JP2014066232A - Internal combustion engine and method of controlling the same - Google Patents

Internal combustion engine and method of controlling the same Download PDF

Info

Publication number
JP2014066232A
JP2014066232A JP2012213944A JP2012213944A JP2014066232A JP 2014066232 A JP2014066232 A JP 2014066232A JP 2012213944 A JP2012213944 A JP 2012213944A JP 2012213944 A JP2012213944 A JP 2012213944A JP 2014066232 A JP2014066232 A JP 2014066232A
Authority
JP
Japan
Prior art keywords
temperature
catalyst
nox
reduction
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012213944A
Other languages
Japanese (ja)
Other versions
JP6036098B2 (en
Inventor
Taiji Nagaoka
大治 長岡
Tomohiro Korenaga
智宏 是永
Teruo Nakada
輝男 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2012213944A priority Critical patent/JP6036098B2/en
Priority to PCT/JP2013/073528 priority patent/WO2014050445A1/en
Publication of JP2014066232A publication Critical patent/JP2014066232A/en
Application granted granted Critical
Publication of JP6036098B2 publication Critical patent/JP6036098B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine and a method of controlling the same, effective in purifying NOx, and executing purification of NOx by calculating an effective reduction timing free from degradation of fuel economy.SOLUTION: In an engine 1, an ECU 18 includes: catalyst temperature raising means C5 for making an injector 15 inject in multistage at a temperature raising timing calculated on the basis of a timing estimation parameter including a temperature parameter detected by catalyst temperature detecting means C1, a NOx concentration parameter detected by NOx concentration detecting means C2, and an exhaust gas flow rate parameter detected by exhaust gas flow rate detecting means C3, to raise a temperature of an LNT catalyst 16; and reduction enhancing means C7 for enhancing reduction of NOx in the LNT catalyst 16 at a reduction timing calculated on the basis of the redetected timing estimation parameter after temperature raise of the LNT catalyst 16 by the catalyst temperature raising means C5.

Description

本発明は、deNOx触媒(NOx浄化触媒)を用いてNOx(窒素酸化物)を浄化する際に、低負荷時でも、燃費を悪化させずに、NOxを浄化する内燃機関と、その制御方法に関する。   The present invention relates to an internal combustion engine that purifies NOx without deteriorating fuel efficiency even at low load when purifying NOx (nitrogen oxide) using a deNOx catalyst (NOx purifying catalyst), and a control method thereof. .

従来、エンジン(内燃機関)から排出される排ガス中のNOxを浄化するために、LNT触媒(lean−NOx−trap触媒;NOx吸蔵還元触媒など)や、尿素SCR触媒(尿素選択的触媒還元触媒)などのdeNOx触媒が利用されている。   Conventionally, in order to purify NOx in exhaust gas discharged from an engine (internal combustion engine), an LNT catalyst (lean-NOx-trap catalyst; NOx occlusion reduction catalyst, etc.) or a urea SCR catalyst (urea selective catalytic reduction catalyst) DeNOx catalysts such as are used.

このdeNOx触媒は、触媒が活性化する温度(以下、活性温度という)よりも低い温度では、触媒反応が低下してNOxの還元効率が低下する。特に、エンジンの始動時などの低負荷時のNOxの浄化率は低い。   In this deNOx catalyst, at a temperature lower than the temperature at which the catalyst is activated (hereinafter referred to as the activation temperature), the catalytic reaction is lowered and the NOx reduction efficiency is lowered. In particular, the NOx purification rate at low loads such as when the engine is started is low.

例えば、NOxを吸蔵して還元するLNT触媒は、比較的低温でも、理論空燃比よりも燃料の割合が薄い状態のリーン状態であれば、NOxを吸蔵することはできる。しかし、理論空燃比よりも燃料の割合が濃い状態のリッチ状態でNOxを放出し、還元する(以下、リッチ還元という)ためには、LNT触媒を高温にする必要があるため、低負荷時の浄化率は低下する。一方、尿素SCR触媒は、NH(アンモニア)の還元効率が低温で低下するため、低負荷時の浄化率も低下する。 For example, an LNT catalyst that stores and reduces NOx can store NOx even in a lean state where the fuel ratio is lower than the stoichiometric air-fuel ratio even at a relatively low temperature. However, in order to release and reduce NOx in a rich state where the fuel ratio is higher than the stoichiometric air-fuel ratio, the LNT catalyst needs to be heated to a high temperature (hereinafter referred to as rich reduction). The purification rate decreases. On the other hand, in the urea SCR catalyst, the reduction efficiency of NH 3 (ammonia) decreases at low temperatures, so the purification rate at low load also decreases.

排ガス評価モード外の渋滞路や、低負荷で且つコールド状態から開始するNEDC(新欧州ドライビングサイクル)モードなどの排ガス評価モードでは、上記の理由により、deNOx触媒が十分に機能せずにNOxを浄化することができなかった。   In exhaust gas evaluation modes such as traffic jams outside the exhaust gas evaluation mode and NEDC (New European Driving Cycle) mode that starts from a cold state with a low load, the deNOx catalyst does not function sufficiently for the above reasons and purifies NOx. I couldn't.

そこで、その問題に対して、NOx吸蔵還元触媒からNOxを放出すべきときの酸化触媒の触媒温度が予め定められた温度より低いとき、ポスト噴射を行う機関サイクルを開始し、前記ポスト噴射を行う機関サイクルの開始時期を排気系噴射の開始時期よりも予め定められた先行時間だけ早く設定し、該先行時間は酸化触媒の温度が低いほど長く設定する装置(例えば、特許文献1参照)がある。   Therefore, in response to this problem, when the catalyst temperature of the oxidation catalyst when NOx is to be released from the NOx storage reduction catalyst is lower than a predetermined temperature, an engine cycle for performing post injection is started and the post injection is performed. There is an apparatus in which the start time of the engine cycle is set earlier than the start time of exhaust system injection by a predetermined preceding time, and the preceding time is set longer as the temperature of the oxidation catalyst is lower (for example, see Patent Document 1). .

また、触媒の温度を検出する触媒温度検出手段と、触媒温度検出手段の検出値に基づいて触媒が活性化しているか否かを判定する活性化判定手段とを有し、活性化判定手段の判定結果に基づいて、機関の運転モードとして排気温度を上昇させることを優先する排気昇温モードまたは排気成分を低減させることを優先する排気成分低減モードのいずれかを選択して実行する制御手段と、を備える装置(例えば、特許文献2参照)もある。   In addition, it has a catalyst temperature detecting means for detecting the temperature of the catalyst, and an activation determining means for determining whether or not the catalyst is activated based on a detection value of the catalyst temperature detecting means. Control means for selecting and executing either an exhaust temperature raising mode that prioritizes raising the exhaust temperature as an engine operation mode or an exhaust component reduction mode that prioritizes reducing exhaust components based on the results; There is also an apparatus (for example, refer to Patent Document 2) including the above.

それらの装置は、deNOx触媒を昇温するために、多段噴射を用いて排気温度を上昇させているが、この昇温のための多段噴射は、燃費の悪化を伴うため、常時実施することができない。その燃費が悪化するという問題を解決するために、特許文献1には、NOx吸蔵還元触媒からNOxを放出すべきときに多段噴射を行うことが開示されている。また、特許文献2には、触媒温度検出手段の検出値に基づいて触媒が活性化しているか否かを判定し、その判定結果に基づいて多段噴射を行うことが開示されている。   These devices use multistage injection to raise the exhaust temperature in order to raise the temperature of the deNOx catalyst. However, since this multistage injection for raising the temperature is accompanied by deterioration of fuel consumption, it can always be performed. Can not. In order to solve the problem that the fuel efficiency deteriorates, Patent Document 1 discloses that multistage injection is performed when NOx should be released from the NOx storage reduction catalyst. Patent Document 2 discloses that it is determined whether or not the catalyst is activated based on the detection value of the catalyst temperature detecting means, and multistage injection is performed based on the determination result.

しかしながら、それらの装置は触媒の温度を多段噴射の判断基準としており、常時多段噴射を実施するものに比べて燃費の悪化を抑制することはできるが、燃費の悪化を最小に抑えることはできない。また、deNOx触媒が活性化した後の還元を促進するタイミン
グにも適切なタイミングがあり、そのタイミングで還元を促進することで、より燃費の悪化を抑制することが可能となる。
However, these devices use the temperature of the catalyst as a criterion for multistage injection, and can suppress the deterioration of fuel consumption compared to those that always perform multistage injection, but cannot suppress the deterioration of fuel consumption to a minimum. In addition, there is an appropriate timing for promoting the reduction after the deNOx catalyst is activated, and by promoting the reduction at that timing, it becomes possible to further suppress the deterioration of fuel consumption.

特開2010−038116号公報JP 2010-038116 A 特開2010−112192号公報JP 2010-112192 A

本発明は、上記の問題を鑑みてなされたものであり、その目的は、内燃機関の低負荷時でも、燃費が悪化しない効果的なタイミングを算出して、NOxの浄化を行うことができる内燃機関とその制御方法を提供することである。   The present invention has been made in view of the above problems, and an object of the present invention is to calculate an effective timing at which the fuel consumption does not deteriorate even at a low load of the internal combustion engine, and to purify NOx. It is to provide an engine and its control method.

上記の目的を解決するための本発明の内燃機関は、燃料を多段噴射可能な燃料噴射弁と、排気通路に設けられたNOx浄化触媒と、を備える内燃機関において、触媒温度検出手段、NOx濃度検出手段、及び排ガス流量検出手段を具備する制御装置を備えると共に、前記制御装置が、前記触媒温度検出手段で検知した温度パラメータ、前記NOx濃度検出手段で検知したNOx濃度パラメータ、及び前記排ガス流量検出手段で検知した排ガス流量パラメータを含むタイミング推定パラメータを用いて算出した昇温タイミングで、前記燃料噴射弁を多段噴射制御して、前記NOx浄化触媒の温度を昇温する触媒昇温手段と、前記触媒昇温手段による前記NOx浄化触媒の昇温後に、再検知した前記タイミング推定パラメータを用いて算出した還元タイミングで、前記NOx浄化触媒でのNOxの還元を促進する還元促進手段と、を備えて構成される。   An internal combustion engine of the present invention for solving the above-described object is an internal combustion engine comprising a fuel injection valve capable of multi-stage injection of fuel and a NOx purification catalyst provided in an exhaust passage. A control unit including a detection unit and an exhaust gas flow rate detection unit; the control unit detects a temperature parameter detected by the catalyst temperature detection unit; a NOx concentration parameter detected by the NOx concentration detection unit; and the exhaust gas flow rate detection Catalyst temperature raising means for raising the temperature of the NOx purification catalyst by performing multi-stage injection control of the fuel injection valve at a temperature raising timing calculated using a timing estimation parameter including an exhaust gas flow rate parameter detected by the means; After the NOx purification catalyst is heated by the catalyst heating means, the return calculated using the timing estimation parameter detected again. In timing, and provided with a reduction promoter means for facilitating the reduction of NOx in the NOx purifying catalyst.

