JP2014070277A - Wire for etching cut, and cutting method of inorganic brittle material using the same - Google Patents

Wire for etching cut, and cutting method of inorganic brittle material using the same Download PDF

Info

Publication number
JP2014070277A
JP2014070277A JP2012230319A JP2012230319A JP2014070277A JP 2014070277 A JP2014070277 A JP 2014070277A JP 2012230319 A JP2012230319 A JP 2012230319A JP 2012230319 A JP2012230319 A JP 2012230319A JP 2014070277 A JP2014070277 A JP 2014070277A
Authority
JP
Japan
Prior art keywords
wire
cutting
alloy
cut
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012230319A
Other languages
Japanese (ja)
Other versions
JP2014070277A5 (en
Inventor
Takayuki Akizuki
孝之 秋月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2012230319A priority Critical patent/JP2014070277A/en
Publication of JP2014070277A publication Critical patent/JP2014070277A/en
Publication of JP2014070277A5 publication Critical patent/JP2014070277A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wire for cut suitable for an etching cut method reducing wide cutting loss by abrasive grains of a saw wire, and to provide a cutting method of an inorganic brittle material using the same.SOLUTION: There are provided a wire for etching cut 2 constituted of a small diameter metal wire (Co alloy thin line) made of a Co alloy including, by mass%, Ni:12.0 to 20.0%, Cr:12.0 to 25.0%, Co:35 to 60%, and having high strength property with a bearing force of 1,500 to 2,200 N/mm2 with a wire diameter of 0.2 mm or less, a pitting potential property based on JIS-G0577 (V'c10):0.60 to 0.75 V and an electric resistivity of 80 to 110 μΩ cm (in the room temperature environment) for chemically cutting an inorganic brittle material by corrosion etching, and a cutting method of the inorganic brittle material by the wire.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は半導体シリコンやセラミック、水晶、石材などの無機性硬質脆性材料を腐食エッチングによる化学的方法で切断加工するのに使用するための細径エッチングカット用のワイヤー、並びにこれを用いた無機性脆性材料のカット方法に関する。  The present invention relates to a wire for thin etching cut for use in cutting inorganic hard brittle materials such as semiconductor silicon, ceramic, quartz, and stone by a chemical method by corrosive etching, and inorganicity using the same The present invention relates to a method for cutting a brittle material.

従来、石材や鉄筋コンクリート、半導体シリコン、セラミック、サファイヤ、水晶などの硬質脆性材料を切断する切断加工法として、例えば図6に示すようにピアノ線やステンレス鋼線等の高強度線材(ソーワイヤー)Wを高速で被切断物(ワーク)Cと摺接しつつ走行させ、かつその周囲に介在する研削用砥粒によって物理的に切断するワイヤーソーイング法が開発され、例えば電子工業用分野では、これを所定ワークに対して、厚さ1mm程度の比較的狭い等間隔に多段に掛け渡すことで、種々のウエハー製品を得ることが行われている。  Conventionally, as a cutting method for cutting hard brittle materials such as stone, reinforced concrete, semiconductor silicon, ceramic, sapphire, and quartz, for example, high strength wire (saw wire) W such as piano wire and stainless steel wire as shown in FIG. A wire sawing method has been developed in which a workpiece is moved while being in sliding contact with a workpiece (workpiece) C at a high speed and is physically cut by grinding abrasive particles interposed around the workpiece. Various wafer products are obtained by hanging a workpiece in multiple stages at a relatively narrow equal interval of about 1 mm in thickness.

その切断加工は、例えば、前記高強度線材Wとともに前記砥粒を別途供給しながら切断加工を行う遊離砥粒方式によるもの、また予め該線材Wの表面上に電着や接着剤等によって砥粒を固定しておく砥粒固定型のソーワイヤーによる方法が採用されている。特に後者の砥粒固定型ソーワイヤーによるものでは、より効率的な切断カットができることから、現在の半導体ウエハーの製造プロセスには欠かせないものとなっている。  The cutting process is performed by, for example, a free abrasive grain method in which cutting is performed while separately supplying the abrasive grains together with the high-strength wire rod W, or abrasive grains are previously deposited on the surface of the wire rod W by electrodeposition, adhesive, or the like. A method using a fixed-abrasive saw wire for fixing the wire is employed. In particular, the latter, which uses a fixed abrasive grain saw wire, is more indispensable for the current manufacturing process of semiconductor wafers because it can cut more efficiently.

図7はそのソーワイヤーによる切断状態を示すもので、横断面方向の拡大図を示している。ソーワイヤーは、通常その切断効率を高める必要から、ワークをより強く押圧しながら連続走行することで行われる。その為、該ソーワイヤーはその押圧強度や連続走行に適するように、高強度の張力付加が行われるとともに、その芯材についても例えば0.2〜0.6mm程度の比較的太線とすることで高強度化を図っている。  FIG. 7 shows a state of cutting by the saw wire, and shows an enlarged view in the cross-sectional direction. Saw wire is usually performed by continuously running while pressing the workpiece more strongly because it is necessary to increase its cutting efficiency. Therefore, the saw wire is applied with high strength tension so as to be suitable for its pressing strength and continuous running, and the core material is also made a relatively thick line of about 0.2 to 0.6 mm, for example. High strength is achieved.

またその構成は、前記高強度の芯材と、その表面にダイヤモンドやCBN等の硬質砥粒を所定の分布密度で固着したもので、該砥粒の固着をより強固にする為に、前記芯材の表面に予め下地用の金属メッキを施した複合線が用いられ、砥粒は例えば電着用のNiメッキ液中に懸濁して、そのメッキ処理と同時に砥粒固着するものである(例えば、特許文献1,2)  Further, the configuration is such that the high-strength core material and hard abrasive grains such as diamond and CBN are fixed to the surface thereof with a predetermined distribution density, and in order to make the abrasive grains more firmly fixed, A composite wire in which the surface of the material is preliminarily plated with metal is used, and the abrasive grains are suspended in, for example, a Ni plating solution for electrodeposition, and the abrasive grains are fixed simultaneously with the plating process (for example, Patent Documents 1 and 2)

特開平09−150314  JP 09-150314 A 特開2007−203393  JP2007-203393A

このように、前記特許文献1及び2のソーワイヤーによる従来の切断技術は、前記所定線径の芯材と、その表面に塗布される下地メッキ層を介して砥粒を固着している。従って、そのソーワイヤーを用い切断する場合の実質的な前記切断幅は、少なくともこれら各部材を含む全体寸法以上になり、例えば前記芯材として仮に0.2mm程度の金属細線を用いるものでも、砥粒の粒径によって、実質的な切断幅は例えば0.3〜0.4mm程度にまで拡幅したものとなり、結局その部分は消失して切断ロスとなる。  As described above, in the conventional cutting technique using the saw wires of Patent Documents 1 and 2, the abrasive grains are fixed through the core material having the predetermined wire diameter and the base plating layer applied to the surface thereof. Therefore, when the saw wire is used for cutting, the substantial cutting width is at least larger than the overall dimensions including these members. For example, even if a thin metal wire of about 0.2 mm is used as the core material, Depending on the grain size, the substantial cutting width is widened to, for example, about 0.3 to 0.4 mm, and eventually that portion disappears and a cutting loss occurs.

またそうしてカットされた切断面も、前記砥粒の大きさによって異なるものの、微小凹凸の形成は避けられず、その表面性をより高める為の研磨処理が行われており、こうしたカットや研磨処理に伴う歩留まりは 40〜60%程度とされ、高価なワークの歩留まり低下やコストアップの一因になっている。  In addition, the cut surface thus cut also varies depending on the size of the abrasive grains, but the formation of minute irregularities is unavoidable, and a polishing process is performed to further improve the surface properties. The yield associated with the processing is about 40 to 60%, which contributes to a decrease in the yield and cost increase of expensive workpieces.

これを改善する方策として、例えば砥粒の微細化や前記芯材をより細径化することも提案されている。しかし、砥粒を微細化したものでは切断性能が低下し、また後者の細径芯材によるものでは、ソーワイヤー自体の全体強度が低下し、ワークへの押圧強度を弱くしたり、ワイヤーの走行速度を減少させる等、作業条件の変更やそれに伴う効率低下は避けられず、またワーク切断作業中にソーワイヤー自体が断線することも懸念される。  As measures for improving this, for example, it has been proposed to make abrasive grains finer or to make the core material thinner. However, when the abrasive grains are made finer, the cutting performance is lowered, and when the latter is made of a thin core material, the overall strength of the saw wire itself is lowered, and the pressing strength against the work is weakened or the wire travels. It is inevitable that a change in work conditions such as a reduction in speed and a reduction in efficiency associated therewith are unavoidable, and that the saw wire itself may be disconnected during the work cutting work.

そして作業中にソーワイヤーが断線すると、再度そのワイヤーの掛け渡しセットの調整に相当の手間を要し、またワーク切断面の品質も、その前後で段差が生じるなど平面性や平滑性が損なわれる。したがって、その改修の為に余分な研磨処理が必要になるなど多大な負担を要し、作業効率や歩留まり低下への影響が大きいものである。  And if the saw wire breaks during the work, it will take a lot of effort to adjust the wire spanning set again, and the quality of the workpiece cut surface will also deteriorate the flatness and smoothness such as a step before and after that. . Therefore, a great burden is required such that an extra polishing process is required for the refurbishment, which greatly affects work efficiency and yield reduction.

また、近年の研究では、ソーワイヤーのこのような問題を改善し、実質的にワイヤーのみの切断幅でカット可能な方法として、化学的な腐食エッチング現象を利用するカット方法が試みられている。本発明は、このエッチングカット方法に好適に採用可能なカット用ワイヤーと、これを用いた無機性脆性材料のカット方法の提供を目的とするものである。  In recent research, a cutting method using a chemical corrosion etching phenomenon has been tried as a method capable of improving such a problem of the saw wire and cutting with a cutting width of only the wire. The object of the present invention is to provide a cutting wire that can be suitably employed in this etching cutting method and a method for cutting an inorganic brittle material using the same.

すなわち本願請求項1に係る発明は、無機性脆性材料を腐食エッチングで化学的にカットする為の細径金属線材でなるカット用ワイヤーであって、
該金属線材は、質量%で、Ni:12.0〜20.0%、Cr:12.0〜25.0%、Co:35〜60%を含有するCo合金で構成され、線径0.2mm以下で耐力1500〜2200N/mm2の高強度特性とともに、
JIS−G0577に基づく孔食電位(V’c10):0.60〜0.75Vと、80〜110μΩ・cmの電気抵抗率(但し、室温環境中)を備える前記Co合金の細線(Co合金細線)でなることを特徴とするエッチングカット用ワイヤーである。
That is, the invention according to claim 1 of the present application is a cutting wire made of a thin metal wire for chemically cutting an inorganic brittle material by corrosion etching,
The metal wire is composed of a Co alloy containing Ni: 12.0 to 20.0%, Cr: 12.0 to 25.0%, and Co: 35 to 60% in terms of mass%, and the wire diameter is 0.00. Along with the high strength characteristics of proof stress 1500-2200N / mm2 at 2mm or less,
Pitting corrosion potential (V'c10) based on JIS-G0577: 0.60 to 0.75 V, and an electrical resistivity of 80 to 110 μΩ · cm (provided in a room temperature environment) (Co alloy fine wire) It is the wire for etching cut characterized by consisting of.

また、請求項2に係る発明は、前記電気抵抗率が95〜105μΩ・cmのものであり、請求項3に係る発明は、前記Co合金細線は、質量%でC:≦0.30%,Si:≦2.0%,Mn:≦2.0%,Ni:14.0〜20.0%,Cr:15.0〜25.0%,Mo:2.0〜10.0%,Co:40.0〜55.0%を含み、残部Fe及び不可避不純物からなる析出硬化型のものであること、更に請求項4に係る発明は、前記Co合金細線は、質量%でC:0.08〜0.20%,Si:≦1.0%,Mn:≦1.50%,Ni:14.0〜18.5%,Cr:19.0〜25.0%,Mo:4.0〜8.0%,およびCo:40.0〜55.0%と、更にAl:0.1〜4.0%,Ti:0.10〜2.5%,Nb:0.01〜1.0%及びW:0.50〜5.0%のいずれか1種以上を含み、残部Fe及び不可避不純物からなる析出硬化型の前記Co合金であることを各々特徴とする前記エッチングカット用ワイヤーである。  Further, the invention according to claim 2 is that in which the electrical resistivity is 95 to 105 μΩ · cm, and the invention according to claim 3 is that the Co alloy fine wire is C: ≦ 0.30% in mass%. Si: ≦ 2.0%, Mn: ≦ 2.0%, Ni: 14.0-20.0%, Cr: 15.0-25.0%, Mo: 2.0-10.0%, Co : 40.0 to 55.0%, and it is a precipitation hardening type comprising the remainder Fe and inevitable impurities, and the invention according to claim 4 is characterized in that the Co alloy fine wire is C: 0. 08-0.20%, Si: ≦ 1.0%, Mn: ≦ 1.50%, Ni: 14.0-18.5%, Cr: 19.0-25.0%, Mo: 4.0 To 8.0% and Co: 40.0 to 55.0%, Al: 0.1 to 4.0%, Ti: 0.10 to 2.5%, Nb: 0.01 to 1.%. The wire for etching cut, characterized in that it is a precipitation hardening type Co alloy comprising 0% and W: 0.50 to 5.0%, and the balance Fe and inevitable impurities. is there.

また、請求項5に係る発明は、前記Co合金細線は、その基地マトリックス内に、Co,Mo,Al,Ti,Nb又はWのいずれか1種以上を主要組成とする炭化物,又はAl及び/又はTiの金属間化合物のいずれか析出物が形成されていること、請求項6に係る発明は、前記析出物は、前記合金細線の任意断面において、平均粒子径が0.02〜0.2μmで、かつ0.5〜2%の面積率で分布する前記炭化物であることを特徴とし、請求項7に係る発明は、その表面粗さRaが0.01〜0.5μmであり、請求項8に係る発明は、前記いずれか記載のCo合金細線の少なくとも2本以上の編組及び/又は縒り合わせによって1本の複合細線としたものである。    Further, in the invention according to claim 5, the Co alloy fine wire has a matrix whose main composition is at least one of Co, Mo, Al, Ti, Nb and W, or Al and / Alternatively, any precipitate of Ti or an intermetallic compound is formed, and in the invention according to claim 6, the precipitate has an average particle diameter of 0.02 to 0.2 μm in an arbitrary cross section of the alloy thin wire. And the carbide distributed in an area ratio of 0.5 to 2%, and the invention according to claim 7 has a surface roughness Ra of 0.01 to 0.5 μm, The invention according to No. 8 is a composite thin wire formed by braiding and / or twisting at least two of the Co alloy thin wires described above.

更に請求項9に係る発明は、前記請求項1乃至8のいずれか記載のCo合金細線でなるカット用ワイヤーで、ワークの無機脆性材料を任意切断面で溶断カットするにあたり、
前記ワークとカット用ワイヤーとの接触界面に、該ワークを腐食エッチング現象によって腐食溶解する腐食性溶液を介在させるとともに、該腐食溶解が前記カット用ワイヤーが接する前記接触界面でのみ生じるように、該カット用ワイヤーを所定温度に通電加熱しながら、一定の切込み速度と走行速度で連続的にカットすることを特徴とする、無機脆性材料のカット方法である。
Further, the invention according to claim 9 is a cutting wire made of the Co alloy thin wire according to any one of claims 1 to 8, and when cutting the fracturing of the inorganic brittle material of the workpiece at an arbitrary cut surface,
The corrosive solution that corrodes and dissolves the workpiece by a corrosive etching phenomenon is interposed in the contact interface between the workpiece and the cutting wire, and the corrosive dissolution occurs only at the contact interface that contacts the cutting wire. An inorganic brittle material cutting method characterized by continuously cutting at a predetermined cutting speed and traveling speed while energizing and heating a cutting wire at a predetermined temperature.

そして、請求項10に係る発明は、前記腐食性溶液は2〜5%HFと10〜15%NO3でなる弗硝酸溶液、2〜7%HFと15〜20%H2SO4の弗硫酸溶液のいずれかによるものであり、請求項11に係る発明は、前記カット用ワイヤーの加熱温度は50〜85℃に設定されてなる前記記載のカット方法である。  In the invention according to claim 10, the corrosive solution is any one of a hydrofluoric acid solution composed of 2 to 5% HF and 10 to 15% NO3, or a hydrofluoric acid solution of 2 to 7% HF and 15 to 20% H2SO4. The invention according to claim 11 is the above-described cutting method in which the heating temperature of the cutting wire is set to 50 to 85 ° C.

本発明が対象とするエッチングカット技術を説明する概略図である。  It is the schematic explaining the etching cut technique which this invention makes object. エッチングカットによるワーク切断の要部拡大図である。  It is a principal part enlarged view of the workpiece | work cutting | disconnection by an etching cut. 析出物の析出状態を示す顕微鏡組織写真の一例である。  It is an example of the microscope picture which shows the precipitation state of a precipitate. 他の形態を示すカット用ワイヤーの平面図  Plan view of cutting wire showing other forms 他の形態を示すカット用ワイヤーの横断面図である。  It is a cross-sectional view of the wire for cutting which shows another form. 従来のソーワイヤーによるワーク切断状態を示す斜視図である。  It is a perspective view which shows the workpiece | work cutting state by the conventional saw wire. 従来型の砥粒固定型ソーワイヤーの横断面図である。  It is a cross-sectional view of a conventional abrasive grain fixed type saw wire.

1: ワーク
2: カット用ワイヤー
2A:複合細線
3a:腐食性溶液
1: Workpiece 2: Cutting wire 2A: Composite thin wire 3a: Corrosive solution

以下、本発明のエッチングカット用ワイヤー(以下、単に「カット用ワイヤー」とも言う)の好ましい形態を、その製造方法及び図面とともに説明する。その中で、該Co合金材料の組成については特に本文中に明記される場合を除き、質量%を意味するものとする。  Hereinafter, preferred embodiments of the etching cut wire of the present invention (hereinafter also simply referred to as “cut wire”) will be described together with the production method and the drawings. Among them, the composition of the Co alloy material means mass% unless otherwise specified in the text.

カット用ワイヤー1は、質量%で、12.0〜20.0%Ni、12.0〜25.0%Cr、35〜60%Coを含有するCo合金で構成され、その線径は0.2mm以下でかつ耐力1500〜2200N/mm2の高強度特性とともに、JIS−G0577に基づく孔食電位特性(V‘c1o):0.65〜0.75Vと、室温環境下で80〜100μΩ・cmの電気抵抗率を備えるCo合金の細線でなる。  The cutting wire 1 is composed of a Co alloy containing 12.0 to 20.0% Ni, 12.0 to 25.0% Cr, and 35 to 60% Co in mass%, and the wire diameter is 0.00. Along with high strength characteristics of 2 mm or less and proof stress 1500-2200 N / mm2, pitting corrosion potential characteristics (V'c1o) based on JIS-G0577: 0.65-0.75 V, 80-100 μΩ · cm under room temperature environment It consists of a thin line of Co alloy with electrical resistivity.

この組成に適合するCo合金をより詳細に説明すれば、例えば、質量%でC:≦0.30%,Si:≦2.0%,Mn:≦2.0%,Ni:14.0〜20.0%,Cr:15.0〜25.0%,Mo:2.0〜10.0%,Co:40.0〜55.0%を含み、残部Fe及び不可避不純物でなるもの(第一形態)、また同様に質量%でC:0.08〜0.20%,Si:≦1.0%,Mn:≦2.00%,Ni:12.0〜12.0%,Cr:19.0〜25.0%,Mo:4.0〜8.0%,およびCo:40.0〜55.0%と、更にAl:0.1〜4.0%,Ti:0.10〜2.5%,Nb:0.01〜1.0%及びW:0.5〜5.0%のいずれか1種以上を含み、残部Fe及び不可避不純物からなるもの(第二形態)があり、これらはいずれも析出硬化機能を備える組成のものとして構成される。前者組成のCo合金に適合するものとしては、例えばNAS604PHがあり、また後者合金はCCW合金として、何れも高強度ばね用の線材として実施されている。  The Co alloy conforming to this composition will be described in more detail. For example, in mass%, C: ≦ 0.30%, Si: ≦ 2.0%, Mn: ≦ 2.0%, Ni: 14.0. 20.0%, Cr: 15.0 to 25.0%, Mo: 2.0 to 10.0%, Co: 40.0 to 55.0%, the balance being Fe and inevitable impurities (No. One form), and also by mass%: C: 0.08 to 0.20%, Si: ≦ 1.0%, Mn: ≦ 2.00%, Ni: 12.0 to 12.0%, Cr: 19.0 to 25.0%, Mo: 4.0 to 8.0%, Co: 40.0 to 55.0%, Al: 0.1 to 4.0%, Ti: 0.10 -2.5%, Nb: 0.01-1.0% and W: Any one or more of 0.5-5.0%, comprising the remaining Fe and inevitable impurities (second form) Yes, These are both configured as a composition comprising a precipitation hardening capabilities. For example, NAS604PH is suitable for a Co alloy having the former composition, and the latter alloy is a CCW alloy, both of which are implemented as wires for high-strength springs.

これら組成のCo合金は、例えば通常のステンレス鋼線等に比して冷間加工性に優れ、またその加工後の析出硬化処理によって大幅な機械的特性の向上が図れることから、例えば数十μm程度の微細線材にまで細径化可能で、かつ十分な強度維持と耐食性、及び本発明に好適する通電特性を備え好ましい。  Co alloys having these compositions are excellent in cold workability compared to, for example, ordinary stainless steel wires, and can improve mechanical characteristics significantly by precipitation hardening after the processing, for example, several tens of μm. It is preferable that the diameter can be reduced to a fine wire of a certain level, and sufficient strength maintenance and corrosion resistance are provided, as well as energization characteristics suitable for the present invention.

すなわち、本発明が対象とする腐食エッチングによるカット方法は、従来の砥粒を用いるソーワイヤーによる場合のように、ワーク(被カット物)自体を強度押圧したり、切断走行速度を高める必要がなく、比較的緩く設定できることから、その線径は0.2mm未満、好ましくは0.02〜0.08mm程度の極めて微細な細線が使用可能である。またその断面形状も、通常の円形形状のものだけに限らず、たとえば角線等の非円形のものを含み、その場合の線径表示は、その任意横断面の面積から算出される換算線径で示されるものとする。  That is, the cutting method by the corrosive etching targeted by the present invention does not need to press the work (cut object) itself strongly or increase the cutting traveling speed as in the case of the conventional saw wire using abrasive grains. Since it can be set relatively loosely, it is possible to use a very fine thin wire having a wire diameter of less than 0.2 mm, preferably about 0.02 to 0.08 mm. In addition, the cross-sectional shape is not limited to a normal circular shape, but includes a non-circular shape such as a square line, and the wire diameter display in that case is a converted wire diameter calculated from the area of the arbitrary cross-section. It shall be indicated by

また前記Co合金は、高Ni,高Crを含み耐食性に優れるものでもあるため、これを前記エッチングの腐食溶液として例えば弗硝酸などの高腐食性溶液を用いる場合にも、実質的なワイヤーの腐食減量は例えば3g/m2/hr.以下と極めて微量で実質的な影響はないことから、繰り返し使用する再生使用にも十分な適性を備える。  In addition, since the Co alloy includes high Ni and high Cr and has excellent corrosion resistance, even when a highly corrosive solution such as hydrofluoric acid is used as the etching corrosion solution, substantial corrosion of the wire is caused. The weight loss is, for example, 3 g / m2 / hr. Since it is extremely small as described below and has no substantial influence, it has sufficient suitability for re-use for repeated use.

腐食性溶液としては、前記するようにワークに対して必要部分のみを腐食溶解可能な例えば弗硝酸や弗硫酸等の強腐食性溶液が採用でき、その腐食エッチング現象で化学的に溶断カットするものである。また本発明では、その腐食エッチング反応が該ワイヤーと接する接触界面の近傍付近でのみ発生するように、該ワイヤーを例えば50〜200℃程度に加熱しながら腐食エッチング反応させることを基本としており、前記Co合金はこうした用法に好適する特性を備え得る。  As the corrosive solution, as described above, a strong corrosive solution such as hydrofluoric acid or hydrosulfuric acid that can corrode and dissolve only a necessary part of the work can be adopted, and the cut is chemically cut by the corrosive etching phenomenon. It is. Further, in the present invention, the wire is heated to about 50 to 200 ° C., for example, so that the corrosion etching reaction occurs only in the vicinity of the contact interface in contact with the wire. Co alloys may have properties suitable for such usage.

すなわち、前記ワークの無機性脆性材料は、その種類に応じて固有の活性反応温度域を有し、その温度以上の環境中では最も活性な腐食反応を生じさせるものの、逆に低い低温域では実質的な腐食反応には至らず、当初の表面状態のまま維持する。 その例として、例えば前記シリコンをワークとする場合の活性温度域は50℃以上であり、サファイヤは70℃以上とするが、必要以上の高温にすると該溶液の気化によって周辺環境に悪影響をもたらすことから、例えば85℃以下とする。  That is, the inorganic brittle material of the workpiece has a specific active reaction temperature range according to its type, and causes the most active corrosion reaction in an environment above that temperature, but conversely in a low low temperature range, It does not lead to a corrosive reaction and maintains the original surface state. For example, when the silicon is used as a workpiece, the active temperature range is 50 ° C. or higher, and the sapphire is 70 ° C. or higher. However, if the temperature is higher than necessary, the surrounding environment may be adversely affected by vaporization of the solution. From, for example, 85 ° C. or less.

したがって、腐食性溶液の前記活性温度に応じて、前記カット用ワイヤーに負荷する通電発熱量を適宜設定することで、溶断カットに必要な適正温度に加熱して、該ワイヤーの周囲に存在する腐食性溶液をより活性な状態になるように調整される。その場合、ワークの切断部以外の部分に腐食性溶液が存在すれば多少の腐食反応は生じるものの、その程度は該切断部での腐食反応のような大きいものではなく、腐食減量として数値化できないような微量程度を含むものとし、その意味で本発明では、腐食溶解は該ワイヤーが接触する「接触界面でのみ生じる」と表現するが、「接触界面を優先的に腐食する」の意味も含むものとする。  Therefore, by appropriately setting the amount of heat generated to be applied to the cutting wire according to the activation temperature of the corrosive solution, it is heated to an appropriate temperature required for fusing cut, and the corrosion existing around the wire The solution is adjusted so as to be more active. In that case, if a corrosive solution exists in a part other than the cutting part of the workpiece, a slight corrosion reaction occurs, but the degree is not as great as the corrosion reaction in the cutting part, and cannot be quantified as a corrosion weight loss. In this sense, in the present invention, corrosion dissolution is expressed as “occurs only at the contact interface” where the wire contacts, but also includes the meaning of “preferentially corrodes the contact interface”. .

こうした用法に対し、前記Co合金が本発明の実施に好適する理由として、該Co合金は次の諸特性を備えることが挙げられる。
▲1▼繊維状のような細径線材にまで容易に加工可能な延・靭性を有し、高い伸線加工性を備えること。
▲2▼材料特性として、高強度でかつ疲労特性及び弾性特性に優れた機械的特性を有することから、より細径化したワイヤーとして使用できること。 この▲1▼及び▲2▼によって、ワークの切断ロスの低減をもたらし得る。
▲3▼またその機械的特性を更に高める方策として、細径加工後の時効処理などによって特性アップをもたらす、析出硬化型の合金線として利用できること。
▲4▼弗硝酸溶液など強度の腐食性溶液やそのような環境下においても、優れた耐食性を有すること。
⇒これによって、ワイヤーの再使用が可能となる。
・なお該耐食性は、本発明ではJIS−G0577に基づく「孔食電位」で示され、該Co合金は、0.60〜0.75Vの耐食性を備え、ステンレス鋼を超える耐食性が可能で、カット用ワイヤーとしての再使用化が図れる。尚前記JIS−G0577規格は、ステンレス鋼を対象にするものではあるものの、本願のCo合金についても同様に測定可能なことから、これを用いることとした。
また、その測定条件は、3.5%NaCl溶液(30℃)により、Ar脱気と掃引速度20mV/min.によるものとし、またその参照電極はAg/AgClによるものとする。
▲5▼該Co合金のマトリックスは電気抵抗率が高く、通電などで容易に所定温度に加熱でき、エネルギー効率の削減に寄与すること。
例えば、常温程度の比較的低い温度環境中でも80〜110μΩ・cmの高い電気抵抗を備え、その発熱特性は、時効処理等の析出硬化機能で析出する析出物によって、更に向上する析出硬化型の前記Co合金が採用できること。
▲6▼前記通電処理によって200℃程度に加熱した状態でも、ワイヤー自体の強度等の機械的特性は実質的な低下が少ないこと。
With respect to such usage, the reason why the Co alloy is suitable for the practice of the present invention is that the Co alloy has the following characteristics.
(1) It has a ductility and toughness that can be easily processed to a thin wire such as a fiber, and has high wire drawing workability.
(2) As a material property, it has high strength and mechanical properties excellent in fatigue properties and elastic properties, so that it can be used as a wire having a smaller diameter. By these (1) and (2), the cutting loss of the workpiece can be reduced.
(3) Also, as a measure to further improve the mechanical properties, it can be used as a precipitation hardening type alloy wire that improves the properties by aging treatment after processing a small diameter.
(4) Excellent corrosion resistance even in strong corrosive solutions such as hydrofluoric acid solution and in such environments.
⇒ This makes it possible to reuse the wire.
In addition, the corrosion resistance is indicated by “pitting corrosion potential” based on JIS-G0577 in the present invention, and the Co alloy has a corrosion resistance of 0.60 to 0.75 V, and can have a corrosion resistance higher than that of stainless steel. Can be reused as an industrial wire. Although the JIS-G0577 standard is intended for stainless steel, the Co alloy of the present application can be measured in the same manner, so that it is used.
The measurement conditions were 3.5% NaCl solution (30 ° C.), Ar deaeration and a sweep rate of 20 mV / min. And the reference electrode is Ag / AgCl.
(5) The matrix of the Co alloy has a high electrical resistivity and can be easily heated to a predetermined temperature by energization or the like, thereby contributing to reduction of energy efficiency.
For example, it has a high electrical resistance of 80 to 110 μΩ · cm even in a relatively low temperature environment of about normal temperature, and its heat generation characteristics are further improved by the precipitation hardening type precipitates precipitated by precipitation hardening functions such as aging treatment. Co alloy can be used.
(6) The mechanical properties such as the strength of the wire itself are not substantially lowered even when heated to about 200 ° C. by the energization treatment.

