JP2014066592A - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP2014066592A
JP2014066592A JP2012211655A JP2012211655A JP2014066592A JP 2014066592 A JP2014066592 A JP 2014066592A JP 2012211655 A JP2012211655 A JP 2012211655A JP 2012211655 A JP2012211655 A JP 2012211655A JP 2014066592 A JP2014066592 A JP 2014066592A
Authority
JP
Japan
Prior art keywords
reaction
automatic analyzer
reaction cell
optical axis
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012211655A
Other languages
Japanese (ja)
Other versions
JP6012367B2 (en
Inventor
Hikaru Takizawa
光 滝澤
Isao Yamazaki
功夫 山崎
Sadamitsu Aso
定光 麻生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2012211655A priority Critical patent/JP6012367B2/en
Publication of JP2014066592A publication Critical patent/JP2014066592A/en
Application granted granted Critical
Publication of JP6012367B2 publication Critical patent/JP6012367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an automatic analyzer capable of performing accurate optical measurement of even minute reaction liquid, by measuring the height variation of a plurality of reaction cells and correcting the positional relationship between a reaction cell and the optical axis of a photometer on the basis of the numerical value of the height variation.SOLUTION: The automatic analyzer includes: a light source for emitting light to a reaction cell in which a specimen is mixed with a reagent; a detector for detecting the light coming from the reaction cell; a reaction disk on which a plurality of reaction cells are mounted; and a control section for rotating and driving the reaction disk. In accordance with the height information of the bottom of each of the plurality of reaction cells, a storage section drives the optical axis of the light in the vertical direction.

Description

本発明は臨床検査用の自動分析装置、特に反応ディスクによって保持される複数の反応容器(反応セル)に対して、血液等の検体の分注、検体の成分と反応して呈色する試薬の分注、該反応の光学的測定を行う自動分析装置に関する。   The present invention relates to an automatic analyzer for clinical examinations, and in particular, to a plurality of reaction containers (reaction cells) held by a reaction disk, dispensing of a sample such as blood, and a reagent that reacts with a component of the sample and develops a color. The present invention relates to dispensing and an automatic analyzer for optically measuring the reaction.

従来、自動分析装置として、特開平11−316237号公報(特許文献1)に記載の自動分析装置がある。この装置は、血液中の蛋白やイオン、尿中の成分などを分析・定量するための比色測定部と、血液中のイオンを分析するイオン分析部からなる装置で、1時間に数百テストから、大型の装置になると9000テスト以上の処理速度を持つ。特に比色測定部では処理速度を上げるために、自動分析装置の本体上面には多数の反応容器が反応ディスクの円周上に設けられ、オーバーラップ処理により順次検体を混合・反応・測定する装置である。   Conventionally, as an automatic analyzer, there is an automatic analyzer described in JP-A-11-316237 (Patent Document 1). This device consists of a colorimetric measurement unit for analyzing and quantifying proteins and ions in blood, components in urine, and the like, and an ion analyzer for analyzing ions in blood. Therefore, a large-scale device has a processing speed of 9000 tests or more. In order to increase the processing speed, especially in the colorimetric measurement unit, a large number of reaction vessels are installed on the circumference of the reaction disk on the upper surface of the main body of the automatic analyzer, and the sample is sequentially mixed, reacted, and measured by overlap processing. It is.

この装置の構成は、検体、試薬を反応容器に分注する自動検体・試薬供給機構、反応セル内の検体・試薬を攪拌する自動攪拌機構と、反応中あるいは反応が終了した反応液の物性を測定する光度計と、測定の終了した反応液を吸引・排出し、反応セルを洗浄する自動洗浄機構と、これらの動作を制御する制御部などからなる。光度計では、光源から出る光束を反応セル内の被測定溶液を透過させた後、分光装置に導き、特定の波長について測定した光強度値を基準濃度の溶液について、予め測定した光強度値と比較し吸光度を算出することにより、被測定溶液中の化学成分を分析している。   This system consists of an automatic sample / reagent supply mechanism that dispenses specimens and reagents into a reaction vessel, an automatic stirring mechanism that stirs the sample / reagent in the reaction cell, and the physical properties of the reaction solution during or after the reaction. It consists of a photometer for measurement, an automatic cleaning mechanism for sucking and discharging the measured reaction solution and cleaning the reaction cell, and a controller for controlling these operations. In the photometer, the light beam emitted from the light source is transmitted through the solution to be measured in the reaction cell, and then guided to the spectroscopic device. The light intensity value measured for a specific wavelength is measured with the light intensity value measured in advance for the reference concentration solution. The chemical components in the solution to be measured are analyzed by comparing and calculating the absorbance.

化学・医用分析の分野では、検体や試薬など液の微量化が大きな課題となっている。すなわち、分析項目の増大に伴い、単項目に割くことのできる検体量が少量になっている。さらに、サンプル自体が貴重で、多量に準備できないDNA解析など、従来高度な分析とされていた微量のサンプルや試薬などでの分析がルーチン的に行われるようになってきている。また、分析内容が高度化するにつれて、高価な試薬が一般的に利用されるようになり、ランニングコストの面からも試薬の微量化が要望されている。   In the field of chemical / medical analysis, the miniaturization of liquids such as specimens and reagents has become a major issue. That is, as the number of analysis items increases, the amount of sample that can be divided into single items has become small. Furthermore, analysis using a very small amount of sample or reagent, which has been regarded as a sophisticated analysis in the past, such as DNA analysis in which the sample itself is precious and cannot be prepared in large quantities, has been routinely performed. In addition, as the analysis contents become more sophisticated, expensive reagents are generally used, and there is a demand for reducing the amount of reagents in terms of running cost.