この構成によれば、タイミング推定パラメータを用いて算出した昇温タイミングでNOx浄化触媒を昇温し、その後、再検出したタイミング推定パラメータを用いて算出した還元タイミングでNOx浄化触媒でのNOxの還元を促進するため、内燃機関が低負荷時でも、燃費の悪化を最小に抑えつつ、NOxを浄化することができる。   According to this configuration, the NOx purification catalyst is heated at the temperature rise timing calculated using the timing estimation parameter, and then the NOx reduction at the NOx purification catalyst at the reduction timing calculated using the redetected timing estimation parameter. Therefore, even when the internal combustion engine is at a low load, NOx can be purified while minimizing deterioration in fuel consumption.

なお、ここでいうNOx浄化触媒とは、LNT触媒(lean−NOx−trap触媒;NOx吸蔵還元触媒など)や尿素SCR触媒(尿素選択的触媒還元触媒)のことをいう。また、多段噴射とは、通常の燃焼(予混合燃焼と拡散燃焼)に対して、主噴射時期を上死点より遅らせ、且つアフター噴射、又はポスト噴射を拡散燃焼機関に継続して行い、燃焼温度を高く保った状態で排気ポートを開く噴射のことをいう。   The NOx purification catalyst referred to here means an LNT catalyst (lean-NOx-trap catalyst; NOx occlusion reduction catalyst or the like) or a urea SCR catalyst (urea selective catalyst reduction catalyst). Multi-stage injection refers to normal combustion (premixed combustion and diffusion combustion) with the main injection timing delayed from the top dead center, and after injection or post injection is continuously performed in the diffusion combustion engine. An injection that opens the exhaust port while keeping the temperature high.

また、上記の内燃機関において、前記制御装置が、前記触媒温度検出手段で検知した前記NOx浄化触媒の触媒温度が予め定めた活性温度よりも低くなる第1条件と、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒の吸蔵量が予め定めた判定吸蔵量以上、又は、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒のNOx浄化率が予め定めた判定浄化率以下になる第2条件と、前記タイミング推定パラメータを用いて算出され、前記触媒温度を前記活性温度に昇温するために必要な燃料の噴射量から推定した推定燃費悪化率が、予め定めた判定燃費悪化率以下で安定する第3条件と、を判断し、前記第1条件、前記第2条件、及び前記第3条件の全てを満たしたときを前記昇温タイミングとする昇温タイミング推定手段と、前記触媒昇温手段の後に、前記触媒温度検出手段で検知した前記触媒温度が前記活性温度に達する第4条件と、再検知した前記タイミング推定パラメータを用いて、前記NOx浄化触媒で還元されるNOxの時間当りの還元量を推定した推定還元量が、予め定めた判定還元量以上になる第5条件と、を判断し、前記第4条件と前記第5条件の両方を満たしたときを前記還元タイミングとする還元タイミング推定手段と、を備えると、触媒の吸蔵量、NOx浄化率、推定燃費悪化率、及び推定還元量を常時算出することにより、効果的なタイミングでNOxを還元して、低負荷条件でもNOxを低減することができる。   In the internal combustion engine, the control device uses the first condition that the catalyst temperature of the NOx purification catalyst detected by the catalyst temperature detecting means is lower than a predetermined activation temperature, and the timing estimation parameter. A second condition in which the calculated storage amount of the NOx purification catalyst is equal to or greater than a predetermined determination storage amount, or the NOx purification rate of the NOx purification catalyst calculated using the timing estimation parameter is equal to or less than a predetermined determination purification rate. And the estimated fuel consumption deterioration rate calculated from the fuel injection amount required to raise the catalyst temperature to the activation temperature is stable at or below a predetermined determination fuel consumption deterioration rate. And a temperature increase timing at which the temperature increase timing is when all of the first condition, the second condition, and the third condition are satisfied. The NOx purification catalyst using the fourth condition for the catalyst temperature detected by the catalyst temperature detecting means to reach the activation temperature and the re-detected timing estimation parameter after the catalyst estimation means and the catalyst temperature raising means. The fifth reduction condition for which the estimated reduction quantity per hour of NOx reduced in step is equal to or greater than a predetermined judgment reduction quantity is determined, and both the fourth condition and the fifth condition are satisfied A reduction timing estimation means for setting the reduction timing as the reduction timing, NOx is effectively calculated by constantly calculating the storage amount of the catalyst, the NOx purification rate, the estimated fuel consumption deterioration rate, and the estimated reduction amount. Reduction can reduce NOx even under low load conditions.

加えて、上記の内燃機関において、前記NOx浄化触媒をLNT触媒で形成し、前記制御装置が、前記還元促進手段として、空燃比をリッチに維持するリッチ還元手段を備えて構成する。   In addition, in the internal combustion engine, the NOx purification catalyst is formed of an LNT catalyst, and the control device includes a rich reduction means for maintaining the air-fuel ratio rich as the reduction promotion means.

また、上記の内燃機関において、前記NOx浄化触媒を、尿素SCR触媒で形成し、前記制御装置が、前記還元促進手段として、尿素水を前記NOx浄化触媒に噴射する尿素水噴射手段を備えて構成する。   In the internal combustion engine, the NOx purification catalyst is formed of a urea SCR catalyst, and the control device includes urea water injection means for injecting urea water to the NOx purification catalyst as the reduction promoting means. To do.

上記の構成によれば、それぞれ装置の構成は従来の構成でよいため、別途追加はなく、追加コストを発生させずに、前述した作用効果を得ることができる。   According to said structure, since the structure of each apparatus may be a conventional structure, there is no additional addition and the effect mentioned above can be acquired, without generating additional cost.

さらに、上記の目的を解決するための本発明の内燃機関の制御方法は、燃料を多段噴射可能な燃料噴射弁と、排気通路に設けられたNOx浄化触媒と、を備える内燃機関の制御方法において、前記NOx浄化触媒の温度パラメータ、NOx濃度パラメータ、及び排ガス流量パラメータを含むタイミング推定パラメータを用いて算出した昇温タイミングで、前記燃料噴射弁を多段噴射制御して、前記NOx浄化触媒の温度を昇温し、前記NOx浄化触媒の昇温後に、再検知した前記タイミング推定パラメータを用いて算出した還元タイミングで、前記NOx浄化触媒でのNOxの還元を促進することを特徴とする方法である。   Furthermore, the control method of the internal combustion engine of the present invention for solving the above object is a control method of an internal combustion engine comprising a fuel injection valve capable of multi-stage injection of fuel and a NOx purification catalyst provided in an exhaust passage. The fuel injection valve is subjected to multistage injection control at a temperature rise timing calculated using a timing estimation parameter including a temperature parameter of the NOx purification catalyst, a NOx concentration parameter, and an exhaust gas flow rate parameter, and the temperature of the NOx purification catalyst is increased. The method is characterized in that the NOx reduction in the NOx purification catalyst is promoted at a reduction timing calculated using the timing estimation parameter detected again after the temperature rises and the NOx purification catalyst rises in temperature.

その上、上記の内燃機関の制御方法において、前記昇温タイミングを、前記NOx浄化触媒の触媒温度が予め定めた活性温度よりも低くなる第1条件と、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒の吸蔵量が予め定めた判定吸蔵量以上、又は、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒のNOx浄化率が予め定めた判定浄化率以下になる第2条件と、前記タイミング推定パラメータを用いて、前記触媒温度を前記活性温度に昇温するために必要な燃料の噴射量を推定した推定燃費悪化率が、予め定めた判定燃費悪化率以下で安定する第3条件の全てを満たしたときとし、前記還元タイミングを、前記NOx浄化触媒の昇温後に検知した前記触媒温度が前記活性温度に達する第4条件と、再検知した前記タイミング推定パラメータを用いて、前記NOx浄化触媒で還元されるNOxの時間当りの還元量を推定した推定還元量が、予め定めた判定還元量以上になる第5条件の両方を満たしたときとすることが好ましい。   Moreover, in the control method for an internal combustion engine, the temperature increase timing is calculated using the first condition in which the catalyst temperature of the NOx purification catalyst is lower than a predetermined activation temperature and the timing estimation parameter. A second condition in which the storage amount of the NOx purification catalyst is equal to or greater than a predetermined determination storage amount, or the NOx purification rate of the NOx purification catalyst calculated using the timing estimation parameter is equal to or less than a predetermined determination purification rate; A third condition in which an estimated fuel consumption deterioration rate obtained by estimating a fuel injection amount required to raise the catalyst temperature to the activation temperature using a timing estimation parameter is stable at a predetermined determination fuel consumption deterioration rate or less. When all the conditions are satisfied, the reduction timing is set to a fourth condition in which the catalyst temperature detected after the temperature of the NOx purification catalyst is raised reaches the activation temperature, Using the known timing estimation parameter, the estimated reduction amount that estimates the reduction amount per hour of NOx that is reduced by the NOx purification catalyst satisfies both the fifth condition that is equal to or greater than a predetermined determination reduction amount. Sometimes it is preferred.

本発明によれば、内燃機関の低負荷時でも、燃費が悪化しない効果的なタイミングを算出して、NOxの浄化を行うことができる。また、装置の構成は従来の構成でよいため、別途追加はなく、追加コストを発生させずに、その効果を得ることできる。   According to the present invention, even when the internal combustion engine is at a low load, NOx can be purified by calculating an effective timing at which the fuel consumption does not deteriorate. Moreover, since the configuration of the apparatus may be a conventional configuration, there is no additional addition, and the effect can be obtained without generating additional costs.

本発明に係る第1の実施の形態の内燃機関の構成を示す図である。It is a figure showing composition of an internal-combustion engine of a 1st embodiment concerning the present invention. 図1の制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of FIG. 本発明に係る第1の実施の形態の内燃機関の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the internal combustion engine of 1st Embodiment which concerns on this invention. 図3の還元促進工程を示すフローチャートである。It is a flowchart which shows the reduction | restoration promotion process of FIG. 本発明に係る第2の実施の形態の内燃機関の構成を示す図である。It is a figure which shows the structure of the internal combustion engine of 2nd Embodiment which concerns on this invention. 図5の制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of FIG. 本発明に係る第2の実施の形態の内燃機関の制御方法を示すフローチャートである。It is a flowchart which shows the control method of the internal combustion engine of 2nd Embodiment which concerns on this invention.

以下、本発明に係る実施の形態の内燃機関と、その制御方法について、図面を参照しながら説明する。以下の実施の形態では、直列四気筒のディーゼルエンジンを例に説明するが、本発明はディーゼルエンジンに限定せずに、ガソリンエンジンにも適用することができ、その気筒数や、気筒の配列は限定しない。なお、図面に関しては、構成が分かり易いように寸法を変化させており、各部材、各部品の板厚や幅や長さなどの比率も必ずしも実際に製造するものの比率とは一致させていない。   Hereinafter, an internal combustion engine according to an embodiment of the present invention and a control method thereof will be described with reference to the drawings. In the following embodiment, an in-line four-cylinder diesel engine will be described as an example, but the present invention is not limited to a diesel engine, but can be applied to a gasoline engine. The number of cylinders and the arrangement of cylinders are Not limited. Note that the dimensions of the drawings are changed so that the configuration can be easily understood, and the ratios of the thicknesses, widths, lengths, and the like of the respective members and parts do not necessarily match the ratios of actually manufactured parts.

まず、本発明に係る第1の実施の形態の内燃機関について、図1及び図2を参照しながら説明する。このエンジン1は、図1に示すように、エンジン本体2、エキゾーストマニホールド3、インレットマニホールド4、EGR(排気再循環)システム5、ターボチャージャー6、エアクリーナー7、インタークーラー8、吸気スロットル9、及び、排ガスの後処理装置10を備え、各装置を、排気配管、又は吸気配管とよばれる配管によって接続し、排気通路Exと吸気通路Inを形成する。   First, an internal combustion engine according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the engine 1 includes an engine body 2, an exhaust manifold 3, an inlet manifold 4, an EGR (exhaust gas recirculation) system 5, a turbocharger 6, an air cleaner 7, an intercooler 8, an intake throttle 9, and An exhaust gas aftertreatment device 10 is provided, and each device is connected by an exhaust pipe or a pipe called an intake pipe to form an exhaust passage Ex and an intake passage In.

また、エンジン本体2には、燃料噴射システム11として、燃料タンク12、燃料ポンプ13、コモンレール14、及び多段噴射可能なインジェクタ15を備え、後処理装置10には、deNOx触媒(NOx浄化触媒)としてLNT触媒(Lean−NOx−trap触媒;NOx吸蔵還元触媒)16と、DPF(ディーゼル微粒子捕集フィルタ)17を備える。   The engine body 2 includes a fuel tank 12, a fuel pump 13, a common rail 14, and an injector 15 capable of multistage injection as a fuel injection system 11. The post-treatment device 10 includes a deNOx catalyst (NOx purification catalyst). An LNT catalyst (Lean-NOx-trap catalyst; NOx occlusion reduction catalyst) 16 and a DPF (diesel particulate collection filter) 17 are provided.

加えて、LNT触媒16の前後に配置した第1温度センサS1と第2温度センサS2、LNT触媒16の前後に配置した第1NOx濃度センサS3と第2NOx濃度センサS4、及び、排ガス流量センサS5などの各センサと接続され、各装置を制御するECU(制御装置)18を備える。   In addition, a first temperature sensor S1 and a second temperature sensor S2 disposed before and after the LNT catalyst 16, a first NOx concentration sensor S3 and a second NOx concentration sensor S4 disposed before and after the LNT catalyst 16, and an exhaust gas flow rate sensor S5, etc. And an ECU (control device) 18 that controls each device.

インジェクタ15は、周知の技術の多段噴射可能な燃料噴射弁である。なお、ここでいう多段噴射とは、通常の燃焼(予混合燃焼と拡散燃焼)に対して、主噴射時期を上死点より遅らせ、且つアフター噴射、又はポスト噴射を拡散燃焼機関に継続して行い、燃焼温度を高く保った状態で排気ポートを開く噴射のことをいう。   The injector 15 is a fuel injection valve capable of multistage injection using a known technique. The multistage injection referred to here means that the main injection timing is delayed from the top dead center with respect to normal combustion (premixed combustion and diffusion combustion), and after-injection or post-injection is continued in the diffusion combustion engine. This is an injection that is performed and opens the exhaust port while keeping the combustion temperature high.

また、LNT触媒16は、周知の技術のNOxを吸蔵し、還元するLNT触媒である。このLNT触媒16は、排ガスがリーン状態(希薄燃焼)の高酸素濃度雰囲気下では、排ガス中のNOが触媒金属の触媒作用により酸化されてNOとなり、NO の形で触媒内に拡散し、NOx吸蔵材に選択的にNOを吸蔵する。 The LNT catalyst 16 is an LNT catalyst that occludes and reduces NOx of a known technique. In the LNT catalyst 16, NO in the exhaust gas is oxidized by the catalytic action of the catalytic metal into NO 2 under a high oxygen concentration atmosphere in which the exhaust gas is lean (lean combustion), and diffuses into the catalyst in the form of NO 3 −. and, absorbing selectively NO 2 in NOx-absorbing material.

そして、排ガスがリッチ状態になり酸素濃度が低下するとNO がNOの形でNOx吸蔵材から放出される。この放出されたNOは、排気ガス中に含まれている未燃HC(燃料など)やCOやH等の還元剤により触媒金属の触媒作用を受けて、Nに還元される。この還元作用により、大気中にNOxが放出されるのを阻止することができる。このリッチ状態での還元作用を、以下リッチ還元という。 When the exhaust gas becomes rich and the oxygen concentration decreases, NO 3 is released from the NOx storage material in the form of NO 2 . The released NO 2 is reduced to N 2 by being catalyzed by the catalytic metal by a reducing agent such as unburned HC (fuel, etc.) or CO or H 2 contained in the exhaust gas. This reduction action can prevent NOx from being released into the atmosphere. This reduction action in the rich state is hereinafter referred to as rich reduction.

本発明のエンジン1は、低負荷時に、燃費が悪化しない効果的な昇温タイミングと還元タイミングを算出して、NOxの浄化を行う。そのため、図2に示すように、ECU18に、触媒温度検出手段C1、NOx濃度検出手段C2、排ガス流量検出手段C3、昇温タイミング推定手段C4、触媒昇温手段C5、還元タイミング推定手段C6、還元促進手段C7、及び還元終了タイミング算出手段C8を備えることを特徴とする。   The engine 1 of the present invention performs NOx purification by calculating an effective temperature rise timing and reduction timing at which the fuel consumption does not deteriorate at low loads. Therefore, as shown in FIG. 2, the ECU 18 has the catalyst temperature detection means C1, NOx concentration detection means C2, exhaust gas flow rate detection means C3, temperature rise timing estimation means C4, catalyst temperature rise means C5, reduction timing estimation means C6, reduction. It has a promotion means C7 and a reduction end timing calculation means C8.

触媒温度検出手段C1は、温度パラメータとして、LNT触媒16の前温度Ta([℃])及び後温度Tb([℃])を第1温度センサS1及び第2温度センサS2が検出する手段であり、この実施の形態では、第1温度センサS1で検出した前温度Taを触媒温度TLNT([℃])として用いる。 The catalyst temperature detection means C1 is means for the first temperature sensor S1 and the second temperature sensor S2 to detect the pre-temperature Ta ([° C.]) and the post-temperature Tb ([° C.]) of the LNT catalyst 16 as temperature parameters. In this embodiment, the previous temperature Ta detected by the first temperature sensor S1 is used as the catalyst temperature T LNT ([° C.]).

NOx濃度検出手段C2は、NOx濃度パラメータとして、LNT触媒16の前NOx濃度Ca([ppm])及び後NOx濃度Cb([ppm])を第1NOx濃度センサS3及び第2NOx濃度センサS4で検出する手段であり、排ガス流量検出手段C3は、排ガス流量パラメータとして、排気通路Exを流れる排ガス流量Qg([Kg/s])を排ガス流量センサS5で検知する手段である。   The NOx concentration detection means C2 detects the front NOx concentration Ca ([ppm]) and the rear NOx concentration Cb ([ppm]) of the LNT catalyst 16 as the NOx concentration parameters by the first NOx concentration sensor S3 and the second NOx concentration sensor S4. The exhaust gas flow rate detection means C3 is a means for detecting the exhaust gas flow rate Qg ([Kg / s]) flowing through the exhaust passage Ex as the exhaust gas flow rate parameter by the exhaust gas flow rate sensor S5.

この実施の形態では、各センサS1〜S5を用いて、上記の温度パラメータ、NOx濃度パラメータ、及び排ガス流量パラメータを含むタイミング推定パラメータを検出したが、本発明はこの構成に限定せず、例えば、各センサS1〜S5で検知した情報ではなく、エンジン1の運転状態(エンジン1の車速や回転数)などの情報を取得し、その情報からタイミング推定パラメータを推定してもよい。   In this embodiment, the timing estimation parameters including the temperature parameter, the NOx concentration parameter, and the exhaust gas flow rate parameter are detected using the sensors S1 to S5. However, the present invention is not limited to this configuration. Instead of the information detected by the sensors S1 to S5, information such as the operating state of the engine 1 (vehicle speed and rotation speed of the engine 1) may be acquired, and the timing estimation parameter may be estimated from the information.

昇温タイミング推定手段C4は、上記のタイミング推定パラメータを用いて算出した第1条件、第2条件、及び第3条件が全て満たされたときを、LNT触媒16を昇温するタイミングとする手段である。   The temperature rise timing estimation means C4 is a means for setting the temperature of the LNT catalyst 16 to rise when all of the first condition, the second condition, and the third condition calculated using the timing estimation parameters are satisfied. is there.

その第1条件は、触媒温度TLNTが予め定めた活性温度Tx([℃])よりも低くなることである。この活性温度Txは、任意の温度に設定することができ、LNT触媒16が活性化し、リッチ還元が促進される温度が好ましく、例えば、200℃〜300℃に設定される。 The first condition is that the catalyst temperature T LNT is lower than the predetermined activation temperature Tx ([° C.]). The activation temperature Tx can be set to any temperature, and is preferably a temperature at which the LNT catalyst 16 is activated and rich reduction is promoted, and is set to 200 ° C. to 300 ° C., for example.

また、第2条件は、LNT触媒16のNOx吸蔵量VNOx([g])が予め定めた判定吸蔵量Vx([g])以上、又は、LNT触媒16のNOx浄化率RNOx([%])が予め定めた判定浄化率Rx([%])以下になることである。このNOx吸蔵量VNOxは、前NOx濃度Ca及び後NOx濃度Cbと、排ガス流量Qgから算出される値であり、例えば、以下の数式(1)より算出される。ここで、NOx濃度差をΔC(Ca−Cb)、NOxの分子重量をm([g])、気体の標準状態の1molの体積を22.4([L])とする。
The second condition is that the NOx occlusion amount V NOx ([g]) of the LNT catalyst 16 is equal to or greater than a predetermined occlusion amount Vx ([g]), or the NOx purification rate R NOx ([%] of the LNT catalyst 16. ]) Is equal to or less than a predetermined determination purification rate Rx ([%]). This NOx occlusion amount VNOx is a value calculated from the pre-NOx concentration Ca and the post-NOx concentration Cb and the exhaust gas flow rate Qg, and is calculated from the following mathematical formula (1), for example. Here, it is assumed that the NOx concentration difference is ΔC (Ca−Cb), the molecular weight of NOx is m ([g]), and the volume of 1 mol of gas in a standard state is 22.4 ([L]).

NOx浄化率RNOxは、前NOx濃度Ca及び後NOx濃度Cbから算出される値であり、例えば、以下の数式(2)より算出される。
The NOx purification rate R NOx is a value calculated from the pre-NOx concentration Ca and the post-NOx concentration Cb, and is calculated from the following formula (2), for example.

上記の判定吸蔵量Vxと判定浄化率Rxは、それぞれ任意の値に設定することができ、LNT触媒16がリーン状態のときに吸蔵したNOxを放出する必要がある状態を示すこ
とができる値が好ましい。
The above-described determination occlusion amount Vx and determination purification rate Rx can be set to arbitrary values, and values that can indicate a state in which the stored NOx needs to be released when the LNT catalyst 16 is in the lean state. preferable.

さらに、第3条件は、推定燃費悪化率RFUEL([%])が、予め定めた判定燃費悪化率Ry([%])以下で安定することである。その推定燃費悪化率RFUELは、触媒温度TLNTを活性温度Txに昇温するために必要な燃料の噴射量L1([L])から推定される値であり、その昇温するために必要な燃量の噴射量L1は、LNT触媒16でリッチ還元が機能する温度である活性温度Txと、LNT触媒16の後温度Tbと、排ガス流量Qgから、推定温度計算を行って算出される。 Furthermore, the third condition is that the estimated fuel consumption deterioration rate R FUEL ([%]) is stable at a predetermined determination fuel consumption deterioration rate Ry ([%]) or less. The estimated fuel consumption deterioration rate R FUEL is a value estimated from the fuel injection amount L1 ([L]) necessary for raising the catalyst temperature T LNT to the activation temperature Tx, and is necessary for raising the temperature. The fuel injection amount L1 is calculated from the activation temperature Tx, which is the temperature at which rich reduction functions in the LNT catalyst 16, the post-temperature Tb of the LNT catalyst 16, and the exhaust gas flow rate Qg, by calculating the estimated temperature.

この推定燃費悪化率RFUELは、例えば、以下の数式(3)〜(5)より算出される。ここで触媒発熱量をJ([J/s])、排ガス比熱をP([J/Kg・K])、燃料の定位発熱量を38.2([MJ/L])、昇温するために必要な燃料の噴射量以外の燃料の噴射量をL2([L])とする。
The estimated fuel consumption deterioration rate R FUEL is calculated from the following mathematical formulas (3) to (5), for example. In order to raise the temperature of the catalyst, the heating value is J ([J / s]), the specific heat of the exhaust gas is P ([J / Kg · K]), the localized heating value of the fuel is 38.2 ([MJ / L]). Let L2 ([L]) be the fuel injection amount other than the fuel injection amount required for the above.

ここでいう推定燃費悪化率RFUELが判定燃費悪化率Ry以下で安定するとは、推定燃費悪化率RFUELが判定燃費悪化率Ry(例えば5%など)以下のできるだけ近い値で略一定の状態になることをいう。また、判定燃費悪化率Ryは任意の値に設定することはできるが、できるだけ小さな値に設定することが好ましい。 Here, the estimated fuel consumption deterioration rate R FUEL is stable at or below the determined fuel consumption deterioration rate Ry. The estimated fuel consumption deterioration rate R FUEL is substantially constant at a value as close as possible to or below the determined fuel consumption deterioration rate Ry (for example, 5%). Say that. Further, the judged fuel consumption deterioration rate Ry can be set to an arbitrary value, but is preferably set to the smallest possible value.

例えば、LNT触媒16を100℃から200℃以上に昇温する場合と、150℃から200℃以上に昇温する場合では、後者の方が燃費悪化率は少なくて済む。よって、燃費を悪化させずにLNT触媒16を昇温するためには、後者の条件を推定することが必要となる。そこで、推定燃費悪化率RFUELが判定燃費悪化率Ry以下の値で安定することを判断することで、燃費の悪化を抑制することができる。 For example, when the temperature of the LNT catalyst 16 is raised from 100 ° C. to 200 ° C. or higher and when the temperature is raised from 150 ° C. to 200 ° C. or higher, the latter has a smaller fuel consumption deterioration rate. Therefore, in order to raise the temperature of the LNT catalyst 16 without deteriorating the fuel consumption, it is necessary to estimate the latter condition. Therefore, it is possible to suppress the deterioration of fuel consumption by determining that the estimated fuel consumption deterioration rate R FUEL is stable at a value equal to or less than the determination fuel consumption deterioration rate Ry.

この昇温タイミング推定手段C4によれば、第1条件と第2条件からLNT触媒16の状態を判断し、その後、第3条件として、推定燃費悪化率RFUELを用いて判断することで、燃費の悪化を最小とする昇温タイミングを算出することができる。 According to the temperature increase timing estimation means C4, the state of the LNT catalyst 16 is determined from the first condition and the second condition, and then the third condition is determined using the estimated fuel consumption deterioration rate R FUEL, thereby reducing the fuel consumption. It is possible to calculate the temperature rising timing that minimizes the deterioration of.

触媒昇温手段C5は、昇温タイミング推定手段C4で算出されたタイミングで、インジェクタ15を多段噴射制御する手段であり、これにより、排ガス温度が上昇し、LNT触媒16を昇温することができる。また、この触媒昇温手段C5で燃料を多段噴射することにより、排ガスの昇温を行い、還元効率を上げてNOxの還元を行うことができる。   The catalyst temperature raising means C5 is means for performing multi-stage injection control of the injector 15 at the timing calculated by the temperature raising timing estimating means C4, whereby the exhaust gas temperature rises and the LNT catalyst 16 can be raised in temperature. . Further, by injecting fuel in multiple stages with this catalyst temperature raising means C5, the temperature of the exhaust gas can be raised, and the reduction efficiency can be increased to reduce NOx.

加えて、この触媒昇温手段C5に、燃料を多段噴射することとは別に、排気通路Exに直接燃料を噴射する排気噴射手段を設けると、例えば、多段噴射で200℃までエキゾーストマニホールド3の出口付近の排ガス温度を昇温し、さらに排気噴射を追加することで300℃まで昇温することもできる。   In addition, if the catalyst temperature raising means C5 is provided with exhaust injection means for directly injecting fuel into the exhaust passage Ex separately from the multistage injection of the fuel, for example, the outlet of the exhaust manifold 3 up to 200 ° C. by multistage injection. It is also possible to raise the temperature of the exhaust gas in the vicinity and further raise the temperature to 300 ° C. by adding exhaust injection.

還元タイミング推定手段C6は、触媒昇温手段C5の後に再度、各センサS1〜S5に検知されたタイミング推定パラメータを用いて算出した第4条件と第5条件の両方が満たされたときを、LNT触媒16でのNOxの還元を促進するタイミングとする手段である。   The reduction timing estimation means C6, after the catalyst temperature raising means C5, again detects when both the fourth condition and the fifth condition calculated using the timing estimation parameters detected by the sensors S1 to S5 are satisfied. This is means for promoting the NOx reduction at the catalyst 16.

その第4条件は、触媒温度TLNTが予め定めた活性温度Txに達することである。また、第5条件は、再検知したタイミング推定パラメータを用いて推定した推定還元量VRE([ppm])が、予め定めた判定還元量Vy([ppm])以上になることである。この推定還元量VREは、LNT触媒16の後温度Tbと排ガス流量Qgから算出される、所定のリッチ(λ深さと時間)当りのNOxの還元量である。 The fourth condition is that the catalyst temperature TLNT reaches a predetermined activation temperature Tx. The fifth condition is that the estimated reduction amount V RE ([ppm]) estimated using the re-detected timing estimation parameter is equal to or greater than a predetermined determination reduction amount Vy ([ppm]). The estimated reducing amount V RE is calculated from the temperature Tb and the exhaust gas flow rate Qg after LNT catalyst 16, which is a reduced amount of NOx per predetermined rich (lambda depth and time).

この推定還元量VREは、例えば、試験的に求めたマップ(触媒温度TLNTと排ガス流量Qgに基づいた推定還元量VREを記憶したマップ)を用いて、実走行時には時々刻々の触媒温度TLNTと排ガス流量Qgとから求められる。 This estimated reduction amount V RE is obtained by, for example, using a map obtained by testing (a map storing the estimated reduction amount V RE based on the catalyst temperature T LNT and the exhaust gas flow rate Qg), and the catalyst temperature every moment during actual traveling. It is obtained from TLNT and exhaust gas flow rate Qg.

また、判定還元量Vyは、任意の値に設定することができるが、NOxの浄化に効果的なタイミングとなるように、リッチ当りのNOxの還元量が多くなる値が好ましく、試験的に求めた値を用いる。   The determination reduction amount Vy can be set to an arbitrary value, but is preferably a value that increases the reduction amount of NOx per rich so as to be an effective timing for NOx purification, and is obtained on a trial basis. Value is used.

この還元タイミング推定手段C6によれば、第4条件と第5条件の両方からLNT触媒16の状態を推定することで、NOxの浄化に効果的な還元タイミングを算出することができる。   According to the reduction timing estimation means C6, it is possible to calculate the reduction timing effective for NOx purification by estimating the state of the LNT catalyst 16 from both the fourth condition and the fifth condition.

