JP2014066087A - Building structure - Google Patents
Building structure Download PDFInfo
- Publication number
- JP2014066087A JP2014066087A JP2012212878A JP2012212878A JP2014066087A JP 2014066087 A JP2014066087 A JP 2014066087A JP 2012212878 A JP2012212878 A JP 2012212878A JP 2012212878 A JP2012212878 A JP 2012212878A JP 2014066087 A JP2014066087 A JP 2014066087A
- Authority
- JP
- Japan
- Prior art keywords
- span
- bending moment
- sum
- building structure
- acting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005452 bending Methods 0.000 claims abstract description 76
- 230000007774 longterm Effects 0.000 claims description 21
- 230000002459 sustained effect Effects 0.000 abstract 1
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010276 construction Methods 0.000 description 8
- 238000009435 building construction Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
本発明は、柱スパンの異なる複数種のスパン部を配して隣り合う柱どうしを梁で接合してある建物構造に関する。 The present invention relates to a building structure in which a plurality of types of span portions having different column spans are arranged and adjacent columns are joined by beams.
従来、広い空間を形成して建物平面としてのフレキシビリティを確保するには、柱スパンを大きく設定することが例として挙げられ、この設定によって、大きく離間した柱どうしの間を、連続した広い空間として使用したり、又は、用途に応じて間仕切りを入れて分割空間として使用したり、自由な使い方ができるようになる。また、将来のレイアウト変更も容易になる。しかしながら、柱スパンを大きくすることで、梁の長期荷重時の曲げモーメント値が大きくなるから、大きな内部応力に耐えられるようにするために梁成(又は梁幅又は鉄筋量等)を増加させることが必要となる。
従来のこの種の建物構造としては、柱スパンの長いスパン部(以後、単に「大スパン部」という)と、柱スパンの短いスパン部(以後、単に「小スパン部」という)とを混在させたものがあった(例えば、特許文献1参照)。
Conventionally, to secure flexibility as a building plane by forming a wide space, an example of setting a large column span has been given as an example. It can be used freely, or can be used as a divided space by inserting a partition according to the application. In addition, future layout changes will be facilitated. However, increasing the column span increases the bending moment value of the beam during long-term loading, so increasing the beam formation (or beam width or amount of reinforcing bars, etc.) to withstand large internal stresses. Is required.
As a conventional building structure of this kind, a span with a long column span (hereinafter simply referred to as “large span”) and a span with a short column span (hereinafter simply referred to as “small span”) are mixed. (For example, refer to Patent Document 1).
上述した従来の建物構造によれば、前記大スパン部と、前記小スパン部とは、建物平面の平面区画等の観点からそのスパン長やスパン配置が決定されることが多い。そして、各スパン部における梁断面の設計は、各梁に作用する長期荷重時の設計曲げモーメント値と地震荷重時の設計曲げモーメント値との和である曲げモーメント合算値に基づいて行われる。
従って、大きな曲げモーメント合算値が作用するスパン部においては、小さな曲げモーメント合算値が作用するスパン部に比べて大きな梁成が設定され、スパン部によって梁成が異なることが生じる。
また、曲げモーメント値とは別の意匠的な観点から、最大の梁成に全てのスパン部の梁成を揃える場合もある。
上述の「スパン部によって梁成が異なる」場合には、どの部分でも所定の天井高を確保するためには、一番大きな梁成のスパン部を基準にして階高を決定する必要があり、階高そのものが高くなるから、部材設計における合理性の向上が望まれる。
また、上述の「最大の梁成に全てのスパン部の梁成を揃える」場合には、応力的に過剰設計となる梁も出現し、やはり部材設計における合理性の向上が望まれる。
即ち、従来の建物構造によれば、各スパン部での部材設計において合理性に欠ける問題点がある。
According to the conventional building structure described above, the span length and the span arrangement of the large span portion and the small span portion are often determined from the viewpoint of the plane section of the building plane. The design of the beam cross section in each span portion is performed based on the sum of bending moment values, which is the sum of the design bending moment value during a long-term load and the design bending moment value during an earthquake load acting on each beam.
Accordingly, in the span portion where the large sum of bending moments acts, a large beam formation is set as compared with the span portion where the small sum of bending moments acts, and the beam formation differs depending on the span portion.
Further, from the viewpoint of design different from the bending moment value, the beam formation of all span portions may be aligned with the maximum beam formation.
In the case of the above-mentioned "beam formation varies depending on the span part", in order to secure a predetermined ceiling height in any part, it is necessary to determine the floor height based on the span part of the largest beam formation, Since the floor height itself becomes high, it is desired to improve the rationality in the member design.
In addition, in the above-described case, “all the beam sections of all span portions are aligned with the maximum beam structure”, beams that are excessively designed due to stress appear, and it is also desired to improve the rationality in the member design.
That is, according to the conventional building structure, there is a problem of lack of rationality in the member design in each span portion.
従って、本発明の目的は、上記問題点を解消し、柱スパンの異なる複数のスパン部を備えた架構において、合理的な応力分担を叶えて経済性の向上を図ることができる建物構造を提供するところにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems and provide a building structure capable of achieving rational stress sharing and improving economic efficiency in a frame having a plurality of span portions having different column spans. There is a place to do.
本発明の第1の特徴構成は、柱スパンの異なる複数種のスパン部を配して隣り合う柱どうしを梁で接合してある建物構造であって、各梁に作用する長期荷重時の設計曲げモーメント値と地震荷重時の設計曲げモーメント値との和である各曲げモーメント合算値に基づいてスパン割を調整することで、複数種の前記スパン部の梁に作用する曲げモーメント合算値を均等化してあるところにある。 A first characteristic configuration of the present invention is a building structure in which a plurality of types of span portions having different column spans are arranged and adjacent columns are joined by beams, and a design at the time of long-term load acting on each beam By adjusting the span split based on the sum of the bending moment values, which is the sum of the bending moment value and the design bending moment value at the time of seismic loading, the sum of bending moments acting on the beams of the above-mentioned span parts is evenly distributed. It is in the place that has become.
長期荷重時の曲げモーメント値と、地震荷重時の曲げモーメント値とは、スパンの長短によって作用の仕方が異なり、長期荷重時の曲げモーメント値は、スパンの長さと比例関係にあることから、前記大スパン部では大きな値となる一方、前記小スパン部では小さな値となる。また、地震荷重時の曲げモーメント値は、スパンの長さと反比例関係にあることから、前記大スパン部では小さな値となる一方、前記小スパン部では大きな値となる。 The bending moment value at the time of long-term load and the bending moment value at the time of seismic load differ depending on the span length, and the bending moment value at long-term load is proportional to the span length. While the large span portion has a large value, the small span portion has a small value. Further, since the bending moment value at the time of the earthquake load is inversely proportional to the span length, the bending moment value becomes a small value in the large span portion and a large value in the small span portion.
従って、これら長期荷重時の曲げモーメント値と地震荷重時の曲げモーメント値の和である曲げモーメント合算値は、スパン割を調整することで、均一化を図ることができる。
つまり、前記大スパン部では、大きな長期荷重時の曲げモーメント値と、小さな地震荷重時の曲げモーメント値とが作用するのに対して、前記小スパン部では、小さな長期荷重時の曲げモーメント値と、大きな地震荷重時の曲げモーメント値とが作用するから、夫々のスパン割を適切に設定することで、大スパン部でも小スパン部でも同値(又はほぼ同値)の曲げモーメント合算値が作用する建物構造を作ることができる。
Therefore, the sum of the bending moment values, which are the sum of the bending moment values during the long-term load and the earthquake load, can be made uniform by adjusting the span split.
That is, in the large span portion, a bending moment value at a large long-term load and a bending moment value at a small seismic load act, whereas in the small span portion, a bending moment value at a small long-term load and Because the bending moment value at the time of a large earthquake load acts, the building where the same bending moment sum value (or almost the same value) acts on the large span portion and the small span portion by setting each span split appropriately. You can make a structure.
本発明の第1の特徴構成によれば、柱スパンの異なる複数種のスパン部の各梁に作用する各曲げモーメント合算値(長期荷重時+地震荷重時)に基づいてスパン割を調整することで、各スパン部の梁に作用する曲げモーメント合算値を均等化するから、梁に作用する長期時荷重と地震時荷重とを合理的に架構に配分することができ、大スパン部でも小スパン部でも、それぞれの梁の断面性状を共通化することが可能となる。
その結果、無駄のない部材断面の設定が可能となり、建物建設での工期短縮やコストダウンを叶えることができる。
According to the first characteristic configuration of the present invention, the span split is adjusted based on the sum of bending moments (at the time of long-term load + at the time of earthquake load) acting on each beam of a plurality of types of span portions having different column spans. Since the sum of the bending moments acting on the beams in each span is equalized, the long-term load and earthquake load acting on the beams can be rationally distributed to the frame. Also in the section, it is possible to share the cross-sectional property of each beam.
As a result, it is possible to set a member cross section without waste, and it is possible to achieve a reduction in work period and cost reduction in building construction.
更には、大スパン部では、柱間の広い空間を備えた建物平面を確保できながら、小スパン部では、高い剛性によって大スパン部をも含めた梁端部の固定度を維持でき、建物全体とした層間変位の抑制を図ることができる。
尚、ここで言う「スパン割」とは、隣接する大スパン部と小スパン部との2種類のスパン長さ関係の調整に限るものではなく、例えば、3種類以上のスパン長さを設定することも含むものである。更には、柱スパンの異なるスパン部の総数や、それらの隣接の有無は、固定的なものではない。
Furthermore, in the large span section, the building plane with a wide space between the pillars can be secured, while in the small span section, the rigidity of the beam end including the large span section can be maintained with high rigidity, and the entire building can be maintained. It is possible to suppress the interlayer displacement.
Note that “span split” here is not limited to the adjustment of two types of span length relationships between adjacent large span portions and small span portions, and for example, three or more types of span lengths are set. It also includes things. Furthermore, the total number of span portions with different column spans and the presence or absence of the adjacent portions are not fixed.
本発明の第2の特徴構成は、柱スパンの異なるスパン部を隣接させて隣り合う柱どうしを梁で接合してある建物構造であって、各梁に作用する長期荷重時の設計曲げモーメント値と地震荷重時の設計曲げモーメント値との和である各曲げモーメント合算値に基づいて隣接するスパン部の長さ関係を調整することで、隣接する各スパン部の梁に作用する曲げモーメント合算値を均等化してあるところにある。 A second characteristic configuration of the present invention is a building structure in which spans having different column spans are adjacent to each other and adjacent columns are joined by beams, and a design bending moment value during a long-term load acting on each beam. The sum of the bending moments acting on the beams in each adjacent span section by adjusting the length relationship between the adjacent span sections based on the sum of the respective bending moment values, which is the sum of the bending moment value and the design bending moment value at the time of seismic load It is in the place where is equalized.
本発明の第2の特徴構成によれば、柱スパンの異なる複数種のスパン部の各梁に作用する各曲げモーメント合算値(長期荷重時+地震荷重時)に基づいて隣接するスパン部の長さ関係を調整することで、隣接する各スパン部の梁に作用する曲げモーメント合算値を均等化するから、梁に作用する長期時荷重と地震時荷重とを合理的に架構に配分することができ、大スパン部でも小スパン部でも、それぞれの梁の断面性状を共通化することが可能となる。 According to the second characteristic configuration of the present invention, the lengths of adjacent span portions based on the sum of bending moments (at the time of long-term load + at the time of earthquake load) acting on each beam of a plurality of types of span portions having different column spans. By adjusting the height relationship, the sum of the bending moment acting on the adjacent span beams can be equalized, so the long-term load and earthquake load acting on the beam can be rationally distributed to the frame. It is possible to share the cross-sectional properties of the beams in both the large span portion and the small span portion.
その結果、無駄のない部材断面の設定が可能となり、建物の建設において工期短縮やコストダウンをも叶えることができる。
更には、大スパン部では、柱間の広い空間を備えた建物平面を確保できながら、小スパン部では、高い剛性によって大スパン部をも含めた梁端部の固定度を維持でき、建物全体とした層間変位の抑制を図ることができる。
As a result, it is possible to set a member cross section without waste, and it is possible to shorten the work period and reduce the cost in building construction.
Furthermore, in the large span section, the building plane with a wide space between the pillars can be secured, while in the small span section, the rigidity of the beam end including the large span section can be maintained with high rigidity, and the entire building can be maintained. It is possible to suppress the interlayer displacement.
本発明の第3の特徴構成は、柱スパンの異なる前記スパン部の各々の梁成を揃えてあるところにある。 The third characteristic configuration of the present invention is that the beams of the span portions having different column spans are aligned.
本発明の第3の特徴構成によれば、柱スパンの異なるスパン部の梁成を揃えてあるから、各スパン部で同様の天井高を確保できる。
その結果、天井のフラット化によって美観性の向上を図れるようになることに加えて、例えば、天井裏の梁間空間に配管やダクト等を設置する際にも高さが揃っていることで利用性が向上する。
更には、階高の設定においても、無駄のない高さ設定が可能となる。
According to the 3rd characteristic structure of this invention, since the beam formation of the span part from which a column span differs is arranged, the same ceiling height can be ensured in each span part.
As a result, in addition to being able to improve aesthetics by flattening the ceiling, for example, when installing pipes and ducts in the space between beams on the back of the ceiling, the height is even and the usability Will improve.
Furthermore, even when the floor height is set, it is possible to set the height without waste.
本発明の第4の特徴構成は、柱スパンの異なる前記スパン部の各々の梁の部材断面を共通化してあるところにある。 A fourth characteristic configuration of the present invention is that the member cross sections of the beams of the span portions having different column spans are made common.
本発明の第4の特徴構成によれば、柱スパンの異なるスパン部の梁の部材断面を共通化してあるから、梁の断面設計、及び、梁の施工、及び、柱との仕口部分の設計や施工等を、手間を掛けずに効率的に行うことが可能となる。
その結果、建物設計から施工を含めた建設全般でのコストダウンを叶えることができる。
According to the fourth characteristic configuration of the present invention, since the member cross sections of the beams in the span portions having different column spans are made common, the cross section design of the beam, the construction of the beam, and the joint portion with the column are provided. Design and construction can be performed efficiently without taking time and effort.
As a result, it is possible to achieve cost reduction in the entire construction including building design to construction.
本発明の第5の特徴構成は、柱スパンの異なる複数種の前記スパン部を平面視で交差する複数方向の夫々に沿って並設するとともに、各梁に作用する前記曲げモーメント合算値に基づいて前記複数方向の夫々のスパン割を調整することで、前記複数方向に沿って並ぶ前記スパン部の各梁に作用する曲げモーメント合算値を均等化してあるところにある。 According to a fifth feature of the present invention, a plurality of types of span portions having different column spans are juxtaposed along each of a plurality of directions intersecting in plan view, and based on the sum of bending moments acting on each beam. Thus, by adjusting the respective span splits in the plurality of directions, the sum of bending moments acting on the beams of the span portions arranged along the plurality of directions is equalized.
本発明の第5の特徴構成によれば、スパン部の各並設方向のスパン割調整により、複数方向に沿って並ぶ各スパン部の梁に作用する曲げモーメント合算値を均等化するから、前述した本発明の第1の特徴構成による作用効果を、建物平面での一方向のみならず、交差する複数方向にも拡大させることが可能となり、建物全体として、無駄のない部材断面の設定が可能となり、建物建設での工期短縮やコストダウンを叶えることができる。 According to the fifth characteristic configuration of the present invention, the sum of the bending moments acting on the beams of the span portions arranged along the plurality of directions is equalized by adjusting the span split in the juxtaposed directions of the span portions. The effect of the first characteristic configuration of the present invention can be expanded not only in one direction on the building plane but also in a plurality of intersecting directions, and the whole building can be set with a lean member cross section. Therefore, the construction period can be shortened and the cost can be reduced in building construction.
本発明の第6の特徴構成は、柱スパンの異なる前記スパン部を平面視で交差する複数方向の夫々に沿って隣接させるとともに、各梁に作用する前記曲げモーメント合算値に基づいて前記複数方向の夫々において隣接する前記スパン部の長さ関係を調整することで、前記複数方向に沿って隣接する前記スパン部の各梁に作用する曲げモーメント合算値を均等化してあるところにある。 According to a sixth characteristic configuration of the present invention, the span portions having different column spans are adjacent to each other in a plurality of directions intersecting in plan view, and the plurality of directions are based on the sum of bending moments acting on each beam. By adjusting the length relationship between the adjacent span portions in each of the above, the sum of the bending moment acting on each beam of the adjacent span portions along the plurality of directions is equalized.
本発明の第6の特徴構成によれば、スパン部の各隣接方向のスパン長さ関係の調整により、複数方向に沿って隣接するスパン部の各梁に作用する曲げモーメント合算値を均等化するから、前述した本発明の第2の特徴構成による作用効果を、建物平面での一方向のみならず、交差する複数方向にも拡大させることが可能となり、建物全体として、無駄のない部材断面の設定が可能となり、建物建設での工期短縮やコストダウンを叶えることができる。 According to the sixth characteristic configuration of the present invention, the sum of the bending moment acting on each beam of the span portion adjacent in the plurality of directions is equalized by adjusting the span length relationship in the adjacent direction of the span portion. From the above, it is possible to expand the operation and effect of the above-described second characteristic configuration of the present invention not only in one direction on the building plane but also in a plurality of intersecting directions. Setting is possible, and construction period shortening and cost reduction in building construction can be realized.
以下に本発明の実施の形態を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.
図1、図2は、本発明の建物構造の一実施形態を示すもので、建物Bは、複数階層を備え、各階毎に、多数の柱1と、隣接する柱1にそれぞれ架設された梁2とからなるラーメン架構によって構成されている。
1 and 2 show an embodiment of a building structure according to the present invention. Building B has a plurality of hierarchies, each of which has a large number of
隣接する一対の柱1と、それら一対の柱1に架設された梁2とでスパン部Sが構成されている。因みに、当該実施形態においては、図1に示す構造伏図における上下方向(図中のY方向)に沿っては、柱スパンLが一定値のスパン部Sの複数が並設してあると共に、図の左右方向(図中のX方向)に沿っては、長い柱スパンL1の大スパン部S1と、短い柱スパンL2の小スパン部S2とを交互に配置してある。
また、前記X方向に長手方向を沿わせて並設してある梁2どうしにわたる状態に小梁3が設けられている。
A span portion S is configured by a pair of
Further, a
柱1は、上下の階層を通じて同じ位置に立設してある。従って、大スパン部S1と小スパン部S2との配列も、各階層毎に共通している。
The
前記大スパン部S1の柱スパンL1と、小スパン部S2の柱スパンL2との設定は、夫々のスパン部の梁2の端部に作用する長期荷重時の設計曲げモーメント値Maと、地震荷重時の設計曲げモーメント値Mbとの和である曲げモーメント合算値Mcが、同値(又はほぼ同値)となるように設定してある(図3参照)。
The column span L1 of the large span portion S1 and the column span L2 of the small span portion S2 are set according to the design bending moment value Ma at the long-term load acting on the end of the
この関係を、図3によって説明する。
図3(a)は、大スパン部S1の梁2Aと、小スパン部S2の梁2Bとに作用する長期荷重時の設計曲げモーメント値Ma1,Ma2を示している。
図から見られるように、大スパン部S1の梁2Aの端部においては、長期荷重時の設計曲げモーメント値Ma1は、小スパン部S2の梁2Bの端部の長期荷重時の設計曲げモーメント値Ma2に比べて大きな値となっている。
This relationship will be described with reference to FIG.
FIG. 3A shows design bending moment values Ma1 and Ma2 under a long-term load acting on the
As can be seen from the figure, at the end of the
図3(b)は、大スパン部S1の梁2Aと、小スパン部S2の梁2Bとに作用する地震荷重時の設計曲げモーメント値Mb1,Mb2を示している。
図から見られるように、大スパン部S1の梁2Aの端部においては、地震荷重時の設計曲げモーメント値Mb1は、小スパン部S2の梁2Bの端部の地震荷重時の設計曲げモーメント値Mb2に比べて小さな値となっている。
FIG. 3B shows design bending moment values Mb1 and Mb2 at the time of an earthquake load acting on the
As can be seen from the figure, at the end of the
図3(c)は、大スパン部S1の梁2Aと、小スパン部S2の梁2Bとに作用する曲げモーメント合算値Mc1,Mc2を示している。
図から見られるように、大スパン部S1の梁2Aの端部に作用する曲げモーメント合算値Mc1も、小スパン部S2の梁2Bの端部に作用する曲げモーメント合算値Mc2も、同値(又はほぼ同値)となっている。
FIG. 3C shows bending moment sums Mc1 and Mc2 acting on the
As seen from the figure, the sum of bending moments Mc1 acting on the end of the
このように、当該実施形態の建物構造においては、各梁2A,2Bに作用する長期荷重時の設計曲げモーメント値Ma1,Ma2と地震荷重時の設計曲げモーメント値Mb1,Mb2との和である各曲げモーメント合算値Mc1,Mc2に基づいて柱スパンL1,L2を調整することで、複数種の前記スパン部S1,S2の梁2A,2Bに作用する曲げモーメント合算値Mc1,Mc2を均等化してある。
As described above, in the building structure of the present embodiment, each of the design bending moment values Ma1 and Ma2 at the time of long-term load acting on the
よって、大スパン部S1の梁2Aも、小スパン部S2の梁2Bも、共に梁成h(図2参照)、及び、梁幅w(図1参照)、及び、鉄筋量が同じとなるように形成してある。つまり、部材断面の共通化が図られている。
Therefore, both the
当該実施形態の建物構造によれば、無駄のない部材断面の設定が行われており、建物建設での工期短縮やコストダウンを叶えることができる。
更には、大スパン部S1では、柱1間の広い空間を備えた建物平面を確保できながら、小スパン部S2では、高い剛性によって大スパン部S1をも含めた梁2端部の固定度を維持でき、建物B全体とした層間変位の抑制を図ることができる。
According to the building structure of the embodiment, the setting of the member cross section without waste is performed, and the construction period can be shortened and the cost can be reduced in building construction.
Furthermore, in the large span portion S1, a building plane having a wide space between the
〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.
〈1〉 建物構造は、鉄筋コンクリート造や、鉄骨鉄筋コンクリート造や、鉄骨造等、何れの構造形式のものにも適用できる。また、現場打設によって構成する方式や、プレキャスト部材を組み立てて形成する方式であってもよい。
また、先の実施形態では、耐震壁やブレースを備えてないラーメン架構を例に挙げて説明したが、耐震壁やブレース等の強度部材を備えた建物構造であってもよい。この場合、耐震壁やブレース等の強度部材が負担する地震時せん断力を差し引いたラーメン架構の負担分をもとにしてスパン割を考えればよい。
<1> The building structure can be applied to any structural type such as a reinforced concrete structure, a steel reinforced concrete structure, and a steel structure. Moreover, the system comprised by on-site placement and the system formed by assembling a precast member may be sufficient.
In the previous embodiment, a ramen frame that does not include a seismic wall or braces has been described as an example. However, a building structure including a strength member such as a seismic wall or braces may be used. In this case, the span split may be considered based on the load of the frame structure obtained by subtracting the shearing force at the time of the earthquake borne by the strength member such as the seismic wall or brace.
〈2〉 「スパン割」は、先の実施形態で説明したように、大スパン部S1と小スパン部S2とを交互に配置することに限るものではなく、例えば、図4、図5に示すように、大スパン部S1どうし、又は、小スパン部S2どうし、又は、何れもが隣接するように配置するものであってもよい。図に示すように、各曲げモーメント合算値Mcの均等化が図られている。
更には、図5に示すように、大スパン部S1の群と、小スパン部S2の群とを設けるように配置するものであってもよい。
また、図には示さないが、柱スパンLは、大小の2種類に限るものではなく、例えば、大中小の3種類や、それ以上の種類を備えたスパン割であってもよい。
<2> “Span split” is not limited to alternately arranging the large span portions S1 and the small span portions S2 as described in the previous embodiment. For example, FIG. 4 and FIG. As described above, the large span portions S1 or the small span portions S2 may be arranged so that they are adjacent to each other. As shown in the figure, equalization of the bending moment total values Mc is achieved.
Furthermore, as shown in FIG. 5, it may be arranged so as to provide a group of large span portions S1 and a group of small span portions S2.
Further, although not shown in the drawing, the column span L is not limited to two types of large and small, and may be, for example, a span split having three types of large, medium, and small, or more types.
〈3〉 「スパン割」は、先の実施形態で説明したように平面視での一方向に沿って配置される複数種のスパン部を対象とすることに限らず、平面視で交差する複数方向の夫々に沿って複数種のスパン部を並設するものであってもよい。
その一例を挙げると、図6に示すように、紙面での左右方向と、上下方向との両方向に沿って複数種のスパン部を並設してあってもよい。この実施形態の建物構造によれば、先に説明した各実施形態における作用効果を、建物平面での一方向のみならず、直交方向にも拡大させることが可能となり、建物全体として、無駄のない部材断面の設定が可能となり、建物建設での工期短縮やコストダウンを叶えることができる。
<3> “Span split” is not limited to a plurality of types of span portions arranged along one direction in a plan view as described in the previous embodiment, but a plurality of crossing in a plan view. A plurality of types of span portions may be provided in parallel along each of the directions.
For example, as shown in FIG. 6, a plurality of types of span portions may be arranged in parallel along both the left-right direction and the up-down direction on the paper surface. According to the building structure of this embodiment, it is possible to expand the effects in the embodiments described above not only in one direction on the building plane but also in the orthogonal direction, and there is no waste as a whole building. The member cross section can be set, and the construction period can be shortened and the cost can be reduced in building construction.
〈4〉 各スパン部Sでの梁2は、先の実施形態で説明した梁成hや梁幅wや鉄筋量を同じとして部材断面の共通化を図ることに限るものではなく、梁成hや梁幅wや鉄筋量の何れか又はすべてが異なるものであってもよく、要するに、均等化された曲げモーメント合算値Mcを基に設計された断面諸元を満たすものであればよい。
<4> The
尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.
1 柱
2 梁
h 梁成
L 柱スパン
Ma 長期荷重時の設計曲げモーメント値
Mb 地震荷重時の設計曲げモーメント値
Mc 曲げモーメント合算値
S スパン部
1
Claims (6)
各梁に作用する長期荷重時の設計曲げモーメント値と地震荷重時の設計曲げモーメント値との和である各曲げモーメント合算値に基づいてスパン割を調整することで、複数種の前記スパン部の梁に作用する曲げモーメント合算値を均等化してある建物構造。 A building structure in which multiple types of spans with different column spans are arranged and adjacent columns are joined together with beams,
By adjusting the span split based on the total bending moment value that is the sum of the design bending moment value under long-term load acting on each beam and the design bending moment value under seismic load, A building structure with equalized bending moments acting on beams.
各梁に作用する長期荷重時の設計曲げモーメント値と地震荷重時の設計曲げモーメント値との和である各曲げモーメント合算値に基づいて隣接するスパン部の長さ関係を調整することで、隣接する各スパン部の梁に作用する曲げモーメント合算値を均等化してある建物構造。 It is a building structure in which spans with different column spans are adjacent to each other and adjacent columns are joined with beams.
By adjusting the length relationship between adjacent spans based on the sum of the bending moments, which is the sum of the design bending moment values for long-term loads and seismic loads acting on each beam. A building structure that equalizes the sum of bending moments acting on beams in each span.
各梁に作用する前記曲げモーメント合算値に基づいて前記複数方向の夫々のスパン割を調整することで、前記複数方向に沿って並ぶ前記スパン部の各梁に作用する曲げモーメント合算値を均等化してある請求項1記載の建物構造。 A plurality of types of span portions having different column spans are juxtaposed along each of a plurality of directions intersecting in plan view,
By adjusting the respective span splits in the plurality of directions based on the sum of the bending moment acting on each beam, the sum of the bending moment acting on each beam of the span portion arranged along the plurality of directions is equalized. The building structure according to claim 1.
各梁に作用する前記曲げモーメント合算値に基づいて前記複数方向の夫々において隣接する前記スパン部の長さ関係を調整することで、前記複数方向に沿って隣接する前記スパン部の各梁に作用する曲げモーメント合算値を均等化してある請求項2記載の建物構造。 While adjoining the span portions having different column spans along each of a plurality of directions intersecting in plan view,
By adjusting the length relationship between the span portions adjacent in each of the plurality of directions based on the sum of the bending moments acting on each beam, it acts on each beam of the span portion adjacent along the plurality of directions. The building structure according to claim 2, wherein the sum of bending moments to be equalized is equalized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012212878A JP6057064B2 (en) | 2012-09-26 | 2012-09-26 | Building design method and building |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012212878A JP6057064B2 (en) | 2012-09-26 | 2012-09-26 | Building design method and building |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014066087A true JP2014066087A (en) | 2014-04-17 |
JP6057064B2 JP6057064B2 (en) | 2017-01-11 |
Family
ID=50742730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012212878A Expired - Fee Related JP6057064B2 (en) | 2012-09-26 | 2012-09-26 | Building design method and building |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6057064B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109629435A (en) * | 2019-01-09 | 2019-04-16 | 吴云香 | A kind of construction method for cutting down two parasitic moment of Long span prestressed continuous bridge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945044Y1 (en) * | 1970-05-21 | 1974-12-10 | ||
JPH0551963A (en) * | 1991-08-26 | 1993-03-02 | Shimizu Corp | Structure of building |
JPH07238617A (en) * | 1994-02-28 | 1995-09-12 | Hiroshi Ishikawa | Horizontal member for architecture produced at factory |
JPH09273214A (en) * | 1996-04-08 | 1997-10-21 | Shimizu Corp | Construction of building |
JP2006037530A (en) * | 2004-07-28 | 2006-02-09 | Dynamic Design:Kk | Building structure skeleton and building structure making use thereof |
-
2012
- 2012-09-26 JP JP2012212878A patent/JP6057064B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4945044Y1 (en) * | 1970-05-21 | 1974-12-10 | ||
JPH0551963A (en) * | 1991-08-26 | 1993-03-02 | Shimizu Corp | Structure of building |
JPH07238617A (en) * | 1994-02-28 | 1995-09-12 | Hiroshi Ishikawa | Horizontal member for architecture produced at factory |
JPH09273214A (en) * | 1996-04-08 | 1997-10-21 | Shimizu Corp | Construction of building |
JP2006037530A (en) * | 2004-07-28 | 2006-02-09 | Dynamic Design:Kk | Building structure skeleton and building structure making use thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109629435A (en) * | 2019-01-09 | 2019-04-16 | 吴云香 | A kind of construction method for cutting down two parasitic moment of Long span prestressed continuous bridge |
Also Published As
Publication number | Publication date |
---|---|
JP6057064B2 (en) | 2017-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6057064B2 (en) | Building design method and building | |
KR20160142462A (en) | Coupling Beam Reinforcement Structure Using Angle Member | |
JP2011241650A (en) | Structural wall | |
JP2017040122A (en) | Reinforced concrete column-beam joint precast member | |
JP6106461B2 (en) | building | |
KR101286370B1 (en) | Column having the pre-assembling steel frame and method for constructing the column | |
JP2009057736A (en) | Method of constructing extension building | |
CN107152106B (en) | Profile steel multi-ribbed composite structure system, keel unit, wall body and assembly method | |
CN104727468A (en) | Superimposed slab type shear wall | |
JP6752006B2 (en) | Fixed structure of building unit and unit building | |
JP6422802B2 (en) | Building frame structure | |
KR20120075282A (en) | Connecting structure of frame | |
JP6248470B2 (en) | Seismic reinforcement structure and method for existing frame | |
JP2013204249A (en) | Frame structure | |
JP3643369B1 (en) | Bearing wall structure | |
JP2017155510A (en) | Beam-column joint structure | |
JP7358142B2 (en) | unit building | |
JP6862096B2 (en) | Variable cross-section beam structure | |
JP5110895B2 (en) | Structural member for building | |
JP7229857B2 (en) | building construction method | |
JP5588212B2 (en) | Unit building and unit building structure calculation method | |
JP2007247157A (en) | Unit building | |
KR20090077325A (en) | With a euro-form panel of reinforcing member walls, and installation methods reinforcing member | |
JP6886095B2 (en) | Reinforcing structure of the opening | |
JP2022137887A (en) | Horizontal load-bearing panel and building |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150625 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6057064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |