JP2006083746A - Exhaust emission control method and exhaust emission control system - Google Patents

Exhaust emission control method and exhaust emission control system Download PDF

Info

Publication number
JP2006083746A
JP2006083746A JP2004268339A JP2004268339A JP2006083746A JP 2006083746 A JP2006083746 A JP 2006083746A JP 2004268339 A JP2004268339 A JP 2004268339A JP 2004268339 A JP2004268339 A JP 2004268339A JP 2006083746 A JP2006083746 A JP 2006083746A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
nox
nox occlusion
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004268339A
Other languages
Japanese (ja)
Other versions
JP4442373B2 (en
Inventor
Masashi Gabe
我部  正志
Taiji Nagaoka
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2004268339A priority Critical patent/JP4442373B2/en
Publication of JP2006083746A publication Critical patent/JP2006083746A/en
Application granted granted Critical
Publication of JP4442373B2 publication Critical patent/JP4442373B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control method and an exhaust emission control system for regenerating NOx storage reduction type catalyst without discharging NOx onto the downstream side of NOx storage reduction type catalyst even when an engine is in an exhaust gas low temperature operation region of low speed rotation and low load. <P>SOLUTION: In this exhaust emission control system 10 provided with NOx storage reduction type catalyst 50, exhaust temperature rise control is started when temperature of catalyst Tg is less than temperature of activity start Tc of precious metal catalyst and estimated amount Rnox of NOx storage reaches a second predetermined determination value R02 set to a value of NOx storage saturation amount R0 at the temperature of activity start Tc, and stoichiometric or rich control is performed when the temperature of catalyst Tg rises above the temperature of activity start Tc to perform regeneration control for restoring NOx storage capability of NOx storage reduction type catalyst 50. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内燃機関の排気ガス中のNOx(窒素酸化物)を還元して浄化するNOx吸蔵還元型触媒を備えた排気ガス浄化方法及び排気ガス浄化システムに関する。   The present invention relates to an exhaust gas purification method and an exhaust gas purification system provided with a NOx occlusion reduction type catalyst that reduces and purifies NOx (nitrogen oxide) in exhaust gas of an internal combustion engine.

ディーゼルエンジンや一部のガソリンエンジン等の内燃機関や様々な燃焼装置の排気ガス中からNOx(窒素酸化物)を還元除去するためのNOx触媒について種々の研究や提案がなされている。その一つに、ディーゼルエンジン用のNOx低減触媒としてNOx吸蔵還元型触媒があり、有効に排気ガス中のNOxを浄化できる。   Various studies and proposals have been made on NOx catalysts for reducing and removing NOx (nitrogen oxides) from exhaust gases of internal combustion engines such as diesel engines and some gasoline engines and various combustion devices. One of them is a NOx occlusion reduction type catalyst as a NOx reduction catalyst for diesel engines, which can effectively purify NOx in exhaust gas.

このNOx吸蔵還元型触媒は、図8に示すような構造のモノリスハニカム30M等で形成されており、このモノリスハニカム30Mは、図9に示すように、コージィエライト若しくはステンレスで形成された構造材の担体31に、多数の多角形のセル30Sを形成して構成される。このセル30Sの壁面には図9及び図10に示すように、アルミナ(Al2 3 )やゼオライトで形成された触媒担持層となる多孔質の触媒コート層34が設けられ、この排気ガスと接触する表面積を稼いでいる触媒コート層34の表面に担持貴金属(触媒活性金属)32とNOx吸蔵材(NOx吸蔵物質:NOx吸蔵剤:NOx吸収剤)33を担持し、これらにより触媒機能を発生させている。 This NOx occlusion reduction type catalyst is formed of a monolith honeycomb 30M or the like having a structure as shown in FIG. 8, and this monolith honeycomb 30M is a structural material made of cordierite or stainless steel as shown in FIG. A plurality of polygonal cells 30S are formed on the carrier 31. As shown in FIGS. 9 and 10, a porous catalyst coat layer 34 serving as a catalyst support layer formed of alumina (Al 2 O 3 ) or zeolite is provided on the wall surface of the cell 30S. A supported noble metal (catalytically active metal) 32 and a NOx occlusion material (NOx occlusion material: NOx occlusion agent: NOx absorbent) 33 are carried on the surface of the catalyst coat layer 34 which has a surface area to be contacted, thereby generating a catalytic function. I am letting.

図11及び図12にNOx吸蔵還元型触媒の担持層表面の触媒物質32,33の配置とNOx吸蔵還元メカニズムを示す。このNOx吸蔵還元型触媒は、触媒コート層34に、酸化機能を持つ白金(Pt)等の担持貴金属32とNOx吸蔵機能を持つカリウム(K),ナトリウム(Na),リチウム(Li),セシウム(Cs)等のアルカリ金属、バリウム(Ba),カルシウム(Ca)等のアルカリ土類金属、ランタン(La),イットリウム(Y)等の希土類等の中から幾つかから形成されるNOx吸蔵材33が担持され、排気ガス中の酸素濃度によってNOx吸蔵とNOx放出・浄化の二つの機能を持っている。   11 and 12 show the arrangement of the catalyst materials 32 and 33 on the surface of the support layer of the NOx storage reduction catalyst and the NOx storage reduction mechanism. This NOx occlusion reduction type catalyst has a catalyst coat layer 34 with a supported noble metal 32 such as platinum (Pt) having an oxidation function and potassium (K), sodium (Na), lithium (Li), cesium (NOx occlusion function). NOx occlusion material 33 formed from some of alkali metals such as Cs), alkaline earth metals such as barium (Ba) and calcium (Ca), and rare earths such as lanthanum (La) and yttrium (Y). It is supported and has two functions, NOx occlusion and NOx release / purification, depending on the oxygen concentration in the exhaust gas.

そして、図11に示すように、通常のディーゼルエンジン、希薄燃焼ガソリンエンジン等の排気ガス中に酸素(O2 )が含まれる排気ガスの空燃比がリーン空燃比状態の場合には、排気ガス中に含まれる酸素によって、エンジンから排出される一酸化窒素(NO)を担持貴金属32の酸化触媒機能によって二酸化窒素(NO2 )に酸化する。そして、その二酸化窒素をNOx吸蔵機能を持つバリウム等のNOx吸蔵材33に硝酸塩のかたちで吸蔵し、NOxを浄化する。 As shown in FIG. 11, when the air-fuel ratio of the exhaust gas containing oxygen (O 2 ) in the exhaust gas of a normal diesel engine, lean-burn gasoline engine or the like is in a lean air-fuel ratio state, Oxygen contained in the gas causes nitrogen monoxide (NO) discharged from the engine to be oxidized into nitrogen dioxide (NO 2 ) by the oxidation catalyst function of the supported noble metal 32. Then, the nitrogen dioxide is occluded in the form of nitrate in the NOx occlusion material 33 such as barium having NOx occlusion function to purify NOx.

しかし、このままであるとNOx吸蔵機能を持つNOx吸蔵材33は、全て硝酸塩に変化してNOx吸蔵機能を失ってしまう。そこで、エンジンの運転条件を変えたり、排気通路中に燃料噴射をしたりして、排気ガス中に酸素が存在しないで、一酸化炭素(CO)濃度が高く、排気温度も高い排気ガス、即ち、過濃燃焼排気ガスを作り出し触媒に送る。   However, in this state, the NOx occlusion material 33 having the NOx occlusion function is all changed to nitrate and loses the NOx occlusion function. Therefore, by changing the operating conditions of the engine or injecting fuel into the exhaust passage, there is no oxygen in the exhaust gas, the exhaust gas having a high carbon monoxide (CO) concentration and a high exhaust temperature, that is, , Create rich combustion exhaust gas and send it to the catalyst.

そして、図12に示すように、排気ガス中に酸素が無く、一酸化炭素濃度が高く、排気ガス温度が上昇したリッチ空燃比状態にすると、NOxを吸蔵した硝酸塩は二酸化窒素を放出し元のバリウム等に戻る。この放出された二酸化窒素を、排気ガス中に酸素が存在しないので、担持貴金属32の酸化機能により、排気ガス中の一酸化炭素,炭化水素(HC),水素(H2 )を還元剤として、水(H2 O),二酸化炭素(CO2 ),窒素(N2 )に還元し浄化する。 Then, as shown in FIG. 12, when the exhaust gas has no oxygen, the carbon monoxide concentration is high, and the exhaust gas temperature is raised to a rich air-fuel ratio state, the nitrate that occludes NOx releases nitrogen dioxide and releases the original nitrogen dioxide. Return to barium etc. Since the released nitrogen dioxide has no oxygen in the exhaust gas, carbon monoxide, hydrocarbons (HC), hydrogen (H 2 ) in the exhaust gas are used as a reducing agent by the oxidation function of the supported noble metal 32. Reduce to water (H 2 O), carbon dioxide (CO 2 ), nitrogen (N 2 ) and purify.

そのため、NOx吸蔵還元型触媒を備えた排気ガス浄化システムでは、NOx吸蔵推定量がNOx吸蔵飽和量になった時に、排気ガスの空燃比をリッチにして、流入する排気ガスの酸素濃度を低下させるNOx吸蔵能力回復用のリッチ制御を行うことにより吸収したNOxを放出させて、この放出されたNOxを貴金属触媒により還元させる再生操作を行っている。   Therefore, in an exhaust gas purification system equipped with a NOx occlusion reduction type catalyst, when the estimated NOx occlusion amount becomes the NOx occlusion saturation amount, the air-fuel ratio of the exhaust gas is made rich and the oxygen concentration of the inflowing exhaust gas is lowered. A regeneration operation is performed to release the absorbed NOx by performing rich control for recovering the NOx storage capacity and reduce the released NOx by a noble metal catalyst.

しかしながら、このNOx吸蔵還元型触媒は、触媒温度が低い温度では、反応活性が極端に低下するため、エンジンの排気ガス温度が250℃程度以下となる低温度運転領域では、NOxに対する化学的吸蔵反応、及び、リッチ排気ガスによるNOx放出・浄化反応も極端に低下してしまう。   However, since this NOx occlusion reduction type catalyst has a very low reaction activity at a low catalyst temperature, a chemical occlusion reaction to NOx occurs in a low temperature operation region where the exhaust gas temperature of the engine is about 250 ° C. or lower. In addition, the NOx release / purification reaction due to the rich exhaust gas is also extremely reduced.

そのため、内燃機関の排気系に配置された排気浄化触媒を速やかに活性させるとともに活性開始温度域に維持することを目的として、吸気弁の開閉時期、リフト量を変更する可変動弁機構と、吸気絞り弁とを制御すると共に、燃料噴射弁を制御してポスト噴射を行い、排気温度を上昇させる排気昇温手段を備えた圧縮着火式内燃機関の排気浄化装置が提案されている(例えば、特許文献1参照。)。   Therefore, in order to quickly activate the exhaust purification catalyst disposed in the exhaust system of the internal combustion engine and maintain it in the activation start temperature range, a variable valve mechanism that changes the opening / closing timing and lift amount of the intake valve, An exhaust emission control device for a compression ignition type internal combustion engine has been proposed (see, for example, a patent) having an exhaust temperature raising means for controlling the throttle valve and controlling the fuel injection valve to perform post injection to raise the exhaust gas temperature. Reference 1).

また、一方で、図13に示すように、エンジンが低負荷運転を行っているような排気ガスが著しく低い、極低温域にある場合に、NOx吸蔵推定量がNOx吸蔵飽和量になってNOx吸蔵還元型触媒の再生を開始する時に、シリンダ内への燃料噴射制御において噴射時期遅延、ポスト噴射等を行う排気ガス昇温制御等によって排気ガスを昇温させている。これにより、触媒温度を上昇させて、NOx吸蔵還元型触媒の再生時における触媒活性を向上させている。   On the other hand, as shown in FIG. 13, the NOx occlusion estimated amount becomes the NOx occlusion saturation amount when the exhaust gas in which the engine is operating at a low load is in a very low temperature region where the exhaust gas is extremely low. When regeneration of the storage reduction catalyst is started, the temperature of the exhaust gas is raised by exhaust gas temperature rise control or the like that performs injection timing delay, post injection, etc. in the fuel injection control into the cylinder. As a result, the catalyst temperature is raised, and the catalytic activity during regeneration of the NOx storage reduction catalyst is improved.

このような排気浄化装置の一つとして、NOxトラップ触媒(NOx吸蔵還元型触媒)に吸着したNOxの量が、再生時期に対応する所定量NOx2よりも小さな値に設定される所定量NOx1に達したか否かで、再生時期が近くなったかを判定し、再生準備状態に入り、触媒ベッド温度が触媒の活性開始温度よりも低いと判断した場合に、吸気絞りなどにより排気の空気過剰率λを小さくし、排気温度を上昇させることにより、その後リッチスパイクモードに移行した時に、NOx再生が円滑に行われ、長期間のリッチ化による運転性の悪化等を回避することができる内燃機関の排気浄化装置が提案されている(例えば、特許文献2参照。)。   As one of such exhaust purification devices, the amount of NOx adsorbed on the NOx trap catalyst (NOx storage reduction catalyst) reaches a predetermined amount NOx1 set to a value smaller than the predetermined amount NOx2 corresponding to the regeneration timing. It is determined whether or not the regeneration timing is near, and when the regeneration preparation state is entered and it is determined that the catalyst bed temperature is lower than the activation start temperature of the catalyst, the excess air ratio λ By reducing the exhaust gas temperature and increasing the exhaust gas temperature, the NOx regeneration can be performed smoothly when the engine shifts to the rich spike mode thereafter, and the exhaust of the internal combustion engine that can avoid the deterioration of operability due to the long-term enrichment can be avoided. A purification device has been proposed (see, for example, Patent Document 2).

しかしながら、NOx吸蔵還元型触媒の触媒活性化温度以下、特に200℃以下の極低温域では、化学的な吸蔵ではなく、物理的吸着の状態となるが、以下では、煩雑さを避けるため、触媒活性化温度より高い状態における化学的な吸蔵だけではなく、この物理的な吸着も含めて「吸蔵」で表現することにする。   However, in the extremely low temperature range below the catalyst activation temperature of the NOx occlusion reduction type catalyst, particularly 200 ° C. or less, it becomes a state of physical adsorption instead of chemical occlusion. Not only chemical occlusion in a state higher than the activation temperature but also this physical adsorption is expressed by “occlusion”.

そして、触媒温度とのNOx吸蔵飽和量との関係は、図7に示すように、触媒温度Tg が上昇すると、NOx吸蔵材のNOx吸蔵飽和量R0 が低下するため、再生時期が近く、かつ、NOx吸蔵還元型触媒が低温時の時に、再生準備で昇温を開始すると、図7に示すA領域に所定量NOx1を設定した場合には、NOx吸蔵還元型触媒の昇温に伴い、NOx吸蔵飽和量R0 が減少するので、昇温中にNOx吸蔵還元型触媒に吸蔵されていたNOxが離脱して放出される。   As shown in FIG. 7, when the catalyst temperature Tg is increased, the NOx occlusion saturation amount R0 of the NOx occlusion material is decreased, so that the regeneration time is close, and the relationship between the catalyst temperature and the NOx occlusion saturation amount is as follows. If the NOx occlusion reduction catalyst is at a low temperature and the temperature rise is started in preparation for regeneration, when a predetermined amount of NOx1 is set in the region A shown in FIG. 7, NOx occlusion reduction accompanies the temperature rise of the NOx occlusion reduction catalyst. Since the saturation amount R0 decreases, the NOx occluded in the NOx occlusion reduction type catalyst during the temperature rise is released and released.

また、一方で、貴金属触媒の触媒温度と浄化率との関係は、図14に示すような関係にあり、触媒温度がNOx吸蔵還元型触媒の貴金属触媒の活性開始温度Tc(触媒にもよるが、約250℃〜300℃)に達しない内に、空気過剰率λを小さくし、排気ガスをリッチ状態にすると、例え、図7に示すB領域であったとしても、NOx吸蔵還元型触媒に吸蔵されていたNOxが放出される。そのため、特許文献2の排気浄化装置のように、空気過剰率λを小さくして排気昇温を行うと、昇温中にNOx吸蔵還元型触媒に吸蔵されていたNOxが放出されてしまうことになる。   On the other hand, the relationship between the catalyst temperature of the noble metal catalyst and the purification rate is as shown in FIG. 14, and the catalyst temperature is the activation start temperature Tc of the noble metal catalyst of the NOx storage reduction type catalyst (depending on the catalyst). If the excess air ratio λ is reduced and the exhaust gas is made rich while the temperature does not reach about 250 ° C. to 300 ° C.), even if it is the B region shown in FIG. The stored NOx is released. Therefore, as in the exhaust gas purification apparatus of Patent Document 2, if the exhaust air temperature is raised with the excess air ratio λ reduced, NOx stored in the NOx occlusion reduction type catalyst is released during the temperature rise. Become.

この昇温中に放出されたNOxは、触媒温度Tg が貴金属触媒の活性開始温度Tc に達する前では、この貴金属触媒の触媒活性が低いため、触媒作用で還元されずに、NOxのままでNOx吸蔵還元型触媒の下流側に放出されてしまう。また、NOx還元の際の還元剤となるべきHCやCO等もNOx吸蔵還元型触媒の下流側に排出されてしまう。   Before the catalyst temperature Tg reaches the activation start temperature Tc of the noble metal catalyst, the NOx released during the temperature rise is not reduced by the catalytic action and remains as NOx because the catalytic activity of the noble metal catalyst is low. It will be discharged downstream of the storage reduction catalyst. In addition, HC, CO, and the like to be a reducing agent during NOx reduction are also discharged downstream of the NOx storage reduction catalyst.

従って、再生準備として排気ガスの昇温制御を開始する際の所定量NOx1を如何に設定するかが重要であり、また、触媒温度Tg が活性開始温度Tc に到達するまでは、NOx吸蔵還元型触媒に吸蔵されているNOxを放出させないようにしながら、昇温することが重要である。
特開2003−120368号公報 特開2004−36552号公報
Therefore, it is important how to set the predetermined amount NOx1 when starting the exhaust gas temperature raising control as a preparation for regeneration, and until the catalyst temperature Tg reaches the activation start temperature Tc, the NOx occlusion reduction type. It is important to raise the temperature while preventing NOx stored in the catalyst from being released.
JP 2003-120368 A JP 2004-36552 A

本発明は、上記の問題を解決するためになされたものであり、その目的は、排気ガス中のNOxの浄化のためにNOx吸蔵還元型触媒を用いる排気ガス浄化システムにおいて、エンジンが低回転・低負荷の排気ガス低温運転領域にある場合であっても、NOxをNOx吸蔵還元型触媒の下流側に放出することなく、NOx吸蔵還元型触媒を再生することができる排気ガス浄化方法及び排気ガス浄化システムを提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust gas purification system that uses a NOx occlusion reduction type catalyst for purifying NOx in exhaust gas. Exhaust gas purification method and exhaust gas capable of regenerating NOx occlusion reduction catalyst without releasing NOx downstream of NOx occlusion reduction catalyst even in a low load exhaust gas low temperature operation region It is to provide a purification system.