還元促進手段C7は、空燃比をリッチに維持して、LNT触媒16でリッチ還元を行うリッチ還元手段C9と、そのリッチ還元手段C9が行われた時間を計測するリッチタイマC10を備える。なお、このリッチ還元手段C9のリッチとは、必ずしもシリンダボア内でリッチ燃焼するのみの状態ではなく、LNT触媒16に流入する排ガス中に供給した空気量と燃料量(シリンダボア内で燃焼した分も含めて)との比が理論空燃比に近いか理論空燃比より燃料量が多いリッチの状態であることをいう。   The reduction promotion means C7 includes a rich reduction means C9 that performs rich reduction with the LNT catalyst 16 while maintaining the air-fuel ratio rich, and a rich timer C10 that measures the time during which the rich reduction means C9 is performed. The rich of the rich reduction means C9 does not necessarily mean that the rich combustion is performed in the cylinder bore, but includes the amount of air supplied to the exhaust gas flowing into the LNT catalyst 16 and the amount of fuel (including the amount burned in the cylinder bore). )) Is close to the stoichiometric air-fuel ratio or a rich state where the fuel amount is greater than the stoichiometric air-fuel ratio.

還元終了タイミング算出手段C8は、還元促進手段C7がリッチ還元を行った後に、再々度、各センサS1〜S5に検知されたタイミング推定パラメータを用いて算出したNOx吸蔵量VNOxが予め定めた判定吸蔵量Vx以下になったときを、還元終了タイミングとする手段である。これによれば、還元終了タイミングを算出し、還元促進手段C7を終了することで、余分な燃料の噴射を防止することができるので、燃費の悪化を抑制することができる。 The reduction end timing calculation means C8 determines that the NOx occlusion amount V NOx calculated using the timing estimation parameters detected by the sensors S1 to S5 again after the reduction promotion means C7 performs rich reduction is predetermined. This is means for setting the reduction end timing when the storage amount Vx or less is reached. According to this, by calculating the reduction end timing and ending the reduction promotion means C7, it is possible to prevent the injection of excess fuel, and thus it is possible to suppress the deterioration of fuel consumption.

この実施の形態のエンジン1は、インジェクタ15が多段噴射可能であり、且つdeNOx触媒として、LNT触媒16を備えていればよく、周知の技術のエンジンの構成を用いることができる。   The engine 1 of this embodiment is only required to have the injector 15 capable of performing multi-stage injection and to include the LNT catalyst 16 as a deNOx catalyst, and a known engine configuration can be used.

例えば、この実施の形態では、EGRシステム5のEGRクーラー5aとEGRバルブ5bをターボチャージャー6の上流側に配置する、所謂高圧EGRシステムを備えるが、EGRクーラー5aとEGRバルブ5bをターボチャージャー6の下流側に配置する、所謂低圧EGRシステムに替えることもできる。また、後処理装置10のDPF17の上流
側にDOC(ディーゼル用酸化触媒)を配置してもよい。
For example, this embodiment includes a so-called high pressure EGR system in which the EGR cooler 5a and the EGR valve 5b of the EGR system 5 are arranged on the upstream side of the turbocharger 6, but the EGR cooler 5a and the EGR valve 5b are connected to the turbocharger 6 It can also be replaced with a so-called low pressure EGR system disposed downstream. Further, a DOC (diesel oxidation catalyst) may be arranged on the upstream side of the DPF 17 of the post-processing device 10.

次に、上記のエンジン1の動作について、図3及び図4のフローチャートを参照しながら説明する。まず、エンジン1が始動すると、各センサS1〜S5が、タイミング推定パラメータを検知するステップS10を行う。このタイミング推定パラメータとは、LNT触媒16の前温度Ta及び後温度Tbと、LNT触媒16の前NOx濃度Ca及び後NOx濃度Cbと、排ガス流量Qgを含むパラメータである。   Next, the operation of the engine 1 will be described with reference to the flowcharts of FIGS. First, when the engine 1 is started, each of the sensors S1 to S5 performs step S10 for detecting a timing estimation parameter. The timing estimation parameters are parameters including the pre-temperature Ta and the post-temperature Tb of the LNT catalyst 16, the pre-NOx concentration Ca and the post-NOx concentration Cb of the LNT catalyst 16, and the exhaust gas flow rate Qg.

次に、タイミング推定パラメータを用いてLNT触媒16を昇温するタイミングを算出する昇温タイミング推定手段C4が昇温タイミングの推定を開始する。まず、第1条件として、触媒温度TLNTが予め定めた活性温度Tx以下か否かを判断するステップS20を行う。 Next, the temperature increase timing estimation means C4 that calculates the timing for increasing the temperature of the LNT catalyst 16 using the timing estimation parameter starts estimation of the temperature increase timing. First, as a first condition, step S20 is performed to determine whether or not the catalyst temperature TLNT is equal to or lower than a predetermined activation temperature Tx.

次に、第2条件として、算出したNOx吸蔵量VNOxが予め定めた判定吸蔵量Vx以上か否かを判断するステップS30を行う。この実施の形態では、ステップS30としてNOx吸蔵量VNOxが判定吸蔵量Vx以上か否かを判断したが、代わりに、タイミング推定パラメータから算出したNOx浄化率RNOxが判定浄化率Rx以下か否かを判断するステップを行ってもよい。 Next, as a second condition, step S30 is performed to determine whether or not the calculated NOx storage amount VNOx is equal to or greater than a predetermined determination storage amount Vx. In this embodiment, the NOx occlusion amount V NOx is determined whether the determination storage amount Vx or more in step S30, instead, whether the NOx purification rate R NOx calculated from the timing estimation parameter determination purification ratio Rx or less not You may perform the step which judges whether.

次に、第3条件として、推定した推定燃費悪化率RFUELが予め定めた判定燃費悪化率Ry以下で安定するか否かを判断するステップS40を行う。なお、実際の走行時には排気温度も走行条件により変動するため、安定してある程度の排ガス温度に到達したことを判定してから、次のステップへと進むとよい。また、昇温による推定燃費悪化率RFUELには排気温度だけではなく、排ガス流量Qgも寄与するので、この二つから昇温による推定燃費悪化率RFUELを推定して、安定度を判断するとよい。 Next, as a third condition, step S40 is performed in which it is determined whether or not the estimated estimated fuel consumption deterioration rate R FUEL is stable below a predetermined determination fuel consumption deterioration rate Ry. Since the exhaust temperature also varies depending on the traveling conditions during actual traveling, it is preferable to proceed to the next step after determining that the exhaust gas temperature has reached a certain level stably. Further, not only the exhaust temperature is estimated fuel efficiency rate R FUEL after heating, so also contributes exhaust gas flow rate Qg, estimates an estimated fuel economy rate R FUEL from the two by heating, if it is determined the stability Good.

昇温タイミング推定手段C4は、上記の第1条件のステップS20、第2条件のステップS30、及び第3条件のステップS40を満たしたときを昇温タイミングとする。第1条件、第2条件、及び第3条件のいずれかの条件が満たされない場合は、再度ステップS10に戻り、昇温タイミングを推定する。   The temperature rise timing estimation unit C4 sets the temperature rise timing when step S20 of the first condition, step S30 of the second condition, and step S40 of the third condition are satisfied. If any of the first condition, the second condition, and the third condition is not satisfied, the process returns to step S10 again to estimate the temperature rise timing.

次に、触媒昇温手段C5が、昇温タイミングで、インジェクタ15を多段噴射制御して、LNT触媒16を昇温させるステップS50(触媒昇温工程)を行う。このときEGRシステム5は継続してインレットマニホールド4にEGRガスを供給するように制御される。また、より高い還元効率とするために、LNT触媒16の昇温の為のポスト噴射や排気噴射を行うよう構成してもよく、さらに、多段噴射のアフター噴射や噴射時期のフィードバック制御で早期昇温を図ってもよい。   Next, the catalyst temperature raising means C5 performs step S50 (catalyst temperature raising step) for raising the temperature of the LNT catalyst 16 by performing multistage injection control of the injector 15 at the temperature raising timing. At this time, the EGR system 5 is controlled to continuously supply EGR gas to the inlet manifold 4. Further, in order to achieve higher reduction efficiency, post-injection or exhaust injection for raising the temperature of the LNT catalyst 16 may be performed, and further, early rise by multistage injection after injection or injection timing feedback control. The temperature may be increased.

次に、再度、各センサS1〜S5が、タイミング推定パラメータを検知するステップS60を行う。次に、タイミング推定パラメータを用いてLNT触媒16での還元を促進するタイミングを算出する還元タイミング推定手段C6が還元タイミングの推定を開始する。まず、第4条件として、触媒温度TLNTが活性温度Txに到達したか否かを判断するステップS70を行う。次に、第5条件として、算出した推定還元量VREが予め定めた判定還元量Vy以上か否かを判断するステップS80を行う。 Next, each sensor S1-S5 performs step S60 which detects a timing estimation parameter again. Next, the reduction timing estimation means C6 that calculates the timing for promoting the reduction at the LNT catalyst 16 using the timing estimation parameter starts the estimation of the reduction timing. First, as a fourth condition, step S70 for determining whether or not the catalyst temperature TLNT has reached the activation temperature Tx is performed. Next, as a fifth condition, the calculated estimated amount of reduction V RE performs step S80 of determining whether a predetermined decision reducing the amount Vy more.

還元タイミング推定手段C6は、上記の第4条件のステップS70と、第5条件のステップS80の両方を満たしたときを還元タイミングとする。第4条件と第5条件のいずれかの条件が満たされない場合は、再度ステップS50に戻り、LNT触媒16を昇温してから、再度推定する。   The reduction timing estimation means C6 sets the timing when both the above-described fourth condition step S70 and the fifth condition step S80 are satisfied. If any of the fourth condition and the fifth condition is not satisfied, the process returns to step S50 again, the temperature of the LNT catalyst 16 is raised, and the estimation is performed again.

ステップS70とステップS80で、LNT触媒16の触媒温度TLNTが活性温度Txに到達し、且つ推定還元量VREが判定還元量Vy以上となったら、次に、還元促進手段C7が、LNT触媒16でリッチ還元を行うステップS90(還元促進工程)を行う。 When the catalyst temperature T LNT of the LNT catalyst 16 reaches the activation temperature Tx and the estimated reduction amount V RE becomes equal to or higher than the determination reduction amount Vy in step S70 and step S80, the reduction promotion means C7 then moves the LNT catalyst. Step S90 (reduction promotion step) for performing rich reduction at 16 is performed.

このステップS90の還元促進工程は、図4に示すように、まず、最大経過時間t_max([s])を算出するステップS91を行う。この最大経過時間t_maxは、無駄なリッチ状態の維持を抑制するように算出された時間であり、例えば、NOx吸蔵量VNOxと、推定還元量VREに基づいて算出してもよい。 In the reduction promoting step of step S90, as shown in FIG. 4, first, step S91 for calculating the maximum elapsed time t_max ([s]) is performed. The maximum age t_max is a calculated time to suppress the maintenance of unnecessary rich state, for example, a NOx occlusion amount V NOx, may be calculated based on the estimated amount of reduction V RE.

次に、リッチタイマC10を起動するステップS92を行う。また、リッチタイマC10の起動と同時にリッチ還元手段C9を開始するステップS93を行う。   Next, step S92 for starting the rich timer C10 is performed. Moreover, step S93 which starts the rich reduction | restoration means C9 simultaneously with starting of the rich timer C10 is performed.

次に、時間が経過するとリッチタイマC10の経過時間t_rich([s])が刻々と増えていく。次に、リッチタイマC10の経過時間t_richが予め定めた最大経過時間t_maxよりも長いか否かを判断するステップS94を行う。この最大経過時間t_maxは任意の時間に設定することができるが、比較的短く設定すると、リッチ状態を維持する制御が長い時間行われることで発生するリッチ還元に使用される燃料や還元剤の無駄な放出を抑制することができる。   Next, as time elapses, the elapsed time t_rich ([s]) of the rich timer C10 increases every moment. Next, step S94 is performed to determine whether the elapsed time t_rich of the rich timer C10 is longer than a predetermined maximum elapsed time t_max. The maximum elapsed time t_max can be set to an arbitrary time. However, if the maximum elapsed time t_max is set to be relatively short, the waste of fuel and reducing agent used for rich reduction that occurs when the control for maintaining the rich state is performed for a long time. Release can be suppressed.

ステップS94で、リッチタイマC10の経過時間t_richが最大経過時間t_maxよりも長い場合は、ステップS96へ進み、リッチタイマC10を終了するステップS96を行う。また、リッチタイマC10の終了と同時にリッチ還元手段C9を終了するステップS97を行う。   If the elapsed time t_rich of the rich timer C10 is longer than the maximum elapsed time t_max in step S94, the process proceeds to step S96, and step S96 for ending the rich timer C10 is performed. Further, step S97 is performed to end the rich reduction means C9 simultaneously with the end of the rich timer C10.

ステップS94で、リッチタイマC10の経過時間t_richが最大経過時間t_max以下の場合は、リッチタイマC10の経過時間t_richがゼロになるステップS95を経てから、ステップS96及びステップS97へと進む。   If the elapsed time t_rich of the rich timer C10 is equal to or shorter than the maximum elapsed time t_max in step S94, the process proceeds to step S96 and step S97 after passing through step S95 where the elapsed time t_rich of the rich timer C10 becomes zero.

上記のステップS90が完了すると、図3に示すように、次に、再々度、タイミング推定パラメータを検知するステップS100を行う。次に、還元終了タイミング算出手段C8が、そのタイミング推定パラメータを用いて算出したNOx吸蔵量VNOxが判定吸蔵量Vx以下になるか否かを判断するステップS110を行う。このステップS110で、NOx吸蔵量VNOxが判定吸蔵量Vx以下になるまで、ステップS90のリッチ還元手段C9を行って、この制御方法は終了する。 When the above step S90 is completed, as shown in FIG. 3, next, step S100 for detecting the timing estimation parameter again is performed. Then, the reduction end timing calculating means C8, performs step S110 that the NOx occlusion amount V NOx calculated to determine whether less than or equal to the determination storage amount Vx using the timing estimation parameters. In step S110, the rich reduction means C9 of step S90 is performed until the NOx occlusion amount VNOx becomes equal to or less than the determined occlusion amount Vx, and this control method ends.

この制御方法によれば、タイミング推定パラメータを用いて算出した昇温タイミングでLNT触媒16を昇温し、その後、再検出したタイミング推定パラメータを用いて算出した還元タイミングでLNT触媒16でのNOxの還元を促進することができる。そのため、低負荷条件でも、燃費の悪化を最小に抑えつつ、NOxを浄化することができる。   According to this control method, the temperature of the LNT catalyst 16 is increased at the temperature increase timing calculated using the timing estimation parameter, and then the NOx of the LNT catalyst 16 is reduced at the reduction timing calculated using the redetected timing estimation parameter. Reduction can be promoted. Therefore, NOx can be purified while minimizing deterioration of fuel consumption even under low load conditions.

また、常時、タイミング推定パラメータを検知し、そのタイミング推定パラメータから算出した昇温タイミングと還元タイミングを算出することができる。さらに、エンジン1の構成は、従来の構成を用いることができるので、別途追加はなく、追加コストを発生させずに、その効果を得ることできる。   Further, it is possible to always detect the timing estimation parameter and calculate the temperature rise timing and the reduction timing calculated from the timing estimation parameter. Furthermore, since the conventional configuration of the engine 1 can be used, there is no additional addition, and the effect can be obtained without generating additional costs.

なお、NOx吸蔵量VNOx、NOx浄化率RNOx、推定燃費悪化率RFUEL、及び推定還元量VREの算出方法は、タイミング推定パラメータを用いて算出することができればよく、上記の記載の方法に限定しない。 The NOx occlusion amount V NOx , the NOx purification rate R NOx , the estimated fuel consumption deterioration rate R FUEL , and the estimated reduction amount V RE may be calculated using the timing estimation parameter, and the method described above It is not limited to.

次に、本発明に係る第2の実施の形態の内燃機関について、図5及び図6を参照しなが
ら説明する。このエンジン20は、第1の実施の形態のエンジン1の後処理装置10に代えて、図5に示すように、後処理装置21を備え、その後処理装置21に、DOC(ディーゼル用酸化触媒)22、DPF23、尿素SCR触媒24、及び尿素水噴射バルブ25を備える。また、各センサS1〜S5と接続され、各装置を制御するECU(制御装置)26を備える。
Next, an internal combustion engine according to a second embodiment of the present invention will be described with reference to FIGS. The engine 20 includes a post-treatment device 21 as shown in FIG. 5 instead of the post-treatment device 10 of the engine 1 of the first embodiment, and the post-treatment device 21 includes a DOC (diesel oxidation catalyst). 22, a DPF 23, a urea SCR catalyst 24, and a urea water injection valve 25. Moreover, it is connected with each sensor S1-S5, and ECU (control apparatus) 26 which controls each apparatus is provided.

このECU26は、図6に示すように、還元促進手段C20として、尿素水噴射量算出手段C21と、尿素水噴射手段C22と、を備えると共に、第1の実施の形態の条件とは異なる条件の還元終了タイミング算出手段C23を備える。   As shown in FIG. 6, the ECU 26 includes urea water injection amount calculation means C21 and urea water injection means C22 as the reduction promotion means C20, and has conditions different from the conditions of the first embodiment. Reduction end timing calculation means C23 is provided.

また、第1の実施の形態では、LNT触媒16の前後に配置した第1温度センサS1と第2温度センサS2を、この実施の形態では、尿素SCR触媒24の前後に配置し、LNT触媒16の前後に配置した第1NOx濃度センサS3と第2NOx濃度センサS4も、尿素SCR触媒24の前後に配置する。各センサS1〜S4の検知する値は第1の実施の形態と同様とする。   In the first embodiment, the first temperature sensor S1 and the second temperature sensor S2 arranged before and after the LNT catalyst 16 are arranged before and after the urea SCR catalyst 24 in this embodiment, and the LNT catalyst 16 The first NOx concentration sensor S3 and the second NOx concentration sensor S4 disposed before and after the urea SCR catalyst 24 are also disposed before and after the urea SCR catalyst 24. The values detected by the sensors S1 to S4 are the same as those in the first embodiment.

尿素水噴射量算出手段C21は、尿素水噴射バルブ25から噴射される尿素水の噴射量QNH3([mm])を算出する手段であり、尿素水の噴射量QNH3は、吸蔵したNH(アンモニア)の放出量とNH転換量とから求まる噴射量、すなわち目標とするNOx浄化率である判定浄化率Rxを得られる噴射量に、新たに尿素SCR触媒24に吸蔵されるNHにより不足する補充量を加算して算出される。 The urea water injection amount calculating means C21 is a means for calculating the injection amount Q NH3 ([mm 3 ]) of urea water injected from the urea water injection valve 25, and the urea water injection amount Q NH3 is stored in the stored NH. 3 NH 3 emissions and NH 3 injection quantity obtained from the conversion amount and the (ammonia), namely the determination purification rate injection amount obtained by Rx is a NOx purification rate of the target, which are inserted in the new urea SCR catalyst 24 Is calculated by adding the insufficient replenishment amount.

この尿素水噴射量算出手段C21で用いられる吸蔵したNHの放出量、NH転換量、及び補充量は、試験結果より求めたマップ値であり、タイミング推定パラメータ(例えば、触媒温度TLNT)により変化する値である。また、これらの値を尿素水の噴射量QNH3を算出するための尿素水噴射量算出パラメータとする。 The stored NH 3 release amount, NH 3 conversion amount, and replenishment amount used in the urea water injection amount calculation means C21 are map values obtained from the test results, and are timing estimation parameters (for example, catalyst temperature T LNT ). The value varies depending on Further, the urea injection amount calculation parameter for calculating the injection amount Q NH3 in the urea water these values.

尿素水噴射手段C22は、尿素SCR触媒24に尿素水噴射バルブ25から、尿素水噴射量算出手段C21で算出された噴射量QNH3で、尿素水を噴射する手段である。 Urea water injection means C22 is from the urea water injection valve 25 to the urea SCR catalyst 24, the injection amount Q NH3 calculated in the urea solution injection amount calculating means C21, a means for injecting the urea water.

還元終了タイミング算出手段C23は、還元促進手段C20が尿素水を噴射した後に、再々度、各センサS1〜S5に検知されたタイミング推定パラメータを用いて算出したNOx浄化率RNOxが予め定めた判定浄化率Rxになったときの、尿素水の噴射量QNH3を継続する手段である。これによれば、還元終了タイミングを算出し、最適な尿素水の噴射量QNH3を設定することで、余分な尿素水の噴射を抑制することができる。 The reduction end timing calculation means C23 determines again that the NOx purification rate R NOx calculated using the timing estimation parameters detected by the sensors S1 to S5 again after the reduction promotion means C20 injects urea water. This is means for continuing the injection amount Q NH3 of urea water when the purification rate Rx is reached. According to this, by calculating the reduction end timing and setting the optimal urea water injection amount QNH3 , it is possible to suppress the injection of excess urea water.

次に、本発明に係る第2の実施の形態のエンジン20の制御方法について、図7に示すフローチャートを参照しながら説明する。なお、図3に示すフローチャートと同様の工程については同じ符号を使用して、その説明を省略する。   Next, a control method of the engine 20 according to the second embodiment of the present invention will be described with reference to the flowchart shown in FIG. In addition, about the process similar to the flowchart shown in FIG. 3, the same code | symbol is used and the description is abbreviate | omitted.

この実施の形態の制御方法は、図7に示すように、ステップS10〜ステップS80までは、昇温タイミング推定手段C4の第2条件として、算出したNOx浄化率RNOxが判定浄化率Rx以下か否かを判断するステップS200を行う以外は、図3に示す第1の実施の形態のフローチャートと略同様である。 The method of this embodiment, as shown in FIG. 7, step S10~ to step S80, as a second condition for heating timing estimation unit C4, or calculated NOx purification rate R NOx determination purification rate Rx less Except for performing step S200 for determining whether or not, it is substantially the same as the flowchart of the first embodiment shown in FIG.

そして、還元タイミング推定手段C6がステップS70とステップS80で還元タイミングを推定すると、次に、図7に示すように、尿素水噴射量算出パラメータを検知するステップS210を行う。   Then, when the reduction timing estimation means C6 estimates the reduction timing in step S70 and step S80, next, as shown in FIG. 7, step S210 for detecting the urea water injection amount calculation parameter is performed.

次に、尿素水噴射量算出手段C21が、尿素水噴射量算出パラメータに基づいて、尿素
水の噴射量QNH3を算出するステップS220を行う。次に、尿素水噴射手段C22が、ステップS220で算出された噴射量QNH3の尿素水を、尿素SCR触媒24に噴射するステップS230(尿素水噴射工程)を行う。
Next, the urea water injection amount calculation means C21 performs step S220 of calculating the urea water injection amount QNH3 based on the urea water injection amount calculation parameter. Next, the urea water injection means C22 performs step S230 (urea water injection process) of injecting the urea water of the injection amount QNH3 calculated in step S220 to the urea SCR catalyst 24.

次に、再々度、タイミング推定パラメータを検知するステップS100を行う。次に、還元終了タイミング算出手段C23が、算出したNOx浄化率RNOxが判定浄化率Rxになったか否かを判断するステップS240を行う。このステップS240でNOx浄化率RNOxが判定浄化率Rxにならない場合は、再度ステップS210に戻り、NOx浄化率RNOxが判定浄化率Rxになった場合は、そのときの状態を継続して、この制御方法は完了する。 Next, again, step S100 for detecting the timing estimation parameter is performed. Next, the reduction end timing calculation means C23 performs step S240 for determining whether or not the calculated NOx purification rate RNOx has reached the judgment purification rate Rx. When the NOx purification rate R NOx does not become the judgment purification rate Rx in step S240, the process returns to step S210 again. When the NOx purification rate RNOx becomes the judgment purification rate Rx, the state at that time is continued, This control method is complete.

この制御方法によれば、deNOx触媒として尿素SCR触媒24を用いたシステムにおいて、低負荷条件でも、燃費の悪化を最小に抑えると共に、NOxを効果的に低減することができる。また、尿素水噴射量算出パラメータ(NHの吸蔵量、放出量、NH転換量など)やNOx浄化率、推定還元量を常時計算して、効果的な還元タイミングや還元量を算出することができる。加えて、ハードウェア構成は従来のもので追加は無く、追加コストは発生しない。 According to this control method, in a system using the urea SCR catalyst 24 as the deNOx catalyst, deterioration of fuel consumption can be minimized and NOx can be effectively reduced even under low load conditions. In addition, the urea water injection amount calculation parameter (NH 3 storage amount, release amount, NH 3 conversion amount, etc.), NOx purification rate, and estimated reduction amount are constantly calculated to calculate an effective reduction timing and reduction amount. Can do. In addition, the hardware configuration is conventional and there is no addition, and no additional cost is incurred.

なお、尿素水の噴射量QNH3の算出方法は、尿素水噴射量算出パラメータから算出することができればよく、上記の算出方法に限定しない。また、この実施の形態では、尿素水噴射量算出パラメータを試験結果より求めたマップ値としたが、各々の値を検知するセンサを別途設けてもよい。さらに、尿素水噴射量算出パラメータを、例えば、NHの吸蔵量を、NH転換量から、NHのスリップ量と吸蔵したNHの放出量とNOx還元量とを引いた値で表せることを利用して算出してもよい。 Note that the calculation method of the urea water injection amount Q NH3 is not limited to the above calculation method as long as it can be calculated from the urea water injection amount calculation parameter. In this embodiment, the urea water injection amount calculation parameter is the map value obtained from the test result. However, a sensor for detecting each value may be provided separately. Further, the urea water injection amount calculation parameter, for example, the storage amount of NH 3, NH 3 from the conversion amount, can be expressed by a value obtained by subtracting the discharge amount and the NOx reduction amount of NH 3 that slip amount and storage of NH 3 You may calculate using.

本発明の内燃機関は、低負荷時でも、燃費が悪化しない効果的なタイミングを算出して、NOxを浄化することができるので、特にディーゼルエンジンを搭載するトラックなどの車両に利用することができる。   Since the internal combustion engine of the present invention can purify NOx by calculating an effective timing that does not deteriorate the fuel efficiency even at low load, it can be used particularly for vehicles such as trucks equipped with diesel engines. .

1、20 エンジン(内燃機関)
2 エンジン本体
3 エキゾーストマニホールド
4 インレットマニホールド
5 EGRシステム
6 ターボチャージャー
7 エアクリーナー
8 インタークーラー
9 吸気スロットル
10、21 後処理装置
11 燃料噴射システム
12 燃料タンク
13 燃料ポンプ
14 コモンレール
15 インジェクタ(燃料噴射弁)
16 LNT触媒(lean−NOx−trap触媒、NOx吸蔵還元触媒)
17、23 DPF(ディーゼル微粒子捕集フィルタ)
18 ECU(制御装置)
22 DOC(ディーゼル酸化触媒)
24 尿素SCR触媒(尿素選択的触媒還元触媒)
25 尿素水噴射バルブ(尿素水噴射弁)
C1 触媒温度検出手段
C2 NOx濃度検出手段
C3 排ガス流量検出手段
C4 昇温タイミング推定手段
C5 触媒昇温手段
C6 還元タイミング推定手段
C7、C20 還元促進手段
C8、C23 還元終了タイミング算出手段
1,20 engine (internal combustion engine)
2 Engine body 3 Exhaust manifold 4 Inlet manifold 5 EGR system 6 Turbocharger 7 Air cleaner 8 Intercooler 9 Intake cooler 10, 21 Aftertreatment device 11 Fuel injection system 12 Fuel tank 13 Fuel pump 14 Common rail 15 Injector (fuel injection valve)
16 LNT catalyst (lean-NOx-trap catalyst, NOx occlusion reduction catalyst)
17, 23 DPF (Diesel particulate filter)
18 ECU (control device)
22 DOC (diesel oxidation catalyst)
24 Urea SCR catalyst (urea selective catalytic reduction catalyst)
25 Urea water injection valve (urea water injection valve)
C1 catalyst temperature detection means C2 NOx concentration detection means C3 exhaust gas flow rate detection means C4 temperature rise timing estimation means C5 catalyst temperature rise means C6 reduction timing estimation means C7, C20 reduction promotion means C8, C23 reduction end timing calculation means

Claims (6)

燃料を多段噴射可能な燃料噴射弁と、排気通路に設けられたNOx浄化触媒と、を備える内燃機関において、
触媒温度検出手段、NOx濃度検出手段、及び排ガス流量検出手段を具備する制御装置を備えると共に、
前記制御装置が、
前記触媒温度検出手段で検知した温度パラメータ、前記NOx濃度検出手段で検知したNOx濃度パラメータ、及び前記排ガス流量検出手段で検知した排ガス流量パラメータを含むタイミング推定パラメータを用いて算出した昇温タイミングで、前記燃料噴射弁を多段噴射制御して、前記NOx浄化触媒の温度を昇温する触媒昇温手段と、
前記触媒昇温手段による前記NOx浄化触媒の昇温後に、再検知した前記タイミング推定パラメータを用いて算出した還元タイミングで、前記NOx浄化触媒でのNOxの還元を促進する還元促進手段と、を備えることを特徴とする内燃機関。
In an internal combustion engine comprising a fuel injection valve capable of multistage injection of fuel and a NOx purification catalyst provided in an exhaust passage,
A control device including a catalyst temperature detection means, a NOx concentration detection means, and an exhaust gas flow rate detection means,
The control device is
At the temperature rise timing calculated using the temperature estimation parameter including the temperature parameter detected by the catalyst temperature detection means, the NOx concentration parameter detected by the NOx concentration detection means, and the exhaust gas flow rate parameter detected by the exhaust gas flow rate detection means, Catalyst temperature raising means for raising the temperature of the NOx purification catalyst by performing multi-stage injection control on the fuel injection valve;
Reduction promotion means for promoting reduction of NOx by the NOx purification catalyst at a reduction timing calculated using the timing estimation parameter redetected after the temperature rise of the NOx purification catalyst by the catalyst temperature raising means. An internal combustion engine characterized by that.
前記制御装置が、
前記触媒温度検出手段で検知した前記NOx浄化触媒の触媒温度が予め定めた活性温度よりも低くなる第1条件と、
前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒の吸蔵量が予め定めた判定吸蔵量以上、又は、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒のNOx浄化率が予め定めた判定浄化率以下になる第2条件と、
前記タイミング推定パラメータを用いて算出され、前記触媒温度を前記活性温度に昇温するために必要な燃料の噴射量から推定した推定燃費悪化率が、予め定めた判定燃費悪化率以下で安定する第3条件と、を判断し、
前記第1条件、前記第2条件、及び前記第3条件の全てを満たしたときを前記昇温タイミングとする昇温タイミング推定手段と、
前記触媒昇温手段の後に、前記触媒温度検出手段で検知した前記触媒温度が前記活性温度に達する第4条件と、
再検知した前記タイミング推定パラメータを用いて、前記NOx浄化触媒で還元されるNOxの時間当りの還元量を推定した推定還元量が、予め定めた判定還元量以上になる第5条件と、を判断し、
前記第4条件と前記第5条件の両方を満たしたときを前記還元タイミングとする還元タイミング推定手段と、を備えることを特徴とする請求項1に記載の内燃機関。
The control device is
A first condition in which the catalyst temperature of the NOx purification catalyst detected by the catalyst temperature detection means is lower than a predetermined activation temperature;
The NOx purification catalyst storage amount calculated using the timing estimation parameter is equal to or greater than a predetermined determination storage amount, or the NOx purification rate of the NOx purification catalyst calculated using the timing estimation parameter is a predetermined determination purification. A second condition that falls below the rate,
The estimated fuel consumption deterioration rate calculated from the timing estimation parameter and estimated from the fuel injection amount required to raise the catalyst temperature to the activation temperature is stabilized below a predetermined determination fuel consumption deterioration rate. Judging three conditions,
A temperature rise timing estimating means for setting the temperature rise timing when all of the first condition, the second condition, and the third condition are satisfied;
A fourth condition for the catalyst temperature detected by the catalyst temperature detecting means to reach the activation temperature after the catalyst temperature raising means;
Using the re-detected timing estimation parameter, a fifth condition is determined in which an estimated reduction amount estimated from the NOx reduction amount reduced by the NOx purification catalyst per time is equal to or greater than a predetermined determination reduction amount. And
2. The internal combustion engine according to claim 1, further comprising reduction timing estimation means for setting the reduction timing when both the fourth condition and the fifth condition are satisfied.
前記NOx浄化触媒をLNT触媒で形成し、
前記制御装置が、前記還元促進手段として、空燃比をリッチに維持するリッチ還元手段を備えることを特徴とする請求項1又は2に記載の内燃機関。
Forming the NOx purification catalyst with an LNT catalyst;
The internal combustion engine according to claim 1 or 2, wherein the control device includes rich reduction means for maintaining the air-fuel ratio rich as the reduction promotion means.
前記NOx浄化触媒を尿素SCR触媒で形成し、
前記制御装置が、前記還元促進手段として、尿素水を前記NOx浄化触媒に噴射する尿素水噴射手段を備えることを特徴とする請求項1又は2に記載の内燃機関。
Forming the NOx purification catalyst with a urea SCR catalyst;
The internal combustion engine according to claim 1 or 2, wherein the control device includes urea water injection means for injecting urea water to the NOx purification catalyst as the reduction promoting means.
燃料を多段噴射可能な燃料噴射弁と、排気通路に設けられたNOx浄化触媒と、を備える内燃機関の制御方法において、
前記NOx浄化触媒の温度パラメータ、NOx濃度パラメータ、及び排ガス流量パラメータを含むタイミング推定パラメータを用いて算出した昇温タイミングで、前記燃料噴射弁を多段噴射制御して、前記NOx浄化触媒の温度を昇温し、
前記NOx浄化触媒の昇温後に、再検知した前記タイミング推定パラメータを用いて算出した還元タイミングで、前記NOx浄化触媒でのNOxの還元を促進することを特徴とする内燃機関の制御方法。
In a control method for an internal combustion engine comprising a fuel injection valve capable of multistage injection of fuel and a NOx purification catalyst provided in an exhaust passage,
The temperature of the NOx purification catalyst is increased by performing multi-stage injection control of the fuel injection valve at a temperature rise timing calculated using a timing estimation parameter including a temperature parameter of the NOx purification catalyst, a NOx concentration parameter, and an exhaust gas flow rate parameter. Warm,
An internal combustion engine control method, comprising: promoting NOx reduction at the NOx purification catalyst at a reduction timing calculated using the timing estimation parameter detected again after the temperature of the NOx purification catalyst is increased.
前記昇温タイミングを、
前記NOx浄化触媒の触媒温度が予め定めた活性温度よりも低くなる第1条件と、
前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒の吸蔵量が予め定めた判定吸蔵量以上、又は、前記タイミング推定パラメータを用いて算出した前記NOx浄化触媒のNOx浄化率が予め定めた判定浄化率以下になる第2条件と、
前記タイミング推定パラメータを用いて、前記触媒温度を前記活性温度に昇温するために必要な燃料の噴射量を推定した推定燃費悪化率が、予め定めた判定燃費悪化率以下で安定する第3条件の全てを満たしたときとし、
前記還元タイミングを、
前記NOx浄化触媒の昇温後に検知した前記触媒温度が前記活性温度に達する第4条件と、
再検知した前記タイミング推定パラメータを用いて、前記NOx浄化触媒で還元されるNOxの時間当りの還元量を推定した推定還元量が、予め定めた判定還元量以上になる第5条件の両方を満たしたときとすることを特徴とする請求項5に記載の内燃機関の制御方法。
The temperature rise timing is
A first condition in which the catalyst temperature of the NOx purification catalyst is lower than a predetermined activation temperature;
The NOx purification catalyst storage amount calculated using the timing estimation parameter is equal to or greater than a predetermined determination storage amount, or the NOx purification rate of the NOx purification catalyst calculated using the timing estimation parameter is a predetermined determination purification. A second condition that falls below the rate,
A third condition in which an estimated fuel consumption deterioration rate obtained by estimating the fuel injection amount required to raise the catalyst temperature to the activation temperature using the timing estimation parameter is stabilized at a predetermined fuel consumption deterioration rate or less. When all of the above are satisfied,
The reduction timing is
A fourth condition in which the catalyst temperature detected after raising the temperature of the NOx purification catalyst reaches the activation temperature;
Using the re-detected timing estimation parameter, the estimated reduction amount obtained by estimating the reduction amount per hour of NOx reduced by the NOx purification catalyst satisfies both of the fifth condition that is equal to or greater than a predetermined determination reduction amount. The method for controlling an internal combustion engine according to claim 5, wherein
JP2012213944A 2012-09-27 2012-09-27 Internal combustion engine and control method thereof Expired - Fee Related JP6036098B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012213944A JP6036098B2 (en) 2012-09-27 2012-09-27 Internal combustion engine and control method thereof
PCT/JP2013/073528 WO2014050445A1 (en) 2012-09-27 2013-09-02 Internal combustion engine and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213944A JP6036098B2 (en) 2012-09-27 2012-09-27 Internal combustion engine and control method thereof

Publications (2)

Publication Number Publication Date
JP2014066232A true JP2014066232A (en) 2014-04-17
JP6036098B2 JP6036098B2 (en) 2016-11-30

Family

ID=50387854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213944A Expired - Fee Related JP6036098B2 (en) 2012-09-27 2012-09-27 Internal combustion engine and control method thereof

Country Status (2)

Country Link
JP (1) JP6036098B2 (en)
WO (1) WO2014050445A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232279A (en) * 2014-06-09 2015-12-24 マツダ株式会社 Gaseous fuel engine fuel injection control unit
JP2016156303A (en) * 2015-02-24 2016-09-01 いすゞ自動車株式会社 Control device for internal combustion engine
JP2016160893A (en) * 2015-03-04 2016-09-05 いすゞ自動車株式会社 Exhaust emission control system
JP6230005B1 (en) * 2016-08-02 2017-11-15 マツダ株式会社 Engine exhaust purification system
KR20180069408A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Scr purifying system and method for improving purifying efficiency of scr purifying system
JP2019173609A (en) * 2018-03-27 2019-10-10 株式会社Subaru Control device for exhaust emission control device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287539B2 (en) * 2014-04-24 2018-03-07 いすゞ自動車株式会社 Exhaust purification system
CN114790950A (en) * 2021-01-25 2022-07-26 北京福田康明斯发动机有限公司 Thermal management control method and system, driving computer, vehicle and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083746A (en) * 2004-09-15 2006-03-30 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2007278120A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2012062811A (en) * 2010-09-15 2012-03-29 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083746A (en) * 2004-09-15 2006-03-30 Isuzu Motors Ltd Exhaust emission control method and exhaust emission control system
JP2007278120A (en) * 2006-04-04 2007-10-25 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2012062811A (en) * 2010-09-15 2012-03-29 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232279A (en) * 2014-06-09 2015-12-24 マツダ株式会社 Gaseous fuel engine fuel injection control unit
JP2016156303A (en) * 2015-02-24 2016-09-01 いすゞ自動車株式会社 Control device for internal combustion engine
JP2016160893A (en) * 2015-03-04 2016-09-05 いすゞ自動車株式会社 Exhaust emission control system
WO2016140138A1 (en) * 2015-03-04 2016-09-09 いすゞ自動車株式会社 Exhaust purification system and catalyst regeneration method
CN107407175A (en) * 2015-03-04 2017-11-28 五十铃自动车株式会社 Emission control system and catalyst recovery process
US10677128B2 (en) 2015-03-04 2020-06-09 Isuzu Motors Limited Exhaust purification system and catalyst regeneration method
CN107407175B (en) * 2015-03-04 2021-02-05 五十铃自动车株式会社 Exhaust gas purification system and catalyst regeneration method
JP6230005B1 (en) * 2016-08-02 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP2018021471A (en) * 2016-08-02 2018-02-08 マツダ株式会社 Exhaust emission control device for engine
KR20180069408A (en) * 2016-12-15 2018-06-25 현대자동차주식회사 Scr purifying system and method for improving purifying efficiency of scr purifying system
KR102406044B1 (en) 2016-12-15 2022-06-08 현대자동차주식회사 Scr purifying system and method for improving purifying efficiency of scr purifying system
JP2019173609A (en) * 2018-03-27 2019-10-10 株式会社Subaru Control device for exhaust emission control device

Also Published As

Publication number Publication date
JP6036098B2 (en) 2016-11-30
WO2014050445A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP6036098B2 (en) Internal combustion engine and control method thereof
US7886521B2 (en) Diagnosis device of exhaust purification catalyst
US20050198942A1 (en) Exhaust gas aftertreatment systems
US9051859B2 (en) Exhaust gas purification device and control method for exhaust gas purification device
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
RU2628113C2 (en) Actuating unit for explosion engine
JPWO2007026809A1 (en) Particulate filter regeneration method
JP5834773B2 (en) Exhaust gas purification device for internal combustion engine
AU2014294733B2 (en) SCR exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
US8424290B2 (en) Method and system for controlling an engine during diesel particulate filter regeneration at idle conditions
EP2682579A2 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP4419150B2 (en) NOx catalyst abnormality diagnosis device and abnormality diagnosis method
US20190293617A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
JP5370252B2 (en) Exhaust gas purification device for internal combustion engine
JP2010090875A (en) Exhaust gas control device for internal combustion engine
JP2019073980A (en) Exhaust emission control device for internal combustion engine
JP7151119B2 (en) Engine catalyst abnormality determination method and engine catalyst abnormality determination device
JP2010106753A (en) Exhaust emission control device for vehicle
JP6855811B2 (en) Exhaust purification device for internal combustion engine
JP4789291B2 (en) Internal combustion engine temperature rising operation control device
JP7420044B2 (en) Internal combustion engine cooling system
JP2004293428A (en) Control device of internal combustion engine
JP7147214B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106923B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device
JP7106922B2 (en) Engine exhaust gas state estimation method, catalyst abnormality determination method, and engine catalyst abnormality determination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees