JP2014067972A - Multilayer wiring board and process of manufacturing the same - Google Patents

Multilayer wiring board and process of manufacturing the same Download PDF

Info

Publication number
JP2014067972A
JP2014067972A JP2012214152A JP2012214152A JP2014067972A JP 2014067972 A JP2014067972 A JP 2014067972A JP 2012214152 A JP2012214152 A JP 2012214152A JP 2012214152 A JP2012214152 A JP 2012214152A JP 2014067972 A JP2014067972 A JP 2014067972A
Authority
JP
Japan
Prior art keywords
layer
conductor
core substrate
wiring board
conductor layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012214152A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Ishihara
光泰 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012214152A priority Critical patent/JP2014067972A/en
Publication of JP2014067972A publication Critical patent/JP2014067972A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer wiring board of an arbitrary position interlayer connection structure whose starting material is a four-layer core substrate, whose manufacturing is easy, whose reliability is excellent, and whose price is low, and a process of manufacturing the same.SOLUTION: The multilayer wiring board includes: a four-layer core substrate on which four conductor layers b, c, d, and e are arranged in this order through an insulating layer; a conductor layer disposed on the four-layer core substrate through the insulating layer; a skip via that connects between the conductor layers b to d of the four-layer core substrate and is not connected to the other wiring patterns of the conductor layer c.

Description

本発明は、4層コア基板を出発材料とした製造が容易で信頼性に優れた安価な任意位置層間接続構造の多層配線基板に関する。   The present invention relates to a multilayer wiring board having an arbitrary position interlayer connection structure that is easy to manufacture and excellent in reliability using a four-layer core board as a starting material.

携帯部品をはじめとする多層配線基板では、電子部品の高機能化に伴い、ますます高密度化や低背化が進んでおり、それに伴って導体層と導体層を接続するビアをどの層にでもどの位置にでも、自由に設けることができる任意位置層間接続構造で、かつ総板厚の薄い配線基板が求められる。この構造の配線基板を製造するには、全層同じ位置にビアが1列に並ぶフルスタック構造の実現と、コア層もビルドアップ材を使用することが必要であり、そのため製品となる多層配線基板自体を構成するコア材を用いず、ダミーのコア材(製造プロセスでのみ使用され、製品となる多層配線基板自体は構成しない支持基板をいう。以下、「ダミーコア」ということがある。)の上に、1層ずつ多層化するコアレス工法でかつビルドアップ工法が従来から用いられてきた。なお、このような、製品となる多層配線基板自体を構成するコア材を有しない多層配線基板を、以下、「コアレスビルドアップ配線基板」といい、その工法を、以下、「コアレスビルドアップ工法」ということがある。   In multilayer wiring boards such as portable parts, with higher functionality of electronic parts, higher density and lower height are progressing. However, a wiring board having an arbitrary position interlayer connection structure that can be freely provided at any position and a thin total plate thickness is required. In order to manufacture a wiring board with this structure, it is necessary to realize a full stack structure in which vias are arranged in a row at the same position in all layers, and the core layer must also use a build-up material. A dummy core material (referred to as a support substrate that is used only in the manufacturing process and does not constitute the product multilayer wiring board itself; hereinafter referred to as “dummy core”) without using the core material that constitutes the substrate itself. In addition, a coreless construction method in which layers are formed one by one and a build-up construction method has been conventionally used. In addition, such a multilayer wiring board having no core material constituting the multilayer wiring board itself to be a product is hereinafter referred to as a “coreless build-up wiring board”, and the construction method is hereinafter referred to as a “coreless build-up construction method”. There is.

しかしながら、電子部品は高機能化し部品数が増える一方、携帯電話などの最終製品は低価格が求められるため、部品数が増えた分1部品あたりのコストダウン要求は大きく、高密度かつ安価な配線基板が求められるため、高価なコアレスビルドアップ配線基板では市場のコスト要求に合わなくなってきているのが現状である。   However, while electronic parts are highly functional and the number of parts is increased, the final product such as a mobile phone is required to be low in price. Therefore, as the number of parts is increased, there is a large demand for cost reduction per part, and high-density and inexpensive wiring. Since a board is required, an expensive coreless build-up wiring board is no longer meeting the cost requirements of the market.

このようなコアレスビルドアップ工法を用いず導体層と導体層の接続を可能にする方法としては、放熱性を目的として配線基板の表面から内層の放熱層まで複数の導体層をまたいで電気的な接続を行う、スキップビアを使用する方法が開示されている。(特許文献1)。   As a method for enabling the connection between the conductor layers without using such a coreless buildup method, an electrical process is performed across a plurality of conductor layers from the surface of the wiring board to the inner heat dissipation layer for the purpose of heat dissipation. A method of making a connection and using a skip via is disclosed. (Patent Document 1).

また、薄型化を目的として接着材層を失くすためにスキップビアを使用するする方法が開示されている(特許文献2)。   Further, a method of using a skip via for losing an adhesive layer for the purpose of thinning is disclosed (Patent Document 2).

特開2011−243767号公報JP 2011-243767 A 特開2007−115954号公報JP 2007-115954 A

しかしながら、特許文献1や2のように、複数の導体層をまたいで層間接続するスキップビアを有した配線基板では、コアレスビルドアップ配線基板に比べて、リードタイムが短く、製造コストが低減できるものの、4層コア基板を出発材料とするため、任意の位置に層間接続のためのビアを設けることが困難になってしまう問題があった。   However, as disclosed in Patent Documents 1 and 2, a wiring board having a skip via that connects between a plurality of conductor layers has a shorter lead time and a lower manufacturing cost than a coreless build-up wiring board. Since the four-layer core substrate is used as a starting material, there is a problem that it becomes difficult to provide vias for interlayer connection at arbitrary positions.

本発明は、4層コア基板を出発材料とした製造が容易で信頼性に優れた安価な任意位置層間接続構造の配線基板及びその製造方法を提供する。   The present invention provides a wiring board having an arbitrary position interlayer connection structure that is easy to manufacture and excellent in reliability using a four-layer core substrate as a starting material, and a manufacturing method thereof.

本発明は、以下に関する。
1. 絶縁層を介して4層の導体層b、c、d、eをこの順番に配置した4層コア基板と、この4層コア基板上に絶縁層を介して配置される導体層を有する多層配線基板であって、前記4層コア基板の導体層b−d間を接続し、導体層cの他の配線パターンとは接続しないスキップビアを有する多層配線基板。
2. 項1において、4層コア基板の導体層b−dの間の導体層cに、導体層cの他の配線パターンとは接続しない独立ランドが設けられ、4層コア基板の導体層b−d間を接続するスキップビアが、前記導体層cの独立ランドに接続される多層配線基板。
3. 項1において、層コア基板の導体層b−dの間の導体層cに、ランドを有しない領域が設けられ、4層コア基板の導体層b−d間を接続するスキップビアが、前記導体層cのランドを有しない領域を介するように配置される多層配線基板。
4. 項1から3の何れかにおいて、4層コア基板の導体層b−d間に形成されたスキップビアの直上に、スタックビアが配置される多層配線基板。
5. 項1から4の何れかにおいて、4層コア基板の導体層b−d間に形成されたスキップビアを挟んで、全ての導体層を通じて、ビアが直上に配置されたフルスタック構造を有する多層配線基板。
6. 項1から5の何れかの多層配線板の製造方法であって、絶縁層を介して4層の導体層b、c、d、eをこの順番に配置した4層コア基板を形成する工程(A)と、前記4層コア基板の導体層b−d間を接続し、導体層cの他の配線パターンとは接続しないスキップビアを形成する工程(B)と、前記4層コア基板上に絶縁層を介して配置される導体層を形成する工程(C)と、を有する多層配線基板の製造方法。
7. 項6において、4層コア基板上に絶縁層を介して配置される導体層を形成する工程(C)では、前記4層コア基板の導体層b−d間に形成されたスキップビアの直上に、スタックビアを形成する多層配線基板の製造方法。
The present invention relates to the following.
1. Multi-layer wiring having a four-layer core substrate in which four conductor layers b, c, d, and e are arranged in this order via an insulating layer, and a conductor layer arranged on the four-layer core substrate via an insulating layer A multilayer wiring board having a skip via which is connected to the conductor layers b-d of the four-layer core board and is not connected to other wiring patterns of the conductor layer c.
2. In item 1, the conductor layer c between the conductor layers b-d of the four-layer core substrate is provided with independent lands that are not connected to other wiring patterns of the conductor layer c, and the conductor layers b-d of the four-layer core substrate. A multilayer wiring board in which skip vias that connect each other are connected to independent lands of the conductor layer c.
3. In item 1, a region having no land is provided in the conductor layer c between the conductor layers b-d of the layer core substrate, and the skip via connecting the conductor layers b-d of the four-layer core substrate is A multilayer wiring board disposed so as to pass through a region having no land of the layer c.
4). 4. The multilayer wiring board according to any one of items 1 to 3, wherein a stack via is disposed immediately above the skip via formed between the conductor layers b-d of the four-layer core board.
5. Item 4. The multilayer wiring having a full stack structure in which vias are arranged immediately above all the conductor layers with a skip via formed between the conductor layers b-d of the four-layer core substrate in between substrate.
6). Item 6. The method for producing a multilayer wiring board according to any one of Items 1 to 5, wherein a four-layer core substrate is formed by arranging four conductor layers b, c, d, e in this order via an insulating layer ( A), a step (B) of forming a skip via that connects the conductor layers b-d of the four-layer core substrate and does not connect to other wiring patterns of the conductor layer c, and on the four-layer core substrate A step (C) of forming a conductor layer disposed via an insulating layer.
7). In the item (6), in the step (C) of forming the conductor layer disposed on the four-layer core substrate via the insulating layer, immediately above the skip via formed between the conductor layers b-d of the four-layer core substrate. A method of manufacturing a multilayer wiring board for forming a stack via.

本発明によれば、4層コア基板を出発材料とした製造が容易で信頼性に優れた安価な任意位置層間接続構造の配線基板及びその製造方法を提供することができる。   According to the present invention, it is possible to provide an inexpensive wiring board having an arbitrary position interlayer connection structure which is easy to manufacture using a four-layer core substrate as a starting material and is excellent in reliability, and a manufacturing method thereof.

本発明の実施の形態1及び2に係る多層配線基板の断面図である。It is sectional drawing of the multilayer wiring board which concerns on Embodiment 1 and 2 of this invention. 本発明の実施の形態1に係る多層配線基板の製造工程毎の断面図である。It is sectional drawing for every manufacturing process of the multilayer wiring board which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る多層配線基板の製造工程毎の断面図である。It is sectional drawing for every manufacturing process of the multilayer wiring board which concerns on Embodiment 1 of this invention. 従来(比較例)のコアレスビルドアップ配線基板の断面図である。It is sectional drawing of the conventional coreless buildup wiring board (comparative example).

本発明の実施の形態1及び2に係る多層配線基板及びその製造方法について、以下、図1及び図2、図3を用いて説明する。   A multilayer wiring board and a method for manufacturing the same according to the first and second embodiments of the present invention will be described below with reference to FIGS.

図1(1)(2)に示すように、本発明の実施の形態1に係る多層配線基板は、絶縁層5を介して4層の導体層6b、c、d、eをこの順番に配置した4層コア基板4と、この4層コア基板4上に絶縁層5を介して配置される導体層6を有する多層配線基板であって、前記4層コア基板4の導体層6b−d間を接続し、導体層6cの他の配線パターン(図示しない。)とは接続しないスキップビア3を有する。なお、図1の右側に付した記号a〜fは、導体層6を区別するためのものである(以下の図面でも、同様。)。   As shown in FIGS. 1 (1) and (2), the multilayer wiring board according to the first embodiment of the present invention has four conductor layers 6b, c, d, and e arranged in this order via an insulating layer 5. A multilayer wiring board having a four-layer core substrate 4 and a conductor layer 6 disposed on the four-layer core substrate 4 with an insulating layer 5 interposed between the conductor layers 6b-d of the four-layer core substrate 4. And a skip via 3 that is not connected to another wiring pattern (not shown) of the conductor layer 6c. 1 are used to distinguish the conductor layer 6 (the same applies to the following drawings).

4層コア基板とは、4層構造で内層に導体層のある銅張積層板のことを言い、どの導体層にも層間接続ビア(以下、単に「ビア」ということがある。)がないものをいう。表面銅箔は、後工程にて層間接続ビアを形成するための、エッチングによるコンフォーマルマスク径ばらつきを抑えるため、あまり厚い銅箔は望ましくなく、厚み3μm〜12μm程度が望ましい。また、銅ダイレクトレーザ法で銅箔表面から穴を開ける場合は、銅箔厚は3μm〜7μm程度がよい。また、直接、表面に傷がつくのを防止することなどを考えてキャリア付き銅箔が望ましい。4層コア基板の1層の絶縁層厚みは、層間接続ビアのアスペクト比を考えて60μm以下が望ましいが、層間接続ビアとのアスペクト比を考慮し、なるべく薄い方が良い。絶縁材の回路埋め込み性を考慮すると、約35μm程度が最良である。   A four-layer core substrate is a copper clad laminate having a four-layer structure and a conductor layer as an inner layer, and any conductor layer does not have an interlayer connection via (hereinafter simply referred to as “via”). Say. The surface copper foil is not desirably a thick copper foil and desirably has a thickness of about 3 μm to 12 μm in order to suppress variations in the conformal mask diameter due to etching for forming an interlayer connection via in a later step. Moreover, when a hole is made from the copper foil surface by the copper direct laser method, the copper foil thickness is preferably about 3 μm to 7 μm. Also, a copper foil with a carrier is desirable in consideration of preventing the surface from being scratched directly. The thickness of one insulating layer of the four-layer core substrate is preferably 60 μm or less in consideration of the aspect ratio of the interlayer connection via, but is preferably as thin as possible in consideration of the aspect ratio with the interlayer connection via. Considering the circuit embedding property of the insulating material, about 35 μm is the best.

スキップビアとは、導体層3層以上の層にまたがって形成される電気的に接続するビアのことをいう。穴あけ加工方法は、COレーザやYAG(Yttrium Aluminum Garnetの略。)レーザ穴あけ機を使用して加工が主流であり、コンフォーマルマスク法や銅ダイレクトレーザ加工があるが、これに限るものではない。ビア径は、めっき付き性や接続信頼性を考慮するとビア径は大きい方が有利であるが、ビアとランドの位置ずれも考慮すると、直径60μm〜150μm程度が望ましい。 A skip via refers to an electrically connected via formed across three or more conductor layers. The drilling method is mainly performed using a CO 2 laser or a YAG (Yttrium Aluminum Garnet) laser drilling machine, and there is a conformal mask method and copper direct laser processing, but it is not limited to this. . The via diameter is advantageous when the via diameter is large in consideration of plating property and connection reliability. However, when the positional deviation between the via and the land is also taken into consideration, a diameter of about 60 μm to 150 μm is desirable.

また、スキップビアの上にスタック構造としてビアを設けるために、スキップビアのビア内は導電物で充填してビア表面はフラットにする必要がある。導電物としては、フィルドビアめっきのような銅めっきを充填するめっきを施しても良いし、導電ペーストを埋めても良いし、あるいは電気銅めっきをしてから穴埋め印刷で非導電インクを埋めても良い。但し、接続信頼性や配線の高密度化を考慮すると、そのまま銅でビアを埋めるフィルドめっきをするのが最良である。   Further, in order to provide a via as a stack structure on the skip via, it is necessary to fill the via in the skip via with a conductive material and make the via surface flat. The conductive material may be plated with copper plating such as filled via plating, filled with conductive paste, or filled with non-conductive ink by hole filling printing after electrolytic copper plating. good. However, in consideration of connection reliability and higher wiring density, it is best to fill the vias with copper as it is.

また、スキップビアで接続する導体層数は3層以上で多いほど、製造コストは低減できるが、ビア深さが大きくなるとめっき付きや接続信頼性が悪くなるため、通常3層程度が望ましい。設ける層は6層板の表面の1層面(a)から3層面(c)でも良いし、あるいは内層の2層面(b)から4層面(d)、もしくは3層面(c)から5層面(e)など、自由に設計して良い。また、例えば2層面(b)から4層面(d)にスキップビアを設ける際に接続する場合は、3層面(c)にランドを設ければ2層面(b)と3層面(c)と4層面(d)と3層分を全て電気的に接続することができる。その場合は中間層にあたる3層面(c)にはスキップビアを穴あけする前に、あらかじめ穴あけ位置にエッチングにより開口を設けておく必要がある。   Further, the manufacturing cost can be reduced as the number of conductor layers connected by skip vias is three or more. However, when the via depth is increased, plating and connection reliability are deteriorated. The layer to be provided may be the 1-layer surface (a) to the 3-layer surface (c) of the surface of the 6-layer plate, or the 2-layer surface (b) to the 4-layer surface (d) of the inner layer, or the 3-layer surface (c) to the 5-layer surface (e). ) Etc., you can design freely. Also, for example, when connecting a skip via from the second layer surface (b) to the fourth layer surface (d), if the land is provided on the third layer surface (c), the second layer surface (b), the third layer surface (c) and 4 The layer surface (d) and all three layers can be electrically connected. In that case, it is necessary to provide an opening at the drilling position in advance before drilling the skip via on the three-layer surface (c) corresponding to the intermediate layer.

また、図1(1)に示すように、4層コア基板4の導体層6b−dの間の導体層6cに、導体層6cの他の配線パターンとは接続しない独立ランド10が設けられ、4層コア基板4の導体層6b−d間を接続するスキップビア3が、前記導体層6cの独立ランド10に接続されるようにしてもよい。つまり、中間層である導体層6cと接続したくない場合は、ランドを設けて配線をつながないだけでも良い。中間層である導体層6cにランドを設ける場合のエッチングの開口径は、導体層6bと導体層6cの位置ずれを考慮し、スキップビア3の径と同じ、もしくはそれより小さい方が良い。   Moreover, as shown in FIG. 1 (1), the independent land 10 which is not connected with the other wiring pattern of the conductor layer 6c is provided in the conductor layer 6c between the conductor layers 6b-d of the four-layer core substrate 4. The skip via 3 that connects between the conductor layers 6b-d of the four-layer core substrate 4 may be connected to the independent land 10 of the conductor layer 6c. In other words, if it is not desired to connect to the conductor layer 6c, which is an intermediate layer, it is only necessary to provide a land and not connect the wiring. In the case where the land is provided in the conductor layer 6c as the intermediate layer, the opening diameter of the etching is preferably the same as or smaller than the diameter of the skip via 3 in consideration of the positional deviation between the conductor layer 6b and the conductor layer 6c.

また、図1(2)に示すように、4層コア基板4の導体層6b−dの間の導体層6cに、ランドを有しない領域が設けられ、4層コア基板4の導体層6b−d間を接続するスキップビア3が、前記導体層6cのランドを有しない領域を介するように配置されるようにしてもよい。つまり、中間層である導体層6cに、ランドを設けなくて良い。   As shown in FIG. 1 (2), the conductor layer 6c between the conductor layers 6b-d of the four-layer core substrate 4 is provided with a region having no land, and the conductor layer 6b- of the four-layer core substrate 4 is provided. The skip vias 3 that connect d may be arranged so as to pass through a region having no land of the conductor layer 6c. That is, it is not necessary to provide a land on the conductor layer 6c which is an intermediate layer.

また、導体層cと導体層dのみを接続したい場合は、スキップビアを設ける必要はなく、通常の2層を接続する単層ビア(隣接する導体層を接続するビア)を用いればよい。   Further, when it is desired to connect only the conductor layer c and the conductor layer d, it is not necessary to provide a skip via, and a single layer via that connects two normal layers (via that connects adjacent conductor layers) may be used.

4層コア基板の導体層b−d間に形成されたスキップビアの直上に、スタックビアが配置されてもよい。直上に形成されたスタックビアとは、ビア内が導電物で充填されフラットであるビアの上あるいはビア底銅の上にさらにビアが同じ座標位置に設けられた構造をいう。但し、同じ座標位置に設計しても、製造上コンフォーマルマスクの位置ずれやレーザビア加工の位置ずれなどで、全く同じ座標にビアを形成するのは困難であり、通常ビア径の大きさ以下のずれであれば、スタックビアとして機能すると考えてよい。例えば50μmのビア径であれば、直上スタック構造であるビア同士の位置ずれは50μm以下(ビア径の範囲内)が望ましいといえる。またスタックビア内の充填物はスキップビア同様に銅がのぞましく、フィルドビアめっきを行うのが最良であり、ビア凹みあるいは凸量は10μm以下がのぞましい。   A stack via may be disposed immediately above the skip via formed between the conductor layers b-d of the four-layer core substrate. The stacked via formed immediately above refers to a structure in which a via is further provided at the same coordinate position on a flat via or a via bottom copper filled with a conductive material in the via. However, even if designed at the same coordinate position, it is difficult to form a via at exactly the same coordinate due to a positional shift of a conformal mask or a laser via processing position in manufacturing, and it is usually less than the size of the via diameter. If it is not, it can be considered that it functions as a stacked via. For example, if the via diameter is 50 μm, it can be said that it is desirable that the positional deviation between the vias in the stack structure directly above is 50 μm or less (within the via diameter range). Also, the filler in the stack via is preferably copper like the skip via, and it is best to perform filled via plating, and the via recess or protrusion is preferably 10 μm or less.

4層コア基板の導体層b−d間に形成されたスキップビアを挟んで、全ての導体層を通じて、ビアが直上に配置されたフルスタック構造を有してもよい。全層を通じたフルスタック構造とは、6層板であれば、前述したスタック構造が6層全て同じ座標位置にビアが設けられた構造であり、そのうちの一部分がスキップビアとなっているものをいう。スキップビアはフルスタック構造には1つだけあっても良いし、複数あっても良い。また電気的に接続したい層にはランドを設けてそのランドに配線つなげればよいし、接続したくない層は、ランドのみ設けてそのランドに配線をつながなければ良い。   You may have a full stack structure by which the via | veer was arrange | positioned directly through all the conductor layers on both sides of the skip via formed between the conductor layers b-d of a 4-layer core board | substrate. A full stack structure through all layers is a structure in which vias are provided in the same coordinate position in all six layers of the above-described stack structure if it is a six-layer plate, and a part of them is a skip via. Say. There may be only one skip via or a plurality of skip vias in the full stack structure. In addition, it is only necessary to provide a land in the layer to be electrically connected and connect the wiring to the land, and in a layer not to be connected, it is only necessary to provide only the land and connect the wiring to the land.

本実施の形態1の多層配線基板の製造方法について、以下、図2及び3を用いて説明する。   A method for manufacturing the multilayer wiring board according to the first embodiment will be described below with reference to FIGS.

図2及び図3に示すように、本実施の形態1の多層配線基板の製造方法は、絶縁層5を介して4層の導体層6b、c、d、eをこの順番に配置した4層コア基板4を形成する工程(A)と、前記4層コア基板4の導体層6b−d間を接続し、導体層6cの他の配線パターンとは接続しないスキップビア3を形成する工程(B)と、前記4層コア基板4上に絶縁層5を介して配置される導体層6を形成する工程(C)と、を有する。   As shown in FIGS. 2 and 3, the method of manufacturing the multilayer wiring board according to the first embodiment has four layers in which four conductor layers 6 b, c, d, and e are arranged in this order via an insulating layer 5. The step (A) of forming the core substrate 4 and the step of forming the skip via 3 that connects the conductor layers 6b-d of the four-layer core substrate 4 and does not connect to other wiring patterns of the conductor layer 6c (B And a step (C) of forming a conductor layer 6 disposed on the four-layer core substrate 4 with an insulating layer 5 interposed therebetween.

図3に示すように、4層コア基板4上に絶縁層5を介して配置される導体層6を形成する工程(C)では、前記4層コア基板4の導体層6b−d間に形成されたスキップビア3の直上に、スタックビア2を形成する。   As shown in FIG. 3, in the step (C) of forming the conductor layer 6 disposed on the four-layer core substrate 4 via the insulating layer 5, it is formed between the conductor layers 6 b-d of the four-layer core substrate 4. A stacked via 2 is formed immediately above the skipped via 3.

本発明のような、4層コア基板を出発材料としスキップビアを有する配線基板及びその製造方法は、全層ビルドアップ基板に比べ、1回分の層間接続ビア形成とめっき工程を省くことで、製造リードタイムを短縮し、製造コストを低減することが可能となる。また、配線基板の低背化を求められるものは、ビア形成やめっき工程での薄板のハンドリングの難しさや基板詰まりの発生などにより、30μm以下の厚みの2層コア基板を出発材料としたビルドアップ基板の製造は困難であり、製造リードタイム、コスト共に大きくなる片側にビルドアップしていく全層ビルドアップ基板のコアレス工法を用いることが多い。しかし、本発明の配線基板及びその製造方法であれば、4層コア基板が出発材料であるので、2層板状態でのビア形成、めっき作業を行う必要はなく、30μm以下の厚みの2層板(銅張積層板)を回路形成のみすることで、4層コア基板を作製することが容易にできる。   A wiring board having a skip via using a four-layer core board as a starting material and a manufacturing method thereof, such as the present invention, can be manufactured by omitting one interlayer connection via formation and plating process compared to a full-layer build-up board. The lead time can be shortened and the manufacturing cost can be reduced. Also, what is required to reduce the height of the wiring board is a build-up that uses a two-layer core board with a thickness of 30 μm or less as a starting material due to difficulties in handling thin plates in the via formation and plating processes and the occurrence of board clogging. It is difficult to manufacture a substrate, and a coreless construction method of an all-layer buildup substrate in which buildup is performed on one side, which increases manufacturing lead time and cost, is often used. However, according to the wiring substrate and the manufacturing method thereof of the present invention, since the four-layer core substrate is a starting material, there is no need to perform via formation and plating work in a two-layer plate state, and two layers having a thickness of 30 μm or less. A four-layer core substrate can be easily manufactured by only forming a circuit on a plate (copper-clad laminate).

前述の様に、4層コア基板を出発材料としたスキップビアを有し、フィルドビアでスタック構造の配線基板は、6層板で総板厚0.3mm以下の様な薄板で、設計自由度が高く、より安価な配線基板及びその製造方法を提供することができる。   As mentioned above, the wiring board with a stacked structure with skip vias starting from a 4-layer core board and filled vias is a 6-layer board with a total board thickness of 0.3 mm or less, and design flexibility is low. A high-priced wiring board and a manufacturing method thereof can be provided.

以下、本発明の好適な実施例について説明するが、本発明は以下の実施例に限定されない。   EXAMPLES Hereinafter, although the suitable Example of this invention is described, this invention is not limited to a following example.

図2<A−1>に示すような、板厚0.03mm、ワークサイズ510mm×410mm、銅箔厚12μmの銅張り積層板13(日立化成工業株式会社製 MCL−E−679FG、「MCL」は登録商標。)を用意し、ドライフィルムSL−1329(日立化成工業株式会社、商品名)を使用して、基板上全面にラミネートを行い、配線パターン形成用のレジストを形成する。そのレジスト上に直描機(オルボテック社製 パラゴン8800)により回路を焼付け、現像・塩化鉄によるエッチング・アルカリ性剥離液を用いてレジストの剥離の各処理をおこなうフォト法にて、配線パターン形成を行い、内層材を形成した。スキップビアの中間層となる部分には、パターンニングと同時に開口径60μmの窓穴7を形成した。   As shown in FIG. 2 <A-1>, a copper-clad laminate 13 having a plate thickness of 0.03 mm, a workpiece size of 510 mm × 410 mm, and a copper foil thickness of 12 μm (MCL-E-679FG manufactured by Hitachi Chemical Co., Ltd., “MCL”) Is registered trademark), and a dry film SL-1329 (Hitachi Chemical Industry Co., Ltd., trade name) is used to laminate the entire surface of the substrate to form a resist for forming a wiring pattern. A circuit pattern is formed on the resist by a photo method in which the circuit is baked with a direct drawing machine (Paragon 8800 manufactured by Orbotech), and each process of development, etching with iron chloride, and stripping of the resist using an alkaline stripper is performed. An inner layer material was formed. A window hole 7 having an opening diameter of 60 μm was formed at the same time as the patterning in a portion serving as an intermediate layer of the skip via.

次に、内層材の銅表面に凹凸をつけるため、CZ処理(メックエッチボンドCZ−8100、メック株式会社製 商品名、「メックエッチボンド」は登録商標。)を行い、表面粗さが3〜5μmの凹凸を設けた。その処理後の内層材に、厚み25μmのプリプレグ(日立化成工業株式会社製 GEA−679FG)とその上層に配線用の厚み5μmの銅箔(三井金属鉱業株式会社製 MT18S5DH)とを積層一体化して図2<A−2>に示すような、4層コア基板4を作製した。   Next, in order to make unevenness on the copper surface of the inner layer material, CZ treatment (MEC etch bond CZ-8100, trade name of “MEC etch bond”, “MEC etch bond” is a registered trademark) is performed, and the surface roughness is 3 to 3. Unevenness of 5 μm was provided. A prepreg with a thickness of 25 μm (GEA-679FG manufactured by Hitachi Chemical Co., Ltd.) and a copper foil with a thickness of 5 μm for wiring (MT18S5DH manufactured by Mitsui Mining & Mining Co., Ltd.) are laminated and integrated on the inner layer material after the treatment. A four-layer core substrate 4 as shown in FIG. 2 <A-2> was produced.

作製した4層コア基板表裏面のスキップビアあるいは通常ビアを設ける箇所に、表面銅箔をエッチングにより除去することで開口し、レーザ穴あけ用のコンフォーマルマスクを形成した。開口径はスキップビアは直径90μmで通常ビアは直径50μmとした。その銅箔を除去し、樹脂が露出しているコンフォーマルマスクの部分へ、炭酸ガスレーザ(日立ビアメカニクス株式会社製 レーザ加工条件1000Hz、パルス幅15μm、サイクル数7回あるいは3回)を照射し、樹脂を熱分解して除去することにより、直径90μmのスキップビア及び直径50μmの通常ビアを同時に加工した。デスミア処理は、膨潤部にスウェリングディップセキュリガントP(アドテックジャパン株式会社製 商品名、「セキュリガント」は登録商標。)約500ml/lと苛性ソーダ(信越化学工業株式会社製)pH9.5〜11.8を使用、エッチング部にNaMnO約60g/lを使用、還元部にリダクションセキュリガントP(アドテックジャパン株式会社製 商品名)約70ml/lと98%HSO(古河機械金属株式会社製)約50ml/lを使用したアトテック社製デスミア水平ラインをライン速度1.0m/min.で、2pass処理(処理ラインを2回通す処理)を行った。 The surface copper foil was opened by removing the surface copper foil by etching at the location where the skip vias or normal vias on the front and back surfaces of the produced 4-layer core substrate were provided, and a conformal mask for laser drilling was formed. The opening diameter was 90 μm for skip vias and 50 μm for normal vias. The copper foil is removed, and the portion of the conformal mask where the resin is exposed is irradiated with a carbon dioxide gas laser (Hitachi Via Mechanics Co., Ltd., laser processing conditions 1000 Hz, pulse width 15 μm, number of cycles 7 or 3). By removing the resin by thermal decomposition, a skip via having a diameter of 90 μm and a normal via having a diameter of 50 μm were simultaneously processed. In the desmear treatment, the swelling part has a swelling dip securigant P (trade name manufactured by Adtech Japan Co., Ltd., “Securigant” is a registered trademark) of about 500 ml / l and caustic soda (manufactured by Shin-Etsu Chemical Co., Ltd.) pH 9.5 to 11 .8, NaMnO 4 about 60 g / l is used for the etching part, Reduction securigant P (trade name, manufactured by Adtech Japan Co., Ltd.) about 70 ml / l and 98% H 2 SO 4 (Furukawa Machine Metal Co., Ltd.) for the reducing part Manufactured by Atotech Co., Ltd. using about 50 ml / l of line speed 1.0 m / min. Then, 2pass processing (processing of passing the processing line twice) was performed.

次に、銅箔上及びブラインドビア用の穴内部に、パラジウムコロイド触媒であるHS201B(日立化成工業株式会社製、商品名)を使用して触媒核を付与後、CUST2000(日立化成工業株式会社製、商品名)を使用して厚さ0.5μmの下地無電解めっき層を穴内及び表面銅箔上に形成した。   Next, a catalyst core is provided on the copper foil and inside the hole for the blind via using HS201B (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is a palladium colloid catalyst, and then CUST2000 (manufactured by Hitachi Chemical Co., Ltd.). (Trade name) was used to form a base electroless plating layer having a thickness of 0.5 μm in the hole and on the surface copper foil.

次に、電解フィルドめっき(メルテックス株式会社製)により、厚み約30μmのめっきを下地無電解めっき層上に行った。その後、化学エッチング液(メック株式会社製 HE−7000Y)により、銅部分の厚さが20μmのハーフエッチングを行い、銅厚を薄くし、図2<B−1>に示すような、スキップビアを有する4層コア基板を作製した。   Next, plating with a thickness of about 30 μm was performed on the base electroless plating layer by electrolytic field plating (Meltex Co., Ltd.). Then, a chemical etching solution (HE-7000Y manufactured by MEC Co., Ltd.) is used to perform half etching with a copper portion thickness of 20 μm, to reduce the copper thickness, and to form a skip via as shown in FIG. 2 <B-1>. A four-layer core substrate was prepared.

次に、フィルドビアめっき表面フラットな4層コア基板にドライフィルムSL−1329(日立化成工業株式会社、商品名)を使用して、基板上全面にラミネートを行い、配線パターン形成用のレジストを形成する。そのレジスト上に直描機(オルボテック社製 パラゴン8800)により回路を焼付け、現像・塩化鉄によるエッチング・アルカリ性剥離液を用いてレジストの剥離の各処理をおこなうフォト法にて、配線パターン形成を行い、図2<B−2>に示すような、4層コア基板4を形成した。2層の内層材と同様スキップビアの中間層となる部分には、パターンニングと同時に開口径60μmの窓穴7を形成した。   Next, dry film SL-1329 (Hitachi Kasei Kogyo Co., Ltd., trade name) is used for a four-layer core substrate with a flat filled via plating surface, and the entire surface of the substrate is laminated to form a resist for forming a wiring pattern. . A circuit pattern is formed on the resist by a photo method in which the circuit is baked with a direct drawing machine (Paragon 8800 manufactured by Orbotech), and each process of development, etching with iron chloride, and stripping of the resist using an alkaline stripper is performed. A four-layer core substrate 4 as shown in FIG. 2 <B-2> was formed. A window hole 7 having an opening diameter of 60 μm was formed at the same time as the patterning in a portion to be an intermediate layer of the skip via like the two-layer inner layer material.

2層の内層材と同様に4層内層材も銅表面に凹凸をつけるため、CZ処理(メックエッチボンドCZ−8100、メック株式会社製 商品名)を行い、表面粗さが3〜5μmの凹凸を設けた。その処理後の内層材に、厚み25μmのプリプレグ(日立化成工業株式会社製 GEA−679FG)とその上層に配線用の厚み5μmの銅箔(三井金属鉱業株式会社製 MT18S5DH)とを積層一体化して図3<C−1>に示すような、6層基板を作製した。   As with the two-layer inner layer material, the four-layer inner layer material also has an uneven surface with a surface roughness of 3 to 5 μm by performing CZ treatment (MEC etch bond CZ-8100, trade name, manufactured by MEC Co., Ltd.) to make the copper surface uneven. Was provided. A prepreg with a thickness of 25 μm (GEA-679FG manufactured by Hitachi Chemical Co., Ltd.) and a copper foil with a thickness of 5 μm for wiring (MT18S5DH manufactured by Mitsui Mining & Mining Co., Ltd.) are laminated and integrated on the inner layer material after the treatment. A six-layer substrate as shown in FIG. 3 <C-1> was produced.

作製した6層基板表裏面のスキップビアあるいは通常ビアを設ける箇所に、表面銅箔をエッチングにより除去することで開口し、レーザ穴あけ用のコンフォーマルマスクを形成した。開口径はスキップビアは直径90μmで通常ビアは直径50μmとした。その銅箔を除去し、樹脂が露出しているコンフォーマルマスクの部分へ、炭酸ガスレーザ(日立ビアメカニクス株式会社製 レーザ加工条件1000Hz、パルス幅15μm、サイクル数7回あるいは3回)を照射し、樹脂を熱分解して除去することにより、直径90μmのスキップビア及び直径50μmの通常ビアを同時に加工した。デスミア処理は、膨潤部にスウェリングディップセキュリガントP(アドテックジャパン株式会社製)約500ml/lと苛性ソーダ(信越化学工業株式会社製)pH9.5〜11.8を使用、エッチング部にNaMnO約60g/lを使用、還元部にリダクションセキュリガントP(アドテックジャパン製)約70ml/lと98%HSO(古河機械金属株式会社製)約50ml/lを使用したアトテック社製デスミア水平ラインをライン速度1.0m/min.で、2pass処理を行った。 The surface copper foil was opened by removing the surface copper foil by etching at the location where the skip vias or normal vias on the front and back surfaces of the produced 6-layer substrate were provided, and a conformal mask for laser drilling was formed. The opening diameter was 90 μm for skip vias and 50 μm for normal vias. The copper foil is removed, and the portion of the conformal mask where the resin is exposed is irradiated with a carbon dioxide gas laser (Hitachi Via Mechanics Co., Ltd., laser processing conditions 1000 Hz, pulse width 15 μm, number of cycles 7 or 3). By removing the resin by thermal decomposition, a skip via having a diameter of 90 μm and a normal via having a diameter of 50 μm were simultaneously processed. The desmear treatment uses about 500 ml / l of swelling dip securigant P (manufactured by Adtech Japan Co., Ltd.) and caustic soda (manufactured by Shin-Etsu Chemical Co., Ltd.) pH 9.5 to 11.8 in the swollen part, and NaMnO 4 in the etched part. using 60 g / l, (manufactured by ADTEC Japan) reduction security Gantt P to the reducing unit about 70 ml / l and 98% H 2 SO 4 (Furukawa Co., Ltd.) by Atotech Co. using about 50 ml / l desmear horizontal line Line speed of 1.0 m / min. Then, 2pass treatment was performed.

次に、銅箔上及びブラインドビア用の穴内部に、パラジウムコロイド触媒であるHS201B(日立化成工業株式会社製、商品名)を使用して触媒核を付与後、CUST2000(日立化成工業株式会社製、商品名、「CUST」は登録商標。)を使用して厚さ0.5μmの下地無電解めっき層を穴内及び表面銅箔上に形成した。   Next, a catalyst core is provided on the copper foil and inside the hole for the blind via using HS201B (trade name, manufactured by Hitachi Chemical Co., Ltd.) which is a palladium colloid catalyst, and then CUST2000 (manufactured by Hitachi Chemical Co., Ltd.). , A trade name, “CUST” is a registered trademark), and a base electroless plating layer having a thickness of 0.5 μm was formed in the hole and on the surface copper foil.

次に、電解フィルドめっき(メルテックス株式会社製)により、厚み約30μmのめっきを下地無電解めっき層上に行った。その後、化学エッチング液(メック株式会社製 HE−7000Y)により、銅部分の厚さが20μmのハーフエッチングを行い、銅厚を薄くし、図3<C−2>に示すような、スキップビア3を有する6層基板を作製した。   Next, plating with a thickness of about 30 μm was performed on the base electroless plating layer by electrolytic field plating (Meltex Co., Ltd.). Thereafter, a chemical etching solution (HE-7000Y manufactured by MEC Co., Ltd.) is used to perform half etching with a copper portion thickness of 20 μm to reduce the copper thickness, and skip via 3 as shown in FIG. 3 <C-2>. A six-layer substrate having

次に、フィルドビアめっき表面フラットな6層基板に、ドライフィルムSL−1329(日立化成工業株式会社、商品名)を使用して、基板上全面にラミネートを行い、配線パターン形成用のレジストを形成する。そのレジスト上に直描機(オルボテック社製 パラゴン8800)により回路を焼付け、現像・塩化鉄によるエッチング・アルカリ性剥離液を用いてレジストの剥離の各処理をおこなうフォト法にて、配線パターン形成を行い、図3<C−3>に示すような、スキップビア3を有する6層フルスタック構造基板を作製した。   Next, using a dry film SL-1329 (Hitachi Chemical Industry Co., Ltd., trade name) on a 6-layer substrate having a flat filled via plating surface, the entire surface of the substrate is laminated to form a resist for forming a wiring pattern. . A circuit pattern is formed on the resist by a photo method in which the circuit is baked with a direct drawing machine (Paragon 8800 manufactured by Orbotech), and each process of development, etching with iron chloride, and stripping of the resist using an alkaline stripper is performed. A 6-layer full stack structure substrate having skip vias 3 as shown in FIG. 3 <C-3> was produced.

作製した6層スタック基板にCZ処理(メックエッチボンドCZ−8100、メック株式会社製 商品名)により、表面粗さが1μm〜2μmの凹凸を設けた。ロールコーターによりソルダレジスト(太陽インキ製造株式会社製 商品名:PSR3000−AUS308RC)を塗布し、80℃30分仮乾燥を行ったのち、自動露光機を使用して露光量550mJ/cmで焼付けを行い、現像機により、厚さ約50μmのソルダレジスト形成を行った。次に、露出したランド表面に、5μm程度のニッケルめっき後、0.1μm程度の金めっき処理を行い、外形加工で各製品基板に切り分けた。 The produced 6-layer stack substrate was provided with irregularities having a surface roughness of 1 μm to 2 μm by CZ treatment (MEC etch bond CZ-8100, trade name, manufactured by MEC Co., Ltd.). After applying a solder resist (trade name: PSR3000-AUS308RC manufactured by Taiyo Ink Manufacturing Co., Ltd.) with a roll coater and performing temporary drying at 80 ° C. for 30 minutes, baking is performed at an exposure amount of 550 mJ / cm 2 using an automatic exposure machine. Then, a solder resist having a thickness of about 50 μm was formed by a developing machine. Next, the exposed land surface was subjected to nickel plating of about 5 μm, followed by gold plating of about 0.1 μm, and cut into each product substrate by outline processing.

下記表1に、本発明の実施例と従来のコアレスビルドアップ工法との各項目の比較を示す。本発明によって、薄板対応可能な安価な任意位置層間接続構造の配線基板を提供することができた。   Table 1 below shows a comparison of each item between the example of the present invention and the conventional coreless buildup method. According to the present invention, it was possible to provide an inexpensive wiring board having an arbitrary position interlayer connection structure that can be applied to a thin plate.

Figure 2014067972
(符号の説明)
Figure 2014067972
(Explanation of symbols)

1…ビルドアップ層
2…スタックビア
3…スキップビア
4…4層コア又は4層コア基板
5…絶縁層
6…導体層
7…エッチング開口又は窓孔
8…銅箔
9…ノーマルビア又はビア
10…独立ランド
11…ランドを有しない領域
12…多層配線基板
13…銅張り積層板
15…コア材
DESCRIPTION OF SYMBOLS 1 ... Build-up layer 2 ... Stack via 3 ... Skip via 4 ... 4 layer core or 4 layer core board | substrate 5 ... Insulating layer 6 ... Conductive layer 7 ... Etching opening or window hole 8 ... Copper foil 9 ... Normal via or via 10 ... Independent land 11 ... Area 12 having no land ... Multi-layer wiring board 13 ... Copper-clad laminate 15 ... Core material

Claims (7)

絶縁層を介して4層の導体層b、c、d、eをこの順番に配置した4層コア基板と、この4層コア基板上に絶縁層を介して配置される導体層を有する多層配線基板であって、
前記4層コア基板の導体層b−d間を接続し、導体層cの他の配線パターンとは接続しないスキップビアを有する多層配線基板。
Multi-layer wiring having a four-layer core substrate in which four conductor layers b, c, d, and e are arranged in this order via an insulating layer, and a conductor layer arranged on the four-layer core substrate via an insulating layer A substrate,
A multilayer wiring board having skip vias connecting the conductor layers b-d of the four-layer core board and not connected to other wiring patterns of the conductor layer c.
請求項1において、
4層コア基板の導体層b−dの間の導体層cに、導体層cの他の配線パターンとは接続しない独立ランドが設けられ、
4層コア基板の導体層b−d間を接続するスキップビアが、前記導体層cの独立ランドに接続される多層配線基板。
In claim 1,
An independent land that is not connected to other wiring patterns of the conductor layer c is provided in the conductor layer c between the conductor layers b-d of the four-layer core substrate,
A multilayer wiring board in which skip vias connecting conductor layers b-d of a four-layer core board are connected to independent lands of the conductor layer c.
請求項1において、
層コア基板の導体層b−dの間の導体層cに、ランドを有しない領域が設けられ、
4層コア基板の導体層b−d間を接続するスキップビアが、前記導体層cのランドを有しない領域を介するように配置される多層配線基板。
In claim 1,
A region having no land is provided in the conductor layer c between the conductor layers b-d of the layer core substrate,
A multilayer wiring board in which skip vias connecting conductor layers b-d of a four-layer core board are arranged so as to pass through a region having no land of the conductor layer c.
請求項1から3の何れかにおいて、4層コア基板の導体層b−d間に形成されたスキップビアの直上に、スタックビアが配置される多層配線基板。   4. The multilayer wiring board according to claim 1, wherein a stack via is disposed immediately above the skip via formed between the conductor layers b-d of the four-layer core board. 請求項1から4の何れかにおいて、4層コア基板の導体層b−d間に形成されたスキップビアを挟んで、全ての導体層を通じて、ビアが直上に配置されたフルスタック構造を有する多層配線基板。   5. The multi-layer structure according to claim 1, wherein the vias are disposed directly above all the conductor layers with the skip via formed between the conductor layers b-d of the four-layer core substrate interposed therebetween. Wiring board. 請求項1から5の何れかの多層配線板の製造方法であって、
絶縁層を介して4層の導体層b、c、d、eをこの順番に配置した4層コア基板を形成する工程(A)と、
前記4層コア基板の導体層b−d間を接続し、導体層cの他の配線パターンとは接続しないスキップビアを形成する工程(B)と、
前記4層コア基板上に絶縁層を介して配置される導体層を形成する工程(C)と、
を有する多層配線基板の製造方法。
A method for producing a multilayer wiring board according to any one of claims 1 to 5,
A step (A) of forming a four-layer core substrate in which four conductor layers b, c, d, and e are arranged in this order via an insulating layer;
A step (B) of forming a skip via that connects between the conductor layers b-d of the four-layer core substrate and is not connected to other wiring patterns of the conductor layer c;
Forming a conductor layer disposed on the four-layer core substrate via an insulating layer (C);
The manufacturing method of the multilayer wiring board which has this.
請求項6において、
4層コア基板上に絶縁層を介して配置される導体層を形成する工程(C)では、前記4層コア基板の導体層b−d間に形成されたスキップビアの直上に、スタックビアを形成する多層配線基板の製造方法。
In claim 6,
In the step (C) of forming a conductor layer disposed on the four-layer core substrate via an insulating layer, a stack via is formed immediately above the skip via formed between the conductor layers b-d of the four-layer core substrate. A method of manufacturing a multilayer wiring board to be formed.
JP2012214152A 2012-09-27 2012-09-27 Multilayer wiring board and process of manufacturing the same Pending JP2014067972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214152A JP2014067972A (en) 2012-09-27 2012-09-27 Multilayer wiring board and process of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214152A JP2014067972A (en) 2012-09-27 2012-09-27 Multilayer wiring board and process of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014067972A true JP2014067972A (en) 2014-04-17

Family

ID=50744048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214152A Pending JP2014067972A (en) 2012-09-27 2012-09-27 Multilayer wiring board and process of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014067972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278217A (en) * 2018-12-04 2020-06-12 三星电机株式会社 Printed circuit board and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237681A (en) * 1997-02-03 2002-08-23 Ibiden Co Ltd Printed circuit board and its manufacturing method
JP2002246760A (en) * 2001-02-13 2002-08-30 Fujitsu Ltd Multilayer printed-wiring board and its manufacturing method
US20050041405A1 (en) * 2003-08-22 2005-02-24 Intel Corporation Stacked via structure that includes a skip via
JP2013207300A (en) * 2012-03-29 2013-10-07 Samsung Electro-Mechanics Co Ltd Method of manufacturing multilayer printed circuit board and multilayer printed circuit board manufactured with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237681A (en) * 1997-02-03 2002-08-23 Ibiden Co Ltd Printed circuit board and its manufacturing method
JP2002246760A (en) * 2001-02-13 2002-08-30 Fujitsu Ltd Multilayer printed-wiring board and its manufacturing method
US20050041405A1 (en) * 2003-08-22 2005-02-24 Intel Corporation Stacked via structure that includes a skip via
JP2013207300A (en) * 2012-03-29 2013-10-07 Samsung Electro-Mechanics Co Ltd Method of manufacturing multilayer printed circuit board and multilayer printed circuit board manufactured with the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278217A (en) * 2018-12-04 2020-06-12 三星电机株式会社 Printed circuit board and method of manufacturing the same

Similar Documents

Publication Publication Date Title
CN1798485B (en) Multilayer printed wiring board and method of manufacturing the same
US8772646B2 (en) Printed wiring board and method for manufacturing printed wiring board
CN101272661B (en) Method for manufacturing multi-layer wiring substrate and the multi-layer wiring substrate
TW200942120A (en) Multiple-layer flexible wiring board and its manufacturing method
JP4287733B2 (en) Multi-layer printed wiring board with built-in electronic components
US10674615B2 (en) Method for manufacturing wiring board
CN103039131A (en) Method for producing printed wiring board, and printed wiring board
TW201811131A (en) Wiring board and method for manufacturing the same having enhanced installation of electronic parts
TWI500366B (en) Multilayer printed wiring board and manufacturing method thereof
JP5066427B2 (en) Method for manufacturing printed wiring board
JP4857433B2 (en) Metal laminate, metal laminate manufacturing method and printed circuit board manufacturing method
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
TWI459879B (en) Method for manufacturing multilayer flexible printed wiring board
JP4705400B2 (en) Manufacturing method of multilayer printed wiring board
JP2013106034A (en) Manufacturing method of printed circuit board
JP2014067972A (en) Multilayer wiring board and process of manufacturing the same
JP2014067974A (en) Multilayer wiring board and process of manufacturing the same
JP2006294956A (en) Multilayer printed circuit board and its manufacturing method
KR100674305B1 (en) Printed circuit board and manufacturing method thereof
JP2000323841A (en) Multilayer circuit board and manufacture thereof
JPH05211386A (en) Printed wiring board and manufacture thereof
JP2017069497A (en) Circuit board and method of manufacturing the same
JPH05121860A (en) Printed wiring board and its manufacture
CN108668468B (en) Processing method of single-side electroplating hole of circuit board and multilayer daughter board
JP2019161204A (en) Method for forming via hole in printed wiring board, filled via structure in printed wiring board, and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161124