上記のような目的を達成するための排気ガス浄化方法は、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒に吸蔵されたと推定されるNOx吸蔵推定量が所定の判定値に達した時に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための再生制御を行う排気ガス浄化システムにおいて、
排気ガス又は触媒の温度を検出する温度センサの検出値に基づいて、前記NOx吸蔵還元型触媒の触媒温度が前記NOx吸蔵還元型触媒が担持している貴金属触媒の活性開始温度以上であるか否かを判定し、
活性開始温度以上である時には、前記NOx吸蔵推定量が、前記触媒におけるNOx吸蔵飽和量により設定された所定の第1判定値に達した時に、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復し、
活性開始温度未満である時には、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量の値に設定された所定の第2判定値に達した時に、排気昇温制御を開始して、前記触媒温度を活性開始温度以上に昇温した後、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復する再生制御を行うことを特徴とする方法である。
The exhaust gas purifying method for achieving the above-described purpose is to store NOx when the air-fuel ratio of the exhaust gas is lean, and to release and reduce NOx stored when it is rich. In order to restore the NOx occlusion capacity of the NOx occlusion reduction catalyst when the estimated NOx occlusion amount estimated to have been occluded by the NOx occlusion reduction catalyst reaches a predetermined judgment value. In the exhaust gas purification system that performs regeneration control of
Whether or not the catalyst temperature of the NOx occlusion reduction type catalyst is equal to or higher than the activation start temperature of the noble metal catalyst supported by the NOx occlusion reduction type catalyst based on the detection value of the temperature sensor that detects the temperature of the exhaust gas or the catalyst Determine whether
When the activation start temperature is equal to or higher than the activation start temperature, when the NOx occlusion estimated amount reaches a predetermined first determination value set by the NOx occlusion saturation amount in the catalyst, stoichiometric or rich control is performed to perform NOx occlusion reduction type catalyst. To restore NOx storage capacity of
When the NOx occlusion estimated amount reaches a predetermined second determination value set to the value of the NOx occlusion saturation at the activation start temperature when the activation start temperature is lower than the activation start temperature, the exhaust gas temperature raising control is started, After the catalyst temperature is raised to the activation start temperature or higher, stoichiometric or rich control is performed to perform regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst.

なお、NOx吸蔵還元型触媒のNOxの浄化に関しては、NOx吸蔵還元型触媒の触媒活性化温度以下、特に200℃以下の極低温域では、化学的な吸蔵ではなく、物理的吸着の状態となるが、ここでは「吸蔵」との表現に、触媒活性化温度より高い状態における化学的な吸蔵だけではなく、この物理的な吸着も含めている。   Regarding NOx purification of the NOx occlusion reduction type catalyst, it is in a state of physical adsorption rather than chemical occlusion at an extremely low temperature range below the catalyst activation temperature of the NOx occlusion reduction type catalyst, particularly 200 ° C. or less. However, here, the expression “occlusion” includes not only chemical occlusion in a state higher than the catalyst activation temperature but also this physical adsorption.

そして、上記の排気ガス浄化方法において、前記所定の第2判定値を、前記排気昇温制御が終了した時に、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量となる値に設定する。即ち、排気昇温制御中に吸蔵されるNOx量、即ち、排気昇温制御によるNOx吸蔵推定量の増分を、予め差し引いた値を前記所定の第2判定値とする。   In the exhaust gas purification method, the predetermined second determination value is set to a value at which the estimated NOx occlusion amount becomes the NOx occlusion saturation amount at the activation start temperature when the exhaust gas temperature raising control is finished. . That is, a value obtained by subtracting in advance the amount of NOx occluded during the exhaust gas temperature raising control, that is, the increment of the NOx occlusion estimated amount by the exhaust gas temperature raising control, is set as the predetermined second determination value.

このように、所定の第2判定値が、排気昇温制御による昇温によって、NOx吸蔵還元型触媒からNOxが放出されない値とすることにより、エンジンが低回転・低負荷の排気ガス低温運転領域にある場合であっても、NOxをNOx吸蔵還元型触媒の下流側に放出することなく、NOx吸蔵還元型触媒を再生することができる。   As described above, the predetermined second determination value is a value at which NOx is not released from the NOx occlusion reduction catalyst due to the temperature rise by the exhaust gas temperature raising control, so that the engine has a low rotation speed and low load exhaust gas low temperature operation region. Even in this case, the NOx storage reduction catalyst can be regenerated without releasing NOx to the downstream side of the NOx storage reduction catalyst.

また、触媒温度が貴金属触媒の活性開始温度に達してからストイキ又はリッチ制御するので、ストイキ又はリッチ制御によって排気ガス中に発生するHCやCO等はNOx還元の還元剤として消費されるので、これらのNOx吸蔵還元型触媒の下流側への排出も防止される。   Further, since the stoichiometric or rich control is performed after the catalyst temperature reaches the activation start temperature of the noble metal catalyst, HC and CO generated in the exhaust gas by the stoichiometric or rich control are consumed as a reducing agent for NOx reduction. The NOx storage reduction catalyst is also prevented from being discharged to the downstream side.

また、上記のような目的を達成するための排気ガス浄化システムは、排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒に吸蔵されたと推定されるNOx吸蔵推定量が所定の判定値に達した時に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための再生制御を行う再生制御手段を備えた排気ガス浄化システムにおいて、
排気ガス又は触媒の温度を検出する温度センサの検出値から触媒温度を検出する触媒温度検出手段と、
該触媒温度検出手段で検出された触媒温度が、前記NOx吸蔵還元型触媒が担持している貴金属触媒の活性開始温度以上であるか否かを判定する触媒温度判定手段と、
該触媒温度判定手段による判定が、活性開始温度以上である時には、前記NOx吸蔵推定量が、前記触媒におけるNOx吸蔵飽和量により設定された所定の第1判定値に達した時に、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復し、活性開始温度未満である時には、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量の値に設定された所定の第2判定値に達した時に、排気昇温制御を開始して、前記触媒温度を活性開始温度以上に昇温した後、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復する再生制御を行う再生制御手段とを備えて構成される。
Further, the exhaust gas purification system for achieving the above-described object occludes NOx when the air-fuel ratio of the exhaust gas is in a lean state and releases NOx that has been occluded when it is in a rich state. The NOx occlusion reduction type catalyst that is reduced together with the NOx occlusion reduction type catalyst is restored when the estimated NOx occlusion amount estimated to have been occluded by the NOx occlusion reduction type catalyst reaches a predetermined judgment value. In an exhaust gas purification system provided with a regeneration control means for performing regeneration control for
Catalyst temperature detecting means for detecting the catalyst temperature from the detection value of the temperature sensor for detecting the temperature of the exhaust gas or the catalyst;
Catalyst temperature determination means for determining whether the catalyst temperature detected by the catalyst temperature detection means is equal to or higher than the activation start temperature of the noble metal catalyst supported by the NOx storage reduction catalyst;
When the determination by the catalyst temperature determination means is equal to or higher than the activation start temperature, the stoichiometric or rich control is performed when the estimated NOx storage amount reaches a predetermined first determination value set by the NOx storage saturation amount in the catalyst. To restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst, and when the NOx occlusion reduction catalyst temperature is lower than the activation start temperature, the estimated NOx occlusion amount is set to a predetermined second value set to the value of the NOx occlusion saturation at the activation start temperature. When the judgment value is reached, the exhaust gas temperature raising control is started and the catalyst temperature is raised to the activation start temperature or higher, and then the stoichiometric or rich control is performed to restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst. And reproduction control means for performing reproduction control.

また、上記の排気ガス浄化システムにおいて、前記所定の第2判定値を、前記排気昇温制御が終了した時に、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量となる値に設定する。   In the exhaust gas purification system, the predetermined second determination value is set to a value at which the NOx occlusion estimated amount becomes the NOx occlusion saturation amount at the activation start temperature when the exhaust gas temperature raising control is finished. .

なお、ここでいう排気ガスの空燃比状態とは、必ずしもシリンダ内における空燃比の状態を意味するものではなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比のことをいう。   Here, the air-fuel ratio state of the exhaust gas does not necessarily mean the state of the air-fuel ratio in the cylinder, but the amount of air and the amount of fuel supplied to the exhaust gas flowing into the NOx storage reduction catalyst (cylinder) (Including the amount burned inside).

以上説明したように、本発明に係る排気ガス浄化方法及び排気ガス浄化システムによれば、エンジンが低回転・低負荷の排気ガス低温運転領域にある場合であっても、NOxをNOx吸蔵還元型触媒の下流側に放出することなく、NOx吸蔵還元型触媒を再生することができるので、低温域のNOx浄化性能を向上させると共に、燃費、HC,CO排気ガスの悪化を防止することができる。   As described above, according to the exhaust gas purification method and the exhaust gas purification system of the present invention, NOx is stored in the NOx occlusion reduction type even when the engine is in the low-speed / low-load exhaust gas low-temperature operation region. Since the NOx occlusion reduction type catalyst can be regenerated without being released to the downstream side of the catalyst, it is possible to improve the NOx purification performance in the low temperature region and prevent deterioration of fuel consumption, HC, and CO exhaust gas.

以下、本発明に係る実施の形態の排気ガス浄化方法及び排気ガス浄化システムについて、図面を参照しながら説明する。なお、ここでいう排気ガスのストイキ状態ヤリッチ状態とは、必ずしもシリンダ内でストイキ燃焼やリッチ燃焼する必要はなく、NOx吸蔵還元型触媒に流入する排気ガス中に供給した空気量と燃料量(シリンダ内で燃焼した分も含めて)との比が理論空燃比に近い状態か又は理論空燃比より燃料量が多いストイキ又はリッチの状態であることをいう。   Hereinafter, an exhaust gas purification method and an exhaust gas purification system according to embodiments of the present invention will be described with reference to the drawings. Note that the exhaust gas stoichiometric and rich state here does not necessarily require stoichiometric combustion or rich combustion in the cylinder, but the amount of air and fuel supplied to the exhaust gas flowing into the NOx storage reduction catalyst (cylinder) (Including the amount burned inside) is in a state close to the stoichiometric air-fuel ratio, or in a stoichiometric or rich state in which the amount of fuel is larger than the stoichiometric air-fuel ratio.

図1に示す排気ガス浄化システム10は、エンジン(内燃機関)1の排気通路20に、NOx吸蔵還元型触媒50が配置されて構成される。   An exhaust gas purification system 10 shown in FIG. 1 is configured by disposing an NOx storage reduction catalyst 50 in an exhaust passage 20 of an engine (internal combustion engine) 1.

このNOx吸蔵還元型触媒50は、モノリス触媒で形成され、酸化アルミニウム、酸化チタン等の担持体に触媒コート層を設け、この触媒コート層に、白金(Pt)(Pd)等の貴金属触媒(触媒金属)とバリウム(Ba)等のNOx吸蔵材(NOx吸蔵物質)を担持させて構成される。   The NOx occlusion reduction type catalyst 50 is formed of a monolithic catalyst, and a catalyst coat layer is provided on a carrier such as aluminum oxide or titanium oxide, and a noble metal catalyst (catalyst such as platinum (Pt) (Pd)) is provided on the catalyst coat layer. Metal) and NOx occlusion material (NOx occlusion material) such as barium (Ba) are supported.

このNOx吸蔵還元型触媒50では、酸素濃度が高い排気ガスの状態(リーン空燃比状態)の時に、排気ガス中のNOxをNOx吸蔵材が吸蔵することにより、排気ガス中のNOxを浄化し、酸素濃度が低いかゼロの排気ガス状態の時に、吸蔵したNOxを放出すると共に放出されたNOxを貴金属触媒の触媒作用により還元することにより、大気中へのNOxの流出を防止する。   In this NOx occlusion reduction type catalyst 50, when the oxygen concentration is in the exhaust gas state (lean air-fuel ratio state), the NOx occlusion material occludes NOx in the exhaust gas, thereby purifying the NOx in the exhaust gas, In the exhaust gas state where the oxygen concentration is low or zero, the stored NOx is released and the released NOx is reduced by the catalytic action of the noble metal catalyst, thereby preventing NOx from flowing into the atmosphere.

このNOx吸蔵還元型触媒50の入口側に、触媒入口NOxセンサ51とNOx吸蔵還元型触媒50の触媒温度Tg を検出するための触媒入口排気ガス温度センサ52が、また、出口側に、触媒出口NOxセンサ53がそれぞれ配設されている。更に、排気通路20のNOx吸蔵還元型触媒コンバータ50の上流側に、ターボチャージャ21のタービン21aが配置される。   A catalyst inlet NOx sensor 51 and a catalyst inlet exhaust gas temperature sensor 52 for detecting the catalyst temperature Tg of the NOx storage reduction catalyst 50 are provided on the inlet side of the NOx storage reduction catalyst 50, and a catalyst outlet is provided on the outlet side. Each NOx sensor 53 is provided. Further, a turbine 21 a of the turbocharger 21 is disposed on the upstream side of the NOx occlusion reduction type catalytic converter 50 in the exhaust passage 20.

一方、吸気通路30には、マスエアフローセンサ(MAFセンサ)31とターボチャジャー21のコンプレッサー(図示しない)と吸気絞り弁(吸気スロットル弁)32とが設けられ、また、タービン21aの上流側の排気通路20と吸気通路30とを接続するEGR通路40が設けられ、このEGR通路40には、EGRクーラー41とEGR弁42が設けられている。   On the other hand, the intake passage 30 is provided with a mass air flow sensor (MAF sensor) 31, a compressor (not shown) of the turbocharger 21, and an intake throttle valve (intake throttle valve) 32, and on the upstream side of the turbine 21a. An EGR passage 40 that connects the exhaust passage 20 and the intake passage 30 is provided, and an EGR cooler 41 and an EGR valve 42 are provided in the EGR passage 40.

そして、エンジン1の運転の全般的な制御を行うと共に、NOx吸蔵還元型触媒50のNOx浄化能力の回復制御も行う制御装置(ECU:エンジンコントロールユニット)60が設けられる。この制御装置60に触媒入口NOxセンサ51、触媒入口排気ガス温度センサ52、触媒出口NOxセンサ53等からの検出値が入力され、この制御装置60からエンジン1のEGR弁42や燃料噴射用のコモンレール電子制御燃料噴射装置の燃料噴射弁61や吸気絞り弁32等を制御する信号が出力される。   A control device (ECU: engine control unit) 60 that performs overall control of the operation of the engine 1 and also performs recovery control of the NOx purification ability of the NOx storage reduction catalyst 50 is provided. Detection values from the catalyst inlet NOx sensor 51, the catalyst inlet exhaust gas temperature sensor 52, the catalyst outlet NOx sensor 53, and the like are input to the controller 60, and the EGR valve 42 of the engine 1 and the common rail for fuel injection are input from the controller 60. A signal for controlling the fuel injection valve 61 and the intake throttle valve 32 of the electronically controlled fuel injection device is output.

この排気ガス浄化システム10においては、空気Aは、吸気通路30のマスエアフローセンサ(MAFセンサ)31とターボチャジャー21のコンプレッサー(図示しない)を通過して、吸気絞り弁32によりその量を調整されてシリンダ内に入る。そして、シリンダ内で発生した排気ガスGは、排気通路20のターボチャジャー21のタービン21aを駆動し、NOx吸蔵還元型触媒50を通過して浄化された排気ガスGcとなって、図示しない消音器を通って大気中に排出される。また、排気ガスGの一部はEGRガスGeとして、EGR通路40のEGRクーラー41を通過し、EGR弁42でその量を調整されて吸気通路30側に再循環される。   In the exhaust gas purification system 10, the air A passes through a mass air flow sensor (MAF sensor) 31 in the intake passage 30 and a compressor (not shown) in the turbocharger 21, and the amount of the air A is adjusted by the intake throttle valve 32. And enters the cylinder. The exhaust gas G generated in the cylinder drives the turbine 21a of the turbocharger 21 in the exhaust passage 20 and passes through the NOx storage reduction catalyst 50 to become purified exhaust gas Gc. It is discharged into the atmosphere through the vessel. A part of the exhaust gas G passes through the EGR cooler 41 of the EGR passage 40 as EGR gas Ge, and the amount thereof is adjusted by the EGR valve 42 and recirculated to the intake passage 30 side.

そして、この排気ガス浄化システム10の制御装置が、エンジン1の制御装置60に組み込まれ、エンジン1の運転制御と並行して、排気ガス浄化システム10の制御が行われる。この排気ガス浄化システム10の制御装置は、図2に示すようなNOx吸蔵還元型触媒の制御手段C1 を備えて構成される。   The control device of the exhaust gas purification system 10 is incorporated in the control device 60 of the engine 1, and the exhaust gas purification system 10 is controlled in parallel with the operation control of the engine 1. The control device of the exhaust gas purification system 10 includes a NOx occlusion reduction catalyst control means C1 as shown in FIG.

このNOx吸蔵還元型触媒の制御手段C1 は、NOx吸蔵還元型触媒50の再生や脱硫(サルファパージ)等の制御を行う手段であり、NOx濃度検出手段C11、触媒温度検出手段C12、触媒温度判定手段C13、低温域再生制御手段C20と高温域再生制御手段C30等を有して構成される。   This NOx occlusion reduction type catalyst control means C1 is a means for controlling regeneration, desulfurization (sulfur purge), etc. of the NOx occlusion reduction type catalyst 50, NOx concentration detection means C11, catalyst temperature detection means C12, catalyst temperature determination. Means C13, a low temperature range regeneration control means C20, a high temperature range regeneration control means C30 and the like are configured.

NOx濃度検出手段C11は、排気ガス中のNOx濃度を検出する手段であり、触媒入口NOxセンサ51と触媒出口NOxセンサ53を有している。なお、このNOxセンサにNOx濃度センサと酸素濃度センサとが一体化した排気成分濃度センサを用いる場合には、NOx濃度と共に酸素濃度(又は空気過剰率)も検出できることになる。   The NOx concentration detection means C11 is a means for detecting the NOx concentration in the exhaust gas, and has a catalyst inlet NOx sensor 51 and a catalyst outlet NOx sensor 53. When an exhaust component concentration sensor in which a NOx concentration sensor and an oxygen concentration sensor are integrated is used as the NOx sensor, the oxygen concentration (or excess air ratio) can be detected together with the NOx concentration.

触媒温度検出手段C12は、触媒入口排気ガス温度センサ52によって検出された排気ガス温度Tg を基に、触媒温度を検出する手段である。厳密には、触媒入口の排気ガス温度Tg は触媒温度とは異なり、補正する必要があるが、制御の簡便さを考えて、排気ガス温度Tg を触媒温度として使用する場合が多く、ここでも触媒温度として排気ガス温度(触媒入口ガス温度)Tg を用いる。なお、触媒温度センサを設けて触媒温度を直接計測する場合には、計測された温度がそのまま検出された触媒温度となる。   The catalyst temperature detection means C12 is a means for detecting the catalyst temperature based on the exhaust gas temperature Tg detected by the catalyst inlet exhaust gas temperature sensor 52. Strictly speaking, the exhaust gas temperature Tg at the catalyst inlet is different from the catalyst temperature and needs to be corrected. However, considering the simplicity of control, the exhaust gas temperature Tg is often used as the catalyst temperature. The exhaust gas temperature (catalyst inlet gas temperature) Tg is used as the temperature. When the catalyst temperature sensor is provided and the catalyst temperature is directly measured, the measured temperature becomes the detected catalyst temperature as it is.

触媒温度判定手段C13は、触媒温度(ここでは、排気ガス温度で代用している)Tg が、NOx吸蔵還元型触媒の貴金属触媒の活性開始温度Tc 未満の低温域にあるか、活性開始温度Tc 以上の高温域にあるかを判定する手段である。   The catalyst temperature determination means C13 is configured so that the catalyst temperature (in this case, the exhaust gas temperature is substituted) Tg is in a low temperature region lower than the activation start temperature Tc of the noble metal catalyst of the NOx storage reduction catalyst, or the activation start temperature Tc. It is a means to determine whether it exists in the above high temperature range.

そして、低温域再生制御手段C20は、触媒温度Tg が活性開始温度Tc 未満の場合のNOx吸蔵還元型触媒の再生制御を行う手段であり、NOx触媒の再生開始判定手段C21、排気昇温制御手段C22、NOx触媒再生制御手段C23等を有して構成される。   The low temperature region regeneration control means C20 is means for performing regeneration control of the NOx occlusion reduction type catalyst when the catalyst temperature Tg is lower than the activation start temperature Tc. The NOx catalyst regeneration start determining means C21, the exhaust gas temperature raising control means. C22, NOx catalyst regeneration control means C23 and the like.

NOx触媒の再生開始判定手段C21は、エンジンの運転状態を示すエンジン回転速度Ne と負荷Qから予め実験などによって設定されたマップデータから、排気昇温制御開始用の判定値(所定の第2判定値)R02を算出する。この排気昇温制御開始用の判定値R02は、再生制御を開始する時期を判断するための所定の判定値(所定の第2判定値)であり、この低温域再生制御では、NOx吸蔵還元型触媒の活性開始温度Tc におけるNOx吸蔵飽和量R0と同じ値に設定される。   The NOx catalyst regeneration start judging means C21 is a judgment value (predetermined second judgment) for starting the exhaust gas temperature raising control from the map data set beforehand by experiments or the like from the engine speed Ne and the load Q indicating the operating state of the engine. Value) R02 is calculated. This determination value R02 for starting the exhaust gas temperature raising control is a predetermined determination value (predetermined second determination value) for determining the timing for starting the regeneration control. In this low temperature region regeneration control, the NOx occlusion reduction type It is set to the same value as the NOx occlusion saturation amount R0 at the activation start temperature Tc of the catalyst.

なお、マップデータの設定が必要になるが、この所定の第2判定値を、排気昇温制御が終了した時に、NOx吸蔵推定量が、NOx吸蔵還元型触媒の活性開始温度Tc におけるNOx吸蔵飽和量R02の値になるように設定すると、NOxのNOx吸蔵還元型触媒の下流側への放出をより少なくすることができる。この場合には、排気昇温制御中のNOxの吸蔵量が考慮され、この排気昇温制御中のNOxの吸蔵量がNOx吸蔵飽和量R02から引き算された値が所定の第2の判定値とされる。   Although the map data needs to be set, this predetermined second determination value is used as the NOx occlusion estimated amount when the exhaust gas temperature raising control is finished, and the NOx occlusion reduction amount becomes the NOx occlusion saturation at the activation start temperature Tc of the NOx occlusion reduction type catalyst. If the amount R02 is set to a value, it is possible to further reduce the release of NOx to the downstream side of the NOx storage reduction catalyst. In this case, the NOx occlusion amount during the exhaust gas temperature raising control is taken into consideration, and the value obtained by subtracting the NOx occlusion amount during the exhaust gas temperature raising control from the NOx occlusion saturation amount R02 is the predetermined second determination value. Is done.

つまり、NOx吸蔵飽和量を読み込み、排気昇温制御により、排気昇温制御により、触媒温度が上昇してもNOxが放出されない閾値を予め実験などによって求め、この閾値をマップデータとして入力しておき、この閾値を基に排気昇温制御を開始する。   That is, the NOx occlusion saturation is read, the exhaust gas temperature increase control, the exhaust gas temperature increase control, the threshold value at which NOx is not released even if the catalyst temperature rises is obtained in advance by experiments, and this threshold value is input as map data. Then, the exhaust gas temperature raising control is started based on this threshold value.

また、一方で、排気ガスの状態を示す、触媒入口NOx濃度Cnoxin 、触媒出口NOx濃度Cnoxex 、燃料噴射量(燃料重量)Qg 、吸入空気量(吸入空気重量)Ag とから、Rnox1=(Qg +Ag )×(Cnoxin −Cnoxex )の計算で、単位時間当たりのNOxの排出量である第1NOx吸蔵推定量Rnox1を算出する。そして、NOx吸蔵量が温度に多少影響するため、関数として多少、第1NOx吸蔵推定量Rnox1を補正した値を、累積計算して、NOx吸蔵推定量Rnox を求める。   On the other hand, from the catalyst inlet NOx concentration Cnoxin, the catalyst outlet NOx concentration Cnoxex, the fuel injection amount (fuel weight) Qg, and the intake air amount (intake air weight) Ag indicating the state of the exhaust gas, Rnox1 = (Qg + Ag ) × (Cnoxin−Cnoxex), the first NOx occlusion estimated amount Rnox1 that is the NOx emission amount per unit time is calculated. Since the NOx occlusion amount slightly affects the temperature, a value obtained by correcting the first NOx occlusion estimation amount Rnox1 as a function is cumulatively calculated to obtain the NOx occlusion estimation amount Rnox.

そして、このNOx吸蔵推定量Rnox と排気昇温制御開始用の判定値R02を比較して、NOx吸蔵推定量Rnox がこの所定の判定値R02以上になった時に、再生制御開始の時期であると判断する。   Then, the NOx occlusion estimated amount Rnox is compared with the determination value R02 for starting the exhaust gas temperature raising control. When the NOx occlusion estimated amount Rnox becomes equal to or greater than the predetermined determination value R02, it is determined that the regeneration control start time is reached. to decide.

また、排気昇温制御手段C22は、シリンダ内への燃料噴射におけるアフター噴射、遅延噴射、多段噴射、ポスト噴射等の燃料噴射制御等や吸排気絞り制御等により、排気温度を昇温させる手段である。図5と図6にアフター噴射と遅延噴射の例を示す。図5のアフター噴射制御では、メイン噴射Mfの前にパイロット噴射Pfがなされ、メイン噴射Mfの後にアフター噴射Afがなされる。また、図6の遅延噴射制御では、メイン噴射Mfの前にパイロット噴射Pfがなされ、メイン噴射Mfが通常のメイン噴射Mfよりも遅延される。これらの排気昇温制御では、昇温中においては、NOx吸蔵還元型触媒の貴金属触媒が活性化しておらず、NOxを還元できないので、昇温の間はNOx吸蔵還元型触媒のNOx吸蔵材から吸蔵されたNOxが放出されないように、空気過剰率λをリーン(例えば、5.0〜2.0程度)に維持する。   Further, the exhaust gas temperature raising control means C22 is a means for raising the exhaust temperature by fuel injection control such as after injection, delayed injection, multistage injection, post injection, etc., intake / exhaust throttle control, etc. in fuel injection into the cylinder. is there. 5 and 6 show examples of after injection and delayed injection. In the after injection control of FIG. 5, pilot injection Pf is performed before the main injection Mf, and after injection Af is performed after the main injection Mf. In the delayed injection control of FIG. 6, the pilot injection Pf is performed before the main injection Mf, and the main injection Mf is delayed from the normal main injection Mf. In these exhaust gas temperature raising controls, the NOx occlusion reduction catalyst noble metal catalyst is not activated during the temperature rise, and NOx cannot be reduced. Therefore, during the temperature rise, the NOx occlusion reduction catalyst uses the NOx occlusion material. The excess air ratio λ is maintained lean (for example, about 5.0 to 2.0) so that the stored NOx is not released.

この排気昇温制御は、触媒入口ガス温度Tg が、エンジンの運転状態を示すエンジン回転速度Ne と負荷Qから予め実験などによって設定されたマップデータから算出された昇温判定温度Ts 以上となった場合に終了する。この昇温判定温度Ts は、通常は、NOx吸蔵還元型触媒の貴金属触媒の活性開始温度Tc 以上の温度に設定される。   In this exhaust temperature increase control, the catalyst inlet gas temperature Tg becomes equal to or higher than the temperature increase determination temperature Ts calculated from the map data set by experiments or the like in advance from the engine rotational speed Ne indicating the engine operating state and the load Q. If finished. This temperature rise determination temperature Ts is normally set to a temperature equal to or higher than the activation start temperature Tc of the noble metal catalyst of the NOx storage reduction catalyst.

NOx触媒再生制御手段C23は、排気ガスの空燃比をストイキ又はリッチ状態にして、NOx吸蔵還元型触媒のNOx吸蔵材から吸蔵されたNOxを放出させると共に、貴金属触媒により還元する制御であり、吸気弁絞り、排気弁絞り、EGR制御等の吸気絞り制御と、前記ポスト噴射や排気管燃料噴射制御とが併用され、空気過剰率λをストイキ又はリッチ(例えば、1.0〜0.90)にする。   The NOx catalyst regeneration control means C23 is a control for reducing the NOx occluded from the NOx occlusion material of the NOx occlusion reduction catalyst by reducing the air-fuel ratio of the exhaust gas to a stoichiometric or rich state, and reducing it by a noble metal catalyst, Inlet throttle control such as valve throttle, exhaust valve throttle, EGR control, etc., and post injection or exhaust pipe fuel injection control are used in combination, and the excess air ratio λ is stoichiometric or rich (for example, 1.0 to 0.90). To do.

この再生せいぎょでは、排気成分濃度センサで形成される触媒入口NOxセンサ51等により空気過剰率が常時NOx濃度と共に測定され、フィードバックされ、ストイキ以下に制御される。この時初めはリッチ側に深く次第にストイキ側に制御するようにしてもよい。このようにストイキ以下に所定時間保持され、終了する。   In this regeneration process, the excess air ratio is always measured together with the NOx concentration by the catalyst inlet NOx sensor 51 or the like formed by the exhaust component concentration sensor, fed back, and controlled below the stoichiometry. At this time, the control may be performed so that the deep side is gradually increased and the stoichiometric side is gradually increased. In this way, it is held for a predetermined time below the stoichiometric condition, and the process ends.

そして、高温域再生制御手段C30は、触媒温度Tg が活性開始温度Tc 以上の場合のNOx吸蔵還元型触媒の再生制御を行う手段であり、従来技術の再生制御と同じである。この高温域再生制御手段C30は、NOx触媒の再生開始判定手段C31、NOx触媒再生制御手段C32、脱硫制御開始判定手段C33と脱硫制御手段C34等を有して構成される。   The high temperature region regeneration control means C30 is means for performing regeneration control of the NOx storage reduction catalyst when the catalyst temperature Tg is equal to or higher than the activation start temperature Tc, and is the same as the regeneration control of the prior art. The high temperature region regeneration control means C30 includes a NOx catalyst regeneration start determining means C31, a NOx catalyst regeneration control means C32, a desulfurization control start determining means C33, a desulfurization control means C34, and the like.

このNOx触媒の再生開始判定手段C31は、低温域再生制御手段C20のNOx触媒の再生開始判定手段C21と同様に、エンジンの運転状態を示すエンジン回転速度Ne と負荷Qから予め実験などによって設定されたマップデータから、再生制御開始用の判定値R01を算出する。この判定値R01は、再生制御を開始する時期を判断するための所定の判定値(所定の第1判定値)であり、この高温域再生制御では、NOx吸蔵還元型触媒の活性開始温度Tc におけるNOx吸蔵飽和量R0と同じ値に設定される。   The NOx catalyst regeneration start judging means C31 is set in advance by experiments or the like from the engine rotation speed Ne and the load Q indicating the operating state of the engine, similarly to the NOx catalyst regeneration start judging means C21 of the low temperature region regeneration control means C20. The determination value R01 for starting the reproduction control is calculated from the map data. This determination value R01 is a predetermined determination value (predetermined first determination value) for determining the timing for starting the regeneration control. In this high temperature region regeneration control, the activation start temperature Tc of the NOx storage reduction catalyst is determined. It is set to the same value as the NOx storage saturation amount R0.

また、触媒入口NOx濃度Cnoxin 、触媒出口NOx濃度Cnoxex 、燃料噴射量(燃料重量)Qg 、吸入空気量(吸入空気重量)Ag とから、Rnox1=(Qg +Ag )×(Cnoxin −Cnoxex )の計算で、単位時間当たりのNOxの排出量である第1NOx吸蔵推定量Rnox1を算出する。そして、NOx吸蔵量が温度に多少影響するため、関数として多少、第1NOx吸蔵推定量Rnox1を補正した値を、累積計算して、NOx吸蔵推定量Rnox を求める。   Further, from the catalyst inlet NOx concentration Cnoxin, the catalyst outlet NOx concentration Cnoxex, the fuel injection amount (fuel weight) Qg, and the intake air amount (intake air weight) Ag, Rnox1 = (Qg + Ag) × (Cnoxin−Cnoxex) The first NOx occlusion estimated amount Rnox1 that is the NOx emission amount per unit time is calculated. Since the NOx occlusion amount slightly affects the temperature, a value obtained by correcting the first NOx occlusion estimation amount Rnox1 as a function is cumulatively calculated to obtain the NOx occlusion estimation amount Rnox.

そして、このNOx吸蔵推定量Rnox と所定の第1判定値R01を比較して、NOx吸蔵推定量Rnox がこの所定の第1判定値R01以上になった時に、再生制御開始の時期であると判断する。   Then, the NOx occlusion estimated amount Rnox is compared with a predetermined first determination value R01, and when the NOx occlusion estimated amount Rnox becomes equal to or greater than the predetermined first determination value R01, it is determined that it is the time to start regeneration control. To do.

また、NOx触媒の再生制御手段C32は、排気ガスの空燃比をストイキ空燃比(理論空燃比)又はリッチ状態に制御する手段であり、EGR弁42を制御してEGR量を増加させたり、吸気絞り弁32を制御して新規の吸気量を減少させたり、シリンダ内噴射における燃料噴射制御により、排気ガス中へ燃料を添加したりして、排気ガスの空燃比を低下させて、排気ガスの空燃比をストイキ空燃比よりも低くする。   The NOx catalyst regeneration control means C32 is a means for controlling the air-fuel ratio of the exhaust gas to a stoichiometric air-fuel ratio (theoretical air-fuel ratio) or a rich state, and controls the EGR valve 42 to increase the EGR amount, The throttle valve 32 is controlled to reduce a new intake amount, or fuel is added to the exhaust gas by the fuel injection control in the cylinder injection, so that the air-fuel ratio of the exhaust gas is lowered and the exhaust gas is reduced. The air fuel ratio is made lower than the stoichiometric air fuel ratio.

これらの制御により、排気ガスの空燃比を触媒前で空気過剰率(λ)換算値で1.00〜0.90にすると共に、所定の温度範囲(触媒にもよるが、概ね200℃〜600℃)にして、NOx吸蔵能力、即ちNOx浄化能力を回復し、NOx触媒の再生を行う。   By these controls, the air-fuel ratio of the exhaust gas is set to 1.00 to 0.90 in terms of excess air ratio (λ) before the catalyst, and in a predetermined temperature range (almost 200 ° C. to 600 ° C. depending on the catalyst). And the NOx storage capacity, that is, the NOx purification capacity, is recovered, and the NOx catalyst is regenerated.

そして、脱硫制御開始判定手段C33は、硫黄(サルファ)蓄積量を積算する等の方法で、NOx吸蔵能力が低下するまで硫黄が蓄積したか否かでサルファパージ制御を開始するか否かを判定する手段であり、硫黄蓄積量が所定の判定値以上になると脱硫の開始とする。また、脱硫制御手段C34は、一酸化炭素(CO)の大気中への排出を抑制しながら、効率よく脱硫を行う手段であり、排気管内噴射又はポスト噴射により排気ガスの空燃比を制御すると共に、EGR制御や吸気絞り制御を行って、NOx吸蔵還元型触媒の温度を脱硫可能な温度まで昇温する。   Then, the desulfurization control start determination means C33 determines whether or not to start sulfur purge control depending on whether or not sulfur has accumulated until the NOx occlusion capacity decreases by a method such as integrating the sulfur (sulfur) accumulation amount. When the sulfur accumulation amount exceeds a predetermined judgment value, desulfurization is started. The desulfurization control means C34 is a means for efficiently performing desulfurization while suppressing discharge of carbon monoxide (CO) into the atmosphere, and controls the air-fuel ratio of exhaust gas by in-pipe injection or post-injection. Then, EGR control and intake throttle control are performed to raise the temperature of the NOx storage reduction catalyst to a temperature at which desulfurization is possible.

そして、この排気ガス浄化システム10では、エンジン1の制御装置60に組み込まれた排気ガス浄化システム10の制御装置の排気ガス浄化システムの制御手段C1により、図3に例示するような制御フローに従って、NOx吸蔵還元型触媒コンバータ10の再生制御が行われる。また、図4に、この図3の制御フローによる、NOx吸蔵推定量Rnox 、触媒温度Tg と排気昇温制御(アフター噴射制御)、NOx再生制御(空燃比リッチ制御)の時系列の一例を模式的に示す。   In the exhaust gas purification system 10, the control means C1 of the exhaust gas purification system of the control device of the exhaust gas purification system 10 incorporated in the control device 60 of the engine 1 follows the control flow as illustrated in FIG. Regeneration control of the NOx occlusion reduction type catalytic converter 10 is performed. FIG. 4 schematically shows an example of a time series of the NOx occlusion estimated amount Rnox, the catalyst temperature Tg, the exhaust gas temperature raising control (after-injection control), and the NOx regeneration control (air-fuel ratio rich control) according to the control flow of FIG. Indicate.

なお、この図3の制御フローは、エンジン1の運転に際して、エンジンの他の制御フローと並行して、実行されるものとして示してある。また、本発明は、NOx触媒の低温域再生制御に関するものであり、高温域再生制御は従来技術を使用できるので高温域再生制御についての説明は省略する。   The control flow in FIG. 3 is shown as being executed in parallel with other control flows of the engine when the engine 1 is operated. Further, the present invention relates to a low temperature region regeneration control of the NOx catalyst. Since the conventional technology can be used for the high temperature region regeneration control, the description of the high temperature region regeneration control is omitted.

この図3の制御フローがスタートすると、ステップS11で、触媒温度検出手段C12により、触媒温度(ここでは触媒入口ガス温度で代用している)Tg を検出し、これを入力する。次のステップS12では、触媒温度判定手段C13により、触媒温度Tg がNOx吸蔵還元型触媒の活性開始温度Tc 未満の低温域にあるか、活性開始温度Tc 以上の高温域にあるかを判定する。   When the control flow of FIG. 3 starts, in step S11, the catalyst temperature detecting means C12 detects the catalyst temperature (here, substituted by the catalyst inlet gas temperature) Tg and inputs it. In the next step S12, the catalyst temperature determination means C13 determines whether the catalyst temperature Tg is in a low temperature region below the activation start temperature Tc of the NOx storage reduction catalyst or in a high temperature region above the activation start temperature Tc.

このステップS12の判定で、高温域にあると判断された場合には、ステップS20で、高温域再生制御手段C30により、高温域再生制御を行う。この高温域再生制御のルーチンを通った後は、ステップS11に戻る。なお、この高温域再生制御では、諸条件が整えば、再生制御や脱硫制御を行うが、整わない場合には再生制御や脱硫制御を行うことなく、戻ってくる。   If it is determined in step S12 that the temperature is in the high temperature range, the high temperature range regeneration control unit C30 performs high temperature range regeneration control in step S20. After passing through the high temperature region regeneration control routine, the process returns to step S11. In this high temperature range regeneration control, regeneration control and desulfurization control are performed if various conditions are established, but if the conditions are not met, the control returns without performing regeneration control and desulfurization control.

また、ステップS12の判定で、低温域にあると判断された場合には、ステップS13に行き、低温域再生制御手段C20のNOx触媒の再生開始判定手段C21により、エンジンの運転状態を示すエンジン回転速度Ne と負荷Qから予め実験などによって設定されたマップデータから、排気昇温制御開始用の判定値(所定の第2判定値)R02を算出する。また、触媒入口NOx濃度Cnoxin 、触媒出口NOx濃度Cnoxex 、燃料噴射量(燃料重量)Qg 、吸入空気量(吸入空気重量)Ag とから、Rnox1=(Qg +Ag )×(Cnoxin −Cnoxex )の計算で、単位時間当たりのNOxの排出量である第1NOx吸蔵推定量Rnox1を算出する。そして、NOx吸蔵量が温度に多少影響するため、関数として多少、第1NOx吸蔵推定量Rnox1を補正した値を、累積計算して、NOx吸蔵推定量Rnox を求める。   If it is determined in step S12 that the temperature is in the low temperature range, the process goes to step S13, and the NOx catalyst regeneration start determination means C21 of the low temperature range regeneration control means C20 determines the engine speed indicating the engine operating state. A judgment value (predetermined second judgment value) R02 for starting the exhaust gas temperature raising control is calculated from map data preset by experiments or the like from the speed Ne and the load Q. Further, from the catalyst inlet NOx concentration Cnoxin, the catalyst outlet NOx concentration Cnoxex, the fuel injection amount (fuel weight) Qg, and the intake air amount (intake air weight) Ag, Rnox1 = (Qg + Ag) × (Cnoxin−Cnoxex) The first NOx occlusion estimated amount Rnox1 that is the NOx emission amount per unit time is calculated. Since the NOx occlusion amount slightly affects the temperature, a value obtained by correcting the first NOx occlusion estimation amount Rnox1 as a function is cumulatively calculated to obtain the NOx occlusion estimation amount Rnox.

そして、次のステップS14で、NOx吸蔵推定量Rnox と排気昇温制御開始用の判定値R02を比較して、NOx吸蔵推定量Rnox がこの所定の第2判定値R02未満では、再生制御開始の時期になっていないと判断して、ステップS11に戻る。また、NOx吸蔵推定量Rnox がこの所定の判定値R02以上の場合は、再生制御開始の時期であると判断し、ステップS15に行く。   In the next step S14, the NOx occlusion estimated amount Rnox is compared with the judgment value R02 for starting the exhaust gas temperature raising control. If the NOx occlusion estimated amount Rnox is less than the predetermined second judgment value R02, the regeneration control start is started. It is determined that it is not time, and the process returns to step S11. If the NOx occlusion estimation amount Rnox is equal to or greater than the predetermined determination value R02, it is determined that it is time to start regeneration control, and the process proceeds to step S15.

ステップS15では、排気昇温制御手段C22により、排気昇温制御を行う。この排気昇温制御は、シリンダ内への燃料噴射におけるアフター噴射、遅延噴射、多段噴射、ポスト噴射等の燃料噴射制御等や吸排気絞り制御等により、排気温度を昇温させる。この排気昇温では、空気過剰率λは5.0〜2.0程度である。この排気昇温制御を所定の時間の間行ってから、ステップS16に行く。この所定の時間とは、触媒入口ガス温度のチェックのインターバルに関係する時間である。   In step S15, the exhaust gas temperature raising control means C22 performs exhaust gas temperature raising control. In this exhaust temperature raising control, the exhaust temperature is raised by fuel injection control such as after injection, delayed injection, multistage injection, post injection, etc., intake / exhaust throttle control, etc. in fuel injection into the cylinder. In this exhaust temperature increase, the excess air ratio λ is about 5.0 to 2.0. After this exhaust temperature raising control is performed for a predetermined time, the process goes to step S16. The predetermined time is a time related to the check interval of the catalyst inlet gas temperature.

ステップS16では、エンジンの運転状態を示すエンジン回転速度Ne と負荷Qから予め実験などによって設定されたマップデータから昇温判定温度Ts を算出すると共に、触媒入口ガス温度Tg を入力する。   In step S16, a temperature increase determination temperature Ts is calculated from map data set beforehand through experiments or the like from the engine speed Ne indicating the operating state of the engine and the load Q, and the catalyst inlet gas temperature Tg is input.

次のステップS17では、触媒入口ガス温度Tg が昇温判定温度Ts 以上であるか否かをチェックし、昇温判定温度Ts 未満ではステップS15に戻って排気昇温制御を繰り返す。そして、触媒入口ガス温度Tg が、昇温判定温度Ts 以上となった場合に、排気昇温制御を終了して、次のステップS18に行く。   In the next step S17, it is checked whether or not the catalyst inlet gas temperature Tg is equal to or higher than the temperature rise determination temperature Ts. If it is lower than the temperature rise determination temperature Ts, the process returns to step S15 and the exhaust temperature rise control is repeated. When the catalyst inlet gas temperature Tg becomes equal to or higher than the temperature rise determination temperature Ts, the exhaust gas temperature rise control is terminated, and the process proceeds to the next step S18.

ステップS18では、NOx触媒再生制御手段C23により、NOx再生制御を行って、排気ガスの空燃比をストイキ又はリッチ状態にして、NOx吸蔵還元型触媒のNOx吸蔵材から吸蔵されたNOxを放出させると共に、貴金属触媒により還元する。このNOx再生制御では、吸気弁絞り、排気弁絞り、EGR制御等の吸気絞り制御と、燃料噴射制御とが併用され、空気過剰率λを1.00〜0.90にする。このNOx再生制御は、NOx吸蔵還元型触媒の再生が完了するまで行われ、完了すると、ステップS11に戻る。   In step S18, NOx regeneration control is performed by the NOx catalyst regeneration control means C23, the exhaust gas air-fuel ratio is stoichiometric or rich, and the NOx occluded from the NOx occlusion material of the NOx occlusion reduction type catalyst is released. Reduction with a noble metal catalyst. In this NOx regeneration control, intake throttle control such as intake valve throttle, exhaust valve throttle, EGR control, etc., and fuel injection control are used in combination, and the excess air ratio λ is set to 1.00-0.90. This NOx regeneration control is performed until regeneration of the NOx occlusion reduction catalyst is completed, and when completed, the process returns to step S11.

この図3の制御フローは繰り返し実行され、エンジンの停止まで繰り返される。なお、制御の途中でエンジンキイーがオフされた場合には、ステップS19の割り込みが発生し、割り込みが生じたそれぞれのステップで必要な終了処理(図示していない)を行った後,リターンして、メインの制御の終了と共に、この制御フローも終了する。   The control flow of FIG. 3 is repeatedly executed until the engine is stopped. If the engine key is turned off during the control, an interrupt in step S19 is generated, and after performing necessary termination processing (not shown) at each step where the interrupt occurred, the process returns. The control flow ends with the end of the main control.

以上の構成の排気ガス浄化システム10によれば、NOx吸蔵還元型触媒50のNOx吸蔵能力の再生制御において、エンジンが低回転・低負荷の排気ガス低温運転領域にある場合であっても、NOxをNOx吸蔵還元型触媒の下流側に放出することなく、NOx吸蔵還元型触媒を再生することができるので、低温域のNOx浄化性能を向上させると共に、燃費、HC,CO排気ガスの悪化を防止することができる。   According to the exhaust gas purification system 10 having the above configuration, in the regeneration control of the NOx storage capacity of the NOx storage reduction catalyst 50, even when the engine is in the low-speed exhaust gas low temperature operation region of low rotation and low load. NOx storage reduction catalyst can be regenerated without releasing NOx to the downstream side of the NOx storage reduction catalyst, improving NOx purification performance in the low temperature range and preventing deterioration of fuel consumption, HC and CO exhaust gas can do.

本発明に係る実施の形態の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust gas purification system of embodiment which concerns on this invention. 本発明に係る実施の形態の排気ガス浄化システムの制御手段の構成を示す図である。It is a figure which shows the structure of the control means of the exhaust gas purification system of embodiment which concerns on this invention. NOx吸蔵還元型触媒の再生のための制御フローの一例を示す図である。It is a figure which shows an example of the control flow for regeneration of a NOx occlusion reduction type catalyst. 図3の制御フローによるNOx吸蔵推定量、触媒温度、排気昇温制御、NOx再生制御の時間的な変化を模式的に示す図である。FIG. 4 is a diagram schematically showing temporal changes in an estimated NOx storage amount, catalyst temperature, exhaust gas temperature raising control, and NOx regeneration control according to the control flow of FIG. 3. アフター噴射を模式的に示す図である。It is a figure which shows after injection typically. 遅延噴射を模式的に示す図である。It is a figure which shows delayed injection typically. 触媒温度とNOx吸収飽和量との関係を示す図である。It is a figure which shows the relationship between catalyst temperature and NOx absorption saturation amount. モノリスハニカムを示す図である。It is a figure which shows a monolith honeycomb. モノリスハニカムの部分拡大図である。It is the elements on larger scale of a monolith honeycomb. モノリスハニカムのセルの壁の部分の拡大図である。It is an enlarged view of the cell wall part of a monolith honeycomb. NOx吸蔵還元型触媒の構成とリーン制御時の状態の浄化のメカニズムを模式的に示す図である。It is a figure which shows typically the structure of a NOx occlusion reduction type catalyst, and the purification mechanism of the state at the time of lean control. NOx吸蔵還元型触媒の構成とリッチ制御時の状態の浄化のメカニズムを模式的に示す図である。It is a figure which shows typically the structure of a NOx occlusion reduction-type catalyst, and the purification mechanism of the state at the time of rich control. 極低温域を模式的に示す図である。It is a figure which shows a cryogenic region typically. 触媒温度と浄化率の関係を示す図である。It is a figure which shows the relationship between a catalyst temperature and a purification rate.

符号の説明Explanation of symbols

1 エンジン
10 排気ガス浄化システム
20 排気通路
30 吸気通路
32 吸気絞り弁(吸気スロットル弁)
40 EGR通路
42 EGR弁
50 NOx吸蔵還元型触媒
51 触媒入口NOxセンサ
52 触媒入口排気ガス温度センサ
53 触媒出口NOxセンサ
C1 NOx吸蔵還元型触媒の制御手段
C1 1 NOx濃度検出手段
C12 触媒温度検出手段
C13 触媒温度判定手段
C20 低温域再生制御手段
C21 NOx触媒の再生開始判定手段
C22 排気昇温制御手段
C23 NOx触媒再生制御手段
C30 高温域再生制御手段
C31 NOx触媒の再生開始判定手段
C32 NOx触媒再生制御手段
C33 脱硫制御開始判定手段
C34 脱硫制御手段
1 Engine 10 Exhaust Gas Purification System 20 Exhaust Passage 30 Intake Passage 32 Intake Throttle Valve (Intake Throttle Valve)
40 EGR passage 42 EGR valve 50 NOx occlusion reduction type catalyst 51 Catalyst inlet NOx sensor 52 Catalyst inlet exhaust gas temperature sensor 53 Catalyst outlet NOx sensor C1 NOx occlusion reduction type catalyst control means C1 1 NOx concentration detection means C12 Catalyst temperature detection means C13 Catalyst temperature determination means C20 Low temperature range regeneration control means C21 NOx catalyst regeneration start judgment means C22 Exhaust temperature rise control means C23 NOx catalyst regeneration control means C30 High temperature range regeneration control means C31 NOx catalyst regeneration start judgment means C32 NOx catalyst regeneration control means C33 Desulfurization control start determination means C34 Desulfurization control means

Claims (4)

排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒に吸蔵されたと推定されるNOx吸蔵推定量が所定の判定値に達した時に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための再生制御を行う排気ガス浄化システムにおいて、
排気ガス又は触媒の温度を検出する温度センサの検出値に基づいて、前記NOx吸蔵還元型触媒の触媒温度が前記NOx吸蔵還元型触媒が担持している貴金属触媒の活性開始温度以上であるか否かを判定し、
活性開始温度以上である時には、前記NOx吸蔵推定量が、前記触媒におけるNOx吸蔵飽和量により設定された所定の第1判定値に達した時に、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復し、
活性開始温度未満である時には、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量の値に設定された所定の第2判定値に達した時に、排気昇温制御を開始して、前記触媒温度を活性開始温度以上に昇温した後、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復する再生制御を行うことを特徴とする排気ガス浄化方法。
A NOx occlusion reduction type catalyst that occludes NOx when the air-fuel ratio of the exhaust gas is lean and releases and reduces NOx occluded when it is rich is provided in the NOx occlusion reduction type catalyst. In an exhaust gas purification system that performs regeneration control for recovering the NOx occlusion capacity of the NOx occlusion reduction catalyst when the estimated NOx occlusion amount estimated to be occluded reaches a predetermined determination value,
Whether or not the catalyst temperature of the NOx occlusion reduction type catalyst is equal to or higher than the activation start temperature of the noble metal catalyst supported by the NOx occlusion reduction type catalyst based on the detection value of the temperature sensor that detects the temperature of the exhaust gas or the catalyst Determine whether
When the activation start temperature is equal to or higher than the activation start temperature, when the NOx occlusion estimated amount reaches a predetermined first determination value set by the NOx occlusion saturation amount in the catalyst, stoichiometric or rich control is performed to perform NOx occlusion reduction type catalyst. To restore NOx storage capacity of
When the NOx occlusion estimated amount reaches a predetermined second determination value set to the value of the NOx occlusion saturation at the activation start temperature when the activation start temperature is lower than the activation start temperature, the exhaust gas temperature raising control is started, An exhaust gas purification method comprising performing regeneration control for recovering the NOx occlusion capacity of a NOx occlusion reduction catalyst by performing stoichiometric or rich control after raising the catalyst temperature to an activation start temperature or higher.
前記所定の第2判定値を、前記排気昇温制御が終了した時に、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量となる値に設定することを特徴とする請求項1記載の排気ガス浄化方法。   The predetermined second determination value is set to a value at which the estimated NOx occlusion amount becomes the NOx occlusion saturation amount at the activation start temperature when the exhaust gas temperature raising control is finished. Exhaust gas purification method. 排気ガスの空燃比が、リーン状態の場合にNOxを吸蔵し、かつ、リッチ状態の場合に吸蔵していたNOxを放出すると共に還元するNOx吸蔵還元型触媒を備え、該NOx吸蔵還元型触媒に吸蔵されたと推定されるNOx吸蔵推定量が所定の判定値に達した時に、該NOx吸蔵還元型触媒のNOx吸蔵能力を回復するための再生制御を行う再生制御手段を備えた排気ガス浄化システムにおいて、
排気ガス又は触媒の温度を検出する温度センサの検出値から触媒温度を検出する触媒温度検出手段と、
該触媒温度検出手段で検出された触媒温度が、前記NOx吸蔵還元型触媒が担持している貴金属触媒の活性開始温度以上であるか否かを判定する触媒温度判定手段と、
該触媒温度判定手段による判定が、活性開始温度以上である時には、前記NOx吸蔵推定量が、前記触媒におけるNOx吸蔵飽和量により設定された所定の第1判定値に達した時に、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復し、活性開始温度未満である時には、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量の値に設定された所定の第2判定値に達した時に、排気昇温制御を開始して、前記触媒温度を活性開始温度以上に昇温した後、ストイキ又はリッチ制御を行って、NOx吸蔵還元型触媒のNOx吸蔵能力を回復する再生制御を行う再生制御手段とを備えて構成されることを特徴とする排気ガス浄化システム。
A NOx occlusion reduction type catalyst that occludes NOx when the air-fuel ratio of the exhaust gas is lean and releases and reduces NOx occluded when it is rich is provided in the NOx occlusion reduction type catalyst. In an exhaust gas purification system provided with a regeneration control means for performing regeneration control for recovering the NOx storage capacity of the NOx storage reduction catalyst when the estimated NOx storage amount estimated to be stored reaches a predetermined determination value ,
Catalyst temperature detecting means for detecting the catalyst temperature from the detection value of the temperature sensor for detecting the temperature of the exhaust gas or the catalyst;
Catalyst temperature determination means for determining whether the catalyst temperature detected by the catalyst temperature detection means is equal to or higher than the activation start temperature of the noble metal catalyst supported by the NOx storage reduction catalyst;
When the determination by the catalyst temperature determination means is equal to or higher than the activation start temperature, the stoichiometric or rich control is performed when the estimated NOx storage amount reaches a predetermined first determination value set by the NOx storage saturation amount in the catalyst. To restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst, and when the NOx occlusion reduction catalyst temperature is lower than the activation start temperature, the estimated NOx occlusion amount is set to a predetermined second value set to the value of the NOx occlusion saturation at the activation start temperature. When the determination value is reached, exhaust temperature raising control is started, and after raising the catalyst temperature to be higher than the activation start temperature, stoichiometric or rich control is performed to restore the NOx occlusion capacity of the NOx occlusion reduction type catalyst. An exhaust gas purification system comprising a regeneration control means for performing regeneration control.
前記所定の第2判定値を、前記排気昇温制御が終了した時に、前記NOx吸蔵推定量が、活性開始温度におけるNOx吸蔵飽和量となる値に設定することを特徴とする請求項3記載の排気ガス浄化システム。
The predetermined second determination value is set to a value at which the estimated NOx occlusion amount becomes the NOx occlusion saturation amount at the activation start temperature when the exhaust gas temperature raising control is finished. Exhaust gas purification system.
JP2004268339A 2004-09-15 2004-09-15 Exhaust gas purification method and exhaust gas purification system Expired - Fee Related JP4442373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268339A JP4442373B2 (en) 2004-09-15 2004-09-15 Exhaust gas purification method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268339A JP4442373B2 (en) 2004-09-15 2004-09-15 Exhaust gas purification method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2006083746A true JP2006083746A (en) 2006-03-30
JP4442373B2 JP4442373B2 (en) 2010-03-31

Family

ID=36162465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268339A Expired - Fee Related JP4442373B2 (en) 2004-09-15 2004-09-15 Exhaust gas purification method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4442373B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104723A1 (en) * 2008-02-22 2009-08-27 ヤンマー株式会社 Exhaust gas purifier
JP2010525232A (en) * 2007-05-04 2010-07-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Cylinder equalization method for internal combustion engine
WO2014050445A1 (en) * 2012-09-27 2014-04-03 いすゞ自動車株式会社 Internal combustion engine and control method therefor
US9664131B2 (en) 2013-04-16 2017-05-30 Isuzu Motors Limited Exhaust injection control method for exhaust gas post-treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525232A (en) * 2007-05-04 2010-07-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Cylinder equalization method for internal combustion engine
US8272361B2 (en) 2007-05-04 2012-09-25 Robert Bosch Gmbh Method for cylinder synchronization of an internal combustion engine
WO2009104723A1 (en) * 2008-02-22 2009-08-27 ヤンマー株式会社 Exhaust gas purifier
CN101970823A (en) * 2008-02-22 2011-02-09 洋马株式会社 Exhaust gas purifier
US8656705B2 (en) 2008-02-22 2014-02-25 Yanmar Co., Ltd. Exhaust gas purification device
WO2014050445A1 (en) * 2012-09-27 2014-04-03 いすゞ自動車株式会社 Internal combustion engine and control method therefor
JP2014066232A (en) * 2012-09-27 2014-04-17 Isuzu Motors Ltd Internal combustion engine and method of controlling the same
US9664131B2 (en) 2013-04-16 2017-05-30 Isuzu Motors Limited Exhaust injection control method for exhaust gas post-treatment device

Also Published As

Publication number Publication date
JP4442373B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
JP3901194B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4417878B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4093301B2 (en) Exhaust gas purification system and control method thereof
JP3821154B1 (en) Exhaust gas purification method and exhaust gas purification system
JP4175427B1 (en) NOx purification system control method and NOx purification system
JP4304428B2 (en) Exhaust gas purification system for internal combustion engine
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP2004218475A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP4083453B2 (en) NOx purification system and catalyst deterioration recovery method thereof
JP2005016317A (en) Method and system for exhaust emission control
JP3797125B2 (en) Exhaust gas purification device and regeneration control method thereof
JP2008240640A (en) Exhaust emission control device
JP3925357B2 (en) Control method of exhaust gas purification system
JP4941111B2 (en) Exhaust gas purification device
JP4442373B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5070964B2 (en) NOx purification system and control method of NOx purification system
JP4075641B2 (en) Exhaust gas purification system for internal combustion engine
JP3876905B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP2006046198A (en) Exhaust gas purification system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Ref document number: 4442373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees