、仕切板を燃焼室に近い下流まで延出することで、強い渦流のタンブルを発生させることが可能である内燃機関の吸気装置を供する点にある。   The present invention has been made in view of the above points. The object of the present invention is to ensure rigidity even if the partition plate in the intake passage is formed long in the intake port. It is the point which provides the intake device of the internal combustion engine which can generate | occur | produce the tumble of a strong vortex | eddy_current by extending to the downstream near.

上記目的を達成するために、請求項1記載の発明は、
シリンダブロック(16)のシリンダボア(16b)内を摺動自在に嵌合されるピストン(25)の頂面と同頂面が対向するシリンダヘッド(17)の天井面(41)との間に燃焼室(40)が構成され、
前記シリンダヘッド(17)の前記天井面(41)に開口した吸気弁口(42)と排気弁口(43)から各々吸気ポート(44)と排気ポート(45)が互いに離れる方向に湾曲しながら延出して形成され、
吸気ポート(44)にインレットパイプ(20)が接続されて連続した吸気通路(P)が構成され、
前記インレットパイプ(20)にスロットル弁(22)が設けられ、
前記吸気通路(P)が部分的に仕切板(60)により燃焼室(40)の中央部に通じる上側吸気通路(Up)と燃焼室(40)の外周部に通じる下側吸気通路(Lp)に仕切られ、
前記スロットル弁(22)よりも下流で前記仕切板(60)の上流に設けられた吸気振分け弁(65)により前記上側吸気通路(Up)と前記下側吸気通路(Lp)を流れる吸気が制御され、
吸気制御手段(71)により前記吸気振分け弁(65)が駆動制御される内燃機関の吸気装置において、
前記仕切板(60)は、前記インレットパイプ(20)に形成されるインレットパイプ側仕切板(61)と吸気ポート(44)内に形成される吸気ポート側仕切板(62)とからなり、
前記インレットパイプ側仕切板(61)の下流端部(61b)と前記吸気ポート側仕切板(62)の上流端部(62a)が互いに上下に重なり合って連結されることを特徴とする内燃機関の吸気装置である。
In order to achieve the above object, the invention according to claim 1
Combustion between the top surface of the piston (25) slidably fitted in the cylinder bore (16b) of the cylinder block (16) and the ceiling surface (41) of the cylinder head (17) facing the top surface Chamber (40) is constructed,
While the intake port (44) and the exhaust port (45) are curved away from each other from the intake valve port (42) and the exhaust valve port (43) opened in the ceiling surface (41) of the cylinder head (17). Formed to extend,
An inlet pipe (20) is connected to the intake port (44) to form a continuous intake passage (P),
The inlet pipe (20) is provided with a throttle valve (22),
The intake passage (P) is partly connected to the central portion of the combustion chamber (40) by the partition plate (60), and the lower intake passage (Lp) is connected to the outer peripheral portion of the combustion chamber (40). Divided into
The intake air distribution valve (65) provided downstream of the throttle valve (22) and upstream of the partition plate (60) controls the intake air flowing through the upper intake passage (Up) and the lower intake passage (Lp). And
In the intake device for an internal combustion engine in which the intake control valve (65) is driven and controlled by the intake control means (71),
The partition plate (60) consists of an inlet pipe side partition plate (61) formed in the inlet pipe (20) and an intake port side partition plate (62) formed in the intake port (44),
An internal combustion engine characterized in that a downstream end portion (61b) of the inlet pipe side partition plate (61) and an upstream end portion (62a) of the intake port side partition plate (62) are overlapped and connected to each other. It is an intake device.

請求項2記載の発明は、
請求項1記載の内燃機関の吸気装置において、
前記インレットパイプ(20)の前記上側吸気通路(Up)側にインジェクタ(23)が前記上側吸気通路(Up)の下流側に向けて燃料噴射するように設けられ、
前記インレットパイプ側仕切板(61)の下流端部(61b)が前記吸気ポート側仕切板(62)の上流端部(62a)の上に重なるように連結されることを特徴とする。
The invention according to claim 2
The intake device for an internal combustion engine according to claim 1,
An injector (23) is provided on the upper intake passage (Up) side of the inlet pipe (20) so as to inject fuel toward the downstream side of the upper intake passage (Up),
The downstream end portion (61b) of the inlet pipe side partition plate (61) is connected so as to overlap the upstream end portion (62a) of the intake port side partition plate (62).

請求項3記載の発明は、
請求項2記載の内燃機関の吸気装置において、
前記インジェクタ(23)は、前記吸気ポート側仕切板(62)の前記インレットパイプ側仕切板(61)との連結部(61b,62a)よりも下流側に向けて燃料噴射するように構成したことを特徴とする。
The invention described in claim 3
The intake device for an internal combustion engine according to claim 2,
The injector (23) is configured to inject fuel toward the downstream side of the connection portion (61b, 62a) between the intake port side partition plate (62) and the inlet pipe side partition plate (61). It is characterized by.

請求項4記載の発明は、
請求項1ないし請求項3のいずれか1項記載の内燃機関の吸気装置において、
前記インレットパイプ側仕切板(61)は樹脂で形成され、
前記インレットパイプ側仕切板(61)の下流端部(61b)が、前記吸気ポート側仕切板(62)の上流端部(62a)に弾性変形による押圧力をもって圧接し重なり合うことを特徴とする。
The invention according to claim 4
The intake device for an internal combustion engine according to any one of claims 1 to 3,
The inlet pipe side partition plate (61) is made of resin,
The downstream end portion (61b) of the inlet pipe side partition plate (61) is pressed against and overlapped with the upstream end portion (62a) of the intake port side partition plate (62) with a pressing force due to elastic deformation.

請求項5記載の発明は、
請求項1ないし請求項4のいずれか1項記載の内燃機関の吸気装置において、
前記インレットパイプ側仕切板(61)は、下流端部(61b)が前記インレットパイプ(20)の下流開口端よりも突出して吸気ポート(44)内に入り込むことを特徴とする。
The invention according to claim 5
The intake device for an internal combustion engine according to any one of claims 1 to 4,
The inlet pipe side partition plate (61) is characterized in that the downstream end (61b) protrudes from the downstream opening end of the inlet pipe (20) and enters the intake port (44).

請求項1記載の内燃機関の吸気装置によれば、仕切板(60)がインレットパイプ(20)に形成されるインレットパイプ側仕切板(61)と吸気ポート(44)内に形成される吸気ポート側仕切板(62)とに分割され、インレットパイプ側仕切板(61)の下流端部(61b)と吸気ポート側仕切板(62)の上流端部(62a)が互いに上下に重なり合って連結されるので、インレットパイプ側仕切板(61)と吸気ポート側仕切板(62)は、それぞれインレットパイプ(20)および吸気ポート(44)から突出するとしても突出量が小さくてすみ、容易に剛性を確保できる。
そのため、吸気ポート側仕切板(62)を燃焼室に近い下流まで延出することが可能で、上側吸気通路(Up)を流れる吸気を途中殆ど拡散することなく吸気弁口近くまで導いて、吸気弁口の内側縁側からの燃焼室に流入して、強い渦流のタンブルを発生させることができる。
According to the intake device for an internal combustion engine according to claim 1, the intake pipe formed in the inlet pipe side partition plate (61) and the intake port (44) in which the partition plate (60) is formed in the inlet pipe (20). It is divided into a side partition plate (62), and the downstream end portion (61b) of the inlet pipe side partition plate (61) and the upstream end portion (62a) of the intake port side partition plate (62) are overlapped and connected to each other. Therefore, even if the inlet pipe side partition plate (61) and the intake port side partition plate (62) protrude from the inlet pipe (20) and the intake port (44), respectively, the protrusion amount is small, and rigidity is easily achieved. It can be secured.
Therefore, it is possible to extend the intake port side partition plate (62) to the downstream near the combustion chamber, and guide the intake air flowing through the upper intake passage (Up) to the vicinity of the intake valve port without almost diffusing in the middle. It can flow into the combustion chamber from the inner edge side of the valve port and generate a strong vortex tumble.

請求項2記載の内燃機関の吸気装置によれば、インレットパイプ(20)の前記上側吸気通路(Up)側にインジェクタ(23)が前記上側吸気通路(Up)の下流側に向けて燃料噴射するように設けられ、インレットパイプ側仕切板(61)の下流端部(61b)が吸気ポート側仕切板(62)の上流端部(62a)の上に重なるように連結されるので、インジェクタ(23)により噴射された燃料が連結部(61b,62a)の重ね合わせ面に浸入しがたく、下側吸気通路(Lp)に燃料が漏れることを防止できる。   According to the intake device for an internal combustion engine according to claim 2, the injector (23) injects fuel toward the downstream side of the upper intake passage (Up) on the upper intake passage (Up) side of the inlet pipe (20). Since the downstream end portion (61b) of the inlet pipe side partition plate (61) is connected so as to overlap the upstream end portion (62a) of the intake port side partition plate (62), the injector (23 ) Is less likely to enter the overlapping surface of the connecting portions (61b, 62a), and fuel can be prevented from leaking into the lower intake passage (Lp).

請求項3記載の内燃機関の吸気装置によれば、インジェクタ(23)は、吸気ポート側仕切板(62)のインレットパイプ側仕切板(61)との連結部(61b,62a)よりも下流側に向けて燃料噴射するように構成したので、インジェクタ(23)の噴射燃料が下側吸気通路(Lp)に漏れず、また温度の高い吸気ポート側仕切板(62)に燃料が噴射されることで、燃料の液化を抑制することができる。   According to the intake device for an internal combustion engine according to claim 3, the injector (23) is located downstream of the connection portion (61b, 62a) of the intake port side partition plate (62) with the inlet pipe side partition plate (61). The fuel injected from the injector (23) does not leak into the lower intake passage (Lp), and the fuel is injected into the intake port side partition plate (62) where the temperature is high. Thus, liquefaction of the fuel can be suppressed.

請求項4記載の内燃機関の吸気装置によれば、樹脂で形成されたインレットパイプ側仕切板(61)の下流端部(61b)が、吸気ポート側仕切板(62)の上流端部(61a)に弾性変形による押圧力をもって圧接し重なり合うので、接着剤等を使わずにインレットパイプ側仕切板(61)の下流端部(61b)と吸気ポート側仕切板(62)の上流端部(62a)を簡単に密着させて連結することができ、作業性が良好である。   According to the intake device for an internal combustion engine according to claim 4, the downstream end portion (61b) of the inlet pipe side partition plate (61) made of resin is connected to the upstream end portion (61a) of the intake port side partition plate (62). ) With a pressing force due to elastic deformation and overlap, so that without using an adhesive or the like, the downstream end (61b) of the inlet pipe side partition plate (61) and the upstream end portion (62a) of the intake port side partition plate (62) ) Can be easily brought into close contact with each other and the workability is good.

請求項5記載の内燃機関の吸気装置によれば、インレットパイプ側仕切板(61)は、下流端部(61b)がインレットパイプ(20)の下流開口端よりも突出して吸気ポート(44)内に入り込む構造であるので、インレットパイプ(20)の組付け時に、インレットパイプ(20)の下流開口端より突出したインレットパイプ側仕切板(61)の下流端部(61b)を目安に目視で吸気ポート側仕切板(62)の上流端部(62a)と相対的に位置合せしながらインレットパイプ(20)を取り付けることができ、作業性に優れている。   According to the intake device for an internal combustion engine according to claim 5, the inlet pipe side partition plate (61) has a downstream end portion (61b) protruding beyond the downstream open end of the inlet pipe (20) so that the intake port (44) As the inlet pipe (20) is assembled, the intake pipe is visually inhaled with the downstream end (61b) of the inlet pipe side partition plate (61) protruding from the downstream opening end of the inlet pipe (20) as a guide. The inlet pipe (20) can be attached while being relatively aligned with the upstream end (62a) of the port side partition plate (62), and the workability is excellent.

本発明の一実施の形態に係る内燃機関を搭載した自動二輪車の右側面図である。1 is a right side view of a motorcycle equipped with an internal combustion engine according to an embodiment of the present invention. 同内燃機関の右側断面図である。It is a right side sectional view of the internal combustion engine. シリンダブロックの上面図である。It is a top view of a cylinder block. シリンダヘッドの下面図である。It is a bottom view of a cylinder head. 燃焼室の天井面の説明図である。It is explanatory drawing of the ceiling surface of a combustion chamber. 低負荷状態における内燃機関の要部断面図である。It is principal part sectional drawing of the internal combustion engine in a low load state. 図6のVII-VII線断面図である。It is the VII-VII sectional view taken on the line of FIG. 図6のVIII-VIII線断面図である。It is the VIII-VIII sectional view taken on the line of FIG. 吸気振分け弁の斜視図である。It is a perspective view of an intake distribution valve. 図13のX-X線断面図である。It is the XX sectional view taken on the line of FIG. スロットル開度θに対する吸気振分け弁開度φの制御とタンブル比Rtの変化を示すグラフである。It is a graph which shows the control of the intake distribution valve opening degree (phi) with respect to throttle opening (theta), and the change of the tumble ratio Rt. 中負荷状態における内燃機関の要部断面図である。It is principal part sectional drawing of the internal combustion engine in a medium load state. 高負荷状態における内燃機関の要部断面図である。It is principal part sectional drawing of the internal combustion engine in a high load state. 変形例の吸気振分け弁の分解斜視図である。It is a disassembled perspective view of the intake distribution valve of a modification. 同吸気振分け弁を使用した例の図10に相当する断面図である。It is sectional drawing equivalent to FIG. 10 of the example which uses the same intake distribution valve. 別の実施の形態におけるスロットル開度θに対する吸気振分け弁開度φの制御とタンブル比Rtの変化を示すグラフである。It is a graph which shows the control of the intake distribution valve opening degree (phi) with respect to throttle opening (theta) in another embodiment, and the change of the tumble ratio Rt.

以下、本発明に係る一実施の形態について図1ないし図13に基づいて説明する。
図1は、本実施の形態に係る内燃機関10を搭載した自動二輪車1の全体側面図である。
Hereinafter, an embodiment according to the present invention will be described with reference to FIGS.
FIG. 1 is an overall side view of a motorcycle 1 equipped with an internal combustion engine 10 according to the present embodiment.

本自動二輪車1の車体フレーム2は、ヘッドパイプ2aから後方へ左右一対のメインフレーム2b,2bが延出した後に下方に屈曲して急傾斜部2ba,2baを形成し、その下部をくの字に前方に屈曲させて下端部に至っている。
またヘッドパイプ2aから斜め急角度に下方へ左右一対のダウンフレーム2c,2cが、側面視でメインフレーム2bの急傾斜部2baに略平行に延出している。
The body frame 2 of the motorcycle 1 has a pair of left and right main frames 2b, 2b extending rearward from the head pipe 2a and then bent downward to form steeply inclined portions 2ba, 2ba. Is bent forward to reach the lower end.
Further, a pair of left and right down frames 2c, 2c are extended substantially parallel to the steeply inclined portion 2ba of the main frame 2b in a side view when viewed downward from the head pipe 2a.

メインフレーム2b,2bの急傾斜部2ba,2baの上部からはシートレール2d,2dが後方に延出し、同シートレール2d,2dの中央部と急傾斜部2ba,2baの下部とを連結したバックステー2e,2eがシートレール2d,2dを支持している。   The seat rails 2d and 2d extend rearward from the upper portions of the steeply inclined portions 2ba and 2ba of the main frames 2b and 2b, and the back connecting the central portion of the seat rails 2d and 2d and the lower portion of the steeply inclined portions 2ba and 2ba. The stays 2e and 2e support the seat rails 2d and 2d.

以上のような車体フレーム2において、ヘッドパイプ2aにはフロントフォーク3が枢支され、その下端に前輪4が軸支され、メインフレーム2b,2bの下部に設けられたピボットプレート2fに前端を軸支されたリヤフォーク5が後方へ延出し、その後端に後輪6が軸支され、リヤフォーク5の後部とシートレール2d,2dの中央部との間にリヤクッション7が介装されている。
メインフレーム2b,2bには燃料タンク8が架設され、燃料タンク8の後方にシート9がシートレール2d,2dに支持されて設けられている。
In the vehicle body frame 2 as described above, the front fork 3 is pivotally supported on the head pipe 2a, the front wheel 4 is pivotally supported at the lower end thereof, and the front end is pivoted on the pivot plate 2f provided at the lower part of the main frames 2b and 2b. The supported rear fork 5 extends rearward, a rear wheel 6 is pivotally supported at the rear end thereof, and a rear cushion 7 is interposed between the rear portion of the rear fork 5 and the central portion of the seat rails 2d and 2d. .
A fuel tank 8 is installed on the main frames 2b and 2b, and a seat 9 is provided behind the fuel tank 8 and supported by seat rails 2d and 2d.

車体フレーム2に搭載される内燃機関10は、SOHC型2バルブの単気筒4ストローク内燃機関であり、車体に対してクランク軸12を車体幅方向に指向させ、気筒を若干前傾させて起立した姿勢で懸架される。   The internal combustion engine 10 mounted on the vehicle body frame 2 is an SOHC type two-valve single-cylinder four-stroke internal combustion engine. The crankshaft 12 is oriented in the vehicle body width direction with respect to the vehicle body, and the cylinder is raised slightly forward. Suspended in posture.

内燃機関10のクランク軸12を回転自在に軸支するクランクケース11は、クランク軸12の後方に配設されるメイン軸13とカウンタ軸14の間に変速歯車機構15が構成されており、カウンタ軸14は出力軸であり、後輪6の回転軸との間にチェーン(図示せず)が架渡され動力が後輪6に伝達される。   A crankcase 11 that rotatably supports a crankshaft 12 of an internal combustion engine 10 includes a transmission gear mechanism 15 between a main shaft 13 and a countershaft 14 disposed behind the crankshaft 12, and a counter The shaft 14 is an output shaft, and a chain (not shown) is bridged between the rotating shaft of the rear wheel 6 and power is transmitted to the rear wheel 6.

図2を参照して、クランクケース11の上には、1本の鋳鉄製のシリンダライナ16Lが鋳込まれたシリンダブロック16と、シリンダブロック16の上にガスケットを介してシリンダヘッド17が重ねられ、スタッドボルトにより一体に締結され、シリンダヘッド17の上方をシリンダヘッドカバー18が覆っている。
クランクケース11の上に重ねられるシリンダブロック16,シリンダヘッド17,シリンダヘッドカバー18は、クランクケース11から若干前傾した姿勢で上方に延出している(図1,図2参照)。
Referring to FIG. 2, a cylinder block 16 in which one cast iron cylinder liner 16L is cast on a crankcase 11, and a cylinder head 17 is overlaid on the cylinder block 16 via a gasket. The cylinder head cover 18 covers the upper portion of the cylinder head 17 by being integrally fastened by a stud bolt.
The cylinder block 16, the cylinder head 17, and the cylinder head cover 18 stacked on the crankcase 11 extend upward from the crankcase 11 in a slightly tilted posture (see FIGS. 1 and 2).

このように車体フレームに搭載された内燃機関10の若干前傾して立設されたシリンダヘッド16から後方に連結管19を介してインレットパイプ20が延出し、インレットパイプ20にはスロットル弁22を内蔵するバタフライ型のスロットルボディ21が設けられるとともに、インジェクタ23が装着され、さらに後記する吸気振分け弁65が設けられている。   In this way, the inlet pipe 20 extends from the cylinder head 16 erected with the internal combustion engine 10 mounted on the vehicle body frame slightly tilted forward via the connecting pipe 19, and the inlet pipe 20 is provided with a throttle valve 22. A built-in butterfly-type throttle body 21 is provided, an injector 23 is mounted, and an intake air distribution valve 65 described later is further provided.

このインレットパイプ20の後端に連結されるエアクリーナ24が側面視でメインフレーム2aとシートレール2dとバックステー2eに囲まれた空間に配設される(図1参照)。
また、シリンダヘッド17から前方に延出した排気管27は、下方に屈曲し、さらに後方に屈曲してクランクケース11の下面に沿って後方にかつ右側に寄って後輪6の右側に配置されたマフラー26に連結している。
An air cleaner 24 connected to the rear end of the inlet pipe 20 is disposed in a space surrounded by the main frame 2a, the seat rail 2d, and the backstay 2e in a side view (see FIG. 1).
Further, the exhaust pipe 27 extending forward from the cylinder head 17 is bent downward and further bent rearward, and is arranged rearward along the lower surface of the crankcase 11 and on the right side of the rear wheel 6 toward the right side. It is connected to the muffler 26.

図2を参照して、クランクケース11は左右割りで、左右クランクケースの合せ面に形成された開口にシリンダライナ16Lの下端部が嵌入してシリンダブロック16が若干前傾して上方に突出しており、同シリンダライナ16Lの内部のシリンダボア16bにピストン25が往復摺動自在に嵌合され、ピストン25のピストンピン25pとクランク軸12のクランクピン12pとの間をコンロッド26が連接してクランク機構を構成している。   Referring to FIG. 2, the crankcase 11 is divided into left and right parts, and the lower end portion of the cylinder liner 16L is inserted into the opening formed in the mating surface of the left and right crankcases so that the cylinder block 16 is slightly tilted forward and protrudes upward. The piston 25 is slidably fitted in the cylinder bore 16b inside the cylinder liner 16L, and the connecting rod 26 is connected between the piston pin 25p of the piston 25 and the crank pin 12p of the crankshaft 12 to provide a crank mechanism. Is configured.

シリンダブロック16のシリンダボア16b内を摺動するピストン25の頂面25tと同頂面25tが対向するシリンダヘッド17の天井面41との間に燃焼室40が構成される。
シリンダヘッド17には、天井面41にシリンダボア16bの中心軸であるシリンダ軸Cに関して互いに反対位置に1つずつ吸気弁口42と排気弁口43が燃焼室40に臨んで開口されるとともに、吸気弁口42と排気弁口43から各々吸気ポート44と排気ポート45が互いに離れる方向に湾曲しながら延出して形成されている。
A combustion chamber 40 is formed between the top surface 25t of the piston 25 sliding in the cylinder bore 16b of the cylinder block 16 and the ceiling surface 41 of the cylinder head 17 facing the same top surface 25t.
In the cylinder head 17, an intake valve port 42 and an exhaust valve port 43 are opened on the ceiling surface 41 at positions opposite to each other with respect to the cylinder axis C, which is the central axis of the cylinder bore 16b, facing the combustion chamber 40, and An intake port 44 and an exhaust port 45 are formed so as to extend from the valve port 42 and the exhaust valve port 43 while being curved away from each other.

吸気ポート44は、吸気弁口42から後方に延出し、連結管19を介してインレットパイプ20に連通し、排気ポート45は排気管27に連結される。
シリンダヘッド16に一体に嵌着された弁ガイド34i,34eにそれぞれ摺動可能に支持される吸気弁46および排気弁47は、シリンダヘッド13の上に設けられる動弁機構30により駆動されて、吸気ポート44の吸気弁口42および排気ポート45の排気弁口43をクランク軸12の回転に同期して開閉する。
The intake port 44 extends rearward from the intake valve port 42, communicates with the inlet pipe 20 through the connection pipe 19, and the exhaust port 45 is connected to the exhaust pipe 27.
An intake valve 46 and an exhaust valve 47 that are slidably supported by valve guides 34i and 34e fitted integrally with the cylinder head 16 are driven by a valve mechanism 30 provided on the cylinder head 13, The intake valve port 42 of the intake port 44 and the exhaust valve port 43 of the exhaust port 45 are opened and closed in synchronization with the rotation of the crankshaft 12.

図2を参照して、動弁機構30は、シリンダヘッド17の上に1本のカム軸31が左右方向に指向して軸支されたSOHC型内燃機関の動弁機構であり、カム軸31の斜め前後上方にロッカアームシャフト32e,32iが支持され、後方のロッカアームシャフト32iに吸気ロッカアーム33iが揺動自在に中央を軸支され、前方のロッカアームシャフト32eに排気ロッカアーム33eが揺動自在に中央を軸支されている。   Referring to FIG. 2, a valve mechanism 30 is a valve mechanism of a SOHC type internal combustion engine in which one camshaft 31 is pivotally supported on a cylinder head 17 in the left-right direction. Rocker arm shafts 32e and 32i are supported diagonally forward and backward, and an intake rocker arm 33i is pivotally supported by the rear rocker arm shaft 32i so that it can swing freely. An exhaust rocker arm 33e can be pivoted by the front rocker arm shaft 32e. It is pivotally supported.

吸気ロッカアーム33iの一端は、カム軸31の吸気カムロブに接し、他端がスプリングで付勢された吸気弁46のバルブステム46sの上端に調整ねじを介して接し、排気ロッカアーム33eの一端は、カム軸31の排気カムロブに接し、他端がスプリングで付勢された排気弁47のバルブステム47sの上端に調整ねじを介して接し、カム軸31の回転により吸気ロッカアーム33iと排気ロッカアーム33eが揺動して吸気弁46と排気弁47を開閉駆動する。   One end of the intake rocker arm 33i is in contact with the intake cam lobe of the cam shaft 31, the other end is in contact with the upper end of the valve stem 46s of the intake valve 46 biased by a spring via an adjusting screw, and one end of the exhaust rocker arm 33e is The shaft 31 is in contact with the exhaust cam lobe, the other end is in contact with the upper end of the valve stem 47s of the exhaust valve 47 biased by a spring via an adjusting screw, and the intake rocker arm 33i and the exhaust rocker arm 33e are swung by the rotation of the cam shaft 31. Then, the intake valve 46 and the exhaust valve 47 are opened and closed.

図3は、シリンダブロック16の上面図であり、シリンダヘッド17との合せ面16fにシリンダボア16bの円孔と動弁機構30に動力を伝達するチェーンを挿通するチェーン室16cの矩形孔が穿設されている。
図4は、シリンダブロック16に重ね合わされるシリンダヘッド17の下面図であり、シリンダブロック16に合せ面16fに対向する合せ面17fに、シリンダボア16bに対応して燃焼室40の天井面41が凹んで形成されるとともに、チェーン室16cに対応して連通するチェーン室17cが穿設されている。
FIG. 3 is a top view of the cylinder block 16. A circular hole of the cylinder bore 16b and a rectangular hole of the chain chamber 16c through which a chain for transmitting power to the valve mechanism 30 is inserted in the mating surface 16f with the cylinder head 17. Has been.
FIG. 4 is a bottom view of the cylinder head 17 superimposed on the cylinder block 16. The ceiling surface 41 of the combustion chamber 40 is recessed in the mating surface 17f facing the mating surface 16f of the cylinder block 16 corresponding to the cylinder bore 16b. In addition, a chain chamber 17c communicating with the chain chamber 16c is formed.

シリンダヘッド17の合せ面17fにおける燃焼室40の天井面41の円形開口縁41sがシリンダボア16bの円孔に一致する。
天井面41の後側に大径の吸気弁口42が開口し、天井面41の前側に吸気弁口42より幾らか小径の排気弁口43が開口している。
また、天井面41には点火プラグ(図示せず)が先端を突出させるプラグ孔48が穿設されている。
A circular opening edge 41s of the ceiling surface 41 of the combustion chamber 40 at the mating surface 17f of the cylinder head 17 coincides with the circular hole of the cylinder bore 16b.
A large-diameter intake valve port 42 is opened on the rear side of the ceiling surface 41, and an exhaust valve port 43 that is somewhat smaller in diameter than the intake valve port 42 is opened on the front side of the ceiling surface 41.
The ceiling surface 41 is provided with a plug hole 48 through which a spark plug (not shown) protrudes.

図5は、シリンダヘッド17の燃焼室40をシリンダ軸Cの軸方向に視た、すなわちシリンダ軸方向視で示した図であり、同図5を参照して、吸気弁口42が燃焼室40の天井面41のシリンダボア16bの円孔に対応する円形の天井面開口縁41sよりシリンダ軸方向視で外側にはみ出してオフセットしており、吸気弁口42は天井面開口縁41sからはみ出した三日月状のはみ出し部42a(図5の散点で示した部分)を有する。   FIG. 5 is a view of the combustion chamber 40 of the cylinder head 17 as viewed in the axial direction of the cylinder axis C, that is, as viewed in the cylinder axial direction, and referring to FIG. The circular ceiling surface opening edge 41s corresponding to the circular hole of the cylinder bore 16b of the ceiling surface 41 of the ceiling surface 41 protrudes outward from the cylinder axial direction and is offset, and the intake valve port 42 is in a crescent shape protruding from the ceiling surface opening edge 41s. Has a protruding portion 42a (the portion indicated by the dotted points in FIG. 5).

吸気弁口42の開口縁42sの開口全周長に対するはみ出し部42aの開口周長の割合をマスキング割合Rmとすると、本吸気弁口42のオフセットによるマスキング割合Rmは20〜50%程度である。   When the ratio of the opening circumferential length of the protruding portion 42a to the entire opening circumferential length of the opening edge 42s of the intake valve port 42 is a masking rate Rm, the masking rate Rm due to the offset of the intake valve port 42 is about 20 to 50%.

また、図5を参照して、天井面41には、吸気弁口42と排気弁口43を長径方向両側に囲む楕円状の横断面形状を有してドーム状凹部51が形成されており、天井面41のうちドーム状凹部51の外側の左右1対の三日月状部分にそれぞれスキッシュ52,52が形成されている。   Referring to FIG. 5, the ceiling surface 41 is formed with a dome-shaped recess 51 having an elliptical cross-sectional shape surrounding the intake valve port 42 and the exhaust valve port 43 on both sides in the major axis direction. Squishes 52 and 52 are formed in a pair of right and left crescent-shaped portions outside the dome-shaped recess 51 in the ceiling surface 41, respectively.

そして、吸気弁口42の外周囲に、吸気弁口42の三日月状のはみ出し部42aの両端部辺りから吸気弁口42の開口縁42sに沿って湾曲した1対のガイド壁面53,53が、互いに対向して前記排気弁口43側に向けて徐々に拡開して形成されている。   A pair of guide wall surfaces 53, 53 curved around the opening edge 42 s of the intake valve port 42 from both ends of the crescent protrusion 42 a of the intake valve port 42 around the outer periphery of the intake valve port 42, Opposite to each other, they are formed so as to gradually expand toward the exhaust valve port 43 side.

以上のように形成されたシリンダヘッド17の燃焼室40の天井面41に対して、シリンダブロック16のシリンダボア16bは、図3および図6に示すように、シリンダボア16bのシリンダヘッド17側の開口縁における吸気弁口42のはみ出し部42aに対向する後側部分を吸気弁46の移動方向に吸気弁46のかさ部46p周縁に沿って最大バルブリフト位置まで切り欠いた切欠き円曲面55が形成されている。   With respect to the ceiling surface 41 of the combustion chamber 40 of the cylinder head 17 formed as described above, the cylinder bore 16b of the cylinder block 16 has an opening edge on the cylinder head 17 side of the cylinder bore 16b as shown in FIGS. A notch curved surface 55 is formed in which the rear portion of the intake valve port 42 facing the protruding portion 42a is cut out in the moving direction of the intake valve 46 along the periphery of the ridge portion 46p of the intake valve 46 to the maximum valve lift position. ing.

図6に示すように、切欠き円曲面55は、鋳鉄製のシリンダライナ16Lが鋳込まれたアルミ合金製のシリンダブロック16のフランジレスのシリンダライナ16Lの端面を覆う部分に斜めに切り欠かれて形成されている。   As shown in FIG. 6, the cut-out circular curved surface 55 is obliquely cut out at a portion covering the end face of the flangeless cylinder liner 16L of the aluminum alloy cylinder block 16 into which the cast iron cylinder liner 16L is cast. Is formed.

この切欠き円曲面55に沿って切欠き円曲面55に近接して吸気弁46のかさ部46p周縁が移動するので、吸気弁46が開いて最大バルブリフト位置まで移動する間、吸気弁口42の外側縁側(はみ出し部42a側)からの吸気は、吸気弁46のかさ部46p周縁と切欠き円曲面55との極めて狭い隙間を通らなければならず燃焼室40への吸入が殆ど妨げられマスキングされた状態にある。   Since the peripheral edge of the cap portion 46p of the intake valve 46 moves along the notched circular curved surface 55 and close to the notched circular curved surface 55, the intake valve port 42 is opened while the intake valve 46 is opened and moved to the maximum valve lift position. The intake air from the outer edge side (the protruding portion 42a side) of the intake valve 46 must pass through a very narrow gap between the peripheral edge of the umbrella portion 46p of the intake valve 46 and the notched circular curved surface 55, and the intake into the combustion chamber 40 is almost hindered and masked. It is in the state that was done.

したがって、吸気弁口42の外側縁側からはマスキングされて燃焼室40には僅かに吸入されるだけで、吸気弁口42の内側縁側からの吸入が主になり、よってタンブルが発生し易い構造となっている。
なお、吸気弁46の最大バルブリフト位置が、切欠き円曲面55をいくらか越えた位置にあってもよい。
Therefore, it is masked from the outer edge side of the intake valve port 42 and only a little is sucked into the combustion chamber 40, and the intake from the inner edge side of the intake valve port 42 is mainly performed. It has become.
It should be noted that the maximum valve lift position of the intake valve 46 may be at a position slightly beyond the notched circular curved surface 55.

ピストン25の頂面25tの周縁部の吸気弁口42のはみ出し部42aに対向する部分が吸気弁46のかさ部46pの端面46pfと平行に切り欠かれてピストン切欠き面56が形成されており(図6参照)、吸気行程でピストン25の下降とともに吸気弁46が開弁しリフトするときに、外側縁側からの吸気の流入方向とピストン切欠き面(56)が垂直となるため、吸気弁口42の外側縁側から燃焼室40に吸気の吸入が促されることはなく、逆タンブルの発生がより抑えられている。   A portion of the peripheral surface of the top surface 25t of the piston 25 facing the protruding portion 42a of the intake valve port 42 is cut out in parallel with the end face 46pf of the ridge portion 46p of the intake valve 46 to form a piston cutout surface 56. (See FIG. 6) When the intake valve 46 opens and lifts as the piston 25 descends during the intake stroke, the intake flow direction from the outer edge and the piston notch surface (56) are perpendicular to each other. Inhalation of intake air is not promoted from the outer edge side of the mouth 42 to the combustion chamber 40, and the occurrence of reverse tumble is further suppressed.

そして、吸気系において、インレットパイプ20から連結管19を介して吸気ポート44に至る吸気通路Pが、インレットパイプ20の下流部から吸気ポート44の湾曲部まで仕切板60により上側吸気通路Upと下側吸気通路Lpに仕切られている。   In the intake system, the intake passage P extending from the inlet pipe 20 to the intake port 44 via the connecting pipe 19 is separated from the upper intake passage Up by the partition plate 60 from the downstream portion of the inlet pipe 20 to the curved portion of the intake port 44. A side intake passage Lp is partitioned.

シリンダヘッド17が吸気ポート44を形成する部分を含めアルミ合金で形成されているのに対して、インレットパイプ20は樹脂で形成されている。
そこで、仕切板60は、インレットパイプ20に一体に形成されるインレットパイプ側仕切板61と吸気ポート44内にシリンダヘッド17と一体に形成される吸気ポート側仕切板62とからなり、インレットパイプ側仕切板61の下流端部61bと吸気ポート側仕切板62の上流端部62aが互いに上下に重なり合って連結され構成されている。
Whereas the cylinder head 17 is made of an aluminum alloy including the portion that forms the intake port 44, the inlet pipe 20 is made of resin.
Therefore, the partition plate 60 includes an inlet pipe side partition plate 61 formed integrally with the inlet pipe 20 and an intake port side partition plate 62 formed integrally with the cylinder head 17 in the intake port 44. The downstream end portion 61b of the partition plate 61 and the upstream end portion 62a of the intake port side partition plate 62 are connected to each other so as to overlap each other.

図2および図6を参照して、インレットパイプ側仕切板61は、下流端部61bがインレットパイプ20の下流開口端よりも突出して吸気ポート44内に入り込んでおり、吸気ポート側仕切板62は、上流端部62aが吸気ポート44の上流開口端まで達している。
樹脂製のインレットパイプ側仕切板61の吸気ポート44内に入り込んだ下流端部61bが、弾性変形による押圧力をもって吸気ポート側仕切板62の上流端部62aの上に圧接して重なり合って連結されている。
2 and 6, the inlet pipe side partition plate 61 has a downstream end 61b protruding from the downstream opening end of the inlet pipe 20 into the intake port 44, and the intake port side partition plate 62 is The upstream end 62 a reaches the upstream opening end of the intake port 44.
The downstream end 61b of the resin inlet pipe side partition plate 61 that has entered the intake port 44 is pressed and overlapped with the upstream end portion 62a of the intake port side partition plate 62 with a pressing force due to elastic deformation. ing.

吸気通路Pは、通路断面が円形をしており、この吸気通路Pを上下に仕切る仕切板60は、図6に示すように、インレットパイプ側仕切板61と吸気ポート側仕切板62がともに、吸気通路Pの最大上下幅の中心軌跡(本吸気通路Pの場合、通路断面である円形の中心軌跡)である通路中心線Cpより上方に偏って位置し、上側吸気通路Upの通路断面積が下側吸気通路Lpの通路断面積より小さい(図7参照)。
図7に示すように、本吸気通路Pの場合、上側吸気通路Upと下側吸気通路Lpの通路断面積の割合は、上流側開口から下流側開口に至るまで、略3対7としている。
The intake passage P has a circular cross section. As shown in FIG. 6, the partition plate 60 that partitions the intake passage P up and down includes an inlet pipe side partition plate 61 and an intake port side partition plate 62. The upper cross-sectional area of the upper intake passage Up is located above the passage center line Cp, which is the central locus of the maximum vertical width of the intake passage P (in the case of the intake passage P, a circular central locus which is a passage section). It is smaller than the passage sectional area of the lower intake passage Lp (see FIG. 7).
As shown in FIG. 7, in the case of the main intake passage P, the ratio of the cross-sectional area of the upper intake passage Up and the lower intake passage Lp is approximately 3 to 7 from the upstream opening to the downstream opening.

吸気ポート側仕切板62は、吸気ポート44の形状に沿って曲がっており、吸気ポート側仕切板62の下流端部62bは、吸気ポート44の湾曲部に位置する吸気弁46の吸気バルブステム46sに達しており、図8に示すように、下流端部62bには先端縁からU字状に凹んだ凹部62uが形成されていて、このU字状凹部60uを吸気ポート44内に延びた弁ガイド34iが貫通している。
弁ガイド34iの外径はU字状凹部60uの幅に等しく、U字状凹部60uの奥まで弁ガイド34iが嵌合して、隙間を生じないようにしているので、吸気ポート側仕切板62はできるだけ吸気ポート44の吸気弁口42の近くまで吸気通路Pを上下に仕切るようにしている。
The intake port side partition plate 62 is bent along the shape of the intake port 44, and the downstream end portion 62b of the intake port side partition plate 62 is an intake valve stem 46s of the intake valve 46 located at the curved portion of the intake port 44. As shown in FIG. 8, the downstream end 62b is formed with a recess 62u that is recessed in a U shape from the leading edge, and the U-shaped recess 60u extends into the intake port 44. The guide 34i penetrates.
The outer diameter of the valve guide 34i is equal to the width of the U-shaped recess 60u, and the valve guide 34i is fitted to the back of the U-shaped recess 60u so that no gap is formed. The intake passage P is vertically divided as close as possible to the intake valve port 42 of the intake port 44.

したがって、図6を参照して、上側吸気通路Upは、吸気弁口42の内側縁側(シリンダ軸C側)から燃焼室40の中央部に通じ、下側吸気通路Lpは吸気弁口42の外側縁側(はみ出し部42a側)から燃焼室40の外周部に通じる。   Therefore, referring to FIG. 6, the upper intake passage Up leads from the inner edge side (cylinder shaft C side) of the intake valve port 42 to the central portion of the combustion chamber 40, and the lower intake passage Lp extends outside the intake valve port 42. It leads to the outer peripheral portion of the combustion chamber 40 from the edge side (the protruding portion 42a side).

インレットパイプ20に装着されるインジェクタ23は、図6に示すように、上側吸気通路Upに臨み、吸気ポート側仕切板62のインレットパイプ側仕切板61との連結部61b,62aである上流端部62aよりも下流側に向けて燃料噴射するように取り付けられている。   As shown in FIG. 6, the injector 23 attached to the inlet pipe 20 faces the upper intake passage Up, and is an upstream end portion that is a connecting portion 61b, 62a of the intake port side partition plate 62 with the inlet pipe side partition plate 61. It is attached to inject fuel toward the downstream side of 62a.

インレットパイプ20内には、スロットル弁22よりも下流でインレットパイプ側仕切板61の上流に吸気振分け弁65が設けられている。
吸気振分け弁65は、インレットパイプ20に軸支される回動軸66から板状弁体67が一体に延出して構成されるフラップバルブであり、モータ駆動機構72により板状弁体67が揺動させられる。
An intake distribution valve 65 is provided in the inlet pipe 20 downstream of the throttle valve 22 and upstream of the inlet pipe side partition plate 61.
The intake distribution valve 65 is a flap valve configured by integrally extending a plate-like valve body 67 from a rotating shaft 66 pivotally supported by the inlet pipe 20, and the plate-like valve body 67 is shaken by a motor drive mechanism 72. Be moved.

図9および図10に示すように、回動軸66の回動中心線Cvに平行な面で切り欠かれた半円柱状の切欠凹部65dが左右軸受間の吸気通路P内に形成されており、切欠凹部65dの切欠き底面に沿って板状弁体67が延出している。
なお、回動軸66の切欠凹部65dの背面側も若干切り欠いた凹部が形成されている。
板状弁体67は、切欠凹部65dの軸方向幅を短径とした半楕円状をしており、直線辺を有した基端部を切欠凹部65dの切欠き底面に当接して背面の凹部に座金68wを介して背面からネジ68を螺入して板状弁体67を回動軸66に一体に締結する。
リベットで締結してもよい。
As shown in FIGS. 9 and 10, a semi-cylindrical notch recess 65d cut out in a plane parallel to the rotation center line Cv of the rotation shaft 66 is formed in the intake passage P between the left and right bearings. A plate-like valve element 67 extends along the notch bottom surface of the notch recess 65d.
In addition, a recessed portion slightly cut out is formed also on the back side of the notched recessed portion 65d of the rotation shaft 66.
The plate-like valve body 67 has a semi-elliptical shape in which the axial width of the notch recess 65d is a short diameter, and a base end portion having a straight side abuts the notch bottom surface of the notch recess 65d to form a recess on the back surface Then, a screw 68 is screwed in from the back via a washer 68w, and the plate-like valve body 67 is integrally fastened to the rotating shaft 66.
It may be fastened with rivets.

板状弁体67の基端部が回動軸66の切欠凹部65dに取り付けられると、板状弁体67の基端部の基端縁67aは略回動軸66の外周面の延長周面上にあり、切欠凹部65dは板状弁体67の基端部の表面上に凹部として残っている。   When the base end portion of the plate valve body 67 is attached to the notch recess 65 d of the rotating shaft 66, the base end edge 67 a of the base end portion of the plate valve body 67 is an extended peripheral surface of the outer peripheral surface of the rotating shaft 66. The notch recess 65 d remains on the surface of the base end portion of the plate-like valve body 67 as a recess.

このような吸気振分け弁65は、回動軸66の回動中心線Cvを、インレットパイプ側仕切板61の上流端部61aの左右水平方向に指向した上流端縁61aaに平行に指向させ、かつ上流端縁61aaの下方近傍に位置させた状態で、回動軸66をインレットパイプ20に回動自在に軸支し、同回動軸(66)から吸気上流側に向けて板状弁体67を延出した姿勢で取り付けられている。   Such an intake distribution valve 65 directs the rotation center line Cv of the rotation shaft 66 in parallel to the upstream end edge 61aa of the upstream end portion 61a of the inlet pipe side partition plate 61 directed in the horizontal direction, and In a state of being positioned near the lower end of the upstream edge 61aa, the rotary shaft 66 is pivotally supported by the inlet pipe 20, and the plate-like valve body 67 is directed from the rotary shaft (66) toward the intake upstream side. It is attached with the posture which extended.

板状弁体67は、回動軸(66)の回動で一体に上下に揺動し、半楕円状をした外周縁が断面円形の吸気通路Pの通路内周面に傾斜した姿勢で接すると、吸気通路Pの半分を完全に閉塞することができる。   The plate-shaped valve body 67 swings up and down integrally with the rotation of the rotation shaft (66), and contacts with a semi-elliptical outer peripheral edge inclined to the inner peripheral surface of the intake passage P having a circular cross section. Then, half of the intake passage P can be completely closed.

吸気振分け弁65の回動軸66は、回動中心線Cvが吸気通路Pの通路中心線Cpと直交する位置に軸支されている。
なお、インレットパイプ20内に吸気振分け弁65より上流側に軸支されるスロットル弁22は、吸気通路Pの通路中心線Cpと直交する左右水平方向に指向した回動中心線を中心に回動するバタフライバルブである。
The rotation shaft 66 of the intake distribution valve 65 is pivotally supported at a position where the rotation center line Cv is orthogonal to the passage center line Cp of the intake passage P.
The throttle valve 22 pivotally supported in the inlet pipe 20 on the upstream side of the intake distribution valve 65 rotates about a rotation center line oriented in the horizontal direction perpendicular to the passage center line Cp of the intake passage P. It is a butterfly valve.

吸気振分け弁65は、上流のスロットル弁22に先端を向けて揺動することで、スロットル弁22より下流の吸気を上下に振り分け上側吸気通路Upと下側吸気通路Lpを流れる吸気の割合を変更することができる。   The intake divide valve 65 swings with the tip toward the upstream throttle valve 22 to distribute the intake air downstream from the throttle valve 22 up and down and change the ratio of intake air flowing through the upper intake passage Up and the lower intake passage Lp. can do.

内燃機関10を制御するECU(電子制御ユニット)70は、吸気制御手段71を備えており、内燃機関10の運転状態を解析して吸気制御手段71により吸気系のスロットル弁22やインジェクタ23が駆動制御されるが、吸気振分け弁65も吸気制御手段71により駆動制御される。   An ECU (electronic control unit) 70 that controls the internal combustion engine 10 includes an intake control means 71. The intake control means 71 analyzes the operation state of the internal combustion engine 10 and drives the throttle valve 22 and the injector 23 of the intake system. Although controlled, the intake distribution valve 65 is also driven and controlled by the intake control means 71.

図6を参照して、スロットル弁22のスロットル開度θは、全閉時から回動して吸気通路に平行になったときが全開状態であり、内燃機関10の負荷状態を示す。
吸気振分け弁65は、内燃機関10の負荷状態に応じて揺動制御され、吸気振分け弁65の揺動角である吸気振分け弁開度φは、図6に示す低負荷状態のときの吸気振分け弁65の低負荷位置を基準0度として図6で時計回りに揺動角度が増加する。
Referring to FIG. 6, the throttle opening θ of the throttle valve 22 is a fully open state when it is rotated from the fully closed state and becomes parallel to the intake passage, and indicates a load state of the internal combustion engine 10.
The intake distribution valve 65 is controlled to swing according to the load state of the internal combustion engine 10, and the intake distribution valve opening φ, which is the swing angle of the intake distribution valve 65, is the intake distribution in the low load state shown in FIG. The swing angle increases clockwise in FIG. 6 with the low load position of the valve 65 as the reference 0 degree.

タンブルの状態は、クランク軸12の1回転当りのタンブルの回転数であるタンブル比Rtで表わすことができる。
タンブル比Rt=タンブル回転角速度/クランク軸角速度
タンブル比Rtが大きければ、強い渦流のタンブルが発生している。
The tumble state can be represented by a tumble ratio Rt which is the number of rotations of the tumble per revolution of the crankshaft 12.
Tumble ratio Rt = Tumble rotation angular velocity / Crankshaft angular velocity If the tumble ratio Rt is large, a strong vortex tumble is generated.

図11には、スロットル開度θに応じて吸気振分け弁65を揺動制御する吸気振分け弁開度φの変化とタンブル比Rtの変化を示している。
以下、図11を参照しつつ、内燃機関10の負荷状態による吸気振分け弁65の揺動制御とタンブル比Rtを考察する。
FIG. 11 shows a change in the intake distribution valve opening φ and the change in the tumble ratio Rt for swinging the intake distribution valve 65 in accordance with the throttle opening θ.
Hereinafter, the swing control of the intake distribution valve 65 and the tumble ratio Rt according to the load state of the internal combustion engine 10 will be considered with reference to FIG.

内燃機関10が低負荷運転状態のときは、図6に示すように、スロットル弁22は小さく開いており(スロットル開度θ:小)、吸気振分け弁65は板状弁体67の先端縁が吸気通路Pの下側周面に接した低負荷位置(吸気振分け弁開度φ=0度)に位置決めされている。
この吸気振分け弁65の板状弁体67の先端縁が吸気通路Pの下側周面に接したとき、板状弁体67の回動中心線Cvより上方となる基端縁67aはインレットパイプ側仕切板61の上流端部61aの下面に接しており、よって、下側吸気通路Lpの上流側開口は吸気振分け弁65により完全に閉塞される。
そのため、吸気振分け弁65は吸気を略全部上方に振り分けて上側吸気通路Upを流れるようにすることができる。
When the internal combustion engine 10 is in a low load operation state, as shown in FIG. 6, the throttle valve 22 is opened small (throttle opening θ: small), and the intake distributing valve 65 has a leading edge of the plate-like valve body 67. It is positioned at a low load position (intake distribution valve opening φ = 0 degree) in contact with the lower peripheral surface of the intake passage P.
When the leading edge of the plate-like valve element 67 of the intake distributing valve 65 is in contact with the lower peripheral surface of the intake passage P, the base end edge 67a above the rotation center line Cv of the plate-like valve element 67 is the inlet pipe. It is in contact with the lower surface of the upstream end 61a of the side partition 61, and therefore the upstream opening of the lower intake passage Lp is completely closed by the intake distribution valve 65.
Therefore, the intake distribution valve 65 can distribute the intake air substantially upward to flow through the upper intake passage Up.

したがって、スロットル弁22の僅かに開いた開口を通った吸気は、吸気振分け弁65により略全部上方の比較的狭い上側吸気通路Upに案内されて流れるために高速となり、さらに吸気ポート44の湾曲部に位置する吸気バルブステム46sまで延出した仕切板60により吸気弁口42の近くまで案内するので、大部分の吸気が吸気弁口42の内側縁側(シリンダ軸C側)から燃焼室40の中央部に排気側に向けて高速で吸入されることになり、図6に示すように、強い渦流のタンブルが発生する(タンブル比Rtが上昇)。   Accordingly, the intake air that has passed through the slightly opened opening of the throttle valve 22 is guided by the intake air distribution valve 65 to the relatively narrow upper intake passage Up, almost entirely upward, so that the intake air becomes high speed. Is guided to the vicinity of the intake valve port 42 by the partition plate 60 extending to the intake valve stem 46s located at the center of the combustion chamber 40 from the inner edge side (cylinder axis C side) of the intake valve port 42. As shown in FIG. 6, a strong vortex tumble is generated (the tumble ratio Rt is increased).

吸気弁口42がシリンダボア16bの円孔よりシリンダ軸方向視で外側にはみ出した三日月状のはみ出し部42aを有するようにオフセットして、吸気弁口42の外側縁側(はみ出し部42a側)はマスキングされ、かつ下側吸気通路Lpを通る吸気は殆どないため、吸気弁口42の外側縁側から燃焼室40に吸入する吸気はなく、タンブルを妨げる逆タンブルも発生せず、タンブルをより強く発生させ、タンブル比Rtは高くなり、低負荷時の燃焼効率を向上させることができる。   The intake valve port 42 is offset so as to have a crescent-shaped protruding portion 42a protruding outward from the circular hole of the cylinder bore 16b in the cylinder axial direction, and the outer edge side (the protruding portion 42a side) of the intake valve port 42 is masked. In addition, since there is almost no intake air passing through the lower intake passage Lp, there is no intake air to be sucked into the combustion chamber 40 from the outer edge side of the intake valve port 42, no reverse tumble that prevents tumble is generated, and tumble is generated more strongly. The tumble ratio Rt becomes high, and the combustion efficiency at low load can be improved.

内燃機関10が中負荷運転状態のときは、図12に示すように、スロットル弁22は中開度に開き(スロットル開度θ:中)、吸気振分け弁65は先端縁が吸気通路Pの上側周面に近づいた中負荷位置(吸気振分け弁開度φ=β度)に位置決めされるので、吸気振分け弁65は吸気の割合が下方より上方を小さくするように振り分けている。
したがって、図12に矢印で示すように、下側吸気通路Lpは十分な吸気が流れるが、上側吸気通路Upを流れる吸気は抑制される。
When the internal combustion engine 10 is in a medium load operation state, as shown in FIG. 12, the throttle valve 22 opens to an intermediate opening (throttle opening θ: medium), and the intake distribution valve 65 has a leading edge above the intake passage P. Since it is positioned at a medium load position (intake distribution valve opening φ = β degrees) approaching the peripheral surface, the intake distribution valve 65 distributes the intake air so that the intake rate is smaller from below.
Therefore, as shown by the arrows in FIG. 12, sufficient intake air flows through the lower intake passage Lp, but intake through the upper intake passage Up is suppressed.

また、吸気振分け弁65の板状弁体67の先端縁が吸気通路Pの下側周面から離れると、板状弁体67の基端縁67aはインレットパイプ側仕切板61の上流端部61aの下面から離れ、吸気振分け弁65の切欠凹部65dがインレットパイプ側仕切板61の上流端部61aとの間に中間通路Mpを形成する。   When the leading edge of the plate-like valve element 67 of the intake distribution valve 65 is separated from the lower peripheral surface of the intake passage P, the base edge 67a of the plate-like valve element 67 becomes the upstream end 61a of the inlet pipe side partition plate 61. The notch recessed portion 65d of the intake distribution valve 65 forms an intermediate passage Mp with the upstream end portion 61a of the inlet pipe side partition plate 61.

中間通路Mpは、下側吸気通路Lpに通じるので、吸気振分け弁65により上下に振り分けた吸気のうち上側に振り分けられた吸気は、大部分が上側吸気通路Upに流入するが、上側吸気通路Upに入りきらなかった一部の吸気が滞留することなく中間通路Mpを通って円滑に下側吸気通路Lpに流入することができ、吸気流の乱れを抑制することができるとともに、上側吸気通路Upに流入される吸気がさらに抑制される。   Since the intermediate passage Mp communicates with the lower intake passage Lp, most of the intake air distributed up and down by the intake distribution valve 65 flows into the upper intake passage Up, but the upper intake passage Up. A portion of the intake air that has not been able to enter can smoothly flow into the lower intake passage Lp through the intermediate passage Mp without stagnation, and the disturbance of the intake air flow can be suppressed and the upper intake passage Up The intake air flowing into the engine is further suppressed.

そのため、上側吸気通路Upを流れる抑制された吸気は、吸気弁口42の内側縁側から燃焼室40に入っても、弱い渦流のタンブルしか発生せず、さらに吸気弁口42の外側縁側から燃焼室40の外周部に吸入される吸気が幾らかはあって逆タンブルを生じてタンブルを抑えるので、タンブルは極力抑えられ、タンブル比Rtが低下する。   Therefore, even if the suppressed intake air flowing through the upper intake passage Up enters the combustion chamber 40 from the inner edge side of the intake valve port 42, only a weak vortex tumble is generated, and further, the combustion chamber starts from the outer edge side of the intake valve port 42. Since some intake air is sucked into the outer peripheral portion of 40 and a reverse tumble is generated to suppress the tumble, the tumble is suppressed as much as possible, and the tumble ratio Rt is lowered.

内燃機関10が高負荷運転状態のときは、図13に示すように、スロットル弁22は全開となり(スロットル開度θ:全開)、吸気振分け弁65はインレットパイプ側仕切板61の上流端部61aと平行で吸気通路Pの通路中心線Cpを含む平面にある高負荷位置(吸気振分け弁開度φ=α度)に位置決めされているので、吸気振分け弁65は吸気を1対1の割合に吸気を上下に振り分けている。   When the internal combustion engine 10 is in a high load operation state, as shown in FIG. 13, the throttle valve 22 is fully open (throttle opening θ: fully open), and the intake distribution valve 65 is the upstream end 61a of the inlet pipe side partition plate 61. Is positioned at a high load position (intake distribution valve opening φ = α degrees) on the plane including the passage center line Cp of the intake passage P, and the intake distribution valve 65 causes the intake air to be in a ratio of 1: 1. The intake air is distributed up and down.

しかし、図13および図13のX-X線断面図である図10に示すように、吸気振分け弁65の切欠凹部65dにインレットパイプ側仕切板61の上流端部61aとの間で中間通路Mpが形成されるので、吸気振分け弁65により上側に振り分けられた吸気の一部はストレートに中間通路Mpを通って滞留することなく円滑に下側吸気通路Lpに流入することになるので、結局、吸気はインレットパイプ側仕切板61により仕切られた略3対7の割合で上側吸気通路Upと下側吸気通路Lpに流入する。   However, as shown in FIG. 10, which is a sectional view taken along line XX of FIGS. 13 and 13, an intermediate passage Mp is formed between the upstream end 61 a of the inlet pipe side partition plate 61 in the notch recess 65 d of the intake distribution valve 65. Therefore, a part of the intake air distributed upward by the intake air distribution valve 65 flows smoothly into the lower intake passage Lp without staying straight through the intermediate passage Mp. The air flows into the upper intake passage Up and the lower intake passage Lp at a ratio of approximately 3 to 7 partitioned by the inlet pipe side partition plate 61.

したがって、図13に矢印で示すように、上側吸気通路Upと下側吸気通路Lpを十分な吸気が流れ、上側吸気通路Upを流れた吸気は、吸気弁口42の内側縁側から燃焼室40に吸入されてタンブルが発生し、下側吸気通路Lpを流れた吸気は、マスキングされつつも吸気弁口42の外側縁側から燃焼室40に入って幾らか逆タンブルを生じるが、上側吸気通路Upから十分な吸気量が吸入されることから、タンブル比Rtが比較的高い適度な渦流のタンブルを発生するとともに、十分な吸気により吸気効率を良好に維持することができる。   Therefore, as indicated by arrows in FIG. 13, sufficient intake air flows through the upper intake passage Up and the lower intake passage Lp, and the intake air that has flowed through the upper intake passage Up enters the combustion chamber 40 from the inner edge side of the intake valve port 42. The intake air that has been inhaled to generate a tumble and flows through the lower intake passage Lp enters the combustion chamber 40 from the outer edge side of the intake valve port 42 while being masked, and causes some reverse tumble, but from the upper intake passage Up Since a sufficient amount of intake air is inhaled, a moderate vortex tumble with a relatively high tumble ratio Rt can be generated, and the intake efficiency can be well maintained by sufficient intake.

以上のように、本内燃機関10の吸気装置は、吸気振分け弁65の回動軸66の回動中心線Cvを仕切板(60)の上流端縁61aaに平行に指向させ、かつ同上流端縁61aaの下方近傍に位置させてインレットパイプ20に回動自在に軸支され、回動軸66から吸気上流側に向けて延出する板状弁体67が上下に揺動して、スロットル弁(22)より下流の吸気を上下に振り分け上側吸気通路Upと下側吸気通路Lpを流れる吸気の割合を変更することができるので、内燃機関の負荷状態に応じてタンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる。   As described above, the intake device of the internal combustion engine 10 has the rotation center line Cv of the rotation shaft 66 of the intake distribution valve 65 oriented parallel to the upstream end edge 61aa of the partition plate (60), and the upstream end A plate-like valve body 67, which is positioned in the vicinity of the lower edge of the edge 61aa and pivotally supported by the inlet pipe 20 and extends from the pivot shaft 66 toward the upstream side of the intake air, swings up and down, so that the throttle valve (22) The ratio of the intake air flowing through the upper intake passage Up and the lower intake passage Lp can be changed by distributing the intake air downstream from the upper and lower sides, so that the strength of the tumble vortex is adjusted according to the load state of the internal combustion engine Thus, the combustion efficiency can be optimized.

本内燃機関10の吸気装置は、仕切板60がインレットパイプ20に形成されるインレットパイプ側仕切板61と吸気ポート44内に形成される吸気ポート側仕切板62とに分割され、インレットパイプ側仕切板61の下流端部61bと吸気ポート側仕切板62の上流端部62aが互いに上下に重なり合って連結されるので、インレットパイプ側仕切板61と吸気ポート側仕切板62は、それぞれインレットパイプ20および吸気ポート44から突出するとしても突出量が小さくてすみ、容易に剛性が確保できる。   The intake device of the present internal combustion engine 10 is divided into an inlet pipe side partition plate 61 formed in the inlet pipe 20 and an intake port side partition plate 62 formed in the intake port 44. Since the downstream end 61b of the plate 61 and the upstream end 62a of the intake port side partition plate 62 are connected to each other so as to overlap each other, the inlet pipe side partition plate 61 and the intake port side partition plate 62 are respectively connected to the inlet pipe 20 and Even if it protrudes from the intake port 44, the protrusion amount is small, and rigidity can be secured easily.

吸気ポート側仕切板62は長尺であっても剛性が確保されるため、吸気ポート側仕切板62の下流端部62bを吸気ポート44の湾曲部に位置する吸気弁46の吸気バルブステム46sに達して、下流端部62の凹部62uが吸気バルブステム46sを跨ぐようにし、吸気ポート側仕切板(62)を燃焼室に近い下流まで延出しており、よって、上側吸気通路(Up)を流れる吸気を途中殆ど拡散することなく吸気弁口近くまで導いて、吸気弁口の内側縁側からの燃焼室の中央部に排気側に向けて流入して、強い渦流のタンブルを発生させることができる(図6参照)。   Even if the intake port side partition plate 62 is long, rigidity is ensured. Therefore, the downstream end 62b of the intake port side partition plate 62 is connected to the intake valve stem 46s of the intake valve 46 located at the curved portion of the intake port 44. And the recess 62u of the downstream end 62 extends over the intake valve stem 46s, and the intake port side partition plate (62) extends to the downstream near the combustion chamber, and thus flows through the upper intake passage (Up). It is possible to guide the intake air to the vicinity of the intake valve port without almost diffusing and flow into the center of the combustion chamber from the inner edge side of the intake valve port toward the exhaust side to generate a strong vortex tumble ( (See FIG. 6).

インレットパイプ20の上側吸気通路Up側にインジェクタ23が上側吸気通路Upの下流側に向けて燃料噴射するように設けられ、インレットパイプ側仕切板61の下流端部61bが吸気ポート側仕切板62の上流端部62aの上に重なるように連結されるので、インジェクタ23により噴射された燃料が連結部61b,62aの重ね合わせ面に浸入しがたく、下側吸気通路Lpに燃料が漏れることを防止し、燃料を効率良く燃焼に供して燃料消費を抑えることができる。   An injector 23 is provided on the upper intake passage Up side of the inlet pipe 20 so as to inject fuel toward the downstream side of the upper intake passage Up, and the downstream end 61b of the inlet pipe side partition plate 61 is connected to the intake port side partition plate 62. Since it is connected so as to overlap the upstream end portion 62a, the fuel injected by the injector 23 is difficult to enter the overlapping surface of the connecting portions 61b and 62a, and prevents the fuel from leaking into the lower intake passage Lp. In addition, the fuel can be efficiently used for combustion to reduce fuel consumption.

インジェクタ23は、吸気ポート側仕切板62のインレットパイプ側仕切板61との連結部61b,62aよりも下流側に向けて燃料噴射するように構成したので、インジェクタ23の噴射燃料が下側吸気通路Lpに益々漏れ難く、また温度の高い吸気ポート側仕切板62に燃料が噴射されることで、燃料の液化を抑制することができる。   Since the injector 23 is configured to inject fuel toward the downstream side of the connecting portions 61b and 62a of the intake port side partition plate 62 with the inlet pipe side partition plate 61, the injected fuel of the injector 23 is injected into the lower intake passage. The fuel is less likely to leak into Lp and the fuel is injected into the intake port side partition plate 62 having a high temperature, so that liquefaction of the fuel can be suppressed.

樹脂で形成されたインレットパイプ側仕切板61の下流端部61bが、吸気ポート側仕切板62の上流端部61aに弾性変形による押圧力をもって圧接し重なり合うので、接着剤等を使わずにインレットパイプ側仕切板61の下流端部61bと吸気ポート側仕切板62の上流端部62aを簡単に密着させて連結することが容易にでき、作業性が良好である。   Since the downstream end portion 61b of the inlet pipe side partition plate 61 formed of resin is pressed against and overlapped with the upstream end portion 61a of the intake port side partition plate 62 with a pressing force due to elastic deformation, the inlet pipe is not used. The downstream end portion 61b of the side partition plate 61 and the upstream end portion 62a of the intake port side partition plate 62 can be easily brought into close contact with each other and workability is good.

インレットパイプ側仕切板61は、下流端部61bがインレットパイプ20の下流開口端よりも突出して吸気ポート44内に入り込む構造であるので、インレットパイプ20の組付け時に、インレットパイプ20の下流開口端より突出したインレットパイプ側仕切板61の下流端部61bを目安に目視で吸気ポート側仕切板62の上流端部62aと相対的に位置合せしながらインレットパイプ20をシリンダヘッド17に取り付けることができ、作業性に優れている。   Since the inlet pipe side partition plate 61 has a structure in which the downstream end 61b protrudes from the downstream opening end of the inlet pipe 20 and enters the intake port 44, the downstream opening end of the inlet pipe 20 is assembled when the inlet pipe 20 is assembled. The inlet pipe 20 can be attached to the cylinder head 17 while visually aligning with the upstream end portion 62a of the intake port side partition plate 62 by visually observing the downstream end portion 61b of the inlet pipe side partition plate 61 protruding further. Excellent workability.

フラップバルブである吸気振分け弁の変形例を、図14および図15に示し説明する。
本吸気振分け弁80は、回動軸81の吸気通路P内に相当する部分に回動中心軸Cvを含む中心軸平面に平行な平面で切り欠かれた一対の切欠凹部81a,81bが形成されて、切欠凹部81a,81b間の平板部81cに平板部81cの両平面に平行に貫通するスリット81sが穿設されている。
スリット81sの左右幅は、切欠凹部81a,81bと同じく、吸気通路Pの内径に等しい。
平板部81cの左右2か所に取付孔81ch,81chが穿孔されている。
A modification of the intake distribution valve, which is a flap valve, will be described with reference to FIGS.
In the intake distribution valve 80, a pair of cutout recesses 81a and 81b are formed in a portion corresponding to the inside of the intake passage P of the rotation shaft 81 and cut out in a plane parallel to the central axis plane including the rotation center axis Cv. A slit 81s is formed in the flat plate portion 81c between the cutout recesses 81a and 81b so as to penetrate the flat plate portion 81c in parallel with both flat surfaces.
The left and right widths of the slits 81s are equal to the inner diameter of the intake passage P, like the cutout recesses 81a and 81b.
Mounting holes 81ch and 81ch are drilled in two places on the left and right of the flat plate portion 81c.

この回動軸81の平板部81cのスリット81sに、板状弁体82の基端部が嵌入される。
板状弁体82は、スリット81sの左右幅を短径とした半楕円状をしており、直線辺を有した基端部の左右に取付孔82h,82hが、回動軸81の平板部81cの取付孔81ch,81chに対応して穿孔されている。
The base end portion of the plate-like valve body 82 is fitted into the slit 81s of the flat plate portion 81c of the rotating shaft 81.
The plate-like valve body 82 has a semi-elliptical shape in which the left and right widths of the slits 81 s have a short diameter, and mounting holes 82 h and 82 h are provided on the left and right of the base end portion having a straight side, and the flat plate portion of the rotating shaft 81. The holes are drilled corresponding to the mounting holes 81ch and 81ch of 81c.

図14に示すように、回動軸81の平板部81cのスリット81sに、板状弁体82の基端部を嵌入し、回動軸81の取付孔81ch,81chと板状弁体82の取付孔82h,82hを合せて、切欠凹部81b側から同取付孔81ch,81chと取付孔82h,82hにチューブラリベット83,83を貫通して切欠凹部81aに突出したチューブラリベット83,83の先端をかしめて、回動軸81に板状弁体82を取り付けて吸気振分け弁80とする。
この吸気振分け弁80は、前記実施の形態に係るインレットパイプ20にインレットパイプ側仕切板61の上流端部61aの下方近傍に回動軸81の回動中心線Cvを位置させて取り付けられる。
As shown in FIG. 14, the base end portion of the plate-like valve body 82 is fitted into the slit 81 s of the flat plate portion 81 c of the rotary shaft 81, and the mounting holes 81 ch and 81 ch of the rotary shaft 81 and the plate-like valve body 82 are connected. With the mounting holes 82h and 82h, the ends of the tubular rivets 83 and 83 projecting from the notch recess 81b through the tubular rivets 83 and 83 through the mounting holes 81ch and 81ch and the mounting holes 82h and 82h from the notch recess 81b side. By caulking, a plate-like valve body 82 is attached to the rotation shaft 81 to form an intake distribution valve 80.
The intake distribution valve 80 is attached to the inlet pipe 20 according to the above-described embodiment with the rotation center line Cv of the rotation shaft 81 positioned near the lower portion of the upstream end 61a of the inlet pipe side partition plate 61.

板状弁体82は、回動軸81の回動で一体に上下に揺動し、内燃機関10が低負荷運転状態のとき、半楕円状をした外周縁が断面円形の吸気通路Pの通路内周面に傾斜した姿勢で接すると、回動軸81の平板部81cの端縁がインレットパイプ側仕切板61の上流端部61aの下面に接して、下側吸気通路Lpの上流側開口は吸気振分け弁65により完全に閉塞され、上側吸気通路Upのみ吸気が通って、タンブルを強く発生させることができる。   The plate-shaped valve body 82 swings up and down integrally with the rotation of the rotation shaft 81, and when the internal combustion engine 10 is in a low load operation state, the semicircular elliptical outer peripheral edge is a passage of the intake passage P having a circular cross section. When contacting the inner peripheral surface in an inclined posture, the end edge of the flat plate portion 81c of the rotation shaft 81 is in contact with the lower surface of the upstream end portion 61a of the inlet pipe side partition plate 61, and the upstream side opening of the lower intake passage Lp is It is completely closed by the intake distribution valve 65, and intake air passes only through the upper intake passage Up, so that tumble can be generated strongly.

内燃機関10が中高負荷運転状態のときは、下側吸気通路Lpの上流側開口は開くとともに、吸気振分け弁80の切欠凹部81aがインレットパイプ側仕切板61の上流端部61aとの間に中間通路Mpを形成し、上側吸気通路Upに入りきらなかった一部の吸気が滞留することなく中間通路Mpを通って円滑に下側吸気通路Lpに流入することができ、吸気流の乱れを抑制することができる。
図15は、高負荷運転状態のときの図13のX-X線断面図に相当する断面図であり、吸気振分け弁80の切欠凹部81aが、インレットパイプ側仕切板61の上流端部61aとの間に中間通路Mpを形成している。
When the internal combustion engine 10 is in the middle and high load operation state, the upstream opening of the lower intake passage Lp is opened, and the notch recess 81a of the intake distribution valve 80 is intermediate between the upstream end 61a of the inlet pipe side partition plate 61. The passage Mp is formed, and a part of the intake air that has not been able to enter the upper intake passage Up can flow smoothly into the lower intake passage Lp through the intermediate passage Mp without stagnation. can do.
15 is a cross-sectional view corresponding to the cross-sectional view taken along the line XX of FIG. 13 in a high-load operation state, in which the notch recess 81a of the intake distribution valve 80 is located between the upstream end 61a of the inlet pipe side partition plate 61. An intermediate passage Mp is formed in the middle.

以上の実施の形態では、吸気弁口42が燃焼室40の天井面41のシリンダボア16bの円孔に対応する円形の天井面開口縁41sよりシリンダ軸方向視で外側にはみ出してオフセットして、燃焼室の外周部のはみ出し部をマスキングしていたが、吸気弁口42が天井面開口縁41sよりはみ出さない通常のシリンダヘッドを使用した内燃機関についても、本発明は適用されるものである。   In the above embodiment, the intake valve port 42 protrudes outward from the circular ceiling surface opening edge 41 s corresponding to the circular hole of the cylinder bore 16 b of the ceiling surface 41 of the combustion chamber 40 and is offset to the combustion. Although the protruding portion of the outer peripheral portion of the chamber is masked, the present invention is also applied to an internal combustion engine using a normal cylinder head in which the intake valve port 42 does not protrude from the ceiling surface opening edge 41s.

すなわち、燃焼室40の外周部がマスキングされなくとも、内燃機関10が低負荷運転状態のときは、吸気振分け弁65が下側吸気通路Lpの上流側開口を閉塞し(吸気振分け弁開度φ=0度)、吸気を略全部上方に振り分けて上側吸気通路Upを流れるようにすることで、比較的狭い上側吸気通路Upに案内されて高速で流れる吸気が吸気弁口42の内側縁側(シリンダ軸C側)から燃焼室40の中央部に排気側に向けて高速で吸入され、強い渦流のタンブルが発生することができる。   That is, even if the outer peripheral portion of the combustion chamber 40 is not masked, when the internal combustion engine 10 is in a low load operation state, the intake distribution valve 65 closes the upstream opening of the lower intake passage Lp (intake distribution valve opening φ) = 0 degree), by distributing the intake air substantially upward and flowing through the upper intake passage Up, the intake air that is guided to the relatively narrow upper intake passage Up and flows at a high speed is on the inner edge side of the intake valve port 42 (cylinder It is sucked at a high speed from the axis C side) to the center of the combustion chamber 40 toward the exhaust side, and a strong vortex tumble can be generated.

そして、内燃機関10が中高負荷運転状態のときは、下側吸気通路Lpの上流側開口は開くとともに、吸気振分け弁80の切欠凹部81aがインレットパイプ側仕切板61の上流端部61aとの間に中間通路Mpを形成し、上側吸気通路Upに入りきらなかった一部の吸気が滞留することなく中間通路Mpを通って円滑に下側吸気通路Lpに流入することができ、吸気流の乱れを抑制することができる。   When the internal combustion engine 10 is in the middle and high load operation state, the upstream opening of the lower intake passage Lp is opened, and the notch recess 81a of the intake distribution valve 80 is located between the upstream end 61a of the inlet pipe side partition plate 61. The intermediate passage Mp is formed in the upper intake passage Up so that a portion of the intake air that has not fully entered the upper intake passage Up can flow smoothly into the lower intake passage Lp through the intermediate passage Mp without stagnation. Can be suppressed.

また、本実施の形態では、吸気振分け弁65を中負荷運転状態のとき、吸気振分け弁65の先端縁が吸気通路Pの上側周面に近づいた中負荷位置(吸気振分け弁開度φ=β度)にまで揺動していたが、このような制御をせずに、低負荷運転状態から高負荷運転状態までスロットル開度θの増加に対して正比例して吸気振分け弁開度φを増加させるようにしてもよい。   Further, in the present embodiment, when the intake distribution valve 65 is in the middle load operation state, the middle load position (intake distribution valve opening φ = β) where the leading edge of the intake distribution valve 65 approaches the upper peripheral surface of the intake passage P However, without such control, the intake valve opening φ is increased in direct proportion to the increase in throttle opening θ from the low load operation state to the high load operation state. You may make it make it.

燃焼室40の外周部のマスキングはせずに、低負荷運転状態から高負荷運転状態までスロットル開度θの増加に対して正比例して吸気振分け弁開度φを増加させるように制御した場合のスロットル開度θに応じて吸気振分け弁65を揺動制御する吸気振分け弁開度φの変化とタンブル比Rtの変化を、図16に示す。   When the control is performed so that the intake valve opening φ is increased in direct proportion to the increase in the throttle opening θ from the low load operation state to the high load operation state without masking the outer periphery of the combustion chamber 40. FIG. 16 shows a change in the intake distribution valve opening φ and the change in the tumble ratio Rt for swing control of the intake distribution valve 65 according to the throttle opening θ.

内燃機関10が低負荷運転状態のときは、スロットル弁22は小さく開いており(スロットル開度θ:小)、吸気振分け弁65は板状弁体67の先端縁が吸気通路Pの下側周面に接した低負荷位置(吸気振分け弁開度φ=0度)に位置決めされ、下側吸気通路Lpの上流側開口は吸気振分け弁65により完全に閉塞されている。   When the internal combustion engine 10 is in a low load operation state, the throttle valve 22 is opened small (throttle opening θ: small), and the intake distributing valve 65 has a tip edge of the plate-like valve body 67 on the lower side of the intake passage P. Positioned at a low load position (intake distribution valve opening φ = 0 degree) in contact with the surface, the upstream opening of the lower intake passage Lp is completely closed by the intake distribution valve 65.

そのため、比較的狭い上側吸気通路Upに案内されて流れる吸気が、吸気弁口42の内側縁側(シリンダ軸C側)から燃焼室40の中央部に排気側に向けて高速で吸入されることになり、強い渦流のタンブルが発生し、タンブル比Rtが上昇し、低負荷時の燃焼効率を向上させることができる。   Therefore, the intake air that flows while being guided by the relatively narrow upper intake passage Up is sucked at high speed from the inner edge side (cylinder shaft C side) of the intake valve port 42 toward the center of the combustion chamber 40 toward the exhaust side. Thus, a strong vortex tumble is generated, the tumble ratio Rt is increased, and the combustion efficiency at low load can be improved.

スロットル開度θが大きくなり、内燃機関10の負荷運転状態が高くなるに伴って、スロットル開度θに正比例して吸気振分け弁開度φを増加させると、吸気振分け弁65は下側吸気通路Lpの上流側開口を開き下側吸気通路Lpを吸気が流れ、上側吸気通路Upに振り分けられた吸気も一部形成された中間通路Mpを通って下側吸気通路Lpを流れるので、上側吸気通路Upを流れる吸気が減少することで、吸気弁口42の内側縁側から燃焼室40に入っても、弱い渦流のタンブルしか発生せず、タンブル比Rtが低下する。   As the throttle opening θ increases and the load operating state of the internal combustion engine 10 increases, when the intake distribution valve opening φ is increased in direct proportion to the throttle opening θ, the intake distribution valve 65 is moved to the lower intake passage. Since the upstream opening of Lp is opened and the intake air flows through the lower intake passage Lp, the intake air distributed to the upper intake passage Up also flows through the lower intake passage Lp through a partially formed intermediate passage Mp. By reducing the intake air flowing through Up, even when entering the combustion chamber 40 from the inner edge side of the intake valve port 42, only a weak vortex tumble is generated, and the tumble ratio Rt decreases.

スロットル開度θがある程度以上大きくなると、吸気振分け弁開度φがインレットパイプ側仕切板61の上流端部61aと平行(吸気振分け弁開度φ=α度)となる手前から上側吸気通路Upに振り分けられる吸気の割合は変化しないので、安定した弱い渦流のタンブルが持続し、タンブル比Rtは略一定となる。
このようにして、タンブルの渦流の強さを調整して燃焼効率の最適化を図ることができる。
When the throttle opening θ becomes larger than a certain level, the intake distribution valve opening φ enters the upper intake passage Up from before the intake pipe side partition plate 61 is parallel to the upstream end 61a (intake distribution valve opening φ = α degrees). Since the ratio of the intake air to be distributed does not change, the stable weak vortex tumble continues and the tumble ratio Rt becomes substantially constant.
In this way, it is possible to optimize the combustion efficiency by adjusting the strength of the tumble vortex.

1…自動二輪車、2…車体フレーム、10…内燃機関、11…クランクケース、12…クランク軸、13…メイン軸、14…カウンタ軸、16…シリンダブロック、16b…シリンダボア、17…シリンダヘッド、18…シリンダヘッドカバー、19…連結管、
20…インレットパイプ、21…スロットルボディ、22…スロットル弁、23…インジェクタ、24…エアクリーナ、25…ピストン、26…コンロッド、
30…動弁機構、31…カム軸、32e,32i…ロッカアームシャフト、33i…吸気ロッカアーム、33e…排気ロッカアーム、34i,34e…弁ガイド、
40…燃焼室、41…天井面、42…吸気弁口、42a…はみ出し部、43…排気弁口、44…吸気ポート、45…排気ポート、46…吸気弁、46p…かさ部、46pf…端面、46s…吸気バルブステム、47…排気弁、48…プラグ孔、
51…ドーム状凹部、52…スキッシュ、53…ガイド壁面、55…切欠き円曲面、56…ピストン切欠き面、
60…仕切板、61…インレットパイプ側仕切板、61a…上流端部、61b…下流端部、62…吸気ポート側仕切板、62a…上流端部、62b…下流端部、
65…吸気振分け弁、Cv…回動中心線、65d…切欠凹部、66…回動軸、67…板状弁体、67a…基端縁、68…ネジ、
70…ECU、71…吸気制御手段、72…モータ駆動機構、
80…吸気振分け弁、81…回動軸、81a,81b…切欠凹部、81s…スリット、82…板状弁体、82、83…チューブラリベット、
P…吸気通路、Cp…通路中心線、Up…上側吸気通路、Lp…下側吸気通路、Mp…中間通路。
DESCRIPTION OF SYMBOLS 1 ... Motorcycle, 2 ... Body frame, 10 ... Internal combustion engine, 11 ... Crankcase, 12 ... Crankshaft, 13 ... Main shaft, 14 ... Countershaft, 16 ... Cylinder block, 16b ... Cylinder bore, 17 ... Cylinder head, 18 ... Cylinder head cover, 19 ... Connecting pipe,
20 ... Inlet pipe, 21 ... Throttle body, 22 ... Throttle valve, 23 ... Injector, 24 ... Air cleaner, 25 ... Piston, 26 ... Connecting rod,
30 ... Valve mechanism, 31 ... Cam shaft, 32e, 32i ... Rocker arm shaft, 33i ... Intake rocker arm, 33e ... Exhaust rocker arm, 34i, 34e ... Valve guide,
40 ... Combustion chamber, 41 ... Ceiling surface, 42 ... Intake valve port, 42a ... Projection part, 43 ... Exhaust valve port, 44 ... Intake port, 45 ... Exhaust port, 46 ... Intake valve, 46p ... Bulk part, 46pf ... End face , 46s ... Intake valve stem, 47 ... Exhaust valve, 48 ... Plug hole,
51 ... Dome-shaped recess, 52 ... Squish, 53 ... Guide wall, 55 ... Notched circular surface, 56 ... Piston notched surface,
60 ... partition plate, 61 ... inlet pipe side partition plate, 61a ... upstream end, 61b ... downstream end, 62 ... intake port side partition plate, 62a ... upstream end, 62b ... downstream end,
65 ... Intake distribution valve, Cv ... Center of rotation, 65d ... Notch recess, 66 ... Rotating shaft, 67 ... Plate-shaped valve element, 67a ... Base edge, 68 ... Screw,
70 ... ECU, 71 ... Intake control means, 72 ... Motor drive mechanism,
80 ... Intake distribution valve, 81 ... Rotating shaft, 81a, 81b ... Notch recess, 81s ... Slit, 82 ... Plate-shaped valve element, 82, 83 ... Tubular rivet,
P: intake passage, Cp: passage center line, Up: upper intake passage, Lp: lower intake passage, Mp: intermediate passage.

Claims (5)

シリンダブロック(16)のシリンダボア(16b)内を摺動自在に嵌合されるピストン(25)の頂面と同頂面が対向するシリンダヘッド(17)の天井面(41)との間に燃焼室(40)が構成され、
前記シリンダヘッド(17)の前記天井面(41)に開口した吸気弁口(42)と排気弁口(43)から各々吸気ポート(44)と排気ポート(45)が互いに離れる方向に湾曲しながら延出して形成され、
吸気ポート(44)にインレットパイプ(20)が接続されて連続した吸気通路(P)が構成され、
前記インレットパイプ(20)にスロットル弁(22)が設けられ、
前記吸気通路(P)が部分的に仕切板(60)により燃焼室(40)の中央部に通じる上側吸気通路(Up)と燃焼室(40)の外周部に通じる下側吸気通路(Lp)に仕切られ、
前記スロットル弁(22)よりも下流で前記仕切板(60)の上流に設けられた吸気振分け弁(65)により前記上側吸気通路(Up)と前記下側吸気通路(Lp)を流れる吸気が制御され、
吸気制御手段(71)により前記吸気振分け弁(65)が駆動制御される内燃機関の吸気装置において、
前記仕切板(60)は、前記インレットパイプ(20)に形成されるインレットパイプ側仕切板(61)と吸気ポート(44)内に形成される吸気ポート側仕切板(62)とからなり、
前記インレットパイプ側仕切板(61)の下流端部(61b)と前記吸気ポート側仕切板(62)の上流端部(62a)が互いに上下に重なり合って連結されることを特徴とする内燃機関の吸気装置。
Combustion between the top surface of the piston (25) slidably fitted in the cylinder bore (16b) of the cylinder block (16) and the ceiling surface (41) of the cylinder head (17) facing the top surface Chamber (40) is constructed,
While the intake port (44) and the exhaust port (45) are curved away from each other from the intake valve port (42) and the exhaust valve port (43) opened in the ceiling surface (41) of the cylinder head (17). Formed to extend,
An inlet pipe (20) is connected to the intake port (44) to form a continuous intake passage (P),
The inlet pipe (20) is provided with a throttle valve (22),
The intake passage (P) is partly connected to the central portion of the combustion chamber (40) by the partition plate (60), and the lower intake passage (Lp) is connected to the outer peripheral portion of the combustion chamber (40). Divided into
The intake air distribution valve (65) provided downstream of the throttle valve (22) and upstream of the partition plate (60) controls the intake air flowing through the upper intake passage (Up) and the lower intake passage (Lp). And
In the intake device for an internal combustion engine in which the intake control valve (65) is driven and controlled by the intake control means (71),
The partition plate (60) consists of an inlet pipe side partition plate (61) formed in the inlet pipe (20) and an intake port side partition plate (62) formed in the intake port (44),
An internal combustion engine characterized in that a downstream end portion (61b) of the inlet pipe side partition plate (61) and an upstream end portion (62a) of the intake port side partition plate (62) are overlapped and connected to each other. Intake device.
前記インレットパイプ(20)の前記上側吸気通路(Up)側にインジェクタ(23)が前記上側吸気通路(Up)の下流側に向けて燃料噴射するように設けられ、
前記インレットパイプ側仕切板(61)の下流端部(61b)が前記吸気ポート側仕切板(62)の上流端部(62a)の上に重なるように連結されることを特徴とする請求項1記載の内燃機関の吸気装置。
An injector (23) is provided on the upper intake passage (Up) side of the inlet pipe (20) so as to inject fuel toward the downstream side of the upper intake passage (Up),
The downstream end (61b) of the inlet pipe side partition plate (61) is connected so as to overlap the upstream end portion (62a) of the intake port side partition plate (62). An intake device for an internal combustion engine as described.
前記インジェクタ(23)は、前記吸気ポート側仕切板(62)の前記インレットパイプ側仕切板(61)との連結部(61b,62a)よりも下流側に向けて燃料噴射するように構成したことを特徴とする請求項2記載の内燃機関の吸気装置。   The injector (23) is configured to inject fuel toward the downstream side of the connection portion (61b, 62a) between the intake port side partition plate (62) and the inlet pipe side partition plate (61). The intake device for an internal combustion engine according to claim 2. 前記インレットパイプ側仕切板(61)は樹脂で形成され、
前記インレットパイプ側仕切板(61)の下流端部(61b)が、前記吸気ポート側仕切板(62)の上流端部(62a)に弾性変形による押圧力をもって圧接し重なり合うことを特徴とする請求項1ないし請求項3のいずれか1項記載の内燃機関の吸気装置。
The inlet pipe side partition plate (61) is made of resin,
The downstream end portion (61b) of the inlet pipe side partition plate (61) is pressed and overlapped with the upstream end portion (62a) of the intake port side partition plate (62) with a pressing force due to elastic deformation. The intake device for an internal combustion engine according to any one of claims 1 to 3.
前記インレットパイプ側仕切板(61)は、下流端部(61b)が前記インレットパイプ(20)の下流開口端よりも突出して吸気ポート(44)内に入り込むことを特徴とする請求項1ないし請求項4のいずれか1項記載の内燃機関の吸気装置。   The inlet pipe side partition plate (61) has a downstream end portion (61b) protruding from the downstream opening end of the inlet pipe (20) and entering the intake port (44). Item 5. The intake device for an internal combustion engine according to any one of Items 4 to 5.
JP2012216411A 2012-09-28 2012-09-28 Intake device for internal combustion engine Active JP6005465B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012216411A JP6005465B2 (en) 2012-09-28 2012-09-28 Intake device for internal combustion engine
CN201320597595.4U CN203702323U (en) 2012-09-28 2013-09-26 Air inlet device of internal combustion engine
BR102013024776-6A BR102013024776B1 (en) 2012-09-28 2013-09-26 Internal Combustion Engine Intake Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216411A JP6005465B2 (en) 2012-09-28 2012-09-28 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2014070547A true JP2014070547A (en) 2014-04-21
JP6005465B2 JP6005465B2 (en) 2016-10-12

Family

ID=50746001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216411A Active JP6005465B2 (en) 2012-09-28 2012-09-28 Intake device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP6005465B2 (en)
CN (1) CN203702323U (en)
BR (1) BR102013024776B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191318A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Partition wall plate
JP2016191319A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Partition wall plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101795168B1 (en) * 2015-11-23 2017-11-10 현대자동차주식회사 Structure of engine for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159203A (en) * 1992-11-26 1994-06-07 Fuji Heavy Ind Ltd Air intake device of engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2002155748A (en) * 2000-11-20 2002-05-31 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2006299893A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Partition plate for intake port, sand core for molding intake port and cylinder head
JP2008075509A (en) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd Intake control device for engine
JP2008151078A (en) * 2006-12-20 2008-07-03 Suzuki Motor Corp Engine air-intake device
JP2009180225A (en) * 2008-01-30 2009-08-13 Andreas Stihl Ag & Co Kg Internal combustion engine having elastic connector and method of producing elastic connector
JP2012127346A (en) * 2010-12-16 2012-07-05 Andreas Stihl Ag & Co Kg Two-stroke engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159203A (en) * 1992-11-26 1994-06-07 Fuji Heavy Ind Ltd Air intake device of engine
JP2001263067A (en) * 2000-03-14 2001-09-26 Nissan Motor Co Ltd Compressed self-ignition type gasoline engine
JP2002155748A (en) * 2000-11-20 2002-05-31 Toyota Motor Corp Cylinder injection type spark ignition internal combustion engine
JP2006299893A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Partition plate for intake port, sand core for molding intake port and cylinder head
JP2008075509A (en) * 2006-09-20 2008-04-03 Yamaha Motor Co Ltd Intake control device for engine
JP2008151078A (en) * 2006-12-20 2008-07-03 Suzuki Motor Corp Engine air-intake device
JP2009180225A (en) * 2008-01-30 2009-08-13 Andreas Stihl Ag & Co Kg Internal combustion engine having elastic connector and method of producing elastic connector
JP2012127346A (en) * 2010-12-16 2012-07-05 Andreas Stihl Ag & Co Kg Two-stroke engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191318A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Partition wall plate
JP2016191319A (en) * 2015-03-30 2016-11-10 富士重工業株式会社 Partition wall plate

Also Published As

Publication number Publication date
CN203702323U (en) 2014-07-09
JP6005465B2 (en) 2016-10-12
BR102013024776B1 (en) 2021-08-31
BR102013024776A2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6000785B2 (en) Intake device for internal combustion engine
JP5925878B2 (en) Intake device for internal combustion engine
US7802555B2 (en) Intake control device for an engine
JP2008075509A (en) Intake control device for engine
JP6005465B2 (en) Intake device for internal combustion engine
JP6262587B2 (en) Intake structure of internal combustion engine
JP5841985B2 (en) Combustion chamber structure of internal combustion engine
JP2013227966A (en) Internal combustion engine
JP2004204782A (en) Four cycle engine for motorcycle
JP4628161B2 (en) Intake device for vehicle-mounted engine
JP6215807B2 (en) Intake device for internal combustion engine
US7137380B1 (en) Internal combustion engine with ignition plug and vehicle provided with the same
WO2019009061A1 (en) Air intake structure for internal combustion engine
JP5415363B2 (en) Cylinder head structure of internal combustion engine
JP6262168B2 (en) In-cylinder injection internal combustion engine of saddle riding type vehicle
JPWO2004038214A1 (en) Motorcycle
JP2018150817A (en) Suction structure for internal combustion engine
JP4271769B2 (en) Engine intake system
JP2013213409A (en) Intake device for internal combustion engine
JP5908321B2 (en) Internal combustion engine
JP6637357B2 (en) Power unit
WO2024084540A1 (en) Internal combustion engine
JP2006291797A (en) Inlet flow valve system
JP6186299B2 (en) Air intake structure for saddle-ride type vehicles
JP2001193553A (en) Intake device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160907

R150 Certificate of patent or registration of utility model

Ref document number: 6005465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250