前記析出硬化処理に伴う析出物については、その基地マトリックス内に、Co,Mo,Al,Ti,Nb又はWのいずれか1種以上を主要組成とする炭化物,Al及び/又はTiの金属間化合物のいずれか析出物が形成されるものを含む。その析出物は、該Co合金の任意断面における顕微鏡観察で、例えば基地マトリックス中に0.02〜0.2μm程度の平均粒子径を持つ前記微細析出物を含み、かつ0.5〜2.0%の容積比(面積比)で点在させることが推奨される。 その検証は、例えば1000倍程度以上の高倍率で観察可能であり、さらに画像回析を行うことで数値化可能である。    As for the precipitate accompanying the precipitation hardening treatment, carbide, Al and / or Ti intermetallic compound mainly containing any one or more of Co, Mo, Al, Ti, Nb or W in the matrix. Any of those in which a precipitate is formed is included. The precipitate includes, for example, the fine precipitate having an average particle diameter of about 0.02 to 0.2 μm in a matrix matrix and 0.5 to 2.0 by microscopic observation in an arbitrary cross section of the Co alloy. It is recommended to use a volume ratio (area ratio) of%. The verification can be observed, for example, at a high magnification of about 1000 times or more, and can be quantified by performing image diffraction.

その場合の前記平均粒子径は、その測定視野内に確認される析出粒子の上位20点の長径の合計を測定点数で除した平均値で示し、また容積比は同様に所定視野内におけるその測定倍率で検証される析出粒子が占める面積比を意味するもので、これによって、ワイヤー自体の通電抵抗率を高めるとともに、細線材料としての強度向上にも寄与する。図3は、より好ましい析出物の一例として、平均粒径0.04〜0.10μmで0.5〜1.0%の容積比で分布する炭化物粒子の分布状態を示すが、研磨時に生じた若干の異形部を含んでいる。  In this case, the average particle diameter is indicated by an average value obtained by dividing the total of the major 20 major diameters of the precipitated particles confirmed in the measurement field by the number of measurement points, and the volume ratio is similarly measured in the predetermined field of view. This means the area ratio occupied by the precipitated particles to be verified by the magnification. This increases the current resistivity of the wire itself and contributes to the improvement of strength as a thin wire material. FIG. 3 shows a distribution state of carbide particles having an average particle diameter of 0.04 to 0.10 μm and a volume ratio of 0.5 to 1.0% as an example of a more preferable precipitate. Includes some irregularities.

また前記Co合金細線は、例えば常温〜200℃の温度範囲での使用を前提とし、かつ好適な使用ができるよう、例えば温度20℃の室温環境下で、80〜110μΩ・cmの高い電気抵抗特性を有するものが採用される。その測定は、任意に抽出した試験片を例えばJIS−C3002「電気用銅線及びアルミニウム線試験方法」の電位差計による方法で測定可能であり、その特性値が80μΩ・cm未満のものでは、これを使用する際の通電によって発熱温度に加熱するのに多大の電気エネルギーを要し、効率的ではない。逆に110μΩ・cmを超えるものでは、前記Co合金では得られ難く、より好ましくは95〜105μΩ・cmである。  The Co alloy fine wire is premised on use in a temperature range of, for example, room temperature to 200 ° C., and has a high electric resistance characteristic of 80 to 110 μΩ · cm, for example, in a room temperature environment of 20 ° C. What has is adopted. The measurement can be performed using a test piece extracted arbitrarily, for example, by a method using a potentiometer of JIS-C3002 “Testing method for electrical copper wire and aluminum wire”. If the characteristic value is less than 80 μΩ · cm, A large amount of electrical energy is required to heat to the heat generation temperature by energization when using the battery, which is not efficient. On the other hand, if it exceeds 110 μΩ · cm, it is difficult to obtain with the Co alloy, and more preferably 95 to 105 μΩ · cm.

この電気抵抗率を任意に調整する方法としては、例えばCo含有量を比較的高めにしたり、冷間加工に伴う加工歪をより少なくなるように調節することが推奨される。また、前記時効処理等の析出硬化機能により析出する前記析出物によって、より高めることもできる。その機能を備えるように、本発明では前記Co合金は析出硬化型であることが望まれる。  As a method for arbitrarily adjusting the electrical resistivity, for example, it is recommended to adjust the Co content to be relatively high or to reduce the working strain accompanying cold working. Moreover, it can also raise more by the said deposit deposited by precipitation hardening functions, such as the said aging treatment. In order to have this function, in the present invention, the Co alloy is desirably a precipitation hardening type.

次に、本発明に係る切断加工プロセスを説明すれば、図1に示すように、例えばシリコンやサファイヤ、種々組成のセラミック等の無機性脆性材料(例えばインゴット)をワーク1とし、その切断部4に沿って前記構成のカット用ワイヤー2を掛け渡して、これを一定の切り込み速度(矢印A)と走行速度を維持しながらカットするもので、そのカットをワーク1を腐食エッチング現象による化学的方法で行うことを特徴とする。  Next, the cutting process according to the present invention will be described. As shown in FIG. 1, an inorganic brittle material (for example, ingot) such as silicon, sapphire, and ceramics having various compositions is used as a work 1, and a cutting portion 4 thereof. The cutting wire 2 having the above-described configuration is stretched along the wire and is cut while maintaining a constant cutting speed (arrow A) and traveling speed. It is characterized by being performed by.

すなわち、供給リール10から繰り出されるカット用ワイヤー2は、種々ロールを経てワーク1と接触させることで徐々に切断カットし、その後水洗槽11と乾燥ヒーター12を経て、表面に残留する前記腐食溶液を除却・乾燥し、巻取りリール13に巻き取られる。その場合、必要に応じて図1の1点鎖線で示すように、該ワイヤー2をワーク1に繰り返し又は多段に掛け渡してカットすることができる。    That is, the cutting wire 2 fed out from the supply reel 10 is cut and cut gradually by being brought into contact with the workpiece 1 through various rolls, and then the corrosive solution remaining on the surface is passed through the washing tank 11 and the drying heater 12. It is removed and dried, and taken up on the take-up reel 13. In that case, the wire 2 can be cut over the workpiece 1 repeatedly or in multiple stages, as indicated by a one-dot chain line in FIG.

図2は、該ワーク1の近傍要部を拡大図示するもので、供給側から繰り出したカット用ワイヤー2は、ワーク1の前段に設けた腐食性溶液の供給手段3によって、その表面上に該溶液を塗布被包したままワーク1の切断部4に送り、その接触界面に前記腐食性溶液3aを介在させることで、その切断部4において局部的な腐食エッチング反応を生じさせる。図1では、前記腐食性溶液3aは、例えばこれを収容した容器の下方にフェルト3Aを設け、その毛細管現象で走行するカット用ワイヤー2の表面上に付与可能に構成しており、そのままワーク1の切断部に供される。必要ならば、該溶液の貯槽内を通過させることでワイヤー表面に付与させることもできる。  FIG. 2 is an enlarged view of the main part in the vicinity of the workpiece 1. The cutting wire 2 fed from the supply side is placed on the surface of the workpiece 1 by the corrosive solution supply means 3 provided at the front stage of the workpiece 1. The solution is applied and encapsulated and sent to the cutting portion 4 of the workpiece 1, and the corrosive solution 3 a is interposed at the contact interface, thereby causing a local corrosion etching reaction at the cutting portion 4. In FIG. 1, the corrosive solution 3 a is configured such that, for example, a felt 3 </ b> A is provided below a container containing the corrosive solution 3 </ b> A, and the corrosive solution 3 a can be applied on the surface of the cutting wire 2 that travels by capillary action. It is used for the cutting part. If necessary, it can be applied to the wire surface by passing through the solution storage tank.

また、前記カット用ワイヤー2は、前記腐食エッチング反応がカットの必要部分のみで生ずるように、ワーク1の前後に設けた通電加熱機構14(ガイドロール14A,14B)で通電加熱可能に構成しており、その設定電流量によって、反応可能な所定温度(例えば50〜200℃)に加熱するとともに、ワーク1に対する切込み速度とワイヤー2の走行速度が一定の関係になるように調整することで、ワーク1は連続的に切断される。なお符号15は、該ワイヤー2を所定温度に加熱する為の電源である。  In addition, the cutting wire 2 is configured to be electrically heated by the current heating mechanism 14 (guide rolls 14A and 14B) provided before and after the workpiece 1 so that the corrosion etching reaction occurs only at the necessary portion of the cut. In addition to heating to a predetermined temperature that can be reacted (for example, 50 to 200 ° C.) according to the set current amount, and adjusting the cutting speed with respect to the work 1 and the traveling speed of the wire 2 to have a constant relationship, 1 is continuously cut. Reference numeral 15 denotes a power source for heating the wire 2 to a predetermined temperature.

本発明によれば、ワーク1をカットする前記ワイヤー2は、その設定領域内でほぼ所定温度を備え、ワーク1を活発に腐食エッチング反応させて溶断カットさせることができ、その切断カット面の平滑性や平面性が確保できる。一方、カット部以外に前記腐食性溶液が残留していても、その部分では該ワイヤーよる加熱がないことから、実質的な腐食反応は生じないこととなる。  According to the present invention, the wire 2 for cutting the workpiece 1 has a substantially predetermined temperature in the set region, and can actively cut the workpiece 1 by a corrosive etching reaction so that the cut cut surface is smooth. And flatness can be secured. On the other hand, even if the corrosive solution remains other than the cut portion, since there is no heating by the wire in that portion, no substantial corrosion reaction occurs.

なお前記腐食性溶液には、例えば前記例示の弗硝酸や弗硫酸などの高腐食性溶液によるものが採用でき、その構成組成比を変化させることで、より最適温度での腐食エッチング反応ができるよう発生温度を変えることもできる。発明者による研究では、前記弗硝酸溶液で、HFとNO3の容量配合比率を1:5とするものでは該反応の活性開始温度は約65℃であったのに対し、同比1:4では約59℃、同様に1:3では約54℃と、配合比率に伴って温度変化する結果を得られている。したがって、ワークの種類や腐食性溶液の構成組成を適宜設定することで、最適な実施が行われる。  As the corrosive solution, for example, a highly corrosive solution such as the above-mentioned exemplified hydrofluoric acid or hydrosulfuric acid can be adopted, and the corrosive etching reaction at a more optimum temperature can be performed by changing the composition ratio. The generation temperature can be changed. According to the inventor's study, when the volumetric mixture ratio of HF and NO3 is 1: 5 in the hydrofluoric acid solution, the reaction initiation temperature of the reaction is about 65 ° C., whereas the ratio 1: 4 is about At 59 ° C., similarly 1: 3, about 54 ° C., the result of temperature change with the blending ratio was obtained. Therefore, optimal implementation is performed by appropriately setting the type of workpiece and the composition of the corrosive solution.

次に、本発明における前記Co合金として、これを構成する各組成の及ぼす作用と、その分量にする理由を説明する。  Next, the effect of each composition constituting the Co alloy in the present invention and the reason for the amount will be described.

《Ni:12.0〜20.0%》
〔Ni〕は、基質を安定なオーステナイト組織にする為に必要であり、またクロムの耐酸化性を助長して加工性を改善するのに有効な元素である。Niが12.0%未満のものでは本発明が求める耐食性の確保が困難で、十分な効果が期待され難く、また20.0%を超えるものではコストの割に強度の向上が図りにくい。より好ましくは14.0〜20.0%、更に後記第三の添加元素を付加するものでは、好ましくは14.0〜18.5%とする。
<< Ni: 12.0 to 20.0% >>
[Ni] is an element that is necessary for making the substrate into a stable austenite structure, and is effective in improving the processability by promoting the oxidation resistance of chromium. When the Ni content is less than 12.0%, it is difficult to secure the corrosion resistance required by the present invention, and it is difficult to expect a sufficient effect. When the Ni content exceeds 20.0%, it is difficult to improve the strength for the cost. More preferably, it is 14.0 to 20.0%, and in the case of adding a third additive element described later, it is preferably 14.0 to 18.5%.

《Cr:12.0〜25.0%》
〔Cr〕も前記Niと同様に、本合金材料の生地に固溶することで耐食性及び機械的特性を向上するとともに、その熱処理によって基地マトリックス中にクロム酸化物などの析出物を発生させて、基地強度や電気抵抗を高める働きをする。その効果は、例えば12.0%以上で得られ、一方25.0%を超えるものでは鍛造性に影響して疲労特性が低下する。そのため好ましくは15.0%以上、更に好ましくは19.0%とする。
<< Cr: 12.0-25.0% >>
[Cr], like Ni, improves the corrosion resistance and mechanical properties by dissolving in the dough of the alloy material, and generates precipitates such as chromium oxide in the matrix by the heat treatment, It works to increase base strength and electrical resistance. The effect is obtained, for example, at 12.0% or more. On the other hand, if it exceeds 25.0%, the forgeability is affected and the fatigue characteristics are lowered. Therefore, it is preferably 15.0% or more, more preferably 19.0%.

《Co:35〜60%》
〔Co〕は、前記するように本発明では基本元素に相当するもので、その組成によって前記電気抵抗率に影響をもたらすなど、本形態では前記した他の成分組成とのより好ましい関係から各々35〜60%とし、より好ましくは、その他添加組成として、またその組成に数%程度のMoを含有する場合は、40.0〜55.0%とすることが望ましい。
<< Co: 35-60% >>
As described above, [Co] corresponds to a basic element in the present invention, and in this embodiment, it influences the electrical resistivity by its composition. It is preferable to set it to 40.0 to 55.0% when it contains about several percent Mo as the other additive composition and the composition.

これら基本組成に加えて、該Co合金は前記第一形態及び第二形態の合金として、更に次の添加元素を含有するものを含む。  In addition to these basic compositions, the Co alloys include those containing the following additional elements as the alloys of the first and second forms.

《C:≦0.30%》
〔C〕は、その添加によって結晶を微細化し機械的特性、特に高強度化するのに有効である。しかし、0.30%を超える程多量に添加すると必要以上の炭化物が形成して、細径化する場合の加工性、繰り返し曲げに伴う疲労寿命において問題になりやすい。より好ましくは0.08〜0.20%とする。
<< C: ≤0.30% >>
The addition of [C] is effective for making crystals finer and adding mechanical properties, particularly high strength. However, if it is added in a large amount exceeding 0.30%, an excessive amount of carbide is formed, which tends to cause problems in workability when reducing the diameter and fatigue life associated with repeated bending. More preferably, it is 0.08 to 0.20%.

《Si:≦2.0%》
〔Si〕は、溶製時に必要な脱酸成分であり、その添加によって疲労,強度及び寿命特性を向上するが、2.0%を超えるとクリープ特性が低下し、またσ相生成をもたらしやすく、より好ましくは1.0%以下(例えば0.1〜1.0%)とする。
<< Si: ≤ 2.0% >>
[Si] is a deoxidizing component necessary for melting, and its addition improves fatigue, strength, and life characteristics. However, if it exceeds 2.0%, the creep characteristics deteriorate and it is easy to cause σ phase formation. More preferably, it is 1.0% or less (for example, 0.1 to 1.0%).

《Mn:≦2.0%》
〔Mn〕は、ニッケルとともに熱間加工性を改善する。しかし、一般的に2.0%を超えてもその効果は飽和し、かえってコストアップとなることから、より好ましくは1.50%以下(例えば0.2〜1.50%)とする。
<< Mn: ≦ 2.0% >>
[Mn] improves hot workability together with nickel. However, generally, even if it exceeds 2.0%, the effect is saturated and the cost is increased. Therefore, the content is more preferably 1.50% or less (for example, 0.2 to 1.50%).

《Mo:2.0〜10.0%》
〔Mo〕は、本合金の強度を飛躍的に向上し、2.0〜10.0%で最も優れた効果を発揮する。しかし、特に10%を超えるものでは硬脆化して寿命を短くしやすく、より好ましくは4.0〜8.0%とする。
<< Mo: 2.0-10.0% >>
[Mo] drastically improves the strength of this alloy, and exhibits the most excellent effect at 2.0 to 10.0%. However, particularly those exceeding 10% tend to be hard and brittle and shorten the life, and more preferably 4.0 to 8.0%.

また本発明は、前記各Co合金に対して、更に機械的特性を向上する目的で次のような特定第三元素の添加も許容する。
該第三元素には、Al:0.1〜4.0%,Ti:0.10〜2.5%,Nb:0.01〜1.0%及びW:0.50〜5.0%のいずれか1種以上が相当し、これら組成の前記析出物による時効特性によって特性向上を図り得る。該第三元素の添加は、前記第一形態のCo合金、あるいは特に前記CやSiなどの添加元素を規定しないCo合金にも同様な効果が見られ、好ましい。
The present invention also allows the addition of the following specific third element to each Co alloy for the purpose of further improving the mechanical properties.
The third element includes Al: 0.1-4.0%, Ti: 0.10-2.5%, Nb: 0.01-1.0% and W: 0.50-5.0% Any one or more of these may correspond, and characteristics can be improved by aging characteristics due to the precipitates of these compositions. The addition of the third element is preferable because the same effect can be seen in the Co alloy of the first form, or in particular a Co alloy that does not define an additive element such as C or Si.

その第三元素の各組成が各々単独の場合、前記各下限値未満のものではその効果が期待できず、逆に上限を超えるものでは材料の硬化が増して加工性の低下を招くこととなる。また、いずれか2以上を複合添加するものでは、その合計は5.5%を超えないようにすることが好ましい。  When each composition of the third element is individual, the effect cannot be expected if it is less than the above lower limit value, and conversely if it exceeds the upper limit, the hardening of the material will increase and the workability will be reduced. . Moreover, in the case where any two or more are added in combination, it is preferable that the total does not exceed 5.5%.

その中で前記〔W〕は、Moと同様にCo中に固溶することで生地に強度を与え、耐食性、疲労強度をより向上させるとともに、非磁性をもたらす利点もある。その効果は0.50%以上の添加で見られるが、5.0%を超えると別質な第2相が析出して脆化しやすく、より好ましくは3.0%以下とする。また、例えば前記MoとWを併用する場合は、その合計含有量が3.0〜10.0%にするのが良く、さらにこうした構成元素に加え、その他不純物としては例えばP,Sを各々0.05%以下の不可避的な含有を許容し、残部はFeでなる。  Among them, [W] has the advantage of giving non-magnetism as well as improving the corrosion resistance and fatigue strength by giving the fabric strength by being dissolved in Co similarly to Mo. The effect is seen with addition of 0.50% or more, but when it exceeds 5.0%, a second phase of a different quality is likely to precipitate and become brittle, and more preferably 3.0% or less. For example, when Mo and W are used in combination, the total content is preferably 3.0 to 10.0%. In addition to these constituent elements, other impurities such as P and S are 0%. The inevitable content of 0.05% or less is allowed, and the balance is Fe.

このように構成されてなる本発明のカット用ワイヤー1は、例えば次の方法で製造可能である。
前記組成に調整されたCo合金のROD線材を用い、伸線加工と熱処理を繰り返し行いながら、最終加工率例えば75%以上(より好ましくは85〜99.5%)の強加工を行い、目標線径に仕上伸線加工した後に、更に温度400〜650℃の温度範囲での時効熱処理を施す。 前者伸線加工はより好ましくは、ダイヤモンドダイスを用いた湿式伸線加工で行い、その平均粗さRaは0.01〜0.5μmの表面状態に仕上げることが好ましい。その表面粗さは、トータルの加工率や使用する潤滑剤の種類、粘度によって適宜変化し、前記表面粗さを有することで、これをカット用ワイヤーとして使用する際には前記腐食性溶液の保持性を高め得る。 また後者の時効熱処理条件についても、その基地マトリックス中に析出する析出物の生成が促進でき、通電発熱性を改善することができる。より好ましい熱処理条件として、温度500〜600℃×時間3〜10min程度で加熱し、急冷することが推奨される。
The cutting wire 1 of the present invention configured as described above can be manufactured by the following method, for example.
Using the ROD wire of Co alloy adjusted to the above composition, while performing wire drawing and heat treatment repeatedly, the final processing rate, for example, 75% or more (more preferably 85 to 99.5%) is strongly processed, and the target line After finishing wire drawing to a diameter, an aging heat treatment is further performed in a temperature range of 400 to 650 ° C. The former wire drawing is more preferably performed by wet wire drawing using a diamond die, and the average roughness Ra is preferably finished to a surface state of 0.01 to 0.5 μm. The surface roughness appropriately changes depending on the total processing rate, the type of lubricant used, and the viscosity, and has the surface roughness so that the corrosive solution is retained when this is used as a cutting wire. Can increase sex. Further, the latter aging heat treatment conditions can also promote the formation of precipitates that precipitate in the matrix matrix, and can improve the current-generating heat generation. As a more preferable heat treatment condition, it is recommended to heat at a temperature of 500 to 600 ° C. × time for about 3 to 10 minutes and to cool rapidly.

また、図4はカット用ワイヤーの別の形態を示す平面図である。これは、例えば前記特性を持つCo合金細線の複数本を縒り合わせたもの、あるいは、その素材段階で、予め複数の線材同士を集束して同時に細径化する集束伸線法で細径化した2〜100本程度(本形態では2本)の糸状の複合線を用いて、これを所定ピッチで縒り加工した撚線ないし編組処理した複合細線2Aとして用い得る。その状態でワイヤー表面は前記腐食性溶液3aで覆われている。同様に図5は図4の横断面図を示しており、該ワイヤー同士の隣接部には毛細管現象による液溜り部16が見られ、十分な腐食液の供給をもたらすことができる。  FIG. 4 is a plan view showing another form of the cutting wire. This is, for example, a combination of a plurality of Co alloy fine wires having the above-mentioned characteristics, or, at the material stage, a plurality of wires are preliminarily converged and the diameter is reduced by a converging wire drawing method that simultaneously reduces the diameter. About 2 to 100 (two in this embodiment) thread-like composite wire can be used as a twisted wire or a braided composite thin wire 2A obtained by winding the wire-like composite wire at a predetermined pitch. In this state, the wire surface is covered with the corrosive solution 3a. Similarly, FIG. 5 shows a cross-sectional view of FIG. 4, and a liquid reservoir 16 due to capillary action is seen in the adjacent portion between the wires, which can provide a sufficient supply of corrosive liquid.

具体的には、各単線2cは各々線径0.005〜0.05mm程度の極細線として、これを所定ピッチ(例えば該芯素線2cの線径の3〜100倍程度)で撚り合わて構成したものである。
以下、実施例によって本発明をさらに説明する。
Specifically, each single wire 2c is formed as an extra fine wire having a wire diameter of about 0.005 to 0.05 mm and twisted at a predetermined pitch (for example, about 3 to 100 times the wire diameter of the core wire 2c). It is composed.
Hereinafter, the present invention will be further described by way of examples.

実施例として、材料組成の適合性を評価する判断基準として、Ni,Cr,Coの3元素についてその他添加元素の及ぼす影響を見るために、それぞれ成分組成の分量を段階的に変化させた表1記載の7種類のCo合金線を準備した。そして、その軟質線材(線径:0.18mm)を用いて、湿式冷間伸線機にセットし、各々0.06mmの硬質細線にまで総加工率89%を目標として極細伸線加工を行い、その加工性を評価した。なお同表中の、各試料の元素欄に下線を付したものは、本発明の組成範囲外であることを示す。  As an example, as a criterion for evaluating the suitability of the material composition, in order to see the effect of other additive elements on the three elements of Ni, Cr, and Co, the amount of each component composition was changed stepwise. The seven types of Co alloy wires described were prepared. Then, using the soft wire rod (wire diameter: 0.18 mm), it is set in a wet cold wire drawing machine, and ultra-fine wire drawing is performed with a target of a total working rate of 89% to 0.06 mm hard wires. The workability was evaluated. In the table, the underlined element column of each sample indicates that it is outside the composition range of the present invention.

また、比較材には通常のステンレス鋼線(SUS304,SUS316,SUS430)を用い、上記に習って同様の伸線加工を行い、比較1〜3の硬質細線とした。    Moreover, the normal stainless steel wire (SUS304, SUS316, SUS430) was used for the comparison material, and the same wire drawing process was performed according to the above to obtain the hard thin wires of comparisons 1 to 3.

該伸線加工は、非塩素系のオイル(溶融粘度16mm2/S(40℃)を用いた液中にダイヤモンドダイスを浸漬して、各ダイス間の加工率を12〜20%とし伸線速度200m/min,の条件で行ない、得られた細線の表面欠陥(例えばダイスマークやきず等の表面異常の発生)及び断線発生の有無を調査した。その結果を表2に示す。  The wire drawing is performed by immersing a diamond die in a liquid using non-chlorine oil (melt viscosity: 16 mm 2 / S (40 ° C.), setting a working rate between the dice to 12 to 20%, and a wire drawing speed of 200 m. / Min., And the surface defects (for example, occurrence of surface abnormalities such as dice marks and flaws) of the obtained fine wires and the presence or absence of disconnection were investigated, and the results are shown in Table 2.

その結果、試料1,5,7及び比較材3は、いずれも断線及びダイスマーク等が発生し、目標線径0.06mmを得ることはできなかった。  As a result, the samples 1, 5, and 7 and the comparative material 3 were all disconnected and dice marks were generated, and the target wire diameter of 0.06 mm could not be obtained.

次に、前記各試料の耐食性について、前記伸線加工した各試料についてJIS−G0577による孔食電位を求め、対象液には35%NaClを用いて、Ar脱気、掃引速度20mV/min.で行ったものである。その結果、試料6は十分な耐食性が見られず、結果的に本願発明に係る試料2〜4が最も安定するものであった。  Next, regarding the corrosion resistance of each sample, the pitting corrosion potential according to JIS-G0577 was determined for each of the drawn samples, and 35% NaCl was used as the target liquid, Ar deaeration, and the sweep rate was 20 mV / min. It was done in. As a result, sample 6 did not show sufficient corrosion resistance, and as a result, samples 2 to 4 according to the present invention were most stable.

以上の結果に照らして、本願発明に係るCo合金については、前記Ni:12.0〜20.0%,Cr:12.0〜25.0%,Co:35〜60%を備えるものに優位差が認められた。そこで、その範囲内でその他の微量成分を更に詳細に検証することとして、表2のCo合金についてその他特性を評価した。  In light of the above results, the Co alloy according to the invention of the present application is superior to those comprising Ni: 12.0 to 20.0%, Cr: 12.0 to 25.0%, and Co: 35 to 60%. Differences were noted. Accordingly, other characteristics of the Co alloy shown in Table 2 were evaluated as a more detailed verification of other trace components within the range.

これら試料A〜Dの加工は、前記実施例1より更に細径化を目的として、素線0.18mmの軟質線材を用い、同様の湿式伸線加工によって0.03mmの細径硬質線材を製造した。いずれの試料材も良好な加工性が確認された。  For the processing of these samples A to D, for the purpose of further reducing the diameter compared to Example 1, a soft wire rod of 0.18 mm is used, and a 0.03 mm thin hard wire is manufactured by the same wet wire drawing. did. All the sample materials were confirmed to have good workability.

次に、その硬質細線について更にストランド方式の連続時効熱処理を行い、加熱条件は、温度500〜550℃でかつ温度×時間(min.)との積を18000〜30000として設定したもので、その加熱雰囲気は露点−60℃の Arガス中で行ったものである。
得られた各細線の特性結果を表3に一覧する。
Next, the strand type continuous aging heat treatment is further performed on the hard thin wire, and the heating conditions are set to a temperature of 500 to 550 ° C. and a product of temperature × time (min.) As 18000 to 30000. The atmosphere was performed in an Ar gas having a dew point of −60 ° C.
Table 3 lists the characteristic results of the obtained thin wires.

上記試験は、機械的特性はJIS−Z2241に基づき、標点間距離100mmにおける引張試験で行い、析出物は各細線の横断面について1000倍に拡大した顕微鏡観察によるもので、平均粒子径は、その測定視野内に見られる各粒子について、その平均径の上位20点の結果を更に平均化する平均粒径で示すもので、分布率とともに画像解析で求めたものである。  In the above test, the mechanical properties are based on JIS-Z2241, and the tensile test is performed at a distance between the gauge points of 100 mm. The precipitates are observed by a microscope magnified 1000 times with respect to the cross section of each thin wire. For each particle found in the measurement field of view, the results of the top 20 points of the average diameter are shown as average particle diameters that are further averaged, and are obtained by image analysis together with the distribution ratio.

また耐食性は、JIS−G0577による前記孔食電位により、また電気抵抗率は、JIS−C3002「電気用銅線及びアルミニウム線の試験方法」により、任意に選択した該合金細線のサンプルを、各々所定の電位差計(横河電機製)にセットして、その50cm分における電気抵抗値で、その平均値で示す。試験環境は、温度20℃の室温環境で行ったものである。
その中で、特にそのマトリックス内に、前記図3に示すような微細化合析出物を有する試料では、電気抵抗率を高め好適することが確認された。
Corrosion resistance is determined according to the pitting potential according to JIS-G0577, and electrical resistivity is determined according to JIS-C3002 “Testing method for electrical copper wire and aluminum wire”. The electric resistance value at 50 cm is shown as an average value. The test environment was a room temperature environment at a temperature of 20 ° C.
In particular, it was confirmed that a sample having a fine compound precipitate as shown in FIG.

また、得られた各細線は、いずれも光輝な表面状態を有し、その表面粗さRaは0.03〜0.14μmとミクロ的に見ると表面全体にわたって微小凹凸が認められるものの、特にダイスマーク等の加工トラブルもなく、良好な細径加工性を有するものであった。  In addition, each of the obtained thin wires has a brilliant surface state, and the surface roughness Ra is 0.03 to 0.14 μm. There was no processing trouble such as marks, and it had good small diameter workability.

実施例3は、実施例2で得られたCo合金細線を用いた切断試験の結果を示すもので、ワークにはサファイアインゴット(直径2インチ)を約1mm間隔の薄板状にカットできるように該合金細線を多段に掛渡し、一定速度での切り込みと、前記カット用ワイヤーの送り速度を次の条件として、切断試験を行った。  Example 3 shows the result of a cutting test using the Co alloy fine wire obtained in Example 2, and the workpiece is cut so that a sapphire ingot (diameter 2 inches) can be cut into a thin plate with an interval of about 1 mm. A thin alloy wire was passed in multiple stages, and a cutting test was performed under the following conditions: cutting at a constant speed and feeding speed of the cutting wire.

なおその際、前記ワークの所定部分がカットされるように、図2に習って、ワークの前段階で腐食性溶液を該ワイヤー表面に付着させるようにセットし、切り込み量0.12μm/min.かつ走行速度3m/minの条件で行った。また前記腐食性溶液には、5%HF+15%HNO3の弗硝酸溶液を用い、カット処理の必要部分のみで腐食エッチング反応が促進し得るように、ワークを挟む前後2つのガイドロール間に電流25A/dmm2を印加して、ワイヤー接触部の液温が80℃になるように通電加熱している。  At that time, according to FIG. 2, the corrosive solution is set to adhere to the wire surface in the previous stage of the work so that a predetermined part of the work is cut, and the cutting amount is 0.12 μm / min. And it was performed on the conditions of traveling speed 3m / min. Further, as the corrosive solution, a 5% HF + 15% HNO3 hydrofluoric acid solution is used, so that the corrosive etching reaction can be promoted only at a necessary portion of the cutting treatment, and a current of 25 A / dmm2 is applied and energization heating is performed so that the liquid temperature of the wire contact portion becomes 80 ° C.

該腐食性溶液は、微細なワイヤー表面上に形成した微視的な結晶粒間の凹凸によって該溶液の濡れ保持性が向上でき、カット処理に十分な腐食溶液をもたらすものであった。  The corrosive solution was able to improve the wettability of the solution due to unevenness between microscopic crystal grains formed on the surface of the fine wire, resulting in a corrosive solution sufficient for the cutting treatment.

その切断カット試験では、各カット用ワイヤーが30μmと微小細線であるものの、ワークに対して必要以上の押圧付加の必要はなく、カット試験中におけるワイヤーの断線などのトラブルは見られなかった。この試験において、該ワークは約200〜240分の短時間で切断カットができ、しかもその切断幅は、該ワイヤーの線径の1.5倍以下に留まり、歩留りよくしかも平滑な表面状態が得られた。  In the cutting and cutting test, although each cutting wire was 30 μm and a fine thin wire, there was no need to apply pressure more than necessary to the workpiece, and troubles such as wire breakage during the cutting test were not observed. In this test, the workpiece can be cut and cut in a short time of about 200 to 240 minutes, and the cut width remains below 1.5 times the wire diameter of the wire, yielding a smooth and smooth surface state. It was.

前記試料BのCo合金細線(線径0.08mm)について、更に異種ワークへの適用可能性を評価する為に、腐食性溶液に弗硫酸溶液を用い、またワークは多結晶シリコンインゴット(太さ8インチ)への適用可能性を同様の条件で検証した。シリコンインゴットはそのカット用ワイヤーで加熱されたカット部では容易に腐食反応が生じ、一方、カット部以外の領域ではワイヤー表面の腐食溶液が活性温度域に達しないことから十分な腐食反応には至らず、ほとんど影響しないことが確認された。このことから、同様の無機性脆性材料の切断加工に十分に採用可能なことが認められた。またその切断幅の寸法も、0.15mm以下の極めて微細なもので、歩留り70%が可能であった。  In order to further evaluate the applicability of the sample B Co alloy thin wire (wire diameter 0.08 mm) to different types of workpieces, a hydrofluoric acid solution was used as the corrosive solution, and the workpiece was a polycrystalline silicon ingot (thickness). The applicability to 8 inches) was verified under the same conditions. A silicon ingot easily undergoes a corrosion reaction at the cut portion heated by the cutting wire, while the corrosion solution on the wire surface does not reach the active temperature range in areas other than the cut portion, leading to a sufficient corrosion reaction. It was confirmed that there was almost no effect. From this, it was recognized that it could be sufficiently employed for cutting of the same inorganic brittle material. In addition, the size of the cut width was very fine of 0.15 mm or less, and a yield of 70% was possible.

次の実施例として、前記実施例4で用いたのと同様に、試料BのCo合金細線(線径0.14mm)の3本を準備し、これを極細撚線機にセットするとともに、撚りピッチ0.2mmで撚り合わした複合細線のカット用ワイヤーについても同様の切断カット試験を行った。  As the next example, in the same manner as used in Example 4, three Co alloy thin wires (wire diameter 0.14 mm) of Sample B were prepared, and these were set in an ultra-fine stranded wire machine and twisted. A similar cut test was also performed on a composite fine wire cutting wire twisted at a pitch of 0.2 mm.

この形態では、合金細線同士が隣接する凹所には図5に見られるような、腐食溶液の溜まり部16が確認でき、毛細管現象による効果的な貯留効果を高めることで有効であった。しかも、この形態では該複合細線のスパイラル状の接触部では、その凹所に十分な液溜り部を有し、良好なカット処理ができた。  In this embodiment, the reservoir 16 of the corrosive solution as shown in FIG. 5 can be confirmed in the recess where the alloy fine wires are adjacent to each other, and this is effective by enhancing the effective storage effect by capillary action. In addition, in this embodiment, the spiral contact portion of the composite thin wire has a sufficient liquid reservoir in the recess, and a good cutting process can be performed.

産業上の利用分野Industrial application fields

本発明のエッチングカット用ワイヤーによれば、従来のようなその切断界面に砥粒を介在させることなく、またワイヤーには比較的緩い張力付加で切断カットができることから、実質的な切断ロスの軽減が図れ、シリコンやサファイア、セラミックなどの種々無機性脆性材料の切断加工に幅広く用い得るものである。  According to the wire for etching cut of the present invention, the cutting cut can be substantially reduced without interposing abrasive grains at the cutting interface as in the prior art, and the wire can be cut by applying relatively loose tension. Therefore, it can be widely used for cutting various inorganic brittle materials such as silicon, sapphire and ceramic.

Claims (11)

無機性脆性材料を腐食エッチングで化学的に溶断カットする為の細径金属線材でなるカット用ワイヤーであって、
該金属線材は、質量%で、Ni:12.0〜20.0%、Cr:12.0〜25.0%、Co:35〜60%を含有するCo合金で構成され、線径0.2mm未満で耐力1500〜2200N/mm2の高強度特性とともに、
JIS−G0577に基づく孔食電位(V’c10):0.60〜0.75Vと、80〜110μΩ・cmの電気抵抗率(但し、室温環境中)を備える前記Co合金の細線(Co合金細線)でなることを特徴とするエッチングカット用ワイヤー。
A cutting wire made of a thin metal wire for chemically fusing and cutting inorganic brittle materials by corrosive etching,
The metal wire is composed of a Co alloy containing Ni: 12.0 to 20.0%, Cr: 12.0 to 25.0%, and Co: 35 to 60% in terms of mass%, and the wire diameter is 0.00. Along with the high strength properties of less than 2mm and proof strength 1500-2200N / mm2,
Pitting corrosion potential (V'c10) based on JIS-G0577: 0.60 to 0.75 V, and an electrical resistivity of 80 to 110 μΩ · cm (provided in a room temperature environment) (Co alloy fine wire) Etching cut wire, characterized by comprising:
Co合金細線の電気抵抗率は、95〜105μΩ・cmである請求項1に記載のエッチングカット用ワイヤー。  The wire for etching cut according to claim 1, wherein the electrical resistivity of the Co alloy fine wire is 95 to 105 µΩ · cm. Co合金細線は、質量%でC:≦0.30%,Si:≦2.0%,Mn:≦2.0%,Ni:14.0〜20.0%,Cr:15.0〜25.0%,Mo:2.0〜10.0%,Co:40.0〜55.0%を含み、残部Fe及び不可避不純物からなる析出硬化型の前記Co合金でなることを特徴とする請求項1又は2に記載のエッチングカット用ワイヤー。  Co alloy fine wire is C: ≦ 0.30%, Si: ≦ 2.0%, Mn: ≦ 2.0%, Ni: 14.0-20.0%, Cr: 15.0-25 in mass%. 0.0%, Mo: 2.0 to 10.0%, Co: 40.0 to 55.0%, and the precipitation-hardening type Co alloy consisting of the remaining Fe and inevitable impurities. Item 3. An etching cut wire according to Item 1 or 2. Co合金細線は、質量%でC:0.08〜0.20%,Si:≦1.0%,Mn:≦2.0%,Ni:14.0〜18.5%,Cr:19.0〜25.0%,Mo:4.0〜8.0%,およびCo:40.0〜55.0%と、更にAl:0.1〜4.0%,Ti:0.10〜2.5%,Nb:0.01〜1.0%及びW:0.50〜5.0%のいずれか1種以上を含み、残部Fe及び不可避不純物からなる析出硬化型の前記Co合金であることを特徴とする請求項1又は3に記載のエッチングカット用ワイヤー。  Co alloy fine wire is C: 0.08-0.20%, Si: ≦ 1.0%, Mn: ≦ 2.0%, Ni: 14.0-18.5%, Cr: 19. 0-25.0%, Mo: 4.0-8.0%, and Co: 40.0-55.0%, and Al: 0.1-4.0%, Ti: 0.10-2 0.5%, Nb: 0.01 to 1.0%, and W: 0.50 to 5.0%, and the precipitation-hardening type Co alloy composed of the remaining Fe and inevitable impurities. The wire for etching cut according to claim 1 or 3, wherein Co合金細線は、その基地マトリックス内に、Co,Mo,Al,Ti,Nb又はWのいずれか1種以上を主要組成とする炭化物、又はAl及び/又はTiの金属間化合物のいずれか析出物が形成されていることを特徴とする請求項1〜4のいずれかに記載のエッチングカット用ワイヤー。  The Co alloy fine wire is a precipitate of either a carbide mainly comprising any one or more of Co, Mo, Al, Ti, Nb or W, or an intermetallic compound of Al and / or Ti in the matrix matrix. The wire for etching cut according to any one of claims 1 to 4, wherein is formed. 前記析出物は、前記合金細線の任意横断面において、平均粒子径が0.02〜0.2μmで、かつ0.5〜2.0%の面積率で分布する前記炭化物である請求項5に記載のエッチングカット用ワイヤー。  6. The precipitate is an carbide having an average particle diameter of 0.02 to 0.2 [mu] m and an area ratio of 0.5 to 2.0% in an arbitrary cross section of the alloy thin wire. The wire for etching cut as described. その表面粗さRaが0.01〜0.5μmである請求項1〜6のいずれかに記載のエッチングカット用ワイヤー。  The surface roughness Ra is 0.01-0.5 micrometer, The wire for etching cuts in any one of Claims 1-6. 前記請求項1乃至7のいずれか記載のCo合金細線の少なくとも2本以上の編組及び/又は縒り合わせによって、1本の複合細線としたものであるエッチングカット用複合ワイヤー。  A composite wire for etching cut, which is a single composite thin wire formed by braiding and / or twisting at least two Co alloy thin wires according to any one of claims 1 to 7. 前記請求項1乃至8のいずれか記載のCo合金細線でなるカット用ワイヤーで、ワークの無機脆性材料を任意切断面で溶断カットするにあたり、
前記ワークとカット用ワイヤーとの接触界面に、該ワークを腐食エッチング現象によって腐食溶解する腐食性溶液を介在させるとともに、該腐食溶解が前記カット用ワイヤーが接する前記接触界面でのみ生じるように、該カット用ワイヤーを所定温度に通電加熱しながら、一定の切込み速度と走行速度で連続的にカットすることを特徴とする、無機脆性材料のカット方法。
In cutting wire made of Co alloy fine wire according to any one of claims 1 to 8, when cutting the frangible inorganic brittle material of the workpiece at an arbitrary cut surface,
The corrosive solution that corrodes and dissolves the workpiece by a corrosive etching phenomenon is interposed in the contact interface between the workpiece and the cutting wire, and the corrosive dissolution occurs only at the contact interface that contacts the cutting wire. A method for cutting an inorganic brittle material, wherein the cutting wire is continuously cut at a constant cutting speed and a traveling speed while being electrically heated to a predetermined temperature.
前記腐食性溶液は、2〜5%HFと10〜15%NO3でなる弗硝酸溶液、又は2〜7%HFと15〜20%H2SO4溶液による弗硫酸溶液である請求項9に記載のカット方法。  10. The cutting method according to claim 9, wherein the corrosive solution is a hydrofluoric acid solution composed of 2 to 5% HF and 10 to 15% NO3, or a hydrofluoric acid solution based on 2 to 7% HF and a 15 to 20% H2SO4 solution. . 前記加熱温度は、50〜85℃に設定されてなる、請求項9又は10に記載のカット方法。  The cutting method according to claim 9 or 10, wherein the heating temperature is set to 50 to 85 ° C.
JP2012230319A 2012-09-27 2012-09-27 Wire for etching cut, and cutting method of inorganic brittle material using the same Pending JP2014070277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012230319A JP2014070277A (en) 2012-09-27 2012-09-27 Wire for etching cut, and cutting method of inorganic brittle material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012230319A JP2014070277A (en) 2012-09-27 2012-09-27 Wire for etching cut, and cutting method of inorganic brittle material using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016159754A Division JP2017008420A (en) 2016-07-28 2016-07-28 Manufacturing method of wire for etching cut and cutting method of inorganic brittle material using wire for etching cut obtained by the method

Publications (2)

Publication Number Publication Date
JP2014070277A true JP2014070277A (en) 2014-04-21
JP2014070277A5 JP2014070277A5 (en) 2015-11-05

Family

ID=50745770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012230319A Pending JP2014070277A (en) 2012-09-27 2012-09-27 Wire for etching cut, and cutting method of inorganic brittle material using the same

Country Status (1)

Country Link
JP (1) JP2014070277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485138A (en) * 2020-04-23 2020-08-04 中国科学院金属研究所 Preparation method of cold-processed cobalt-based alloy rod wire
CN112342441A (en) * 2020-11-07 2021-02-09 南京聚力化工机械有限公司 High-wear-resistance alloy material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175380A (en) * 1974-12-16 1976-06-29 Ibm
US4343662A (en) * 1981-03-31 1982-08-10 Atlantic Richfield Company Manufacturing semiconductor wafer devices by simultaneous slicing and etching
JP2003291056A (en) * 2002-04-01 2003-10-14 Sumitomo Mitsubishi Silicon Corp Wire cutting method for any object, cutting wire, and manufacturing method for wire
JP2007162121A (en) * 2005-12-16 2007-06-28 Nippon Seisen Co Ltd Material for fine metal band for reinforcing resin material, and resin molding and medical product obtained by using the band material
JP2007196329A (en) * 2006-01-26 2007-08-09 Nippon Seisen Co Ltd Wire tool
JP2007203393A (en) * 2006-01-31 2007-08-16 Nippon Seisen Co Ltd Saw wire and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175380A (en) * 1974-12-16 1976-06-29 Ibm
US4343662A (en) * 1981-03-31 1982-08-10 Atlantic Richfield Company Manufacturing semiconductor wafer devices by simultaneous slicing and etching
JP2003291056A (en) * 2002-04-01 2003-10-14 Sumitomo Mitsubishi Silicon Corp Wire cutting method for any object, cutting wire, and manufacturing method for wire
JP2007162121A (en) * 2005-12-16 2007-06-28 Nippon Seisen Co Ltd Material for fine metal band for reinforcing resin material, and resin molding and medical product obtained by using the band material
JP2007196329A (en) * 2006-01-26 2007-08-09 Nippon Seisen Co Ltd Wire tool
JP2007203393A (en) * 2006-01-31 2007-08-16 Nippon Seisen Co Ltd Saw wire and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111485138A (en) * 2020-04-23 2020-08-04 中国科学院金属研究所 Preparation method of cold-processed cobalt-based alloy rod wire
CN112342441A (en) * 2020-11-07 2021-02-09 南京聚力化工机械有限公司 High-wear-resistance alloy material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6499159B2 (en) Copper alloy wire and method for producing the same
JP6943940B2 (en) Copper alloy wire and its manufacturing method
JP4829626B2 (en) Saw wire and manufacturing method thereof
EP2393950B1 (en) Wire, method of cutting substrates and method of forming such a wire
JP2011137213A (en) Saw wire and method for manufacturing the same
KR20180083406A (en) Coated wire
CN107109532A (en) Corrosion-resistant and moisture-proof the nickeliferous closing line based on copper
EP2396134A1 (en) Fixed abrasive sawing wire
JP5721021B2 (en) Fine metal wire for saw wire core and method for producing the same
JP2017008420A (en) Manufacturing method of wire for etching cut and cutting method of inorganic brittle material using wire for etching cut obtained by the method
JP5522604B2 (en) Wire tool
JP2014070277A (en) Wire for etching cut, and cutting method of inorganic brittle material using the same
KR101943191B1 (en) Cu-ni-si-based copper alloy strip and method of manufacturing the same
TWI552820B (en) A fixed abrasive sawing wire and producing method thereof
JP2013007113A (en) High-strength metallic thin wire for saw wire and manufacturing method thereof, and saw wire employing metallic thin wire
EP2572818A1 (en) A fixed abrasive sawing wire with improved abrasive particle retention
TW202217013A (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP5757547B1 (en) Probe pin made of Rh-based alloy and method of manufacturing the same
JP3803675B2 (en) Manufacturing method of tungsten material for secondary processing
KR20120120721A (en) Saw wire and method for manufacturing the same
TWI633192B (en) Molten-aluminum plated steel wire and stranded wire and method for fabricating the same
JP2006016696A (en) Tungsten material for secondary working
JP2012086314A (en) Electrode wire for electrical discharge machining
JP2014086488A (en) Al RIBBON FOR BONDING AND METHOD FOR MANUFACTURING THE SAME
JP2015037111A (en) Aluminum ribbon and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110