試薬の微量化には、少ない反応液量で光学的測定が行える必要があるが、その際課題となるのは、反応セルと光度計光束との位置関係をいかにして一定に保つかである。すなわち、前述のように自動分析装置では光度計内の光源からの光束が反応セルを透過する時の光強度値を測定しているため、光束は反応セルの液面中のみを通過する必要があり、当然の如く、光束が反応セルの壁面や液中以外を透過した場合は正確な測定結果は得られない。一般的な自動分析装置では特許文献1記載のように反応セルが光度計位置まで移動する構成となっているため、反応セルと光度計光束の位置関係は、各構成部品の位置関係に依存している。   In order to reduce the amount of reagent, it is necessary to perform optical measurement with a small amount of reaction solution, but the challenge is how to keep the positional relationship between the reaction cell and the photometer luminous flux constant. . That is, as described above, since the automatic analyzer measures the light intensity value when the light beam from the light source in the photometer passes through the reaction cell, the light beam needs to pass only in the liquid surface of the reaction cell. As a matter of course, an accurate measurement result cannot be obtained when the light beam passes through the wall of the reaction cell or other than in the liquid. In a general automatic analyzer, the reaction cell moves to the photometer position as described in Patent Document 1, and therefore the positional relationship between the reaction cell and the photometer light beam depends on the positional relationship of each component. ing.

係る課題に対し、通常は各構成部品の精度を向上させることで対応している。また、例えば特開2003−107096号公報(特許文献2)に記載されているように、光学測定時に反応セルを精度よく位置決めすることで、該課題を解決しようとする試みがなされている。   Such a problem is usually dealt with by improving the accuracy of each component. In addition, as described in, for example, Japanese Patent Application Laid-Open No. 2003-107096 (Patent Document 2), an attempt has been made to solve the problem by positioning the reaction cell with high accuracy during optical measurement.

特開平11−316237号公報JP-A-11-316237 特開2003−107096号公報JP 2003-107096 A

前記微少な反応液量で光学的測定を行うための、構成部品の精度を向上させる方法には、コストアップや生産管理、精度不足といった問題がある。また、精度のコントロールが難しいため、設計時に寸法に余裕を持たせておくことが良く行なわれるが、逆を返せばその余裕分、反応液量を多く設定するため、反応液量の微少化の妨げとなっていた。同様に余裕を持たせるために光束を縮小することも行なわれるが、この方法は信号のS/N比の悪化を招く可能性がある。   The method for improving the accuracy of the component parts for performing the optical measurement with the minute amount of the reaction liquid has problems such as cost increase, production management, and insufficient accuracy. In addition, since it is difficult to control the accuracy, it is often done to allow a margin in the design at the time of design. It was a hindrance. Similarly, the light flux is reduced in order to provide a margin, but this method may cause deterioration of the S / N ratio of the signal.

また、前記反応セルを精度よく位置決めする方法では、位置決めの際に反応ディスクを停止させる必要があり、反応ディスク回転中に行われる光学的測定には使用できない課題があった。   Further, in the method of positioning the reaction cell with high accuracy, it is necessary to stop the reaction disk at the time of positioning, and there is a problem that cannot be used for optical measurement performed while the reaction disk is rotating.

本発明の目的は個々の部品精度を向上しなくとも、反応セルと光束の位置関係を正確に位置決めでき、微少な反応液量における正確な分析が可能な自動分析装置を提供することにある。   An object of the present invention is to provide an automatic analyzer capable of accurately positioning the positional relationship between a reaction cell and a light beam without improving the accuracy of individual parts and capable of performing an accurate analysis with a small amount of reaction liquid.

本願の代表的な発明は、検体と試薬を混合する反応セルに光を照射する光源と、反応セルからの光を検出する検出器と、複数の前記反応セルを載置する反応ディスクと、反応ディスクを回転駆動させる制御部と、を備え、複数の反応セルの個々の反応セルの底の高さ情報に応じて、制御部は、該光の光軸を鉛直方向に駆動する自動分析装置である。   A representative invention of the present application includes a light source that irradiates light to a reaction cell that mixes a specimen and a reagent, a detector that detects light from the reaction cell, a reaction disk on which a plurality of the reaction cells are mounted, and a reaction A control unit that rotates the disk, and the control unit is an automatic analyzer that drives the optical axis of the light in the vertical direction according to the height information of the bottom of each reaction cell of the plurality of reaction cells. is there.

光束の中心である光軸を、アクチュエータによって、鉛直方向に高速・高精度に駆動する。反応ディスクの回転によって光軸を通過する各反応セルの高さに合わせて駆動し、光束と反応セルの位置関係を調節することで、前記課題を解決する。   The optical axis, which is the center of the light beam, is driven in the vertical direction with high speed and high accuracy by an actuator. By driving the reaction disk according to the height of each reaction cell passing through the optical axis by rotating the reaction disk, the positional relationship between the light beam and the reaction cell is adjusted, thereby solving the above-mentioned problem.

また、事前、あるいは測定中に反応セルの高さを測定する機構を備えることで、光軸を駆動する目標値を決定することができる。   In addition, a target value for driving the optical axis can be determined by providing a mechanism for measuring the height of the reaction cell in advance or during measurement.

本発明により、微少な反応液量での光学的測定を可能とし、貴重な微量検体の多項目分析や、自動分析装置のランニングコストの低減の効果がある。また、反応液量の微少化を行いつつ光束の大きさを十分確保することが可能になるため、測定データの精度維持・向上の効果がある。また、構成部品の精度向上が不要になり、また、光量の少ない小型の光源の使用も可能となる点から、装置の製造コスト低減の効果を期待できる。また、光束のセル壁や液面への干渉も少なくなるため、迷光が少なくなり、より微小な信号の検出によって、高感度な検体分析が可能となる効果を期待できる。   According to the present invention, it is possible to perform optical measurement with a very small amount of reaction solution, and there is an effect of reducing the running cost of an automatic analyzer with multi-item analysis of a valuable trace sample. In addition, since it is possible to ensure a sufficient size of the light flux while minimizing the amount of the reaction solution, there is an effect of maintaining and improving the accuracy of the measurement data. In addition, since it is not necessary to improve the accuracy of the component parts and a small light source with a small amount of light can be used, an effect of reducing the manufacturing cost of the apparatus can be expected. In addition, since interference with the cell wall and the liquid surface of the light beam is reduced, stray light is reduced, and an effect of enabling highly sensitive specimen analysis by detecting a more minute signal can be expected.

本発明の実施例に係るもので、自動分析装置の構成を表す図である。It is a figure which concerns on the Example of this invention and represents the structure of an automatic analyzer. 本発明の実施例に係るもので、反応セルの高さばらつきを表す図である。It is a figure which concerns on the Example of this invention, and represents the height variation of a reaction cell. 本発明の実施例に係るもので、光学系の概略と、光軸を鉛直方向に駆動する機構を表した図である。FIG. 4 is a diagram illustrating an outline of an optical system and a mechanism for driving an optical axis in a vertical direction according to an embodiment of the present invention. 本発明の実施例に係るもので、光学系の概略と、光軸を鉛直方向に駆動する機構を表した図である。FIG. 4 is a diagram illustrating an outline of an optical system and a mechanism for driving an optical axis in a vertical direction according to an embodiment of the present invention. 本発明の実施例に係るもので、反応セルの高さを測定する機構を表した図である。It is a figure which concerns on the Example of this invention and represents the mechanism which measures the height of a reaction cell.

本発明の一実施形態を説明する。   An embodiment of the present invention will be described.

図1に沿い、自動分析装置の概略を述べる。   An outline of the automatic analyzer will be described with reference to FIG.

自動分析装置は、分析部110とインターフェイス・制御部111からなる。また、分析部110は試薬ディスク105と、反応セル101と、試薬サンプリング機構108と、検体107と、検体サンプリング機構106と、水吐出機構102(セル洗浄水・セルブランク水の注入機構)と、廃液排出機構104(測定後の検体・試薬・洗浄水・セルブランク水の吸い出し機構)と、光度計103(光学測定手段)と、複数の反応セル101が固定され、複数の反応セル101を載置し、回転駆動する反応ディスク109を有する。後述するように、この光度計103には、検体と試薬を混合する反応セル101に光を照射する光源と、反応セル101からの光を検出する検出器を含む。この他にも図示されていない、例えば反応セル101内の反応液を撹拌する撹拌機構なども反応ディスク109の周りに備えられる。   The automatic analyzer includes an analysis unit 110 and an interface / control unit 111. The analysis unit 110 includes a reagent disk 105, a reaction cell 101, a reagent sampling mechanism 108, a sample 107, a sample sampling mechanism 106, a water discharge mechanism 102 (cell washing water / cell blank water injection mechanism), Waste liquid discharge mechanism 104 (sampling mechanism for specimen / reagent / washing water / cell blank water after measurement), photometer 103 (optical measurement means), and a plurality of reaction cells 101 are fixed, and a plurality of reaction cells 101 are mounted. And a reaction disk 109 that is driven to rotate. As will be described later, the photometer 103 includes a light source that irradiates light to the reaction cell 101 that mixes the specimen and the reagent, and a detector that detects light from the reaction cell 101. In addition to this, a stirring mechanism (not shown) for stirring the reaction solution in the reaction cell 101 is also provided around the reaction disk 109.

円状に配置された複数の反応セル101は、各分析過程の操作のために、反応ディスク109によって、試薬ディスク105の周りを定周期で回転する。この回転駆動は、インターフェイス・制御部111の制御部によって制御される。また、このインターフェイス・制御部111には、分析部の分析に必要な情報を記憶する記憶部を備え、この情報を用い、制御部は分析部110の各種機構を制御する。   The plurality of reaction cells 101 arranged in a circle are rotated around the reagent disk 105 by a reaction disk 109 at regular intervals for the operation of each analysis process. This rotational driving is controlled by the control unit of the interface / control unit 111. In addition, the interface / control unit 111 includes a storage unit that stores information necessary for analysis by the analysis unit, and the control unit controls various mechanisms of the analysis unit 110 using this information.

検体の測定を行う前に、廃液排出機構104と、水吐出機構102によって反応セル101の洗浄が行われる。   Before the measurement of the specimen, the reaction cell 101 is cleaned by the waste liquid discharge mechanism 104 and the water discharge mechanism 102.

次に反応セル101が光度計103の前を通過した際に、セルブランク測定がなされる。セルブランク測定は、水吐出機構102によって水を入れた反応セル101の吸光度を測定し、検体測定の際に各反応セル101のゼロ点を補正するために行われる。   Next, when the reaction cell 101 passes in front of the photometer 103, cell blank measurement is performed. The cell blank measurement is performed in order to measure the absorbance of the reaction cell 101 containing water by the water discharge mechanism 102 and correct the zero point of each reaction cell 101 at the time of sample measurement.

セルブランク測定を終えた後は廃液排出機構104により反応セル101から水を吸いだす。   After the cell blank measurement is completed, water is sucked out of the reaction cell 101 by the waste liquid discharge mechanism 104.

続いて反応セル101が移動し、検体サンプリング機構106によって検体107の一部が反応セル101に分注される。   Subsequently, the reaction cell 101 moves, and a part of the sample 107 is dispensed into the reaction cell 101 by the sample sampling mechanism 106.

続いて反応セル101が移動し、試薬サンプリング機構108によって試薬ディスク105から反応セル101へ試薬が分注され、試薬と検体は混合して反応し、反応液が生成される。反応液が入った反応セル101が、定周期で回転して光度計103の前を通過するときに一度、あるいは通過するたびに複数回の吸光光度測定を行い、検体の成分が測定される。   Subsequently, the reaction cell 101 moves, the reagent sampling mechanism 108 dispenses the reagent from the reagent disk 105 to the reaction cell 101, the reagent and the sample are mixed and reacted, and a reaction solution is generated. When the reaction cell 101 containing the reaction solution rotates at a fixed period and passes through the front of the photometer 103, or each time it passes, a spectrophotometric measurement is performed several times to measure the components of the specimen.

反応セル101は、水吐出機構102や廃液排出機構104による水の吐出・排出、検体サンプリング機構106や試薬サンプリング機構108による検体や試薬の分注を受ける時は、その移動を止めている必要があるため、移動と停止を間欠的に繰り返している。   The reaction cell 101 needs to stop moving when it receives water discharge / discharge by the water discharge mechanism 102 or the waste liquid discharge mechanism 104 and sample / reagent dispensing by the sample sampling mechanism 106 or the reagent sampling mechanism 108. Therefore, moving and stopping are repeated intermittently.

以上が自動分析装置の概要である。   The above is the outline of the automatic analyzer.

次に、反応セル101と光軸201の関係について述べる。   Next, the relationship between the reaction cell 101 and the optical axis 201 will be described.

図2に各反応セル101のばらつきの様子を示す。反応セル101は、反応セル取り付け部203によって互いに固定されているものの、反応セル101が固定されている反応ディスク109の平面度の歪みや、その他構成部品の歪み等によって、それぞれの高さが0.1mmオーダーで異なる。また、反応セル101と光度計103の位置関係を決定づける構成部品の公差によって、該位置関係が、設計時とはやはり0.1mmオーダーで異なる。   FIG. 2 shows how the reaction cells 101 vary. Although the reaction cells 101 are fixed to each other by the reaction cell mounting portion 203, the height of each of the reaction cells 101 is 0 due to distortion of flatness of the reaction disk 109 to which the reaction cell 101 is fixed, distortion of other components, and the like. .1mm order is different. In addition, due to the tolerance of the components that determine the positional relationship between the reaction cell 101 and the photometer 103, the positional relationship is still different on the order of 0.1 mm from the design time.

また、光度計103の検出器で検出される信号の大きさは、光束202の大きさに比例するため、信号のS/N比を確保する意味で、光束202は一定の大きさを保つ必要がある。   Further, since the magnitude of the signal detected by the detector of the photometer 103 is proportional to the magnitude of the luminous flux 202, the luminous flux 202 needs to be maintained at a constant magnitude in order to ensure the S / N ratio of the signal. There is.

分析動作中、反応ディスク109は回転駆動するため反応セル101は紙面の右側に移動する。反応セルのばらつきから左側の反応セルの底と、光束202(又は光軸201)との位置関係は変化する。少なくとも反応セル内の液体表面より低い位置に、光束202の領域を収める必要があることから、反応セルの底の高さのばらつきが、液体の微量化を妨げることになる。反応セルの底の高さばらつきを考慮して液体量のマージンを取り、液体量を決定する必要があるからである。   During the analysis operation, the reaction disk 109 is driven to rotate, so that the reaction cell 101 moves to the right side of the page. The positional relationship between the bottom of the left reaction cell and the light beam 202 (or the optical axis 201) changes due to variations in the reaction cell. Since it is necessary to store the region of the light beam 202 at least at a position lower than the liquid surface in the reaction cell, the variation in the height of the bottom of the reaction cell prevents the liquid from being minutely formed. This is because it is necessary to determine the liquid amount by taking a margin of the liquid amount in consideration of the variation in the height of the bottom of the reaction cell.

次に、光軸201の鉛直方向の駆動機構について述べる。   Next, a vertical driving mechanism of the optical axis 201 will be described.

図3に光度計の概略を示す。光源301から生じた光は、レンズA302とスリットA303を通過して、反応セル101に照射される。その際、反応セル101のある程度広い範囲に対して光を照射している。反応セル101を通過した光は、スリットB304によって一部を切り取られ、レンズB305とスリットC306を通過し、グレーティング307によって分光されたのち、検知器308によって信号へ変換される。よって、実質的な光軸201を決定づけているのは、スリットB304と、スリットC306である事が理解される。よって光軸201の駆動は、スリットB304とスリットC306を鉛直方向に駆動することで行う。リニアモータ309とスリットB304・スリットC306を固定し駆動する。これらの駆動は制御部によって行われる。この方法のメリットとして、光度計全体を鉛直方向に駆動するよりも動かす部品が小さく軽くなり、小さなリニアモータ309でも高速な制御が可能となる点がある。光学的測定時は、反応セル101が光軸201を高速に通過するために、スリットB304とスリットC306を高速に0.1mmオーダーで駆動する必要がある。   FIG. 3 shows an outline of the photometer. Light generated from the light source 301 passes through the lens A 302 and the slit A 303 and is irradiated to the reaction cell 101. At that time, light is irradiated to a certain wide range of the reaction cell 101. A portion of the light that has passed through the reaction cell 101 is cut off by the slit B 304, passes through the lens B 305 and the slit C 306, is dispersed by the grating 307, and is converted into a signal by the detector 308. Therefore, it is understood that the slit B304 and the slit C306 determine the substantial optical axis 201. Therefore, the optical axis 201 is driven by driving the slit B304 and the slit C306 in the vertical direction. The linear motor 309 and the slits B304 and C306 are fixed and driven. These drives are performed by the control unit. The advantage of this method is that the parts to be moved are smaller and lighter than when the entire photometer is driven in the vertical direction, and high speed control is possible even with a small linear motor 309. At the time of optical measurement, since the reaction cell 101 passes through the optical axis 201 at high speed, it is necessary to drive the slit B304 and the slit C306 at high speed on the order of 0.1 mm.

このように、反応セルと検出器との間にレンズB305を挟むように設けられた2枚のスリット(304、306)を備え、制御部が、光源に対し相対的に2枚のスリットを鉛直方向に駆動することで、高速な制御が実現できる。   As described above, two slits (304, 306) are provided so as to sandwich the lens B305 between the reaction cell and the detector, and the control unit vertically places the two slits relative to the light source. High speed control can be realized by driving in the direction.

リニアモータ309は、パルスモータ、サーボモータ等、高速・高精度な制御ができるアクチュエータで代用が可能である。また、これらのアクチュエータは、メンテナンス等で取り換えが可能な構造とする。   The linear motor 309 can be replaced with an actuator capable of high-speed and high-precision control, such as a pulse motor or a servo motor. These actuators have a structure that can be replaced by maintenance or the like.

また、光軸201の鉛直方向の駆動機構について別の実施例を述べる。   Another embodiment of the drive mechanism in the vertical direction of the optical axis 201 will be described.

図4に光度計の概略を示す。光源401から生じた光は、ミラーA402によって反射され、反応セル101を通過する。該通過した光はミラーB403によって反射され、グレーティング404へ入射し、分光されて検知器405で信号に変換される。光軸201の駆動は、ミラーA402とミラーB403をリニアモータ406によって鉛直方向に駆動することによって行なう。これらの駆動は制御部によって行われる。前記実施例と同様に、リニアモータ406は、パルスモータ、サーボモータ等、高速・高精度な制御が可能であるアクチュエータで代用が可能である。ミラーA402とミラーB403も、プリズムや光ファイバーなどの光学的反射を行う部品での代用が可能である。   FIG. 4 shows an outline of the photometer. Light generated from the light source 401 is reflected by the mirror A 402 and passes through the reaction cell 101. The passed light is reflected by the mirror B 403, enters the grating 404, is dispersed, and is converted into a signal by the detector 405. The optical axis 201 is driven by driving the mirror A 402 and the mirror B 403 in the vertical direction by a linear motor 406. These drives are performed by the control unit. As in the above-described embodiment, the linear motor 406 can be replaced with an actuator capable of high-speed and high-precision control, such as a pulse motor or a servo motor. The mirror A 402 and the mirror B 403 can also be replaced with components that perform optical reflection, such as prisms and optical fibers.

このように、光源と反応セルとの間、および、反応セルと検出器との間に、それぞれミラー(402、403)を備え、制御部が、光源に対し相対的にそれぞれのミラーを鉛直方向に駆動することで、前記実施例と同様に、高速な制御が実現できる。   As described above, the mirrors (402, 403) are provided between the light source and the reaction cell and between the reaction cell and the detector, respectively, and the control unit vertically moves each mirror relative to the light source. As in the above-described embodiment, high-speed control can be realized.

次に、反応セル101の底の高さを測定する手段について述べる。   Next, a means for measuring the height of the bottom of the reaction cell 101 will be described.

図5に示すように、レーザー測長器501を用いて反応セル101の高さを測定する。測定点は、反応セル101の底を用いるが、反応セル101の縁や、反応ディスク109の反応セル101取り付け面等でも代用可能である。縁や取り付け面等で代用する場合には、縁や取り付け面から反応セル101の底までの距離のばらつきが、反応セルの底の高さのばらつきよりも小さく、各反応セルで互いに略一定という前提に基づく。これらで代用する場合でも実際に反応セル101の底を測定しなくても、反応セル101の底のばらつきを測定することができる。本明細書での反応セルの底の高さ情報とは、実際に反応セルの底を測定した情報以外でも、このように代用された情報も含む。   As shown in FIG. 5, the height of the reaction cell 101 is measured using a laser length measuring device 501. As the measurement point, the bottom of the reaction cell 101 is used, but the edge of the reaction cell 101 or the surface of the reaction disk 109 attached to the reaction cell 101 can be used instead. In the case of substituting with an edge or a mounting surface, the variation in the distance from the edge or the mounting surface to the bottom of the reaction cell 101 is smaller than the variation in the height of the bottom of the reaction cell, and each reaction cell is substantially constant. Based on assumptions. Even when these are substituted, it is possible to measure variations in the bottom of the reaction cell 101 without actually measuring the bottom of the reaction cell 101. The information on the height of the bottom of the reaction cell in this specification includes information substituted in this way, in addition to the information obtained by actually measuring the bottom of the reaction cell.

反応セルの底の高さの測定は、装置の生産時、装置の起動時、メンテナンス時、反応セル101の交換時のいずれかのタイミングに自動で、あるいはユーザーの任意のタイミングで行うことができる。自動で実行する場合には、予め装置にどのタイミングで実行するかが設定されている。一方、ユーザーの任意のタイミングで実行する場合には、例えば、操作画面などのインターフェイスを介して、ユーザーが選択することで、実行を装置に指示する。   The height of the bottom of the reaction cell can be measured automatically at any time during the production of the device, when the device is started, during maintenance, or when the reaction cell 101 is replaced, or at any timing of the user. . In the case of automatic execution, the timing for execution in the apparatus is set in advance. On the other hand, when executing at an arbitrary timing of the user, the user instructs the apparatus to execute by selecting the user via an interface such as an operation screen, for example.

実行が指示されると、反応ディスクは少なくとも1周分の回転駆動するよう制御され、レーザー測長器501により高さ情報の測定が行われる。制御部は、個々の反応セルに対して、得られた高さ情報を反応セルの位置情報と共に記憶部に記憶する。   When the execution is instructed, the reaction disk is controlled to be driven to rotate for at least one round, and the height information is measured by the laser length measuring device 501. The control unit stores the obtained height information together with the position information of the reaction cell in the storage unit for each reaction cell.

このため、レーザー測長器501は、反応セルの底を直接測定する場合には、反応セルの底にレーザーが照射できる位置に配置され、間接的に測定する場合には、反応セルの縁などの対象物にレーザーが照射できる位置に配置される。また、高さ情報の測定を行う必要がない時は、レーザー測長器501を取り外せるように、レーザー測長器501を分析装置に着脱できるようにしてもよい。   For this reason, when measuring the bottom of the reaction cell directly, the laser length measuring device 501 is disposed at a position where the laser can be irradiated to the bottom of the reaction cell. It is arranged at a position where a laser beam can be applied to the object. Further, when there is no need to measure the height information, the laser length measuring device 501 may be detachable from the analyzer so that the laser length measuring device 501 can be removed.

また、前記実施例ではレーザー測長器501による測定を述べたが、原理的に反応セル101の高さを測定できる、高さ情報測定手段であれば、代用が可能である。例えば、検体サンプリング機構108の接触検知機能を応用して反応セル101の高さ測定を行うことができる。   In the above embodiment, the measurement by the laser length measuring device 501 has been described. However, any height information measuring means that can measure the height of the reaction cell 101 in principle can be substituted. For example, the height of the reaction cell 101 can be measured by applying the contact detection function of the sample sampling mechanism 108.

次に、測定した反応セル101の高さを元にした光軸201の駆動について述べる。前記反応セル101の高さ測定手段によって測定した数値を、インターフェイス・制御部111に備えられている記憶部へ保存しておき、該当する反応セル101が光度計103を通過する際に、該数値を元に算出した目標値へ光軸201を駆動する。これにより、個々の部品精度向上によらず、光軸201と反応セル101の位置関係を正確に位置決めすることが可能となる。また、反応セル101の移動に合わせて光軸201の駆動を行えるため、反応セル101移動中の光学的測定の際にも適用が可能である。   Next, driving of the optical axis 201 based on the measured height of the reaction cell 101 will be described. The numerical value measured by the height measuring means of the reaction cell 101 is stored in a storage unit provided in the interface / control unit 111, and the numerical value is measured when the corresponding reaction cell 101 passes the photometer 103. The optical axis 201 is driven to the target value calculated based on the above. As a result, the positional relationship between the optical axis 201 and the reaction cell 101 can be accurately determined regardless of the accuracy of individual components. Further, since the optical axis 201 can be driven in accordance with the movement of the reaction cell 101, it can be applied to optical measurement during the movement of the reaction cell 101.

反応セル101高さ測定のタイミングについて、別の実施例を述べる。これまでは、記憶部に記憶させて制御する実施例を述べたが、検体分析を行っている最中に光軸201を通過する直前で反応セル101の高さ測定を行うことにしてもよい。これにより、光軸201を通過する直前で測定した数値を制御部にフィードバックして光軸を鉛直方向に制御できるため、測定した数値を記憶部に記憶しておく必要がなくなる。この場合には、リアルタイムで測定するための前述の高さ情報測定手段を設置しておく必要がある。また、分析対象の液体が反応セルに収容されているため、反応セルの縁などで間接的に反応セルの底の高さ情報測定を行うことが望ましい。   Another embodiment of the timing for measuring the height of the reaction cell 101 will be described. So far, the embodiment has been described in which the data is stored in the storage unit and controlled. However, the height of the reaction cell 101 may be measured immediately before passing through the optical axis 201 during sample analysis. . Thereby, since the numerical value measured immediately before passing through the optical axis 201 can be fed back to the control unit and the optical axis can be controlled in the vertical direction, it is not necessary to store the measured numerical value in the storage unit. In this case, it is necessary to install the aforementioned height information measuring means for measuring in real time. Further, since the liquid to be analyzed is accommodated in the reaction cell, it is desirable to measure the height information of the bottom of the reaction cell indirectly at the edge of the reaction cell.

101…反応セル
102…水吐出機構
103…光度計
104…廃液排出機構
105…試薬ディスク
106…検体サンプリング機構
107…検体
108…試薬サンプリング機構
109…反応ディスク
110…分析部
111…インターフェイス・制御部
201…光軸
202…光束
203…反応セル取り付け部
301…光源
302…レンズA
303…スリットA
304…スリットB
305…レンズB
306…スリットC
307…グレーティング
308…検知器
309…リニアモータ
401…光源
402…ミラーA
403…ミラーB
404…グレーティング
405…検知器
406…リニアモータ
501…レーザー測長器
DESCRIPTION OF SYMBOLS 101 ... Reaction cell 102 ... Water discharge mechanism 103 ... Photometer 104 ... Waste liquid discharge mechanism 105 ... Reagent disk 106 ... Specimen sampling mechanism 107 ... Specimen 108 ... Reagent sampling mechanism 109 ... Reaction disk 110 ... Analysis part 111 ... Interface / control part 201 ... Optical axis 202 ... Light flux 203 ... Reaction cell mounting part 301 ... Light source 302 ... Lens A
303 ... Slit A
304 ... Slit B
305 ... Lens B
306 ... Slit C
307 ... Grating 308 ... Detector 309 ... Linear motor 401 ... Light source 402 ... Mirror A
403 ... Mirror B
404 ... Grating 405 ... Detector 406 ... Linear motor 501 ... Laser length measuring device

Claims (8)

検体と試薬を混合する反応セルに光を照射する光源と、前記反応セルからの光を検出する検出器と、
複数の前記反応セルを載置する反応ディスクと、
前記反応ディスクを回転駆動させる制御部と、を備え、
前記複数の反応セルの個々の反応セルの底の高さ情報に応じて、前記制御部は、該光の光軸を鉛直方向に駆動することを特徴とする自動分析装置。
A light source that emits light to a reaction cell that mixes a sample and a reagent, a detector that detects light from the reaction cell,
A reaction disk for mounting a plurality of the reaction cells;
A control unit that rotationally drives the reaction disk,
The automatic analyzer according to claim 1, wherein the control unit drives the optical axis of the light in the vertical direction according to the height information of the bottom of each of the plurality of reaction cells.
請求項1に記載の自動分析装置において、前記制御部は、前記反応ディスクの回転駆動に従い、該光が照射させる前記反応セル毎に鉛直方向に駆動することを特徴とする自動分析装置。   2. The automatic analyzer according to claim 1, wherein the control unit is driven in the vertical direction for each of the reaction cells irradiated with the light according to the rotation of the reaction disk. 請求項2に記載の自動分析装置において、前記制御部は、前記複数の反応セルの底の高さばらつきを低減させるよう該光軸を駆動し、該光軸と前記反応セルの底の高さと距離を、前記反応ディスクの回転駆動中に前記複数の反応セル間で略一定に保つよう制御することを特徴とする自動分析装置。   3. The automatic analyzer according to claim 2, wherein the control unit drives the optical axis so as to reduce variations in bottom height of the plurality of reaction cells, and sets the optical axis and the bottom height of the reaction cell. An automatic analyzer that controls the distance so as to be kept substantially constant among the plurality of reaction cells during the rotation of the reaction disk. 請求項1〜3のいずれかに記載の自動分析装置において、さらに、前記高さ情報を測定する高さ情報測定手段を備えることを特徴とする機能を備える自動分析装置。   The automatic analyzer according to any one of claims 1 to 3, further comprising height information measuring means for measuring the height information. 請求項1〜4のいずれかに記載の自動分析装置において、さらに、前記複数の反応セルの個々の反応セルの底の高さ情報を記憶する記憶部を備え、前記制御部は、記憶部に記憶された前記高さ情報に応じて、該光の光軸を鉛直方向に駆動することを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 4, further comprising a storage unit that stores bottom height information of individual reaction cells of the plurality of reaction cells, and the control unit is provided in the storage unit. An automatic analyzer characterized in that the optical axis of the light is driven in the vertical direction according to the stored height information. 請求項1〜5のいずれかに記載の自動分析装置において、前記高さ情報測定手段における高さ測定を、装置のメンテナンス時、イニシャライズ時、反応セル交換時のいずれかで自動で実行する機能を備える自動分析装置。   The automatic analyzer according to any one of claims 1 to 5, wherein the height measurement in the height information measuring means is automatically executed at any time during maintenance of the device, at initialization, or at the time of reaction cell replacement. Automatic analyzer equipped. 請求項1〜6のいずれかに記載の自動分析装置において、さらに、前記反応セルと前記検出器との間にレンズを挟むように設けられた2枚のスリットを備え、前記制御部は、前記光源に対し相対的に前記2枚のスリットを鉛直方向に駆動することで、該光軸を鉛直方向に駆動することを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 6, further comprising two slits provided so as to sandwich a lens between the reaction cell and the detector, An automatic analyzer that drives the optical axis in a vertical direction by driving the two slits in a vertical direction relative to a light source. 請求項1〜6のいずれかに記載の自動分析装置において、さらに、前記光源と前記反応セルとの間、および、前記反応セルと前記検出器との間に、それぞれミラーを備え、前記制御部は、前記光源に対し相対的に前記それぞれのミラーを鉛直方向に駆動することで、該光軸を鉛直方向に駆動することを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 6, further comprising a mirror between the light source and the reaction cell, and between the reaction cell and the detector, and the control unit. Is an automatic analyzer that drives the optical axis in the vertical direction by driving the mirrors in the vertical direction relative to the light source.
JP2012211655A 2012-09-26 2012-09-26 Automatic analyzer Expired - Fee Related JP6012367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211655A JP6012367B2 (en) 2012-09-26 2012-09-26 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012211655A JP6012367B2 (en) 2012-09-26 2012-09-26 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2014066592A true JP2014066592A (en) 2014-04-17
JP6012367B2 JP6012367B2 (en) 2016-10-25

Family

ID=50743145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211655A Expired - Fee Related JP6012367B2 (en) 2012-09-26 2012-09-26 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP6012367B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020845A (en) * 2014-07-14 2016-02-04 株式会社東芝 Automatic analyzer
JP2017020903A (en) * 2015-07-10 2017-01-26 協和メデックス株式会社 Detection device and analysis device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119376A (en) * 1976-03-31 1977-10-06 Shimadzu Corp Spectrophotometer
JPS6488135A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Atomic absorption photometer
JPH05302893A (en) * 1992-02-29 1993-11-16 Shimadzu Corp Measuring equipment of spectral characteristic of minute-amount liquid sample
JPH06186163A (en) * 1992-05-11 1994-07-08 Nec Corp Chemically analyzing method
JP2000053242A (en) * 1998-08-17 2000-02-22 Jeol Ltd Distortion correcting device for container support disc in analyzer
JP2001004318A (en) * 1999-06-23 2001-01-12 Shimadzu Corp Apparatus for measuring optical path length
JP2003107096A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Automatic analyzer
JP2007205816A (en) * 2006-01-31 2007-08-16 Olympus Corp Analyzer and photometric method of it
JP2009186461A (en) * 2008-01-11 2009-08-20 Toshiba Corp Automatic analysis device and automatic analysis method
JP2010169468A (en) * 2009-01-21 2010-08-05 Beckman Coulter Inc Automatic analyzer, photometric device, and photometric method
JP2010169579A (en) * 2009-01-23 2010-08-05 Hitachi High-Technologies Corp Automatic analyzer
JP2010175342A (en) * 2009-01-28 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer and reaction vessel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119376A (en) * 1976-03-31 1977-10-06 Shimadzu Corp Spectrophotometer
JPS6488135A (en) * 1987-09-30 1989-04-03 Hitachi Ltd Atomic absorption photometer
JPH05302893A (en) * 1992-02-29 1993-11-16 Shimadzu Corp Measuring equipment of spectral characteristic of minute-amount liquid sample
JPH06186163A (en) * 1992-05-11 1994-07-08 Nec Corp Chemically analyzing method
JP2000053242A (en) * 1998-08-17 2000-02-22 Jeol Ltd Distortion correcting device for container support disc in analyzer
JP2001004318A (en) * 1999-06-23 2001-01-12 Shimadzu Corp Apparatus for measuring optical path length
JP2003107096A (en) * 2001-09-28 2003-04-09 Hitachi Ltd Automatic analyzer
JP2007205816A (en) * 2006-01-31 2007-08-16 Olympus Corp Analyzer and photometric method of it
JP2009186461A (en) * 2008-01-11 2009-08-20 Toshiba Corp Automatic analysis device and automatic analysis method
JP2010169468A (en) * 2009-01-21 2010-08-05 Beckman Coulter Inc Automatic analyzer, photometric device, and photometric method
JP2010169579A (en) * 2009-01-23 2010-08-05 Hitachi High-Technologies Corp Automatic analyzer
JP2010175342A (en) * 2009-01-28 2010-08-12 Hitachi High-Technologies Corp Automatic analyzer and reaction vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020845A (en) * 2014-07-14 2016-02-04 株式会社東芝 Automatic analyzer
JP2017020903A (en) * 2015-07-10 2017-01-26 協和メデックス株式会社 Detection device and analysis device

Also Published As

Publication number Publication date
JP6012367B2 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
US10416179B2 (en) Automatic analyzer
JP6653329B2 (en) Automatic analyzer and automatic analysis method
EP2667182B1 (en) Automatic analysis device taking into account thermal drift
WO2011090173A1 (en) Automatic analyzer
JP6312313B2 (en) Automatic analyzer and automatic analysis method
JP6012367B2 (en) Automatic analyzer
JP6766155B2 (en) Automatic analyzer
JP5086286B2 (en) Automatic analyzer
JPWO2017043192A1 (en) Automatic analyzer
JP5487176B2 (en) Automatic analyzer
JP2007316012A (en) Autoanalyzer and specimen-dispensing method therefor
WO2010084627A1 (en) Autoanalyzer, photometric device and photometric method
JP2007322246A (en) Autoanalyzer
JP7123548B2 (en) automatic analyzer
JP7206090B2 (en) automatic analyzer
JP2022021863A (en) Automatic analyzer
JP2007322245A (en) Autoanalyzer
JPH03183955A (en) Automatic analyzing device
JP2000180368A (en) Chemical analyser
JP2013210388A (en) Autoanalyzer
JP2001004318A (en) Apparatus for measuring optical path length
JP7181828B2 (en) Analysis equipment
JP2007033130A (en) Autoanalyzer
JP2009115614A (en) Automatic analyzer
JP5975055B2 (en) Inspection chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees